WO2012162911A1 - 一种外腔式可调谐激光器 - Google Patents

一种外腔式可调谐激光器 Download PDF

Info

Publication number
WO2012162911A1
WO2012162911A1 PCT/CN2011/075697 CN2011075697W WO2012162911A1 WO 2012162911 A1 WO2012162911 A1 WO 2012162911A1 CN 2011075697 W CN2011075697 W CN 2011075697W WO 2012162911 A1 WO2012162911 A1 WO 2012162911A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
optical
tunable
etalon
active
Prior art date
Application number
PCT/CN2011/075697
Other languages
English (en)
French (fr)
Inventor
高培良
Original Assignee
天津奇谱光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津奇谱光电技术有限公司 filed Critical 天津奇谱光电技术有限公司
Publication of WO2012162911A1 publication Critical patent/WO2012162911A1/zh
Priority to US13/974,674 priority Critical patent/US8908725B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0085Modulating the output, i.e. the laser beam is modulated outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • H01S5/142External cavity lasers using a wavelength selective device, e.g. a grating or etalon which comprises an additional resonator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/1068Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using an acousto-optical device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/107Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using electro-optic devices, e.g. exhibiting Pockels or Kerr effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0287Facet reflectivity

Definitions

  • the first optical etalon and the first total reflection mirror are placed in a direction perpendicular to the optical axis of the laser cavity output lens, receive the vertically polarized light output from the polarization beam splitter, and output to the first total reflection mirror, the first full
  • the mirror and the laser output mirror constitute a first laser resonator cavity
  • the tunable optical filter is a tunable acousto-optic filter, or a tunable holographic grating filter, or a tunable optical filter composed of a common reflective or transmissive grating and an electromechanical rotating device, or A combination of several tunable optical filters.
  • a non-planar output mirror 2 and a full mirror 14 are generally employed to achieve a reasonable distribution of the beam within the cavity.
  • the laser output tuning is achieved by an active optical phase modulator 6 and a tunable filter 8, which determines the spacing of the laser output spectrum.
  • An optical etalon with a high sharpness factor can compress the spectral bandwidth of the output beam and increase the side mode rejection ratio. If it is necessary to reduce the interval of the output spectrum of the laser, it is necessary to simultaneously reduce the filtering bandwidth of the tunable filter 8 and reduce the interval of the peak frequency of the transmission spectrum of the optical etalon 12 to avoid the phenomenon of mode hopping and to ensure the single mode of the laser. oscillation.
  • a tunable laser 200 as shown in Fig. 2 can be used.
  • the tunable laser 200 includes an out-of-cavity collimating lens 40, an intracavity collimating lens 26, a laser gain medium 24, a reflective film 20 plated on a laser gain medium, an active optical phase modulator 28, a tunable filter 30, Light etalon 34 and full mirror 36.
  • the tunable laser 200 needs to be aligned with an intracavity lens 26
  • the wavelength tunable laser 300 differs from the tunable laser 200 in that the optical etalon 34 and the full mirror 36 in the tunable laser 200 are replaced by an active polarization rotator 52, a polarization beam splitter 54.
  • a dual optical path system 400 consisting of a first optical etalon 56, a first total reflection mirror 58, a second optical etalon 60 and a second total reflection mirror 62 is shown in FIG.
  • the active polarization rotator 52 can rotate the polarization direction of the incident light 51: when the active polarization rotator is in an inoperative state, the incident beam 51 does not change the polarization state, passes directly through the polarization beam splitter 54 and passes through the optical etalon.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Lasers (AREA)

Abstract

公开了一种外腔式可调谐激光器(300)。激光器(300)包括安装在激光腔外的准直透镜(40)和依次安装在激光腔内的激光输出镜(42)、激光增益介质(44)、准直透镜(46)、有源光相位调制器(48)和可调谐光滤波器(50)。激光器(300)还包括安装在可调谐光滤波器(50)后的有源偏振旋光器(52)、放置在偏振旋光器(52)后的偏振分束器(54)、放置在与激光输出镜(42)光轴相垂直的方向上的第一标准具(60)和第一全反射镜(62)、放置在激光输出镜(42)光轴方向上的第二光学标准具(56)和第二全反射镜(58),以及激光器驱动控制电路。激光器(300)具有高频谱密度、窄频谱带宽和可调谐激光输出的特点,降低了可调谐光滤波器和标准具的制作难度。激光器(300)还具有性能稳定、成本低、尺寸小、易于安装和生产的特点。

Description

W
一种外腔式可调谐激光器 技术领域
本发明属于光电子领域, 尤其是一种外腔式可调谐激光器。
背景技术
目前, 大多数现代通迅系统都是基于光纤通信网络, 而光纤通信网络提供了前所未有 的大容量和安装的灵活性, 可以支持不断发展的各种宽带应用。 宽带和多通道的可调谐激 光器可以帮助最大限度的利用现有的光纤网络资源。 通过动态提供带宽可以将流量从拥挤 通道转移到未使用的通道, 从而满足互联网的需求。 使用可调谐激光器使快速建立或改变 光路变得容易, 它是实现动态光纤网络的重要器件之一。
针对这种应用,理想的可调谐激光器应当包括以下特性:可调谐范围宽,覆盖 C和(或) L波段(大约 1520纳米至 1620纳米); 尺寸小; 任何两个国际电信联盟 (ITU)频率间隔 之间的切换速度快 (亚毫秒量级); 长期工作稳定性好 (超过 25 年的运行时间); 在极端 环境条件下的高可靠性; 低功耗; 易制造和低成本。
随着高密度波分复用器(DWDM)的和其他高密度频谱相关器件的开发成功, 现代光 通迅系统已从过去的频道间隔为 400GHz和 200GHz 的系统, 发展到频道间隔为 100GHz 和 50GHz,甚至 25GHz和更高密度的系统;同时,光通迅系统传输速率也从过去的 2.5Gbps 发展到 10Gbps、 40Gbps和 lOOGbps系统。 这就对用于光通迅系统的小型可调谐激光器 提出了相应的要求, 特别是在激光器输出光的光谱密度和光谱宽度提出了更高的要求。 采 用高锐度的光学标准具的外腔式可调谐激光器, 因其能够实现上述要求, 是用于新一代动 态, 髙传输速率和高光谱密度的光通迅系统的好的选择之一。
在外腔式可调谐激光器中, 特别是用于光通讯的这类器件, 除了用具有高锐度的光学 标准具来压缩激光输出带宽外, 还需要有相匹配的可调谐的窄带光滤波器。 如果要求激光 器输出光频率间隔为 Δ/, 则光滤波器滤波带宽应不超过该频率间隔的两倍, 即<24/, 方可 避免激光器工作在多模状态, 从而提高激光器工作的稳定性; 如果要求激光器输出光频率 间隔为 50GHz, 则光滤波器滤波带宽应<100GHz; 如果进一步要求输出光频率间隔为 25GHz, 则光滤波器滤波带宽应<5001¾。对于带宽越窄的光滤波器, 制作难度就越髙, 造 价也就越高, 如常用的光学光栅滤波器和声光滤波器等。 同样, 对于透射光谱间隔越窄的 光学标准具, 尺寸就越大, 制作难度就越高, 造价也就越高。
发明内容
更正页 (细则第 91条) ISA/CN 本发明的目的在于克服现有技术的不足, 提供一种低成本、 尺寸小、 易于生产且性能 高的可调谐激光器。
本发明解决现有的技术问题是采取以下技术方案实现的- 一种外腔式可调谐激光器, 包括安装在激光腔外的腔外准直透镜和依次安装在激光腔 内的激光输出镜、 激光增益介质、 腔内准直透镜、 有源光相位调制器和可调谐光滤波器, 还包括:
一个有源偏振旋光器, 放置在可调谐光滤波器后, 用于将入射的线偏振光的偏振方向 旋转 90度:
一个偏振分束器, 放置在偏振旋光器后, 对入射的平行偏振光全透射, 而对入射的垂 直偏振光反射到与入射光成 90度的方向上;
第一光学标准具和第一全反射镜, 放置在与激光腔输出透镜光轴相垂直的方向上, 接 收从偏振分束器输出的垂直偏振光并输出到第一全反射镜, 第一全反射镜与激光输出镜构 成第一激光谐振子腔;
第二光学标准具和第二全反射镜, 放置在与激光腔输出镜光轴方向上, 接收从偏振分 束器输出的平行偏振光并输出到第二全反射镜, 第二全反射镜与激光输出镜构成第二激光 谐振子腔。
激光增益介质泵浦设备、 有源相位调制器驱动设备、 可调谐光滤波器驱动设备和有源 偏振旋光器驱动设备及激光器驱动控制电路。
而且, 所述的第一光学标准具和上述第二光学标准具具有相同的锐度系数。
而且,所述的第一光学标准具、第二光学标准具具有与激光增益介质相同的光谱范围, 第二光学标准具的透射光谱峰值间隔与上述第一光学标准具相同, 第二光学标准具的透射 光谱峰值频率与第一光学标准具的透射光谱峰值频率相差为上述任一光学标准具透射光 谱峰值间隔的一半。
而且,所述的激光输出镜、第一全反射镜和第二全反射镜为平面镜或凸面镜或凹面镜; 所述的激光输出镜、 第一全反射镜和第二全反射镜具有与激光增益介质相同的光谱范围。
而且, 所述的可调谐光滤波器为可调谐声光滤波器, 或者为可调谐全息光栅滤波器, 或者为由普通反射或透射光栅与机电转动装置组成的可调谐光滤波器, 或者为上述几种可 调谐光滤波器的组合。
而且, 所述的可调谐滤波器为窄带光滤波器, 其光谱范围与激光增益介质的光谱范围 相同, 且其光谱的 FWHM不大于第一光学标准具或第二光学标准具透射光谱峰值频率的
更正页 (细则第 91条) ISA CN 二倍。
而且, 所述的有源相位调制器是电光相位调制器, 或者是磁光相位调制器, 或者是液 晶相位调制器, 或者是声光相位调制器, 或者是基于物理光学效应的其他形式的相位调制 器, 或者是上述相位调制器的组合并具有与激光增益介质相同的光谱范围。
而且, 所述的有源偏振旋光器是电光偏振旋光器, 或者是磁光偏振旋光器, 或者是液 晶偏振旋光器, 或者是声光偏振旋光器, 或者是基于物理光学效应的其他形式的偏振旋光 器, 或者是上述偏振旋光器的组合并具有与激光增益介质相同的光谱范围。
而且, 所述的激光输出镜的反射率在 5%到 95%的范围内。
而且, 所述的激光器驱动控制电路由数字信号微处理器、 四个数模转换模块、 激光泵 浦源、 有源相位调制器驱动源、 可调谐滤波器驱动源和有源偏振旋光器驱动源, 数字信号 微处理器接收外部指令信号指令并通过激光泵浦源、 有源相位调制器驱动源、 可调谐滤波 器驱动源和有源偏振旋光器驱动源实现对激光增益介质、 有源相位调制器、 可调谐光滤波 器和有源偏振旋光器的驱动控制功能。
本发明的优点和积极效果是- 本发明设计合理, 其采用了有源偏振旋光器、 偏振光分束镜、 两个光学标准具和两个 全反射镜构成两个激光谐子腔腔, 实现在宽频谱范围内的高频谱密度、 窄频谱带宽和可调 谐的稳定激光输出,将对光滤波器的滤波带宽的要求降低了一倍, 可用输出为 50GHz频谱 间隔的光滤波器和透射光谱间隔为 50GHz的光学标准具来实现 25GHz 的稳定激光输出, 降低了对可调谐光滤波器的滤波带宽的要求以及对光学标准具透射光谱峰值频率间隔密 度的要求,从而大大降低了可调谐光滤波器和光学标准具的制作难度,具有性能稳定可靠、 成本低廉、 尺寸小、 易于安装及生产等特点, 可满足光纤通信对于小尺寸和极端工作环境 下的可靠运行,并且在生物、医疗器械和光纤传感器网络等其他领域中也有着广泛的应用。
附图说明
图 1是现有的一种无准直透镜的外腔式可调谐激光器的示意图;
图 2是现有的一种采用准直透镜的外腔式可调谐激光器的示意图;
图 3是本发明的结构示意图:
图 4是利用一个有源旋光器和一个偏振光分束镜进行激光谐振模切换的装置示意图; 图 5 是显示了图 4 装置中平行光偏振光束的传输路径示意图;
图 6是显示了图 4装置中垂直光偏振光束的传输路径示意图;
图 7是第一光学标准具和第二光学标准局的透射光谱示意图, 其中上半部分是第一光
更正页 (细则第 91条) ISA/CN 学标准具的透射光谱, 其间隔为 50GHz, 下半部分是第二光学标准具的透射光谱, 其间隔 为 50GHz, 但透射光谱峰值频率和第一光学标准具的透射光谱峰值频率相差为 25GHz;
图 8是透射光谱间隔为 25GHz的可调谐激光器输出光谱示意图;
图 9是本发明的激光驱动控制电路的原理框图
具体实施方式
以下结合附图对本发明实施例做进一步详述。
现有的采用单一光学标准具的外腔式可调谐激光器,如图 1所示,该可调谐激光器 100 包括部分反射镜 2、 增益介质 4、 有源光相位调制器 6、 可调谐滤波器 8、 光学标准具 12、 全反镜 14。 其中, 一个部分反射镜 2 (反射率小于 100%) 作为激光器输出镜和一个全反 镜 14 (反射率为 100%) 组成的激光腔。 激光输出镜通常对不同波长或颜色光的反射率不 同, 这里提到的反射率是与激光器运行的波长带宽相对应的反射率。 部分反射镜的目的是 为系统提供所谓的 "正反馈"。 可调谐激光器 100 的腔内不使用准直透镜, 采用这种腔通 常是针对激光增益介质是气体, 液体或有些固体介质时用的。
在上述可调谐激光器 100中, 一般采用非平面的输出镜 2和全反镜 14以实现腔内光 束的合理分布。激光输出调谐是通过有源光相位调制器 6和可调谐滤波器 8 来实现, 光学 标准具 12 决定激光器输出频谱的间隔。 采用高锐度系数的光标准具能起到压縮输出光束 的频谱带宽和提高边模抑制比。 如需要减小激光器输出频谱的间隔, 则需要同时减小可调 谐滤波器 8的滤波带宽和减小光标准具 12的透射光谱峰值频率的间隔, 才能避免发生跳 模现象和保证激光器的单模振荡。 如激光器的输出频谱的间隔要求为 25GHz, 不仅需要光 标准具 12 的频谱的间隔为 25GHz, 还要求可调谐滤波器 8的滤波带宽的 FWHM (频谱半 宽度) 参数至少小于 50GHz。 这就大大提高了可调谐滤波器 8的技术难度和制造成本。 光标准具 12 的技术难度和制造成本也会增加。 对于激光增益介质是均匀增益介质的情况 下,一般要求可调谐光滤波器的滤波带宽 FWHM值小于 2Δ/ (假设光标准具的透射带宽为 Δ/)。 如果可调谐光滤波器的滤波带宽大于 2Δ/, 容易形成多模振荡, 导致多模输出或跳 模现象。 对于激光增益介质是非均匀增益介质的情况下, 要求可调谐光滤波器的滤波带宽 FWHM值更窄。
如果激光增益介质是半导体增益介质时, 由于一般都有比较大的输出分散角, 可采用 如图 2所示的可调谐激光器 200。 该可调谐激光器 200包括腔外准直透镜 40、 腔内准直透 镜 26、 激光增益介质 24、 镀在激光增益介质上的反射膜 20、 有源光相位调制器 28、 可调 谐滤波器 30、 光标准具 34和全反镜 36。 可调谐激光器 200需要用一个腔内透镜 26去准
更正页 (细则第 91条) ISA/CN 直激光增益介质 24的输出光束。 在该可调谐激光器 200中, 直接在激光增益介质 24的一 个输出面上镀反射膜 20, 可以替代可调谐激光器 100中的输出反射镜, 还需要一个腔外的 准直透镜 40来准直激光器的输出光束 38。 例如, 用于光纤通讯中的这类激光器, 需要将 输出光束 38藕合到光纤中, 准直透镜 40就是比不可少的。 可调谐激光器 200的工作原理 和可调谐激光器 100是一样的。
下面对本发明的外腔式可调谐激光器 300进行详细说明。 如图 3所示, 可调谐激光器 300包括腔外准直透镜 40、 腔内准直透镜 46、 激光增益介质 44、 鍍在激光增益介质上的 反射膜 42、 有源光相位调制器 48、 可调谐滤波器 50、 有源偏振旋光器 52、 偏振光分束镜 54、 第一光学标准具 56、 第一全反射镜 58、 第二光学标准具 60、 第二全反射镜 62及激光 增益介质泵浦设备、 有源相位调制器驱动设备、 可调谐光滤波器驱动设备和有源偏振旋光 器驱动设备及激光器驱动控制电路。 腔外准直透镜安装在激光腔外, 激光输出镜、 激光增 益介质、 腔内准直透镜、 有源光相位调制器和可调谐光滤波器依次安装在激光腔内的, 在 可调谐光滤波器后安装一有源偏振旋光器用于将入射的线偏振光的偏振方向旋转 90度, 偏振旋光器后安装一偏振分束器用于对入射的平行偏振光全透射, 而对入射的垂直偏振光 反射到与入射光成 90度的方向上; 在与激光腔输出透镜光轴相垂直的方向上安装第一光 学标准具和第一全反射镜, 用于接收从偏振分束器输出的垂直偏振光并输出到第一全反射 镜, 第一全反射镜与激光输出镜构成第一激光谐振子腔; 在激光腔输出镜光轴方向上安装 第二光学标准具和第二全反射镜, 用于接收从偏振分束器输出的平行偏振光并输出到第二 全反射镜, 第二全反射镜与激光输出镜构成第二激光谐振子腔。 该波长可调谐激光器 300 与可调谐激光器 200不同之处在于: 可调谐激光器 200中的光标准具 34和全反镜 36, 被 换成了由有源偏振旋光器 52、 偏振光分束镜 54、 第一光学标准具 56、 第一全反射镜 58、 第二光学标准具 60和第二全反射镜 62组成的双光路系统 400, 如图 4所示。 有源偏振旋 光器 52可以旋转入射光 51的偏振方向: 当有源偏振旋光器处在非工作状态时, 入射光束 51 不改变偏振态, 直接通过偏振光分束镜 54后, 经光标准具 56后到达全反镜 58, 再经 全反镜 58反射回激光腔中, 如图 5所示; 当有源偏振旋光器处在工作状态时, 入射光束 51 的偏振态旋转 90度,变成垂直偏振光,通过偏振光分束镜 54反射后,经光标准具 60 到 达全反镜 62, 再经全反镜 62反射回激光腔中, 如图 6所示。 由于经全反镜 62反射回的光 再次通过有源偏振旋光器后, 偏振态再旋转 90度, 所以激光器的输出光束偏振态不变。
因此, 通过控制有源偏振旋光器 52可以使图 3中的波长可调谐激光器 300形成两个 激光谐振腔的子腔: 第一子腔是由输出镜 (镀在激光增益介质上的反射膜) 42 和全反镜
更正页 (细则第 91条) ISA/CN 58组成, 第二子腔是由输出镜(镀在激光增益介质上的反射膜) 42 和全反镜 62组成。 腔 内不增加其他器件。 图 7 分别显示了光标准具 56和光标准具 60的透射光谱。两个光标准 具 56和 60 具有相同的透射光谱间隔 50GHz和锐度系数, 但透射光谱峰值相差 25GHz。 这样, 激光器 300的输出光谱是两个子腔的综合, 即可实现 25GHz光谱峰值间隔, 并且偏 振态一致的可调谐激光输出, 如图 8所示。
本发明中, 第一光学标准具和上述第二光学标准具具有相同的锐度系数, 而且, 第 一光学标准具、 第二光学标准具具有与激光增益介质相同的光谱范围, 第二光学标准具的 透射光谱峰值间隔与上述第一光学标准具相同, 第二光学标准具的透射光谱峰值频率与第 一光学标准具的透射光谱峰值频率相差为任一光学标准具透射光谱峰值间隔的一半。 例 如, 第一光学标准具透射光谱峰值间隔可以是 50GHz, 可以是 25GHz, 可以是 12. 5GHz, 其 透射光谱峰值频率满足国际光通讯标准 (ITU GRID ) , 也可以是其他的透射光谱峰值间隔 和透射光谱峰值频率值; 第二个光学标准具的透射光谱峰值间隔可以是 50GHz, 25GHz 或 12. 5GHz, 也可以是其他值, 第二光学标准具的透射光谱峰值频率与第一个光学标准具的 透射光谱峰值频率相差为上述一个光学标准具透射光谱峰值间隔的一半, 即对应于上述第 一个光学标准具透射光谱峰值间隔分别为 50GHz, 25GHz, 和 12. 5GHz时, 上述第二个光 学标准具透射光谱峰值频率与上述第一个光学标准具的透射光谱峰值频率相差分别为
25GHz, 12. 5GHz 和 6. 25GHz。
一般来说, 象半导体激光增益介质, 其输出的荧光即是线偏振光。 对这类激光增益 介质, 腔内不需要使用起偏器。 对其他输出为非线偏振光的激光增益介质, 必须使用起偏 器才能使可调谐激光器 300实现上述功能。
随着光通讯技术的发展, DWDM光通讯网正向 25GHz, 甚至光频道密度更高的方向发 展。 就要求有滤波带宽更窄的可调谐光滤波器, 也使得制作这样的可调谐光滤波器和要求 小型化的可调谐激光器的难度进一步提高, 价格更加昂贵。 对于一些其它的可调谐激光器 的应用, 要求激光器的输出光束有更高的可调谐频谱密度, 其整体激光器的成本和技术难 度将更加提高。 因此, 可调谐激光器 300可在已有的 50GHz频谱间隔的外腔式激光器的平 台上,提供了一种可以实现 25GHz频谱间隔的简易方法,并且不显著增加成本和制造难度。
上述可调谐激光器 300还安装有一个激光器驱动控制电路实现对激光增益介质泵浦 设备、 有源相位调制器驱动设备、 可调谐滤波器驱动设备和有源偏振旋光器驱动设备的驱 动和控制功能, 如图 9所示, 该激光器驱动控制电路包括带有嵌入式软件程序的数字信号 微处理器(DSP) 112 、 四个数模转换(D/A)设备 102、 106、 110和 116、激光泵浦源 101、
更正页 (细则第 91条) ISA/CN 有源相位调制器驱动源 104、 可调谐滤波器驱动源 108和有源偏振旋光器驱动源 114。 带 有嵌入式软件程序的数字信号微处理器 (DSP) 112通过数模转换 (D/A) 设备 102、 106、 110和 116来分别控制激光泵浦源 101、有源相位调制器驱动源 104、可调谐滤波器驱动源 108和有源偏振旋光器驱动源 114。 数字信号微处器 112可以接收外部指令并通过激光泵 浦源 101、 有源相位调制器驱动源 104、 可调谐滤波器驱动源 108和有源偏振旋光器驱动 源 114实现对激光增益介质、 有源相位调制器、 可调谐光滤波器和有源偏振旋光器的驱动 控制功能。
上述说明仅起演示和描述的作用, 并不是一个详细无遗漏的说明, 也没有意图将 本发明限制在所描述的具体形式上。 经过上面的描述, 对本发明的许多改动和变化都 可能出现。 所选择的具体实施仅仅是为了更好的解释本发明的原理和实际中的应用。 这个说明能够使熟悉此领域的人可以更好的利用本发明, 根据实际需要设计不同的具 体实施和进行相应的改动。
更正页 (细则第 91条) ISA/CN

Claims

权利要求书
1、 一种外腔式可调谐激光器, 包括安装在激光腔外的腔外准直透镜和依次安装 在激光腔内的激光输出镜、 激光增益介质、 腔内准直透镜、 有源光相位调制器和可调 谐光滤波器, 其特征在于: 还包括:
一个有源偏振旋光器, 放置在可调谐光滤波器后, 用于将入射的线偏振光的偏振 方向旋转 90度;
一个偏振分束器, 放置在偏振旋光器后, 对入射的平行偏振光全透射, 而对入射 的垂直偏振光反射到与入射光成 90度的方向上;
第一光学标准具和第一全反射镜, 放置在与激光腔输出透镜光轴相垂直的方向 上, 接收从偏振分束器输出的垂直偏振光并输出到第一全反射镜, 第一全反射镜与激 光输出镜构成第一激光谐振子腔;
第二光学标准具和第二全反射镜, 放置在激光腔输出镜光轴方向上, 接收从偏振 分束器输出的平行偏振光并输出到第二全反射镜, 第二全反射镜与激光输出镜构成第 二激光谐振子腔。
激光增益介质泵浦设备、 有源相位调制器驱动设备、 可调谐光滤波器驱动设备和 有源偏振旋光器驱动设备及激光器驱动控制电路。
2、 根据权利要求 1 所述的一种外腔式可调谐激光器, 其特征在于: 所述的第一 光学标准具和上述第二光学标准具具有相同的锐度系数。
3、 根据权利要求 1或 2所述的一种外腔式可调谐激光器, 其特征在于: 所述的 第一光学标准具、 第二光学标准具具有与激光增益介质相同的光谱范围, 第二光学标 准具的透射光谱峰值间隔与上述第一光学标准具相同, 第二光学标准具的透射光谱峰 值频率与第一光学标准具的透射光谱峰值频率相差为上述任一光学标准具透射光谱峰 值间隔的一半。
4、 根据权利要求 1 所述的一种外腔式可调谐激光器, 其特征在于: 所述的激光 输出镜、 第一全反射镜和第二全反射镜为平面镜或凸面镜或凹面镜; 所述的激光输出 镜、 第一全反射镜和第二全反射镜具有与激光增益介质相同的光谱范围。
5、 根据权利要求 1 所述的一种外腔式可调谐激光器, 其特征在于: 所述的可调 谐光滤波器为可调谐声光滤波器, 或者为可调谐全息光栅滤波器, 或者为由普通反射 或透射光栅与机电转动装置组成的可调谐光滤波器, 或者为上述几种可调谐光滤波器 的组合。
6、 根据权利要求 1或 5所述的一种外腔式可调谐激光器, 其特征在于: 所述的 可调谐滤波器为窄带光滤波器, 其光谱范围与激光增益介质的光谱范围相同, 且其光 谱的 FWHM不大于第一光学标准具或第二光学标准具透射光谱峰值频率的二倍。
7、 根据权利要求 1 所述的一种外腔式可调谐激光器, 其特征在于: 所述的有源 相位调制器是电光相位调制器, 或者是磁光相位调制器, 或者是液晶相位调制器, 或 者是声光相位调制器, 或者是基于物理光学效应的其他形式的相位调制器, 或者是上 述相位调制器的组合并具有与激光增益介质相同的光谱范围。
8、 根据权利要求 1 所述的一种外腔式可调谐激光器, 其特征在于: 所述的有源 偏振旋光器是电光偏振旋光器, 或者是磁光偏振旋光器, 或者是液晶偏振旋光器, 或 者是声光偏振旋光器, 或者是基于物理光学效应的其他形式的偏振旋光器, 或者是上 述偏振旋光器的组合并具有与激光增益介质相同的光谱范围。
9、 根据权利要求 1 所述的一种外腔式可调谐激光器, 其特征在于: 所述的激光 输出镜的反射率在 5%到 95%的范围内。
10、 根据权利要求 1所述的一种外腔式可调谐激光器, 其特征在于: 所述的激光 器驱动控制电路由数字信号微处理器、 四个数模转换模块、 激光泵浦源、 有源相位调 制器驱动源、 可调谐滤波器驱动源和有源偏振旋光器驱动源, 数字信号微处理器接收 外部指令信号指令并通过激光泵浦源、 有源相位调制器驱动源、 可调谐滤波器驱动源 和有源偏振旋光器驱动源实现对激光增益介质、 有源相位调制器、 可调谐光滤波器和 有源偏振旋光器的驱动控制功能
PCT/CN2011/075697 2011-06-02 2011-06-13 一种外腔式可调谐激光器 WO2012162911A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/974,674 US8908725B2 (en) 2011-06-02 2013-08-23 External cavity tunable laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110146997.8 2011-06-02
CN201110146997.8A CN102244358B (zh) 2011-06-02 2011-06-02 一种外腔式可调谐激光器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/974,674 Continuation US8908725B2 (en) 2011-06-02 2013-08-23 External cavity tunable laser

Publications (1)

Publication Number Publication Date
WO2012162911A1 true WO2012162911A1 (zh) 2012-12-06

Family

ID=44962277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075697 WO2012162911A1 (zh) 2011-06-02 2011-06-13 一种外腔式可调谐激光器

Country Status (3)

Country Link
US (1) US8908725B2 (zh)
CN (1) CN102244358B (zh)
WO (1) WO2012162911A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104242041A (zh) * 2014-09-29 2014-12-24 广州安特激光技术有限公司 一种基于偏振补偿器的1064nm与355nm波长自由切换输出激光器
CN105720476A (zh) * 2016-04-18 2016-06-29 长春理工大学 基于激光增益突升的高峰值窄脉冲激光器
CN116387942A (zh) * 2023-03-26 2023-07-04 齐鲁中科光物理与工程技术研究院 一种纵膜交叉合成的钠信标激光器装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709799B (zh) * 2012-06-18 2016-01-20 天津奇谱光电技术有限公司 一种宽带连续可调谐激光器
CN103779777A (zh) * 2012-10-28 2014-05-07 天津奇谱光电技术有限公司 一种使用可调谐法布里-珀罗滤波器的可调谐激光器
KR101519628B1 (ko) * 2013-03-26 2015-05-12 주식회사 포벨 소형 제작이 가능한 파장 가변 레이저 장치
CN104242035A (zh) * 2014-09-29 2014-12-24 广州安特激光技术有限公司 基于液晶可变相位延迟器的1064nm与532nm波长自由切换输出激光器
CN104242034A (zh) * 2014-09-29 2014-12-24 广州安特激光技术有限公司 基于液晶可变相位延迟器的1064nm与355nm波长自由切换输出激光器
CN105720469B (zh) * 2016-04-18 2019-02-01 长春理工大学 基于光偏振扭转提高弱泵浦激光效率的激光器
CN110546834B (zh) * 2017-05-04 2021-05-18 华为技术有限公司 一种可调谐激光器
CN109904721A (zh) * 2017-12-11 2019-06-18 苏州旭创科技有限公司 波长可调谐的外腔激光器
KR101937393B1 (ko) * 2018-06-22 2019-01-11 엘아이지넥스원 주식회사 레이저 공진기 및 레이저조사기
CN209233158U (zh) * 2018-11-12 2019-08-09 苏州旭创科技有限公司 一种窄线宽可调外腔激光器
CN112290381A (zh) * 2019-07-23 2021-01-29 梁春 一种基于法布里波罗光腔的外腔激光器
CN112636170A (zh) * 2020-12-18 2021-04-09 中国科学院半导体研究所 双增益芯片的可调谐外腔激光器
CN112615254A (zh) * 2020-12-18 2021-04-06 中国科学院半导体研究所 可调谐外腔激光器
CN113314935B (zh) * 2021-05-22 2022-06-21 中国科学院理化技术研究所 一种高功率偏振激光装置
WO2023188146A1 (ja) * 2022-03-30 2023-10-05 ソニーグループ株式会社 レーザ素子及び電子機器
CN117895327B (zh) * 2024-03-13 2024-06-04 南京理工大学 一种基于高增益长轴偏振波导的可调谐干涉光源及干涉仪

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3866139A (en) * 1973-10-11 1975-02-11 Us Air Force Apparatus for laser frequency selection
CN1435924A (zh) * 2002-12-11 2003-08-13 中国科学院安徽光学精密机械研究所 一种同光束双波长双脉冲激光的产生方法
US20050276303A1 (en) * 2004-06-10 2005-12-15 Rong Huang External Cavity Laser
FR2886478A1 (fr) * 2005-05-27 2006-12-01 Thales Sa Etalon anisotrope accordable applique a la realisation d'un laser bi-frequence a grande accordabilite
CN101335424A (zh) * 2008-07-11 2008-12-31 华中科技大学 偏振耦合的并联式调q固体激光器
CN101673921A (zh) * 2009-03-26 2010-03-17 高培良 可调谐激光器系统
CN101814694A (zh) * 2010-04-28 2010-08-25 天津奇谱光电技术有限公司 可调谐激光器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1290459A1 (ru) * 1985-06-11 1987-02-15 Предприятие П/Я Г-4126 Перестраиваемый лазер
US5511086A (en) * 1995-03-22 1996-04-23 The Texas A&M University System Low noise and narrow linewidth external cavity semiconductor laser for coherent frequency and time domain reflectometry
US7209498B1 (en) * 2000-05-04 2007-04-24 Intel Corporation Method and apparatus for tuning a laser
US6535542B1 (en) * 2000-07-20 2003-03-18 Avanex Corporation Multi-wavelength laser light source
US6765679B2 (en) * 2001-05-30 2004-07-20 Jds Uniphase Corporation Multi-cavity interferometer with dispersion compensating resonators
US7027472B2 (en) * 2001-07-19 2006-04-11 Axsun Technologies, Inc. Fixed wavelength single longitudinal mode coolerless external cavity semiconductor laser system
JP4059779B2 (ja) * 2002-06-14 2008-03-12 富士通株式会社 波長選択装置、波長選択レーザおよび波長可変レーザ
US6845121B2 (en) * 2002-06-15 2005-01-18 Intel Corporation Optical isolator apparatus and methods
US7372612B2 (en) * 2003-05-03 2008-05-13 Paxera Corporation High performance compact external cavity laser (ECL) for telecomm applications
CN1839522A (zh) * 2003-09-30 2006-09-27 皮雷利&C.有限公司 外腔可调谐激光器中的相位控制
US7656911B2 (en) * 2004-07-15 2010-02-02 Nec Corporation External resonator type wavelength-variable laser

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3866139A (en) * 1973-10-11 1975-02-11 Us Air Force Apparatus for laser frequency selection
CN1435924A (zh) * 2002-12-11 2003-08-13 中国科学院安徽光学精密机械研究所 一种同光束双波长双脉冲激光的产生方法
US20050276303A1 (en) * 2004-06-10 2005-12-15 Rong Huang External Cavity Laser
FR2886478A1 (fr) * 2005-05-27 2006-12-01 Thales Sa Etalon anisotrope accordable applique a la realisation d'un laser bi-frequence a grande accordabilite
CN101335424A (zh) * 2008-07-11 2008-12-31 华中科技大学 偏振耦合的并联式调q固体激光器
CN101673921A (zh) * 2009-03-26 2010-03-17 高培良 可调谐激光器系统
CN101814694A (zh) * 2010-04-28 2010-08-25 天津奇谱光电技术有限公司 可调谐激光器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104242041A (zh) * 2014-09-29 2014-12-24 广州安特激光技术有限公司 一种基于偏振补偿器的1064nm与355nm波长自由切换输出激光器
CN105720476A (zh) * 2016-04-18 2016-06-29 长春理工大学 基于激光增益突升的高峰值窄脉冲激光器
CN116387942A (zh) * 2023-03-26 2023-07-04 齐鲁中科光物理与工程技术研究院 一种纵膜交叉合成的钠信标激光器装置
CN116387942B (zh) * 2023-03-26 2023-10-17 齐鲁中科光物理与工程技术研究院 一种纵模交叉合成的钠信标激光器装置

Also Published As

Publication number Publication date
CN102244358A (zh) 2011-11-16
US8908725B2 (en) 2014-12-09
US20130343413A1 (en) 2013-12-26
CN102244358B (zh) 2013-02-27

Similar Documents

Publication Publication Date Title
WO2012162911A1 (zh) 一种外腔式可调谐激光器
CN101673921B (zh) 可调谐激光器系统
US6888856B2 (en) Method and apparatus for filtering an optical beam
CN101814694B (zh) 可调谐激光器
WO2011120246A1 (zh) 可调谐激光器
JP4893026B2 (ja) 波長可変共振器及びこれを用いた波長可変光源並びに多重共振器の波長可変方法
CN102868090B (zh) 具有灵活波长栅格调谐功能的外腔可调激光器
WO2015101048A1 (zh) 一种具有双输出光束的可调谐激光器
WO2013189107A1 (zh) 一种宽带连续可调谐激光器
WO2013007027A1 (zh) 光频率精密可调谐激光器
US9048610B2 (en) External cavity tunable laser with 25GHz frequency interval
WO2013026212A1 (zh) 偏振耦合的双增益介质的外腔式宽带可调谐激光器
JP6221139B2 (ja) 光学レーザー装置及び当該装置においてレーザー発振モードを生成する方法
WO2015101049A1 (zh) 一种可调谐激光器系统
US20090257460A1 (en) External resonator variable wavelength laser and its packaging method
US8948221B2 (en) External cavity wideband tunable laser with dual laser gain media coupled by a thin film filter including
US20040218250A1 (en) Miniaturized external cavity laser (ECL) implemented with acoustic optical tunable filter
Li et al. 16-port tunable fiber laser based on a digital micromirror device in C-band
CN104348076A (zh) 一种可调谐滤波结构及激光器
CN118099930A (zh) 外腔可调谐激光器、外腔体、方法、装置、芯片和介质
CN114583541A (zh) 混合集成激光器
CN118054298A (zh) 外腔可调谐激光器、外腔体、方法、装置、芯片和介质
CN114583535A (zh) 波长可调谐激光器
KR20100100534A (ko) 외부 공진기를 이용한 레이저 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11866846

Country of ref document: EP

Kind code of ref document: A1