WO2013007027A1 - 光频率精密可调谐激光器 - Google Patents

光频率精密可调谐激光器 Download PDF

Info

Publication number
WO2013007027A1
WO2013007027A1 PCT/CN2011/077124 CN2011077124W WO2013007027A1 WO 2013007027 A1 WO2013007027 A1 WO 2013007027A1 CN 2011077124 W CN2011077124 W CN 2011077124W WO 2013007027 A1 WO2013007027 A1 WO 2013007027A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
optical
tunable
etalon
acousto
Prior art date
Application number
PCT/CN2011/077124
Other languages
English (en)
French (fr)
Inventor
高培良
Original Assignee
天津奇谱光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津奇谱光电技术有限公司 filed Critical 天津奇谱光电技术有限公司
Publication of WO2013007027A1 publication Critical patent/WO2013007027A1/zh
Priority to US13/974,741 priority Critical patent/US8731011B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/08022Longitudinal modes
    • H01S3/08031Single-mode emission
    • H01S3/08036Single-mode emission using intracavity dispersive, polarising or birefringent elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/0813Configuration of resonator
    • H01S3/0817Configuration of resonator having 5 reflectors, e.g. W-shaped resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/1068Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using an acousto-optical device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • H01S5/142External cavity lasers using a wavelength selective device, e.g. a grating or etalon which comprises an additional resonator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08054Passive cavity elements acting on the polarization, e.g. a polarizer for branching or walk-off compensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/082Construction or shape of optical resonators or components thereof comprising three or more reflectors defining a plurality of resonators, e.g. for mode selection or suppression
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/1062Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using a controlled passive interferometer, e.g. a Fabry-Perot etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/107Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using electro-optic devices, e.g. exhibiting Pockels or Kerr effect

Definitions

  • the invention belongs to the field of optoelectronics, in particular to optical frequency precision tunable lasers.
  • the first tuning technique is to tune the rotation of the grating by a precision stepping motor.
  • the main disadvantages of this technology are as follows: First, to achieve precise tuning of the optical frequency, stepping accuracy of the stepping motor And repeatability requirements are high, so the manufacturing cost is relatively high; Second, due to the use of stepper motor, it is not easy to achieve miniaturization; Third, the work stability in poor working environment is relatively poor, especially the ability to resist various types of mechanical vibration Relatively poor. Due to the above problems, tunable lasers using this technology are only suitable for use in laboratory work environments.
  • the second tuning technique uses a tunable acousto-optic filter for tuning.
  • This technique has the advantages of fast tuning speed, no mechanical moving parts, and miniaturization.
  • the disadvantage is that the tuning accuracy is not high and the filtering bandwidth is wide. Tunable lasers that simply use this technique are only suitable for applications where tuning accuracy and output bandwidth are not high.
  • the third tuning technique uses the characteristics of other optical filter components in the grating or laser cavity, such as optical etalon, to modulate the transmitted light frequency with temperature drift.
  • the advantages of this tuning technique are high tuning accuracy and output light.
  • the spectral bandwidth is relatively narrow, and the disadvantage is that the speed is relatively slow, especially in the case where the tuning spectrum range is required to be wide.
  • the temperature drift coefficient of the optical filter component is 0.02 nm/degree
  • the required optical spectrum range is At 20 nm
  • the temperature adjustment range is 100 degrees, which is difficult to achieve in practical applications.
  • An optical frequency precision tunable laser comprising a laser cavity end mirror mounted on a laser gain medium and a laser gain medium sequentially mounted in the laser cavity, an intracavity collimating lens, an active optical phase modulator, a tunable sound and light
  • the filter and the intracavity total mirror also include:
  • An active polarization rotator placed after the tunable acousto-optic filter, receives a beam that is diffracted twice by the tunable acousto-optic filter to control the polarization direction of the incident linearly polarized light;
  • a polarizing beam splitter placed in the active polarization rotator, totally transmitting the incident parallel polarized light, and reflecting the incident vertically polarized light to a direction 90 degrees from the incident light;
  • the first optical etalon and the first total reflection mirror are placed in a direction perpendicular to the optical axis of the two diffracted beams of the tunable acousto-optic filter, receive the vertically polarized light output from the polarization beam splitter, and output to the first
  • the total reflection mirror, the first total reflection mirror and the laser cavity end mirror constitute a first laser resonator cavity
  • the second diffracted light of the tunable acousto-optic filter forms a laser oscillation in the first laser cavity, on the first optical etalon a first temperature control system for adjusting its temperature is installed;
  • a second optical etalon and a second total reflection mirror are disposed in the optical axis direction of the two diffracted beams of the tunable acousto-optic filter, receive parallel polarized light output from the polarization beam splitter, and output to the second total reflection mirror,
  • the second total reflection mirror and the laser end mirror form a second laser reson
  • An RF signal source for supplying RF energy to the tunable acousto-optic filter and adjusting the oscillation wavelength of the laser cavity by changing the RF frequency;
  • a laser pump source a driving source of the active optical phase modulator, a driving source of the active polarization rotator, and a laser driving control circuit.
  • the first temperature control system is composed of a small thermoelectric cooler directly fixed on the first optical etalon and its driving circuit, a temperature sensor and its control circuit and a closed loop control circuit;
  • the temperature control system consists of a small thermoelectric cooler directly fixed to the second optical etalon and its drive circuit, a temperature sensor and its control circuit and a closed loop control circuit.
  • first optical etalon and the second optical etalon have the same sharpness coefficient; the first optical etalon and the second optical etalon have the same spectral range as the laser gain medium,
  • the transmission spectrum peak spacing of an optical etalon and the second optical etalon is 50 GHz, and the transmission optical spectrum peak frequency of the second optical etalon differs from the transmission optical spectrum peak frequency of the first optical etalon by 25 GHz.
  • the first total reflection mirror, the second total reflection mirror, and the intracavity total reflection mirror are one of the following types of mirrors: a plane mirror, a convex mirror, and a concave mirror; the first total reflection mirror, The second total reflection mirror and the intraluminal full mirror have the same spectral range as the laser gain medium.
  • the laser cavity end mirror is a full or partial mirror within a specified spectral range, the laser cavity end mirror having the same spectral range as the laser gain medium.
  • the tunable acousto-optic filter comprises an acousto-optic crystal and an acoustic transducer.
  • the tunable acousto-optic filter is a narrow-band optical filter
  • the spectral range of the tunable acousto-optic filter is the same as the spectral range of the laser gain medium
  • the FWHM of the filtered spectrum is not greater than the first optical etalon or
  • the second optical etalon has twice the peak frequency of the transmission spectrum.
  • the active optical phase modulator is one of the following types: an electro-optic phase modulator, or a magneto-optical phase modulator, or a liquid crystal phase modulator, or an acousto-optic phase modulator, or based on Other forms of phase modulators of physical optical effects, or combinations of phase modulators as described above, and have the same spectral range as the laser gain medium.
  • the active polarization rotator is one of the following types: an electro-optic active polarization rotator, or a magneto-optical active polarization rotator, or a liquid crystal active polarization rotator, or an acousto-optic active A polarization rotator, or other form of active polarization rotator based on physical optical effects, or a combination of the above-described active polarization rotators and having the same spectral range as the laser gain medium.
  • the laser driving control circuit comprises: a digital signal microprocessor, four digital-to-analog conversion modules, a laser pump source, an active optical phase modulator driving source, a tunable acousto-optic filter driving source, and an active polarization Rotor drive source, a first temperature control system and a second temperature control system, the digital signal microprocessor receives the external command signal command and passes the laser pump source, the active optical phase modulator drive source, the tunable acousto-optic filter drive source, the active polarization
  • the rotator drive source, the first temperature control system and the second temperature control system respectively implement drive control functions for the laser gain medium, the active optical phase modulator, the tunable acousto-optic filter, and the active polarization rotator, and the first Optical etalon, temperature control of the second optical etalon.
  • the invention has reasonable design, and adopts a narrow-band tunable acousto-optic filter with optical frequency drift compensation, an active polarization rotator, a polarizing beam splitter, two optical etalons with a transmission interval of 50 GHz and two optical etalons.
  • the total reflection mirror constitutes the sub-cavities of the two laser resonators, and the optical frequency tuning precision is less than 1 GHz and the narrow spectrum bandwidth in a wide spectral range by installing the temperature control system by using the optical etalon's transmission spectrum peak with temperature drift characteristics.
  • the stable laser output not only reduces the filter bandwidth requirements of the tunable acousto-optic filter, but also applies to tunable acousto-optic filters with 50 GHz spectral spacing and optical etalon with 50 GHz transmission spacing to achieve spectral spacing.
  • Fast tunability at 25 GHz reduces the requirement for optical etalon transmission spectral peak frequency spacing density, greatly reducing the difficulty of making tunable acousto-optic filters and optical etalons, and making transmission spectroscopy using optical etalon
  • the frequency range of the temperature-tuned peak with temperature drift is reduced to 25GH z, thus, greatly speeding up the tuning.
  • the invention has the characteristics of no mechanical moving parts, stable and reliable performance, low cost, small size, easy installation and production, and can meet the requirements of small size and extreme working environment, and in optical testing, optical fiber communication, biology, It is also widely used in other fields such as medical devices and fiber optic sensor networks.
  • 1 is a schematic diagram of a conventional tunable acousto-optic filter
  • FIG. 2 is a schematic diagram of a conventional tunable acousto-optic filter for realizing frequency offset compensation
  • FIG. 3 is a wave vector diagram of an incident beam, an acoustic wave field, and a diffracted beam of primary and secondary diffraction in an acousto-optic crystal;
  • Figure 4 is a schematic illustration of the structure of an external cavity tunable laser employing a tunable acousto-optic filter and a single optical etalon;
  • Figure 5 is a schematic view showing the structure of an external cavity tunable laser using two optical etalons, an active polarization rotator and a polarization beam splitter;
  • Figure 6 is a schematic view of a device for performing laser resonant mode switching using an active polarization rotator and a polarization beam splitter;
  • Figure 7 is a schematic view showing the transmission path of the polarized light beam of the parallel light in the device of Figure 6;
  • Figure 8 is a schematic view showing the transmission path of the polarized light beam of the vertical light in the device of Figure 6;
  • FIG. 9 is a transmission spectrum diagram of a first optical etalon and a second optical etalon, wherein FIG. 9-1 is a transmission spectrum of the first optical etalon with an interval of 50 GHz, and FIG. 9-2 is a second optical etalon Transmission spectrum, the interval is 50 GHz, but the peak frequency of the transmission spectrum and the peak frequency of the transmission spectrum of the first optical etalon are 25 GHz;
  • Figure 10 is a schematic diagram showing the output spectrum of a tunable laser having a transmission spectral interval of 25 GHz;
  • Figure 11 is a schematic view showing the structure of the present invention.
  • Figure 12 is a schematic diagram of the output spectrum of a tunable laser using optical temperature for frequency tuning
  • Figure 13 is a control schematic diagram of a temperature control system mounted on two optical etalons
  • Figure 14 is a schematic diagram of the control structure of the first temperature control system
  • Figure 15 is a schematic diagram of the control structure of the second temperature control system
  • Figure 16 is a block diagram showing the principle of the laser drive control circuit of the present invention.
  • FIG. 1 shows a conventional tunable acousto-optic filter 100.
  • the tunable acousto-optic filter 100 includes a transducer 22, a radio frequency signal source 20, and an acousto-optic crystal 26.
  • the transducer 20 is mounted on the acousto-optic crystal, and the incident beam 2 is incident on the acousto-optic crystal 26 at a Bragg angle to generate zero.
  • the working principle of the acousto-optic filter is based on a phenomenon called Bragg diffraction.
  • Bragg diffraction involves the interaction of photons (quantum of light energy) and phonons (quantum of acoustic energy). In this interaction, energy and momentum are conserved.
  • the Acousto-Optical Tunable Filter is a solid-state, electrically tunable, bandpass optical filter. Compared to traditional technologies, AOTF provides continuous, fast adjustment and narrow spectral bandwidth.
  • AOTF provides continuous, fast adjustment and narrow spectral bandwidth.
  • the tunable acousto-optic filter 200 includes a transducer 22, an acousto-optic crystal 26, a radio frequency signal source 20, and a total reflection mirror 28,
  • the incident beam 2 is incident on the acousto-optic crystal 26 at a Bragg angle to produce a zero-order diffracted beam 4 and a first-order diffracted beam 6, and the first-order diffracted beam 6 passes through the acousto-optic crystal 26 through a total reflection mirror to produce a zero-order diffracted beam 10 and a first order Diffracted beam 12.
  • Figure 3-1 and Figure 3-2 show the wave vector relationship of incident light (Ki), diffracted light (Kd), and sound wave ( KS ), respectively.
  • the plus (+) or minus (-) sign is determined by the direction of the incident sound wave.
  • the acousto-optic crystals employed are anisotropic and have birefringence characteristics.
  • One of these materials is cerium oxide (Te02), which is widely used in such applications due to its high optical uniformity, low light absorption and high optical power capability in shear mode.
  • Other substances such as lithium niobate (LiNb03), gallium phosphide (GaP) and lead molybdate (PbMo04) are also frequently used in various acousto-optic devices. There are many factors that influence the selection of specific substances.
  • FIG 4 shows an external cavity tunable laser 300 using a single optical etalon and a tunable acousto-optic filter as shown in Figure 2.
  • the tunable laser 300 includes a laser cavity end mirror 32 directly plated on a laser gain medium 34, a laser gain medium 34, an intracavity collimating lens 36, an active optical phase modulator 40, a tunable acousto-optic filter 100, a cavity The inner full mirror 28, the optical etalon 42, and the full mirror 44.
  • the laser cavity end mirror 32 and the full mirror 44 constitute a laser cavity.
  • Laser output mirrors typically have different reflectivities for different wavelengths or colors of light, and the reflectivity referred to herein is the reflectance corresponding to the wavelength bandwidth at which the laser operates.
  • the laser cavity end mirror 32 can be a partial mirror or a full mirror depending on the situation. If the laser gain medium is a semiconductor gain medium, since there is generally a relatively large output dispersion angle, the intracavity collimating lens of the tunable laser 300 is generally used when the laser gain medium is a semiconductor gain medium. When the laser gain medium is a gas, liquid or some solid medium, the intracavity collimating lens is generally not used, but a non-planar cavity mirror is used to achieve a reasonable distribution of the intracavity beam. When such a laser is used for fiber optic communication, the output beam 4 needs to be coupled into the fiber, and the collimating lens 38 is indispensable.
  • the broadband fluorescent light beam 36 emitted by the laser gain medium 34 is collimated by the intracavity collimating lens 38 and transmitted through the active optical phase modulator 40 to enter the acousto-optic crystal 26 at a Bragg angle.
  • the diffracted first-order diffracted light 6 is incident on the intracavity total reflection mirror 28 at a Bragg angle, and the reflected light beam 8 enters the acousto-optic crystal 26 at a Bragg angle.
  • the diffracted first-order diffracted light 12 is reflected by the full refracting mirror 44 back into the laser cavity through the optical etalon 42, and laser oscillation and amplification are formed in the laser cavity.
  • beams 4 and 10 respectively serve as zero-order diffracted beams of the laser beam 2, 8; the zero-order diffracted beam of beam 13 as the reflected beam of beam 12 becomes the loss in the laser cavity, and beam 4 has the largest
  • the energy is chosen as the laser output beam.
  • Beams 10 and 13 can be used to monitor the optical power and wavelength within the laser cavity.
  • the wavelength shift of the light due to the wavelength shift of the first diffracted light and the second diffraction is just right. Conversely, therefore, the wavelength of the light caused by the tunable acousto-optic filter 100 in the structure of the tunable laser 300 is zero. Also due to the two diffractions through the tunable acousto-optic filter 100, a laser oscillation that is narrower than the primary diffraction bandwidth is formed in the laser cavity.
  • Laser output tuning is achieved by active optical phase modulator 40 and tunable acousto-optic filter 100.
  • Changing the RF frequency of the RF signal source 20 of the tunable acousto-optic filter changes the resonant frequency of the light wave within the laser cavity.
  • the active optical phase modulator 40 modulates the phase of the light so that a particular light wave produces laser oscillations and amplification in the laser cavity.
  • the optical etalon 42 determines the spacing and bandwidth of the laser output spectrum.
  • An optical etalon with a high sharpness factor can increase the spectral bandwidth of the compressed output beam and increase the side mode rejection ratio. If it is required to reduce the interval of the output spectrum of the laser, it is necessary to simultaneously reduce the filtering bandwidth of the tunable acousto-optic filter 100 and reduce the interval of the peak frequency of the transmission spectrum of the optical etalon 42 to avoid the phenomenon of mode hopping and to ensure the laser. Single mode oscillation.
  • the output spectrum of the laser requires an interval of 25 GHz, not only the spectrum of the optical etalon 42 is required to be 25 GHz, but also the FWHM (spectral half-width) parameter of the filter bandwidth of the tunable acousto-optic filter 100 is at least less than 50 GHz.
  • the technical difficulty and manufacturing cost of the optical etalon 42 will also increase.
  • the laser gain medium is a uniform gain medium, it is generally required that the tunable acousto-optic filter has a filter bandwidth FWHM value of less than 2 Af (assuming that the optical etalon has a transmission bandwidth of ⁇ /).
  • the filter bandwidth of the tunable acousto-optic filter is greater than 2Af, multimode oscillations are easily formed, resulting in multimode output or mode hopping.
  • the filter bandwidth FWHM value of the tunable acousto-optic filter is required to be narrower.
  • FIG. 5 shows a schematic diagram of an external cavity tunable laser using two optical etalons, an active polarization rotator and a polarizing beam splitter.
  • the external cavity tunable laser 400 uses two optical optics. The etalon, placed in the sub-cavities of the two laser cavities, provides a means to solve the above problems.
  • the external cavity tunable laser 400 includes a laser cavity end mirror 32 directly plated on the laser gain medium 34, a laser gain medium 34, an intracavity collimating lens 38, an active optical phase modulator 40, and a tunable acousto-optic filter.
  • An active polarization rotator 50 is mounted behind the tunable acousto-optic filter 100 for rotating the polarization direction of the incident linearly polarized light 12 by 90 degrees, and the active polarization rotator 50 is followed by a polarization splitter 52 for incident parallel polarization.
  • the light is totally transmissive, and the incident vertically polarized light is reflected in a direction 90 degrees from the incident light;
  • the first optical etalon 62 is mounted in a direction perpendicular to the laser beam 12 in the laser cavity for receiving the secondary polarizing beam splitter 52 outputs the vertically polarized light 60 and outputs it to the first total reflection mirror 64.
  • the first total reflection mirror 64 and the laser cavity end mirror 32 constitute a first laser resonator sub-cavity.
  • a second optical etalon 56 is mounted in the direction of the beam 12 in the laser cavity for receiving the parallel polarized light output from the polarization beam splitter 52 and outputting it to the second total reflection mirror 58.
  • the second total reflection mirror 58 and the laser cavity end mirror 32 constitute a second laser resonator sub-cavity.
  • the tunable laser 400 differs from the tunable laser 300 in that the optical etalon 34 and the full mirror 36 in the tunable laser 300 (Fig.
  • an active polarization rotator 50 polarized beam splitting
  • a dual optical path system comprising a mirror 52, a first optical etalon 62, a first total reflection mirror 64, a second optical etalon 56 and a second total reflection mirror 58 System 500, as shown in Figure 6.
  • the function of the active polarization rotator 50 is to change the polarization direction of the incident beam 12: when the active polarization rotator is in an inoperative state, the incident beam 12 does not change the polarization state, directly passes through the polarization beam splitter 52, The two-light etalon 56 then reaches the second total reflection mirror 58 and is reflected back into the laser cavity by the second total reflection mirror 58, as shown in FIG.
  • the polarization state of the incident beam 12 is rotated by 90 degrees to become vertically polarized light, which is reflected by the polarization beam splitter 54 and reaches the second total reflection through the first optical etalon 62.
  • the mirror 64 is then reflected back into the laser cavity by the second total reflection mirror 64, as shown in FIG. Since the light reflected back through the second total reflection mirror 64 passes through the active polarization rotator 50 again, the polarization state is rotated by 90 degrees again, so that the polarization direction of the output beam of the laser does not change.
  • the tunable laser 400 of FIG. 5 can be formed into sub-cavities of two laser resonators: the first sub-cavity is composed of a laser cavity end mirror 32 and a first total reflection mirror 64, The second sub-cavity is composed of a laser cavity end mirror 32 and a second total reflection mirror 58.
  • Figures 9-1 and 9-2 show the transmission spectra of the first optical etalon 62 and the second optical etalon 56, respectively.
  • the two second all-optical etalons 56 and 62 have the same transmission spectral spacing of 50 GHz and a sharpness factor, but the transmission spectral peaks differ by 25 GHz.
  • the output spectrum of the tunable laser 400 is a combination of two sub-cavities to achieve a 25 GHz spectral peak spacing and a tunable laser output with uniform polarization, as shown in FIG.
  • the first optical etalon 62 and the second optical standard 56 of the external cavity tunable laser 400 have the same sharpness coefficient, and the first optical etalon 62 and the second optical etalon 56 have the same as the laser gain medium.
  • the spectral range, the first optical etalon 62 and the second optical etalon 56 have a transmission spectrum peak interval of 50 GHz, and the transmission spectrum peak frequency of the second optical etalon 56 differs from the transmission spectrum peak frequency of the first optical etalon 62 by 25GHz.
  • the transmission spectrum peak of the first optical etalon 62 should meet the International Optical Communication Standard (ITU GRID).
  • ITU GRID International Optical Communication Standard
  • the peak of the transmission spectrum of the first optical etalon 62 can be designed to different values depending on the particular application.
  • the peak of the transmission spectrum and the peak of the transmission spectrum of the second optical etalon should also meet the above conditions.
  • the tunable laser 400 With the structure of the tunable laser 400, as long as the filter bandwidth FWHM value of the tunable acousto-optic filter is less than 2 ⁇ / (assuming that the transmission bandwidth of the optical etalon is ⁇ /), a tunable output with a denser optical frequency interval can be realized.
  • the first optical etalon 62 and the second optical etalon 56 may have a transmission spectral peak interval of 25 GHz and satisfy the difference between the transmission spectrum peak frequency of the second optical etalon 56 and the transmission spectrum peak frequency of the first optical etalon.
  • the tunable laser 400 can achieve a tunable output with a spectral frequency interval of 12.5 GHz as long as the filter bandwidth FWHM of the tunable acousto-optic filter is less than 50 GHz.
  • the fluorescence output from a semiconductor laser gain medium is linearly polarized light.
  • a polarizer is not required in the chamber.
  • a polarizer must be used to enable the tunable laser 400 to perform the above functions.
  • the DWDM optical communication network is developing in the direction of 25 GHz and even higher density of optical channels.
  • the requirement for a tunable acousto-optic filter with a narrower filter bandwidth also makes it more difficult to manufacture such a tunable acousto-optic filter and a tunable laser that requires miniaturization, and is more expensive.
  • the laser's output beam is required to have a higher tunable spectral density, the cost of the overall laser and Technical difficulty will be even higher.
  • the tunable laser 400 can provide a novel method for realizing a tunable output with a 25 GHz spectral interval and even a smaller spectral interval on the platform of an existing 50 GHz spectrally spaced external cavity laser, without significantly increasing Cost and manufacturing difficulty.
  • a temperature control system is respectively installed on the two optical etalons to achieve a wide spectral range.
  • the narrow spectral bandwidth and precision tunable stable laser output not only reduce the filter bandwidth requirements of the tunable acousto-optic filter, but also apply to tunable acousto-optic filters with a 50 GHz spectral spacing and a transmission spectral separation of 50 GHz.
  • the optical frequency range in which the transmission spectroscopy peak of the optical etalon is temperature-tuned with temperature drift is reduced to 25 GHz, which greatly speeds up the tuning speed.
  • the present invention is an improvement over the external cavity tunable laser 400 shown in FIG. 5, as shown in FIG. 11, which mounts a first temperature control system on the first optical etalon 62 and the second optical etalon 56, respectively.
  • the 61 and second temperature control system 55 constitute an optical frequency precision tunable laser 600.
  • the optical frequency precision tunable laser 600 is precisely tuned by the coarse tuning of the external cavity tunable laser 400 using the characteristics of the transmission spectrum of the first optical etalon 62 and the second optical etalon 56 with temperature drift.
  • the range of precision tuning using temperature is limited to the 25 GHz spectral range, the temperature range to be controlled is greatly reduced, which is beneficial to improve the tuning speed of the overall laser system.
  • the total temperature control range for 25 GHz spectral range tuning is 25 oCo.
  • the accuracy of tuning also depends on the temperature control systems 61 and 55 respectively.
  • the accuracy of the tuning also depends on the control accuracy of the temperature control systems 61 and 55 respectively controlling the temperatures of the first optical etalon 62 and the second optical etalon 56.
  • the accuracy and stability of optical frequency tuning also depends on other factors such as the structural stability of the laser cavity, the influence of ambient temperature, and so on. Therefore, the optical cavity of the laser should be designed to ensure that the laser is not affected or minimized by external temperature and other factors, and that the instability of the laser itself can be guaranteed. Only in this way, the temperature control systems 61 and 55 can effectively control the temperatures of the first optical etalon 62 and the second optical etalon 56, respectively, thereby improving the output stability and tuning accuracy of the optical frequency precision tunable laser 600. .
  • the first temperature control system 61 and the second temperature control system 55 are controlled by the same digital signal processor (DSP) 112.
  • the first temperature control system 61 includes a thermoelectric cooler (TEC) 61-1 and its drive circuit 61-3, a temperature sensor 61-2 and its control circuit 61-4;
  • the second temperature control system 55 includes a thermoelectric system A cooler (TEC) 55-1 and its drive circuit 55-3, a temperature sensor 55-2 and its control circuit 55-4 are shown in Figs. 14 and 15, respectively.
  • TEC thermoelectric cooler
  • TEC thermoelectric system A cooler
  • the laser drive control circuit of the above optical frequency precision tunable laser 600 is as shown in FIG.
  • the laser drive control circuit includes a digital signal microprocessor (DSP) 112 with an embedded software program, four digital to analog conversion (D/A) devices 102, 106, 110, and 116, a laser pump source 101, and an active source.
  • a digital signal microprocessor (DSP) 112 with an embedded software program controls the laser pump source 101, the active optical phase modulator drive source, respectively, through digital to analog conversion (D/A) devices 102, 106, 110, and 116. 104.
  • a radio frequency signal source 108 an active polarization rotator drive source 114, a first temperature control system 61, and a second temperature control system 55.
  • the digital signal micro-processor (DSP) 112 can also receive external commands to control the tunable laser 600.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

公开了一种光频率精密可调谐激光器(600)。激光器(600)包括:依次安装在激光腔内的激光增益介质(34)、准直透镜(38)、有源光相位调制器(40)、可调谐声光滤波器(100)和腔内全反射镜(28),还包括有源偏振旋光器(50)、偏振分束器(52),第一光学标准具(62)和第二光学标准具(56),第一全反射镜(64)和第二全反射镜(58),分别安装在第一光学标准具(62)和第二光学标准具(56)上的第一温度控制系统(61)和第二温度控制系统(55),射频信号源(20),激光泵浦源,有源相位调制器(40)的驱动源,有源偏振旋光器(50)的驱动源,以及激光器驱动控制电路。第一标准具(62)和第一全反射镜(64)形成第一激光谐振子腔,第二标准具(56)和第二全反射镜形成第二激光子腔。通过第一子腔和第二子腔以及可第一温度控制系统和第二温度控制系统可实现宽频率范围内光频率调谐精度小于1GHz的稳定输出,从而降低了对可调谐滤波器的要求。激光器(600)具有性能稳定,成本低,尺寸小,易于安装和生产的特点。

Description

光频率精密可调谐激光器 技术领域
本发明属于光电子领域, 尤其是光频率精密可调谐激光器。
背景技术
在外腔式可调谐激光器中, 通常有以下三种调谐技术。 第一种调谐技术是通过精密步 进马达带动光栅的旋转来进行调谐的, 这种技术的主要缺点有以下几个方面: 一是为实现 光频率的精密调谐, 对步进马达的步进精度和重复性要求很高, 因此制造成本比较高; 二 是由于采用步进马达, 不易做到小型化; 三是在恶劣工作环境下的工作稳定性比较差, 特 别是抗各类机械振动的能力比较差。 由于存在上述几个方面的问题, 因此, 采用这种技术 的可调谐激光器只适合用于实验室工作环境中使用。 第二种调谐技术是利用可调谐声光滤 波器进行调谐, 这种技术的优点是调谐速度快, 没有机械移动部件, 可以做到小型化, 缺 点是调谐精度不高和滤波带宽比较宽, 因此, 单纯采用这种技术的可调谐激光器只适合用 于对调谐精度和输出带宽不高的应用中。 第三种调谐技术是利用光栅或激光谐振腔中的其 他光学滤波器件, 如光学标准具等的透射光频率随温度漂移的特点进行调谐, 这种调谐技 术的优点是调谐精度高和输出光的光谱带宽比较窄, 缺点是速度比较慢, 特别是在要求调 谐光谱范围宽的情况下, 这个缺点尤为明显, 例如: 光学滤波器件的温度漂移系数是 0.02 纳米 /度, 其要求的光频谱范围是 20纳米, 温度调节范围是 100度, 这在实际应用中是很 难实现的。
发明内容
本发明的目的在于克服现有技术的不足, 提供一种性能稳定、 低成本、 尺寸小且易于 生产及安装的光频率精密可调谐激光器。
本发明解决现有的技术问题是采取以下技术方案实现的:
一种光频率精密可调谐激光器, 包括安装在激光增益介质上的激光腔端面镜和依次安 装在激光腔内的激光增益介质、 腔内准直透镜、 有源光相位调制器、 可调谐声光滤波器和 腔内全反镜, 还包括:
一个有源偏振旋光器, 放置在可调谐声光滤波器后, 接收经可调谐声光滤波器两次衍 射的光束, 控制入射的线偏振光的偏振方向;
一个偏振分束器, 放置在有源偏振旋光器后, 对入射的平行偏振光全透射, 而对入射 的垂直偏振光反射到与入射光成 90度的方向上;
第一光学标准具和第一全反射镜, 放置在与可调谐声光滤波器两次衍射光束的光轴相 垂直的方向上, 接收从偏振分束器输出的垂直偏振光并输出到第一全反射镜, 第一全反射 镜与激光腔端面镜构成第一激光谐振子腔, 可调谐声光滤波器二次衍射的光线在第一激光 腔中形成激光振荡, 在第一光学标准具上安装有用于调节其温度的第一温度控制系统; 第二光学标准具和第二全反射镜, 放置在可调谐声光滤波器两次衍射光束的光轴方向 上, 接收从偏振分束器输出的平行偏振光并输出到第二全反射镜, 第二全反射镜与激光端 面镜构成第二激光谐振子腔, 可调谐声光滤波器二次衍射的光线在第二激光腔中形成激光 振荡, 在第二光学标准具上安装有用于调节其温度的第二温度控制系统;
一个射频信号源, 用于提供给可调谐声光滤波器射频能量并通过改变射频频率来调节 激光谐振腔的振荡波长;
激光泵浦源、 有源光相位调制器的驱动源和有源偏振旋光器的驱动源及激光器驱动控 制电路。
而且, 所述的第一温度控制系统由一个直接固定在第一光学标准具上的小型热电致冷 器及其驱动电路、 一个温度传感器及其控制电路和闭环控制电路构成; 所述的第二温度控 制系统由一个直接固定在第二光学标准具上的小型热电致冷器及其驱动电路、 一个温度传 感器及其控制电路和闭环控制电路构成。
而且, 所述的第一光学标准具和上述第二光学标准具具有相同的锐度系数; 所述的第 一光学标准具、 第二光学标准具具有与激光增益介质相同的光谱范围, 上述第一光学标准 具和第二光学标准具的透射光谱峰值间隔均为 50GHz, 第二光学标准具的透射光谱峰值频 率与第一光学标准具的透射光谱峰值频率相差为 25GHz。
而且, 所述的第一全反射镜、 第二全反射镜和腔内全反镜为以下几种类型的反射镜之 一: 平面镜、 凸面镜和凹面镜; 所述的第一全反射镜、 第二全反射镜和腔内全反镜具有与 激光增益介质相同的光谱范围。
而且, 所述的激光腔端面镜是在指定光谱范围内的全反镜或或部分反射镜, 所述的激 光腔端面镜具有与激光增益介质相同的光谱范围。
而且, 所述的可调谐声光滤波器包括一个声光晶体和一个声波换能器。
而且, 所述的可调谐声光滤波器为窄带光滤波器, 该可调谐声光滤波器的光谱范围与 激光增益介质的光谱范围相同, 且其滤波光谱的 FWHM不大于第一光学标准具或第二光 学标准具透射光谱峰值频率的二倍。
而且, 所述的有源光相位调制器是以下几种类型之一: 电光相位调制器, 或者是磁光 相位调制器, 或者是液晶相位调制器, 或者是声光相位调制器, 或者是基于物理光学效应 的其他形式的相位调制器, 或者是上述相位调制器的组合并具有与激光增益介质相同的光 谱范围。
而且, 所述的有源偏振旋光器是以下几种类型之一: 电光有源偏振旋光器, 或者是磁 光有源偏振旋光器, 或者是液晶有源偏振旋光器, 或者是声光有源偏振旋光器, 或者是基 于物理光学效应的其他形式的有源偏振旋光器, 或者是上述有源偏振旋光器的组合并具有 与激光增益介质相同的光谱范围。
而且, 所述的激光器驱动控制电路包括: 数字信号微处理器、 四个数模转换模块、 激 光泵浦源、有源光相位调制器驱动源、可调谐声光滤波器驱动源、有源偏振旋光器驱动源、 第一温度控制系统和第二温度控制系统, 数字信号微处理器接收外部指令信号指令并通过 激光泵浦源、 有源光相位调制器驱动源、 可调谐声光滤波器驱动源、 有源偏振旋光器驱动 源、第一温度控制系统和第二温度控制系统分别实现对激光增益介质、有源光相位调制器、 可调谐声光滤波器、 有源偏振旋光器的驱动控制功能和对第一光学标准具、 第二光学标准 具的温度控制功能。
本发明的优点和积极效果是:
本发明设计合理, 其采用了具有光频率飘移补偿的窄带可调谐声光滤波器、 有源偏振 旋光器、偏振光分束镜、两个透射光谱峰值间隔同为 50GHz的光学标准具和两个全反射镜 构成两个激光谐振腔的子腔, 并利用光学标准具的透射光谱峰值随温度漂移的特性通过安 装温度控制系统, 实现了在宽频谱范围内光频率调谐精度小于 1GHz和窄频谱带宽的稳定 激光输出, 不仅降低了对可调谐声光滤波器的滤波带宽的要求, 将适用于输出为 50GHz 频谱间隔的可调谐声光滤波器和透射光谱间隔为 50GHz 的光学标准具来实现频谱间隔为 25GHz的快速可调谐, 降低了对光学标准具透射光谱峰值频率间隔密度的要求, 从而大大 降低了可调谐声光滤波器和光学标准具的制作难度, 而且, 使得利用光学标准具的透射光 谱峰值随温度漂移进行温度调谐的光频率范围縮小到 25GHz,从而,大大加快了调谐速度。 本发明具有无机械移动部件、性能稳定可靠、成本低廉、尺寸小、 易于安装及生产等特点, 可满足对于要求尺寸小和极端工作环境下的可靠运行, 并且在光学测试、光纤通讯、生物、 医疗器械和光纤传感器网络等其他领域中也有着广泛的应用。
附图说明
图 1是现有的一种普通可调谐声光滤波器的示意图;
图 2是现有的一种实现频率偏移补偿的可调谐声光滤波器示意图;
图 3是在声光晶体中一次衍射和二次衍射的入射光束、 声波场和衍射光束的波矢关系 图;
图 4是一种采用了可调谐声光滤波器和单一光标准具的外腔式可调谐激光器的结构示 意图;
图 5是一种采用两个光学标准具、 有源偏振旋光器和偏振光分束镜的外腔式可调谐激 光器的结构示意图;
图 6是利用一个有源偏振旋光器和一个偏振光分束镜进行激光谐振模切换的装置示意 图;
图 7 是显示了图 6 装置中平行光偏振光束的传输路径示意图;
图 8 是显示了图 6 装置中垂直光偏振光束的传输路径示意图;
图 9是第一光学标准具和第二光学标准具的透射光谱示意图, 其中图 9-1 是第一光学 标准具的透射光谱, 其间隔为 50GHz, 图 9-2 是第二光学标准具的透射光谱, 其间隔为 50GHz, 但透射光谱峰值频率和第一光学标准具的透射光谱峰值频率相差为 25GHz;
图 10是透射光谱间隔为 25GHz的可调谐激光器输出光谱示意图; 图 11是本发明的结构示意图;
图 12 是利用温度进行光频率调谐的可调谐激光器输出光谱示意图;
图 13是安装在两个光标准具的温度控制系统的控制原理图;
图 14是第一温度控制系统的控制结构原理图;
图 15是第二温度控制系统的控制结构原理图;
图 16是本发明的激光驱动控制电路的原理框图。
具体实 式
以下结合附图对本发明实施例做进一步详述。
图 1显示了一种普通的可调谐声光滤波器 100。 该可调谐声光滤波器 100包括换能器 22、 射频信号源 20、 声光晶体 26, 换能器 20安装在声光晶体上, 入射光束 2以布拉格角 入射到声光晶体 26, 产生零级衍射光束 4和一级衍射光束 6。
声光滤波器的工作原理是基于一种叫做布拉格衍射的现象。 布拉格衍射涉及了光子 (光能的量子) 和声子 (声能的量子) 的相互作用过程。 在这个互作用的过程中, 能量和 动量都是守恒的。 动量守恒要求 hKd = hKi + hKS, 其中 hKd是衍射光子的动量, hKi是入 射光子的动量, hKS是互作用的声子的动量。 约分去掉 h后得到: Kd = Ki + KS, 这就给出 了布拉格衍射最基本的波矢等式, 它表明了衍射光的波矢是入射光波矢与声波波矢的矢量 和, 如图 3-1所示。
能量守恒要求 h(Dr = l D + M2, 其中 (Dr是衍射光的角频率, ω是入射光的角频率, Ω 是声波的角频率。 约分去掉 h后得到: ωΓ = ω + Ω。 这表明衍射光子的角频率被声波的角 频率轻微改变, 即光线的频率产生了多普勒频移。
声光可调谐滤波器 (AOTF) 是一种固态的、 可采用电调谐的带通光滤波器。 与传统 的技术相比, AOTF提供了连续、 快速的调节能力和窄的光谱带宽。 声光滤波器有两种类 型: 共线型与非共线型。 其中具有高射频频率的非共线型和非近轴滤波器可以实现窄带滤 波。 然而根据上面的公式, ωΓ = ω + Ω, 公式表明光波频率偏移的大小等于声波的频率。
尽管因为光线频率和声波频率相差很多个数量级, 从而产生的偏移量很小, 但是在一 些激光器系统中还是会引起不稳定的运行。 这个问题的一个解决办法是使用两个 AOTF, 其中第二个 AOTF用来抵消第一个 AOTF所带来的频率偏移; 另一个解决办法是在同一个 声光晶体上使用两个换能器。但是这些解决办法都有几个缺点: 1、增加了系统的体积; 2、 使得光学对准更为困难; 3、 引起运行的不稳定性; 4、 增加成本, 对大批量生产来说尤为 重要。
图 2显示了一种可以有效消除频率偏移的可调谐声光滤波器 200, 该可调谐声光滤波 器 200包括换能器 22、 声光晶体 26、 射频信号源 20、 全反射镜 28, 入射光束 2以布拉格 角入射到声光晶体 26, 产生零级衍射光束 4和一级衍射光束 6, 一级衍射光束 6经全反射 镜经声光晶体 26后产生零级衍射光束 10和一级衍射光束 12。
图 3-1和图 3-2分别显示了入射光 (Ki)、 衍射光 (Kd) 和声波 (KS) 的波矢关系。 正 如上面提到的, Ki ±KS = Kd这个关系永远成立, 使用加号 (+ ) 还是减号 (-) 由入射声波 的方向决定。 在图 3-1中, 光线 2 (κ2)、 光线 6 (κ6 )和声波 24 (KS) 的关系是: κ2 + KS = κ4。 声波 KS不仅仅使得衍射光的方向向上偏移, 光线的角频率 ω 也向上偏移了 Ω = vs IKSI, 其中 vs是声波的速度。 在图 3-2中, 光线 8 (κ8)、 光线 12 ( κ12) 和声波 24 (KS ) 的关系是: K5 - KS = K12。 在这种情况下, 声波使得衍射光的方向向下偏移, 并且将第二 次衍射的光线 12的角频率 ω 也向下偏移了 vs ksl。 因为向上和向下的偏移量基本相同, 当光线 12从声光滤波器 200中射出时, 整体频率偏移被充分的消除了。
在一些具体实施中, 例如需要窄带调节时, 采用的声光晶体是各向异性并有双折射特 性。 其中一种物质为二氧化碲 (Te02), 由于其运行在剪切模式时具有高光学均匀性、 低 光吸收度和耐高光功率能力的特点, 广泛使用于这类应用中。 其他物质例如铌酸锂 ( LiNb03 )、 磷化镓 (GaP)和钼酸铅 (PbMo04 ) 也经常用于各种声光器件中。 影响选择 特定物质的因素有很多, 下面仅列出几种, 如: 声光器件的类型、 高质量晶体是否容易获 得以及应用的类型和需求, 例如衍射效率功率损耗、 入射光与衍射光的分散度和整体器件 的大小等。
图 4显示了一种采用单一光学标准具和如图 2所示的可调谐声光滤波器的外腔式可调 谐激光器 300。 该可调谐激光器 300包括直接镀在激光增益介质 34上的激光腔端面镜 32、 激光增益介质 34、 腔内准直透镜 36、 有源光相位调制器 40、 可调谐声光滤波器 100、 腔 内全反镜 28、 光学标准具 42、 全反镜 44。 其中, 激光腔端面镜 32和全反镜 44构成了激 光谐振腔。
激光输出镜通常对不同波长或颜色光的反射率不同, 这里提到的反射率是与激光器运 行的波长带宽相对应的反射率。 激光腔端面镜 32 可以根据不同的情况, 采用部分反射镜 或全反镜。 如果激光增益介质是半导体增益介质时, 由于一般都有比较大的输出分散角, 因此, 可调谐激光器 300的腔内准直透镜一般是针对激光增益介质是半导体增益介质时使 用。 当激光增益介质是气体、 液体或有些固体介质时, 一般不用腔内准直透镜, 而是采用 非平面腔镜以实现腔内光束的合理分布。 当这类激光器用于光纤通讯时, 需要将输出光束 4藕合到光纤中, 准直透镜 38是必不可少的。
在可调谐激光器 300中, 由激光增益介质 34发出的宽带荧光光束 36经腔内准直透镜 38准直后的光束 2透过有源光相位调制器 40, 以布拉格角进入声光晶体 26, 被衍射后的 一级衍射光 6 以布拉格角入射到腔内全反镜 28, 反射后的光束 8 又以布拉格角进入声光 晶体 26。 被衍射后的一级衍射光 12 经光学标准具 42后由全反镜 44反射回激光腔内, 在 激光腔内形成激光振荡和放大。 在这个过程中, 光束 4和 10分别作为激光腔内光束 2, 8 的零级衍射光束; 光束 13作为光束 12的反射光束的零级衍射光束成为激光腔内的损耗, 光束 4因其具有最大的能量被选择作为激光输出光束。光束 10和 13 可用于监控激光腔内 的光功率和波长。
正如前面分析的, 由于第一次衍射光波长偏移和第二次衍射所产生的光波长偏移正好 相反, 因此, 可调谐声光滤波器 100在可调谐激光器 300中的结构中所造成的光波长偏移 为零。 又由于经可调谐声光滤波器 100的两次衍射, 因此, 在激光腔内形成了比一次衍射 带宽更窄的激光振荡。
激光输出调谐是通过有源光相位调制器 40和可调谐声光滤波器 100来实现。 改变可 调谐声光滤波器的射频信号源 20 的射频频率, 可改变激光腔内的光波谐振频率。 根据不 同的光波谐振频率, 有源光相位调制器 40 通过调节光波的相位使得某一个特定的光波在 激光腔内产生激光振荡和放大。
光学标准具 42 决定激光器输出频谱的间隔和带宽。 采用高锐度系数的光标准具能起 到压縮输出光束的频谱带宽和提高边模抑制比。 如需要减小激光器输出频谱的间隔, 则需 要同时减小可调谐声光滤波器 100的滤波带宽和减小光标准具 42的透射光谱峰值频率的 间隔, 才能避免发生跳模现象和保证激光器的单模振荡。 如激光器的输出频谱的间隔要求 为 25GHz, 不仅需要光标准具 42 的频谱的间隔为 25GHz, 还要求可调谐声光滤波器 100 的滤波带宽的 FWHM (频谱半宽度) 参数至少小于 50GHz。 这就大大提高了可调谐声光 滤波器 100的技术难度和制造成本。 光标准具 42 的技术难度和制造成本也会增加。 对于 激光增益介质是均匀增益介质的情况下, 一般要求可调谐声光滤波器的滤波带宽 FWHM 值小于 2Af (假设光标准具的透射带宽为 Δ/)。 如果可调谐声光滤波器的滤波带宽大于 2Af , 容易形成多模振荡, 导致多模输出或跳模现象。 对于激光增益介质是非均匀增益介 质的情况下, 要求可调谐声光滤波器的滤波带宽 FWHM值更窄。
图 5给出了一种采用两个光学标准具、 有源偏振旋光器和偏振光分束镜的外腔式可调 谐激光器的结构示意图, 该外腔式可调谐激光器 400通过采用两个光光学标准具, 并放置 在两个激光腔的子腔内为解决上述问题的提供了一个方法。 该外腔式可调谐激光器 400包 括直接镀在激光增益介质 34上的激光腔端面镜 32、 激光增益介质 34、 腔内准直透镜 38、 有源光相位调制器 40、 可调谐声光滤波器 100、 腔内全反镜 28、 有源偏振旋光器 50、 偏 振分光器 52、 第一光学标准具 62、 第一全反射镜 64、 第二光学标准具 56、 第二全反射镜 58及激光器驱动控制电路。
在可调谐声光滤波器 100后安装一个有源偏振旋光器 50用于将入射的线偏振光 12的 偏振方向旋转 90度, 有源偏振旋光器 50后安装偏振分光器 52对入射的平行偏振光全透 射, 而对入射的垂直偏振光反射到与入射光成 90度的方向上; 在与激光腔内光束 12相垂 直的方向上安装第一光学标准具 62, 用于接收从偏振分光器 52输出的垂直偏振光 60, 并 输出到第一全反射镜 64, 第一全反射镜 64与激光腔端面镜 32构成第一激光谐振子腔。在 激光腔内光束 12的方向上安装第二光学标准具 56,用于接收从偏振分束器 52输出的平行 偏振光并输出到第二全反射镜 58。第二全反射镜 58与激光腔端面镜 32构成第二激光谐振 子腔。 可调谐激光器 400与可调谐激光器 300 不同之处在于: 可调谐激光器 300 (图 4) 中的光标准具 34和全反镜 36, 被换成了由有源偏振旋光器 50、 偏振光分束镜 52、 第一光 学标准具 62、 第一全反射镜 64、 第二光学标准具 56和第二全反射镜 58组成的双光路系 统 500, 如图 6所示。 有源偏振旋光器 50的功能是改变入射光束 12的偏振方向: 当有源 偏振旋光器处在非工作状态时,入射光束 12不改变偏振态,直接通过偏振光分束镜 52后, 经第二光标准具 56后到达第二全反射镜 58, 再经第二全反射镜 58反射回激光腔中, 如图 7所示。 当有源偏振旋光器处在工作状态时, 入射光束 12 的偏振态旋转 90度, 变成垂直 偏振光, 通过偏振光分束镜 54反射后, 经第一光学标准具 62到达第二全反射镜 64, 再经 第二全反射镜 64反射回激光腔中, 如图 8所示。 由于经第二全反射镜 64反射回的光再次 通过有源偏振旋光器 50后,偏振态再次旋转 90度,所以激光器的输出光束偏振方向不变。
因此, 通过控制有源偏振旋光器 50可以使图 5中的可调谐激光器 400形成两个激光 谐振腔的子腔: 第一子腔是由激光腔端面镜 32 和第一全反射镜 64组成, 第二子腔是由激 光腔端面镜 32和第二全反射镜 58组成。 图 9-1、 图 9-2分别显示了第一光学标准具 62和 第二光学标准具 56的透射光谱。 两个第二全光标准具 56和 62 具有相同的透射光谱间隔 50GHz和锐度系数, 但透射光谱峰值相差 25GHz。 这样, 可调谐激光器 400的输出光谱是 两个子腔的综合, 即可实现 25GHz光谱峰值间隔, 并且偏振态一致的可调谐激光输出, 如 图 10所示。
外腔式可调谐激光器 400中的第一光学标准具 62和第二光学标准 56具有相同的锐度 系数, 而且, 第一光学标准具 62、 第二光学标准具 56具有与激光增益介质相同的光谱范 围, 第一光学标准具 62和第二光学标准具 56的透射光谱峰值间隔均为 50GHz, 第二光学 标准具 56的透射光谱峰值频率与第一光学标准具 62的透射光谱峰值频率相差为 25GHz。 对于应用于光纤通讯的这类可调谐激光器, 第一光学标准具 62 的透射光谱峰值应满足国 际光通讯标准 (ITU GRID)。 对于其他的应用, 第一光学标准具 62的透射光谱峰值可以 根据具体应用设计不同的值。 而对第二光学标准具的透射光谱峰值和透射光谱峰值间隔也 应符合上述条件。
利用可调谐激光器 400的结构, 只要满足可调谐声光滤波器的滤波带宽 FWHM值小 于 2Δ/ (假设光学标准具的透射带宽为 Δ/),可以实现光频率间隔更密的可调谐输出。例如, 第一光学标准具 62和第二个光学标准具 56透射光谱峰值间隔可以是 25GHz, 并满足第二 光学标准具 56 的透射光谱峰值频率与第一个光学标准具的透射光谱峰值频率相差为 12.5GHz时, 可调谐声光滤波器的滤波带宽 FWHM值只要满足小于 50GHz, 可调谐激光 器 400即可实现光谱频率间隔为 12.5GHz 的可调谐输出。
一般来说, 半导体激光增益介质输出的荧光即是线偏振光。 对这类激光增益介质, 腔 内不需要使用起偏器。 对其他输出为非线偏振光的激光增益介质, 必须使用起偏器才能使 可调谐激光器 400实现上述功能。
随着光通讯技术的发展, DWDM 光通讯网正向 25GHz, 甚至光频道密度更高的方向 发展。 就要求有滤波带宽更窄的可调谐声光滤波器, 也使得制作这样的可调谐声光滤波器 和要求小型化的可调谐激光器的难度进一步提高, 价格更加昂贵。 对于一些其它的可调谐 激光器的应用, 要求激光器的输出光束有更高的可调谐频谱密度, 其整体激光器的成本和 技术难度将更加提高。 因此, 可调谐激光器 400 可在已有的 50GHz频谱间隔的外腔式激 光器的平台上,提供了一种可以实现 25GHz频谱间隔,甚至频谱间隔更小的可调谐输出的 新颖方法, 并且不显著增加成本和制造难度。
由于光学标准具的透射光谱峰值随温度漂移, 在本发明中利用光学标准具的透射光谱 峰值随温度漂移的特性, 在两个光学标准具上分别安装温度控制系统, 实现在宽频谱范围 内、 窄频谱带宽和精密可调谐的稳定激光输出, 不仅降低了对可调谐声光滤波器的滤波带 宽的要求,将适用于输出为 50GHz频谱间隔的可调谐声光滤波器和透射光谱间隔为 50GHz 的光学标准具来实现频谱间隔为 25GHz的快速可调谐,降低了对光学标准具透射光谱峰值 频率间隔密度的要求,从而大大降低了可调谐声光滤波器和光学标准具的制作难度,而且, 使得利用光学标准具的透射光谱峰值随温度漂移进行温度调谐的光频率范围縮小到 25GHz, 大大加快了调谐速度。
本发明是在图 5所示的外腔式可调谐激光器 400基础上的改进,如图 11所示,其在第 一光学标准具 62和第二光学标准具 56上分别安装第一温度控制系统 61和第二温度控制 系统 55构成光频率精密可调谐激光器 600。光频率精密可调谐激光器 600在外腔式可调谐 激光器 400的粗调谐的基础上, 利用第一光学标准具 62和第二光学标准具 56的透射光谱 随温度漂移的特性, 进行精密调谐。 如图 12所示, 由于利用温度进行精密调谐的范围限 制在 25GHz的光谱范围内, 需要控制的温度范围大大减少,有利于提高整体激光器系统的 调谐速度。假设光学标准具 62和 56的透射光谱温度漂移系数为 1 GHz/oC, 则实现 25GHz 光谱范围调谐的总的温度控制范围为 25 oCo 调谐的精度还取决于温度控制系统 61和 55 分别对控制第一光学标准具 62和第二光学标准具 56的温度的控制精度。如控制精度为 0.5 oC, 则光频率精密可调谐激光器 600的光频率调谐精度可以达到 0.5GHz。
当然, 调谐的精度还取决于温度控制系统 61和 55分别对控制第一光学标准具 62和 第二光学标准具 56的温度的控制精度。 光频率调谐精度和稳定性还取决于其他因素: 如 激光器腔的结构稳定性, 外界环境温度等的影响等。 因此, 一般应设计激光器的光学谐振 腔使得能保证激光器不受或最大限度地减少外界温度等因素的影响, 同时能够保证激光器 自身长期工作带来的不稳定因素。 只有这样, 温度控制系统 61和 55才能有效地分别对第 一光学标准具 62和第二光学标准具 56的温度进行精确控制, 从而, 提高光频率精密可调 谐激光器 600的输出稳定性和调谐精度。
安装在第一光学标准具 62和第二光学标准具 56上的第一温度控制系统 61和第二温 度控制系统 55分别实现对第一光学标准具 62和第二光学标准具 56的温度控制功能。 如 图 13所示,第一温度控制系统 61和第二温度控制系统 55由同一个数字信号处理器 (DSP) 112 进行控制。第一温度控制系统 61 包括一个热电致冷器 (TEC) 61-1及其驱动电路 61-3, 一个温度传感器 61-2 及其控制电路 61-4; 第二温度控制系统 55 包括一个热电致冷器 (TEC) 55-1及其驱动电路 55-3, 一个温度传感器 55-2及其控制电路 55-4, 分别如图 14 和图 15所示。 上述光频率精密可调谐激光器 600的激光器驱动控制电路如图 16所示。 该激光 器驱动控制电路包括带有嵌入式软件程序的数字信号微处理器 (DSP) 112 、 四个数模转 换 (D/A) 设备 102、 106、 110和 116、 激光泵浦源 101、 有源光相位调制器驱动源 104、 射频信号源 108、 有源偏振旋光器驱动源 114、 第一温度控制系统 61和第二温度控制系统 55。 带有嵌入式软件程序的数字信号微处理器(DSP) 112通过数模转换(D/A)设备 102、 106、 110和 116来分别控制激光泵浦源 101、 有源光相位调制器驱动源 104、 射频信号源 108、 有源偏振旋光器驱动源 114、 第一温度控制系统 61和第二温度控制系统 55。 数字信 号微处器 (DSP) 112也可以接收外部指令来对可调谐激光器 600进行控制。
上述说明仅起演示和描述的作用, 并不是一个详细无遗漏的说明, 也没有意图将本发 明限制在所描述的具体形式上。经过上面的描述,对本发明的许多改动和变化都可能出现。 所选择的具体实施仅仅是为了更好的解释本发明的原理和实际中的应用。 这个说明能够使 熟悉此领域的人可以更好的利用本发明, 根据实际需要设计不同的具体实施和进行相应的 改动。

Claims

权利要求书
1、 一种光频率精密可调谐激光器, 包括安装在激光增益介质上的激光腔端面镜和依 次安装在激光腔内的激光增益介质、 腔内准直透镜、 有源光相位调制器、 可调谐声光滤波 器和腔内全反镜, 其特征在于: 还包括:
一个有源偏振旋光器, 放置在可调谐声光滤波器后, 接收经可调谐声光滤波器两次衍 射的光束, 控制入射的线偏振光的偏振方向;
一个偏振分束器, 放置在有源偏振旋光器后, 对入射的平行偏振光全透射, 而对入射 的垂直偏振光反射到与入射光成 90度的方向上;
第一光学标准具和第一全反射镜, 放置在与可调谐声光滤波器两次衍射光束的光轴相 垂直的方向上, 接收从偏振分束器输出的垂直偏振光并输出到第一全反射镜, 第一全反射 镜与激光腔端面镜构成第一激光谐振子腔, 可调谐声光滤波器二次衍射的光线在第一激光 腔中形成激光振荡, 在第一光学标准具上安装有用于调节其温度的第一温度控制系统; 第二光学标准具和第二全反射镜, 放置在可调谐声光滤波器两次衍射光束的光轴方向 上, 接收从偏振分束器输出的平行偏振光并输出到第二全反射镜, 第二全反射镜与激光端 面镜构成第二激光谐振子腔, 可调谐声光滤波器二次衍射的光线在第二激光腔中形成激光 振荡, 在第二光学标准具上安装有用于调节其温度的第二温度控制系统;
一个射频信号源, 用于提供给可调谐声光滤波器射频能量并通过改变射频频率来调节 激光谐振腔的振荡波长;
激光泵浦源、 有源光相位调制器的驱动源和有源偏振旋光器的驱动源及激光器驱动控 制电路。
2、 根据权利要求 1 所述的光频率精密可调谐激光器, 其特征在于: 所述的第一温度 控制系统由一个直接固定在第一光学标准具上的小型热电致冷器及其驱动电路、 一个温度 传感器及其控制电路和闭环控制电路构成; 所述的第二温度控制系统由一个直接固定在第 二光学标准具上的小型热电致冷器及其驱动电路、 一个温度传感器及其控制电路和闭环控 制电路构成。
3、 根据权利要求 1或 2所述的光频率精密可调谐激光器, 其特征在于: 所述的第一 光学标准具和上述第二光学标准具具有相同的锐度系数; 所述的第一光学标准具、 第二光 学标准具具有与激光增益介质相同的光谱范围, 上述第一光学标准具和第二光学标准具的 透射光谱峰值间隔均为 50GHz, 第二光学标准具的透射光谱峰值频率与第一光学标准具的 透射光谱峰值频率相差为 25GHz。
4、 根据权利要求 1或 2所述的光频率精密可调谐激光器, 其特征在于: 所述的第一 全反射镜、 第二全反射镜和腔内全反镜为以下几种类型的反射镜之一: 平面镜、 凸面镜和 凹面镜; 所述的第一全反射镜、 第二全反射镜和腔内全反镜具有与激光增益介质相同的光 谱范围。
5、 根据权利要求 1或 2所述的光频率精密可调谐激光器, 其特征在于: 所述的激光 腔端面镜是在指定光谱范围内的全反镜或或部分反射镜, 所述的激光腔端面镜具有与激光 增益介质相同的光谱范围。
6、 根据权利要求 1 所述的光频率精密可调谐激光器, 其特征在于: 所述的可调谐声 光滤波器包括一个声光晶体和一个声波换能器。
7、 根据权利要求 1或 2或 6所述的光频率精密可调谐激光器, 其特征在于: 所述的 可调谐声光滤波器为窄带光滤波器, 该可调谐声光滤波器的光谱范围与激光增益介质的光 谱范围相同, 且其滤波光谱的 FWHM不大于第一光学标准具或第二光学标准具透射光谱 峰值频率的二倍。
8、 根据权利要求 1或 2所述的光频率精密可调谐激光器, 其特征在于: 所述的有源 光相位调制器是以下几种类型之一: 电光相位调制器, 或者是磁光相位调制器, 或者是液 晶相位调制器, 或者是声光相位调制器, 或者是基于物理光学效应的其他形式的相位调制 器, 或者是上述相位调制器的组合并具有与激光增益介质相同的光谱范围。
9、 根据权利要求 1或 2所述的光频率精密可调谐激光器, 其特征在于: 所述的有源 偏振旋光器是以下几种类型之一: 电光有源偏振旋光器, 或者是磁光有源偏振旋光器, 或 者是液晶有源偏振旋光器, 或者是声光有源偏振旋光器, 或者是基于物理光学效应的其他 形式的有源偏振旋光器, 或者是上述有源偏振旋光器的组合并具有与激光增益介质相同的 光谱范围。
10、 根据权利要求 1或 2所述的光频率精密可调谐激光器, 其特征在于: 所述的 激光器驱动控制电路包括: 数字信号微处理器、 四个数模转换模块、 激光泵浦源、 有 源光相位调制器驱动源、 可调谐声光滤波器驱动源、 有源偏振旋光器驱动源、 第一温 度控制系统和第二温度控制系统, 数字信号微处理器接收外部指令信号指令并通过激 光泵浦源、 有源光相位调制器驱动源、 可调谐声光滤波器驱动源、 有源偏振旋光器驱 动源、 第一温度控制系统和第二温度控制系统分别实现对激光增益介质、 有源光相位 调制器、 可调谐声光滤波器、 有源偏振旋光器的驱动控制功能和对第一光学标准具、 第二光学标准具的温度控制功能。
PCT/CN2011/077124 2011-07-12 2011-07-14 光频率精密可调谐激光器 WO2013007027A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/974,741 US8731011B2 (en) 2011-07-12 2013-08-23 Precision optical frequency tunable laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110193688.6 2011-07-12
CN201110193688.6A CN102299472B (zh) 2011-07-12 2011-07-12 光频率精密可调谐激光器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/974,741 Continuation US8731011B2 (en) 2011-07-12 2013-08-23 Precision optical frequency tunable laser

Publications (1)

Publication Number Publication Date
WO2013007027A1 true WO2013007027A1 (zh) 2013-01-17

Family

ID=45359721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077124 WO2013007027A1 (zh) 2011-07-12 2011-07-14 光频率精密可调谐激光器

Country Status (3)

Country Link
US (1) US8731011B2 (zh)
CN (1) CN102299472B (zh)
WO (1) WO2013007027A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244353B (zh) * 2011-06-09 2012-11-21 天津奇谱光电技术有限公司 光频率间隔为25GHz的外腔式可调谐激光器
CN102306900B (zh) * 2011-08-19 2013-05-01 天津奇谱光电技术有限公司 偏振耦合的双增益介质的外腔式宽带可调谐激光器
CN102709799B (zh) * 2012-06-18 2016-01-20 天津奇谱光电技术有限公司 一种宽带连续可调谐激光器
KR101459495B1 (ko) * 2013-04-05 2014-11-07 주식회사 포벨 파장 가변 레이저 장치
CN103730826A (zh) * 2014-01-04 2014-04-16 天津奇谱光电技术有限公司 一种可调谐激光器系统
US9768585B2 (en) 2015-03-18 2017-09-19 Applied Optoelectronics, Inc. Tunable laser including parallel lasing cavities with a common output
MX2018009833A (es) * 2016-02-12 2018-09-11 Massachusetts Gen Hospital Sistema para realizar una espectroscopia.
CN107203055A (zh) * 2017-05-04 2017-09-26 金华职业技术学院 一种用于光谱分析系统的光过滤方法
DE102018132327B4 (de) * 2018-12-14 2021-02-25 Leica Microsystems Cms Gmbh Verfahren und Signalgenerator zum Ansteuern eines akustooptischen Elements sowie Anordnung und Mikroskop mit einem Signalgenerator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3866139A (en) * 1973-10-11 1975-02-11 Us Air Force Apparatus for laser frequency selection
CN1435924A (zh) * 2002-12-11 2003-08-13 中国科学院安徽光学精密机械研究所 一种同光束双波长双脉冲激光的产生方法
US20050276303A1 (en) * 2004-06-10 2005-12-15 Rong Huang External Cavity Laser
FR2886478A1 (fr) * 2005-05-27 2006-12-01 Thales Sa Etalon anisotrope accordable applique a la realisation d'un laser bi-frequence a grande accordabilite
CN101673921A (zh) * 2009-03-26 2010-03-17 高培良 可调谐激光器系统
CN101794958A (zh) * 2010-04-01 2010-08-04 天津奇谱光电技术有限公司 可调谐激光器
CN101814694A (zh) * 2010-04-28 2010-08-25 天津奇谱光电技术有限公司 可调谐激光器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5724373A (en) * 1996-11-15 1998-03-03 Hewlett-Packard Company Microphotonic acousto-optic tunable laser
US6539041B1 (en) * 2000-03-30 2003-03-25 The United States Of America As Represented By The Secretary Of The Navy Compact solid state dye laser
JP4376837B2 (ja) * 2005-08-05 2009-12-02 サンテック株式会社 波長走査型レーザ光源

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3866139A (en) * 1973-10-11 1975-02-11 Us Air Force Apparatus for laser frequency selection
CN1435924A (zh) * 2002-12-11 2003-08-13 中国科学院安徽光学精密机械研究所 一种同光束双波长双脉冲激光的产生方法
US20050276303A1 (en) * 2004-06-10 2005-12-15 Rong Huang External Cavity Laser
FR2886478A1 (fr) * 2005-05-27 2006-12-01 Thales Sa Etalon anisotrope accordable applique a la realisation d'un laser bi-frequence a grande accordabilite
CN101673921A (zh) * 2009-03-26 2010-03-17 高培良 可调谐激光器系统
CN101794958A (zh) * 2010-04-01 2010-08-04 天津奇谱光电技术有限公司 可调谐激光器
CN101814694A (zh) * 2010-04-28 2010-08-25 天津奇谱光电技术有限公司 可调谐激光器

Also Published As

Publication number Publication date
CN102299472A (zh) 2011-12-28
CN102299472B (zh) 2012-11-21
US8731011B2 (en) 2014-05-20
US20140010250A1 (en) 2014-01-09

Similar Documents

Publication Publication Date Title
WO2013007027A1 (zh) 光频率精密可调谐激光器
WO2015101048A1 (zh) 一种具有双输出光束的可调谐激光器
CN102709799B (zh) 一种宽带连续可调谐激光器
WO2012162911A1 (zh) 一种外腔式可调谐激光器
US8831050B2 (en) Tunable laser
US8670469B2 (en) Tunable laser
CN102306900B (zh) 偏振耦合的双增益介质的外腔式宽带可调谐激光器
WO2015101049A1 (zh) 一种可调谐激光器系统
WO2014036842A1 (zh) 一种非偏振光输出的可调谐激光器
US9048610B2 (en) External cavity tunable laser with 25GHz frequency interval
JP2013179266A (ja) 位相連続波長可変レーザ
US8948221B2 (en) External cavity wideband tunable laser with dual laser gain media coupled by a thin film filter including
US6930819B2 (en) Miniaturized external cavity laser (ECL) implemented with acoustic optical tunable filter
WO2014036845A1 (zh) 一种与入射光的偏振态无关的可调谐光滤波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11869265

Country of ref document: EP

Kind code of ref document: A1