WO2012163130A1 - 应用石墨烯薄膜电流扩展层的氮化镓基垂直结构led - Google Patents

应用石墨烯薄膜电流扩展层的氮化镓基垂直结构led Download PDF

Info

Publication number
WO2012163130A1
WO2012163130A1 PCT/CN2012/072235 CN2012072235W WO2012163130A1 WO 2012163130 A1 WO2012163130 A1 WO 2012163130A1 CN 2012072235 W CN2012072235 W CN 2012072235W WO 2012163130 A1 WO2012163130 A1 WO 2012163130A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gold
gallium nitride
titanium
current spreading
Prior art date
Application number
PCT/CN2012/072235
Other languages
English (en)
French (fr)
Inventor
李晋闽
汪炼成
张逸韵
伊晓燕
王国宏
王军喜
Original Assignee
中国科学院半导体研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院半导体研究所 filed Critical 中国科学院半导体研究所
Priority to US14/123,439 priority Critical patent/US20140151632A1/en
Publication of WO2012163130A1 publication Critical patent/WO2012163130A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor

Definitions

  • Gallium nitride based vertical structure LED using graphene thin film current spreading layer Gallium nitride based vertical structure LED using graphene thin film current spreading layer
  • the invention belongs to the field of semiconductor technology, and in particular to a gallium nitride-based vertical structure LED using a graphene film current spreading layer. Background technique
  • the vertical structure light-emitting diode transfers the gallium nitride epitaxial material from the sapphire substrate to the substrate material with good electrical and thermal conductivity, such as metal, silicon, silicon carbide, etc. through a key preparation process such as thermocompression bonding and laser lift-off.
  • the device electrodes are vertically distributed vertically and the current is injected in the vertical direction, thereby solving the problem that the surface of the gallium nitride-based light-emitting diode device in the form-fitting and flip-chip structure is distributed due to the lateral distribution of the electrodes, such as heat dissipation, uneven current distribution, and poor reliability. Series of questions.
  • the vertical structure light-emitting diodes mostly use metal electrodes, they are light-absorbing materials, and the larger the area, the larger the light-shielding surface, which leads to a decrease in the electro-optical conversion efficiency of the device. If the optical output power is increased by lowering the area of the metal electrode, the injection current distribution is uneven, and the contact characteristics of the metal electrode and the gallium nitride are lowered, so that the contact voltage between the gallium nitride and the metal electrode rises, and the uniformity of the injection current spread decreases. This will seriously affect the photoelectric characteristics of gallium nitride light-emitting diodes. And the metal material is expensive, which increases the cost of device preparation. Summary of the invention
  • the existing metal electrode functions as a current spreading layer, which can improve the luminous efficiency of the light emitting diode and is advantageous for reducing the device manufacturing cost.
  • the present invention provides a gallium nitride-based vertical structure LED using a graphene thin film current spreading layer, comprising: a p-type metal electrode, the p-type metal electrode comprising a metal supporting substrate, and being fabricated on the metal supporting substrate Metal mirror a hole injection layer, the hole injection layer is formed on a metal mirror of the P-type metal electrode; an electron blocking layer, the electron blocking layer is formed on the hole injection layer;
  • the light-emitting layer is formed on the electron blocking layer -
  • An electron confinement layer the electron confinement layer being formed on the luminescent layer
  • An electron injecting layer the electron injecting layer being formed on the electron confinement layer;
  • the current spreading layer is formed on the electron confinement layer
  • the material of the metal supporting substrate of the P-type metal electrode is copper, nickel, copper-nickel alloy, copper-tungsten alloy or nickel-cobalt alloy.
  • the material of the metal mirror of the P-type metal electrode is nickel/silver/platinum/gold, nickel/silver/gold, nickel/silver/nickel/gold, bismuth/aluminum/titanium/gold, titanium/silver/titanium/ A material from gold, aluminum/silver/gold or aluminum/titanium/gold.
  • the hole injection layer is selected from the P-type gallium nitride material of magnesium.
  • the electron blocking layer is selected from the group consisting of A1 X G — X N materials, wherein 0 ⁇ 1.
  • the luminescent layer comprises an indium gallium nitride quantum well and m+1 gallium nitride quantum barriers, and each of the indium gallium nitride quantum wells has a gallium nitride quantum barrier on the upper and lower sides, wherein m ⁇ i .
  • the electron confinement layer is selected from the group consisting of A Ga ⁇ N materials, wherein 0 ⁇ ⁇ ⁇ 1.
  • the electron injection layer is selected from a silicon-doped n-type gallium nitride material.
  • the current spreading layer is selected from a single layer or a multilayer graphene film material.
  • n-type metal electrode is selected from the group consisting of nickel/gold, nickel/silver/gold, nickel/silver/nickel/gold, nickel/silver/platinum/gold, titanium/gold, titanium/silver/gold, titanium/aluminum / Titanium / gold, titanium / silver / titanium / gold, aluminum / titanium / gold, complex / platinum / gold or chromium / silver / gold.
  • Figure 1 is a schematic side view of the vertical structure light emitting diode
  • FIG. 1 is a perspective view of the vertical structure light emitting diode. detailed description Referring to FIG. 1 and FIG. 2, the tantalum nitride-based vertical structure LED using a graphene thin film current spreading layer includes:
  • a metal electrode 10 comprising a metal supporting substrate 101, and a metal mirror 102 fabricated on the metal supporting substrate 101, the metal supporting substrate 101 supporting the epitaxial material and device heat dissipation
  • the metal mirror 102 firmly adheres the GaN material to the metal supporting substrate, and thanks to its good reflection, the conductive property is uniform, so that the device emits light uniformly, thereby greatly increasing the light extraction efficiency of the device.
  • the p-type metal material of the support substrate 101 is
  • the metal electrode 10 is copper, nickel, copper-nickel alloy, copper-tungsten alloy or a nickel-cobalt alloy, a thickness of the 50 ⁇ -300 ⁇ ⁇ ⁇ type metal electrode 10 is a metal reflector 102 materials are nickel / silver / platinum / gold, nickel / silver / gold, nickel / silver / nickel / gold, titanium / aluminum / titanium / gold, titanium / silver / titanium / gold, aluminum / silver / gold or aluminum / a material of titanium/gold having a thickness of from 100 nm to 2 ⁇ m ;
  • a hole injection layer 11 is formed on the metal mirror 102 of the bismuth metal electrode 10, and the hole injection layer 11 is selected from a magnesium-type p-type gallium nitride material having a thickness of 100 nm- SOOnm;
  • An electron blocking layer 12 is formed on the hole injection layer 11.
  • the electron blocking layer 12 confines electrons within the light-emitting region, reduces the probability of non-radiative recombination due to electron leakage, and increases the internal quantum efficiency of the device.
  • the electron blocking layer 12 is selected from the group consisting of Al x G ai x N, wherein 0 ⁇ ⁇ ⁇ 1, and the thickness is 5 nm 50 nm;
  • a light-emitting layer 13 is formed on the hole blocking layer 12, wherein the light-emitting layer 13 includes m indium gallium nitride quantum wells and m + 1 gallium nitride quantum barriers, each of which is indium gallium nitride There is a gallium nitride quantum barrier on the upper and lower sides of the quantum well, where n ⁇ l ;
  • An electron confinement layer 14 which is formed on the light-emitting layer 13.
  • the electron confinement layer decelerates the electrons that migrate at a high speed, reduces the probability of electrons entering the hole injection layer 11 through the light-emitting layer 13, improves the radiation recombination efficiency of the carriers in the light-emitting region, and increases the injection efficiency of the carriers.
  • Said electron confinement layer 14 is selected from A1 Z G 3 ⁇ 4 - Z N material, wherein 0 ⁇ z ⁇ i;
  • An electron injecting layer 15 is formed on the electron confinement layer 14 , and the electron injecting layer 15 is selected from the silicon infiltrated n-type gallium nitride material, and has a thickness of 1 ⁇ - 5 ⁇ 1 ⁇ ;
  • a current spreading layer 16 is formed on the electron injecting layer 15.
  • the current spreading layer utilizes the high conductivity and high transmittance of the graphite crucible, so that the injected current can be uniformly distributed on the electron injecting layer, thereby improving the luminous efficiency of the device.
  • the current spreading layer 16 is selected from a single layer Or a multilayer graphite crucible film material;
  • Two n-type metal electrodes 17 are formed on the current spreading layer 16, and the n-type metal electrodes 17 are selected from the group consisting of nickel/gold, nickel/silver/gold, nickel/silver/nickel/gold, nickel/silver/ Platinum/gold, titanium/gold, titanium/silver/gold, titanium/aluminum/titanium/gold, titanium/silver/titanium/gold, aluminum/titanium/gold, chrome/iridium/gold or chrome/silver/gold
  • the two n -type metal electrodes 17 cover a portion of the current spreading layer 16.
  • a gallium-desulfide-based vertical structure LED using a graphite germanium film current spreading layer includes:
  • the p-type metal electrode 10 comprises a 100 ⁇ thick copper metal supporting substrate 101, and nickel/silver/platinum/gold fabricated on the metal supporting substrate 101 (0. 5/50/50) /400 ⁇ ,) metal mirror 102;
  • a p-type gallium nitride material hole injection layer 11 having a thickness of lOOnm;
  • the electron blocking layer 12 is formed on the hole injection layer U;
  • a light-emitting layer 13 having a thickness of 100 nm, the light-emitting layer 13 being formed on the electron blocking layer 12, the light-emitting layer 13 comprising five gas-indium gallium quantum wells and six gallium nitride quantum barriers, each of which is nitrided
  • the gallium nitride quantum well has an upper and lower sides of the indium gallium quantum well;
  • the current spreading layer 16 is formed on the electron limiting layer 15;
  • Two ⁇ -type metal electrodes U are fabricated on the graphene current spreading layer 16.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

一种应用石墨烯薄膜电流扩展层的氮化镓基垂直结构LED,包括:一p型金属电极(10),该p型金属电极(10)包括一金属支撑衬底(101),以及制作在金属支撑衬底(101)上的金属反射镜(102);一空穴注入层(11),该空穴注入层(11)制作在p型金属电极(10)的金属反射镜(102)上;一电子阻挡层(12),该电子阻挡层(12)制作在空穴注入层(11)上;一发光层(13),该发光层(13)制作在电子阻挡层(12)上;一电子限制层(14),该电子限制层(14)制作在发光层(13)上;一电子注入层(15),该电子注入层(15)制作在电子限制层(14)上;一电流扩展层(16),该电流扩展层(16)制作在电子注入层(15)上;两个n型金属电极(17),制作在电流扩展层(16)上,覆盖一部分电流扩展层(16)。

Description

应用石墨烯薄膜电流扩展层的氮化镓基垂直结构 LED
技术领域
本发明属于半导体技术领域, 特别是指一种应用石墨烯薄膜电流扩展 层的氮化镓基垂直结构 LED。 背景技术
垂直结构发光二极管通过热压键合、 激光剥离等关键制备工艺, 将氮 化镓外延材料从蓝宝石衬底上转移到金属、 硅、 碳化硅等具有良好电、 热 传导特性的衬底材料上, 使得器件电极上下垂直分布、 电流沿垂直方向注 入从而解决了正装、倒装结构氮化镓基发光二极管器件中因为电极平面分 布、 电流横向注入所导致的诸如散热、 电流分布不均匀、 可靠性差等一系 列问题。 由于垂直结构发光二极管多采用金属电极, 其为吸光材料, 且其 面积越大遮光面也越大, 从而导致器件电光转化效率的下降。 如果通过降 低金属电极面积来提高光输出功率, 则会使得注入电流分布不均匀、 金属 电极与氮化镓接触特性下降, 从而使得氮化镓与金属电极接触电压上升、 注入电流扩展均匀性下降, 这都会严重影响氮化镓发光二极管的光电特 性。 且金属材料价格昂贵, 使得器件制备成本升高。 发明内容
本发明的目的在于, 提供一种应用石墨烯薄膜电流扩展层的氮化镓基 垂直结构 LED, 其是在垂直结构发光二极管中运用石墨烯材料的高光透过 率以及良好的导电特性做来代替现有的金属电极, 从而起到电流扩展层的 作用, 这既能提高发光二极管的发光效率, 且有利于降低器件制备成本。
本发明提供一种应用石墨烯薄膜电流扩展层的氮化镓基垂直结构 LED, 包括- 一 P型金属电极, 该 p型金属电极包括一金属支撑衬底, 以及制作在 金属支撑衬底上的金属反射镜; 一空穴注入层, 该空穴注入层制作在 P型金属电极的金属反射镜上.; 一电子阻挡层, 该电子阻挡层制作在空穴注入层上;
一发光层, 该发光层制作在电子阻挡层上 -,
一电子限制层, 该电子限制层制作在发光层上;
一电子注入层, 该电子注入层制作在电子限制层上;
一电流扩展层, 该电流扩展层制作在电子限制层上.;
两个 11型金属电极, 制作在电流扩展层上., 覆盖一部分电流扩展层。 其中所述 P型金属电极的金属支撑衬底的材料为铜、 镍、 铜镍合金、 铜钨合金或镍钴合金。
其中所述 P型金属电极的金属反射镜的材料为镍 /银 /铂 /金、 镍 /银 / 金、 镍 /银 /镍 /金、 钕 /铝 /钛 /金、 鈦 /银 /钛 /金、 铝 /银 /金或铝 /钛 /金中 的一种材料。
其中所述空穴注入层选自于惨镁的 P型氮化镓材料。
其中所述电子阻挡层选自于 A1XG — XN材料,其中 0≤χ≤1。
其中所述发光层包括 个氮化铟镓量子阱与 m+1个氮化镓量子势垒, 每个氮化铟镓量子阱上下两侧都有一个氮化镓量子势垒, 其中 m≥i。
其中所述电子限制层选自于 A Ga^N材料, 其中 0≤ζ≤1。
其中所述电子注入层选自于掺硅的 n型氮化镓材料。
其中所述电流扩展层选自于单层或多层石墨烯薄膜材料。
其中所述 n型金属电极选自于包括镍 /金、 镍 /银 /金、 镍 /银 /镍 /金、 镍 /银 /铂 /金、钛 /金、 鈦 /银 /金、钛 /铝 /钛 /金、 钛 /银 /钛 /金、 铝 /钛 /金、 络 /铂 /金或铬 /银 /金中的一种材料。 附图说明
为使审查员能进一步了解本发明的结构、 特征及其目的, 以下结合附 图及较佳具体实施例的洋细说明如后, 其中:
图 1为此垂直结构发光二极管侧面示意图;
图 2为此垂直结构发光二极管立体示意图。 具体实施方式 请参照图 1和图 2所示, 所述一种应用石墨烯薄膜电流扩展层的氮化 锿基垂直结构 LED, 包括:
一 型金属电极 10, 该 p型金属电极 10包括一金属支撑衬底 101, 以及制作在金属支撑衬底 101上的金属反射镜 102,所述金属支撑衬底 101 起到支撑外延材料及器件散热的作用, 而金属反射镜 102将 GaN材料牢固 的黏附于金属支撑衬底皿上, 并由于其良好的反射幸和导电特性, 使得 器件均匀发光, 进而使得器件的光提取效率大大增加。 所述 p型金属电极 10的金属支撑衬底 101的材料为铜、镍、铜镍合金、铜钨合金或镍钴合金, 其厚度为 50μηι-300μι ο 所述 ρ型金属电极 10的金属反射镜 102的材料为 镍 /银 /铂 /金、 鎳 /银 /金、 镍 /银 /镍 /金、 鈦 /铝 /钛 /金、 钛 /银 /钛 /金、 铝 /银 /金或铝 /钛 /金中的一种材料, 其厚度为 lOOnm- 2μπι;
一空穴注入层 11,该空穴注入层 U制作在 Ρ型金属电极 10的金属反 射镜 102上, 所述空穴注入层 11选自于擦镁的 ρ型氮化镓材料, 厚度为 lOOnm-SOOnm;
一电子阻挡层 12, 该电子阻挡层 12制作在空穴注入层 11上。该电子 阻挡层 12 将电子限制在发光区内, 降低由于电子泄漏所导致的非辐射复 合几率, 增加器件的内量子效率。 所述电子阻挡层 12选自于 AlxGai xN材 料,其中 0≤χ≤1 , 厚度为 5nm 50nm;
一发光层 13, 该发光层 13制作在空穴阻挡层 12上, 所述发光层 13 包括 m个氮化铟镓量子阱与 m+l个氮化镓量子势垒, 每个氮化铟镓量子阱 上下两侧都有一个氮化镓量子势垒, 其中 n^l ;
—电子限制层 14, 该电子限制层 14制作在发光层 13上。该电子限制 层将高速迁移的电子减速, 降低电子通过发光层 13进入空穴注入层 11的 概率, 提高载流子在发光区的辐射复合效率, 增加载流子的注入效率。 所 述电子限制层 14选自于 A1ZG¾ZN材料, 其中 0≤z≤i ;
一电子注入层 15, 该电子注入层 15制作在电子限制层 14上, 电子注 入层 15选自于渗硅的 n型氮化镓材'料, 厚度为 1μπι-5μ1η ;
一电流扩展层 16, 该电流扩展层 16制作在电子注入层 15上。该电流 扩展层利用石墨燏的高导电性和高透过率, 使得注入的电流能够在电子注 入层上均匀分布, 提高器件的发光效率。 所述电流扩展层 16选自于单层 或多层石墨燏薄膜材料;
两个 n型金属电极 17, 制作在电流扩展层 16上,, 所述 n型金属电极 17选自于包括镍 /金、 镍 /银 /金、 镍 /银 /镍 /金、 镍 /银 /铂 /金、 钛 /金、 钛 /银 /金、 钛 /铝 /鈦 /金、 钛 /银 /钛 /金、 铝 /钛 /金、 铬 /锒/金或铬 /银 /金中 的一种材料, 该两个 n型金属电极 17覆盖一部分电流扩展层 16。
实施例:
结合采用图 1和图 2, 一种应用石墨癤薄膜电流扩展层的滅化镓基垂 直结构 LED, 包括:
― P型金属电极 10, 该 p型金属电极 10包括 100 μπι厚的铜金属支撑 衬底 101 , 以及制作在金属支撑衬底 101 上的镍 /银 /铂 /金 (0. 5/50/50/400ηη,)金属反射镜 102;
一厚度为 lOOnm的 p型氮化镓材料空穴注入层 11 ;
一厚度为 20nm的 Alo 2Ga0 8N电子阻挡层 2 ,该电子阻挡层 12制作在 空穴注入层 U上;
―厚度为 lOOnm的发光层 13, 该发光层 13制作在电子阻挡层 12上,, 所述发光层 13包括 5个氣化铟镓量子阱与 6个氮化镓量子势垒, 每个氮 化铟镓量子阱上下两侧都有一个氮化镓量子势皇,;
—厚度为 10nm的 Alo isGao 85N电子限制层 14, 该电子限制层 14制作 在发光层 13上.;
—厚度为 2μπι的惨硅的 η型氮化镓电子注入层 15, 该电子注入层 15 制作在电子限制层 14上;
一单层或多层石墨烯电流扩展层 16, 该电流扩展层 16制作在电子限 制层 15上;
两个 η 型金属 电极 U , 其金属体系为钛 /铝 /钛 /金 (0. 5/50/50/1. 5μηι), 制作在石墨烯电流扩展层 16上。
以上所述, 仅为本发明中的具体实施方式, 但本发明的保护范围并不 局限于此, 任何熟悉该技术的人在本发明所揭露的技术范围内, 可轻易想 到的变换或替换, 都应涵盖在本发明的包含范围之内。 因此, 本发明的保 护范围应该以权利要求书的保护范围为准。

Claims

权 利 要 求
1、 一种应用石墨烯薄膜电流扩展层的氮化镓基垂直结构 LED, 包括: 一 P型金属电极, 该 p型金属电极包括一金属支撑衬底, 以及制作在 金属支撑衬底上的金属反射镜;
一空穴注入层, 该空穴注入层制作在 P型金属电极的金属反射镜上; 一电子阻挡层, 该电子阻挡层制作在空穴注入层上;
一发光层, 该发光层制作在电子阻挡层上;
一电子限制层, 该电子限制层制作在发光层上;
一电子注入层, 该电子注入层制作在电子限制层上;
一电流扩展层, 该电流扩展层制作在电子限制层上;
两个 n型金属电极, 制作在电流扩展层上, 覆盖一部分电流扩展层。
2、 如权利要求 1所述的应用石墨烯薄膜电流扩展层的氮化镓基垂直 结构 LED, 其中所述 p型金属电极的金属支撑衬底的材料为铜、 镍、 铜镍 合金、 铜钨合金或镍钴合金。
3、 如权利要求 1所述的应用石墨烯薄膜电流扩展层的氮化镓基垂直 结构 LED,其中所述 p型金属电极的金属反射镜的材料为镍 /银 /铂 /金、镍 /银 /金、 镍 /银 /镍 /金、 钛 /铝 /钛 /金、 钛 /银 /鈦 /金、 铝 /银 /金或铝 /钛 / 金中的一种材料。
4、 如权利要求 1所述的应用石墨烯薄膜电流扩展层的氮化镓基垂直 结构 LED, 其中所述空穴注入层选自于摻镁的 p型氮化镓材料。
5、 如权利要求 1.所述的应用石墨烯薄膜电流扩展层的氮化镓基垂直 结构 LED, 其中所述电子阻挡层选自于 AlxGa^ XN材料,其中 0≤χ≤1。
6、 如权利要求 1所述的应用石墨烯薄膜电流扩展层的氮化镓基垂直 结构 LED, 其中所述发光层包括 m个氮化铟镓量子阱与 m 个氮化镓量子 势垒,每个氮化铟镓量子阱上下两侧都有一个氮化镓量子势垒,其中 m≥i。
7、 如权利要求 1所述的应用石墨烯薄膜电流扩展层的氣化鎵基垂直 结构 LED, 其中所述电子限制层选自于 Α1 — zN材料, 其中 0≤ζ≤1。
8、 如权利要求 1 所述的应用石墨烯薄膜电流扩展层的氮化镓基垂直 结构 LED, 其中所述电子注入层选自于擦硅的 η型氮化镓材料。
9、 如权利要求 1所述的应用石墨烯薄膜电流扩展层的氮化镓基垂直 结构 LED, 其中所述电流扩展层选自于单层或多层石墨烯薄膜材料。
10、 如权利要求 1所述的应用石墨烯薄膜电流扩展层的氣化镓基垂直 结构 LED, 其中所述 n 型金属电极选自于包括镍 /金、 镶/银 /金、 镍 /银 / 镍 /金、 镍 /银 /铂 /金、 钛 /金、 钛 /银 /金、 钛 /铝 /钛 /金、 鈦 /银 /钛 /金、 铝 Z钛 /金、 铬 /铂 /金或铬 /银 /金中的一种材料。
PCT/CN2012/072235 2011-06-02 2012-03-13 应用石墨烯薄膜电流扩展层的氮化镓基垂直结构led WO2012163130A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/123,439 US20140151632A1 (en) 2011-06-02 2012-03-13 Gan-based vertical structure led applying graphene film current expansion layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011101475911A CN102214753A (zh) 2011-06-02 2011-06-02 应用石墨烯薄膜电流扩展层的氮化镓基垂直结构led
CN201110147591.1 2011-06-02

Publications (1)

Publication Number Publication Date
WO2012163130A1 true WO2012163130A1 (zh) 2012-12-06

Family

ID=44745974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072235 WO2012163130A1 (zh) 2011-06-02 2012-03-13 应用石墨烯薄膜电流扩展层的氮化镓基垂直结构led

Country Status (3)

Country Link
US (1) US20140151632A1 (zh)
CN (1) CN102214753A (zh)
WO (1) WO2012163130A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2827391A1 (en) * 2013-07-15 2015-01-21 LG Innotek Co., Ltd. Light emitting diode and light emitting diode package

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102214753A (zh) * 2011-06-02 2011-10-12 中国科学院半导体研究所 应用石墨烯薄膜电流扩展层的氮化镓基垂直结构led
KR101342664B1 (ko) * 2012-02-01 2013-12-17 삼성전자주식회사 자외선 발광소자
CN103378238B (zh) * 2012-04-25 2016-01-20 清华大学 发光二极管
CN103378235B (zh) * 2012-04-25 2015-12-02 清华大学 发光二极管
CN103378234B (zh) * 2012-04-25 2016-02-17 清华大学 发光二极管
CN102868091A (zh) * 2012-09-13 2013-01-09 北京工业大学 应用石墨烯表面电流扩展层的大功率面发射激光器
TWI524551B (zh) 2012-11-19 2016-03-01 新世紀光電股份有限公司 氮化物半導體結構及半導體發光元件
US10153394B2 (en) 2012-11-19 2018-12-11 Genesis Photonics Inc. Semiconductor structure
TWI535055B (zh) 2012-11-19 2016-05-21 新世紀光電股份有限公司 氮化物半導體結構及半導體發光元件
CN107316924B (zh) * 2013-01-25 2019-07-02 新世纪光电股份有限公司 氮化物半导体结构及半导体发光元件
CN104300052A (zh) * 2014-10-11 2015-01-21 北京工业大学 一种石墨烯结构的led芯片结构及其制备方法
CN105185881B (zh) * 2015-09-18 2018-05-29 华灿光电(苏州)有限公司 一种发光二极管及其制作方法
TWI738640B (zh) 2016-03-08 2021-09-11 新世紀光電股份有限公司 半導體結構
CN105870780A (zh) * 2016-04-14 2016-08-17 北京工业大学 一种能够实现光束二维操控的同相耦合vcsel阵列
TWI717386B (zh) 2016-09-19 2021-02-01 新世紀光電股份有限公司 含氮半導體元件
CN109994587B (zh) * 2018-01-02 2021-01-08 芜湖德豪润达光电科技有限公司 发光二极管芯片
CN111640829A (zh) * 2020-05-25 2020-09-08 安徽三安光电有限公司 一种具有复合电子阻挡层的发光二极管及其制备方法
CN113871520B (zh) * 2021-09-15 2024-04-09 天津三安光电有限公司 一种半导体发光元件及制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1588659A (zh) * 2004-07-16 2005-03-02 北京工业大学 n-pin结构半导体发光二极管
US7453098B2 (en) * 2004-04-23 2008-11-18 Supernova Optoelectronics Corporation Vertical electrode structure of gallium nitride based light emitting diode
CN101859858A (zh) * 2010-05-07 2010-10-13 中国科学院苏州纳米技术与纳米仿生研究所 基于石墨烯的透明导电电极及其制法与应用
CN102214753A (zh) * 2011-06-02 2011-10-12 中国科学院半导体研究所 应用石墨烯薄膜电流扩展层的氮化镓基垂直结构led

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203520A (ja) * 2004-01-14 2005-07-28 Sumitomo Electric Ind Ltd 半導体発光素子
CN1691358A (zh) * 2004-04-23 2005-11-02 华宇电脑股份有限公司 具有氧化锌接触电极的发光二极管
US20090278233A1 (en) * 2007-07-26 2009-11-12 Pinnington Thomas Henry Bonded intermediate substrate and method of making same
US8502193B2 (en) * 2008-04-16 2013-08-06 Lg Innotek Co., Ltd. Light-emitting device and fabricating method thereof
TWI649895B (zh) * 2010-04-30 2019-02-01 美國波士頓大學信託會 具能帶結構位變動之高效率紫外光發光二極體

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7453098B2 (en) * 2004-04-23 2008-11-18 Supernova Optoelectronics Corporation Vertical electrode structure of gallium nitride based light emitting diode
CN1588659A (zh) * 2004-07-16 2005-03-02 北京工业大学 n-pin结构半导体发光二极管
CN101859858A (zh) * 2010-05-07 2010-10-13 中国科学院苏州纳米技术与纳米仿生研究所 基于石墨烯的透明导电电极及其制法与应用
CN102214753A (zh) * 2011-06-02 2011-10-12 中国科学院半导体研究所 应用石墨烯薄膜电流扩展层的氮化镓基垂直结构led

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BYUNG, J.K. ET AL.: "Transparent conductive graphene electrode in GaN-based ultra-violet light emitting diodes.", OPTICS EXPRESS., vol. 18, no. 22, 25 October 2010 (2010-10-25), pages 23030 - 23034 *
HUANG, YAJUN ET AL.: "Current Distribution Study of Vertical Structure GaN-Based Light-Emitting Diodes", SEMICONDUCTOR TECHNOLOGY, vol. 34, no. 9, September 2009 (2009-09-01), pages 861 - 863 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2827391A1 (en) * 2013-07-15 2015-01-21 LG Innotek Co., Ltd. Light emitting diode and light emitting diode package
US9627584B2 (en) 2013-07-15 2017-04-18 Lg Innotek Co., Ltd. Light emitting device and light emitting device package

Also Published As

Publication number Publication date
US20140151632A1 (en) 2014-06-05
CN102214753A (zh) 2011-10-12

Similar Documents

Publication Publication Date Title
WO2012163130A1 (zh) 应用石墨烯薄膜电流扩展层的氮化镓基垂直结构led
US20240128425A1 (en) Solid state lighting devices with improved contacts and associated methods of manufacturing
KR101047721B1 (ko) 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
TWI240439B (en) Nitride semiconductor device and manufacturing method thereof
US9356213B2 (en) Manufacturing method of a light-emitting device having a patterned substrate
KR100815225B1 (ko) 수직구조 발광다이오드 소자 및 그 제조방법
US8471239B2 (en) Light-emitting element and a production method therefor
TWI240969B (en) Nitride semiconductor device and method for manufacturing same
TW201205864A (en) Deep ultraviolet light emitting diode
KR101039988B1 (ko) 발광 소자 및 그 제조방법
CN101867002A (zh) 一种新型半导体发光二极管
TWM260003U (en) Light-emitting diode to increase the light-emitting efficiency of spontaneous emission
CN103489973A (zh) 半导体发光结构
TW201034252A (en) Light emitting device
TWI243399B (en) Nitride semiconductor device
US9130103B2 (en) Light-emitting diode device
US11658265B2 (en) Method of manufacturing light emitting diodes and light emitting diode
CN107482098B (zh) 一种薄膜led芯片结构
TW201228052A (en) Light-emitting semiconductor chip and method for manufacturing the same
CN207282519U (zh) 一种薄膜led芯片结构
CN100470866C (zh) 一种半导体固态光源器件
KR100998007B1 (ko) 질화물계 반도체 발광소자
CN101728451A (zh) 半导体光电元件
CN209822687U (zh) 一种发光二极管
CN113257974B (zh) 具有超纳米晶金刚石导电层的发光二极管芯片及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12794079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14123439

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12794079

Country of ref document: EP

Kind code of ref document: A1