WO2012161470A2 - 의료용 방사선 촬영을 위한 디지털 팬텀, 디지털 팬텀을 이용한 의료 영상 처리 방법 및 시스템 - Google Patents
의료용 방사선 촬영을 위한 디지털 팬텀, 디지털 팬텀을 이용한 의료 영상 처리 방법 및 시스템 Download PDFInfo
- Publication number
- WO2012161470A2 WO2012161470A2 PCT/KR2012/003918 KR2012003918W WO2012161470A2 WO 2012161470 A2 WO2012161470 A2 WO 2012161470A2 KR 2012003918 W KR2012003918 W KR 2012003918W WO 2012161470 A2 WO2012161470 A2 WO 2012161470A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radiation
- reference object
- medical image
- diagnostic
- grid module
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000002601 radiography Methods 0.000 title claims abstract description 14
- 238000012545 processing Methods 0.000 title description 4
- 230000005855 radiation Effects 0.000 claims abstract description 139
- 238000005192 partition Methods 0.000 claims abstract description 31
- 230000005540 biological transmission Effects 0.000 claims abstract description 18
- 238000003745 diagnosis Methods 0.000 claims description 19
- 238000001514 detection method Methods 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 9
- 239000002131 composite material Substances 0.000 claims description 4
- 238000001303 quality assessment method Methods 0.000 claims description 4
- 238000012805 post-processing Methods 0.000 claims description 2
- 238000002834 transmittance Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 230000003902 lesion Effects 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 238000000275 quality assurance Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 230000037182 bone density Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000002595 magnetic resonance imaging Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 238000001739 density measurement Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000003702 image correction Methods 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002600 positron emission tomography Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000013441 quality evaluation Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000002603 single-photon emission computed tomography Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/58—Testing, adjusting or calibrating thereof
- A61B6/582—Calibration
- A61B6/583—Calibration using calibration phantoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/42—Arrangements for detecting radiation specially adapted for radiation diagnosis
- A61B6/4291—Arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B23/00—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
- G09B23/28—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B23/00—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
- G09B23/28—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
- G09B23/286—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine for scanning or photography techniques, e.g. X-rays, ultrasonics
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B23/00—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
- G09B23/28—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
- G09B23/30—Anatomical models
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/02—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
- G21K1/025—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using multiple collimators, e.g. Bucky screens; other devices for eliminating undesired or dispersed radiation
Definitions
- the present invention relates to a digital phantom for medical radiography, and a medical image processing method and system using the digital phantom. More specifically, the present invention relates to a digital phantom capable of real-time quality assessment.
- the present invention is derived from research conducted as part of the Knowledge Economy Technology Innovation Project (Industrial Source Technology Development Project) of the Ministry of Knowledge Economy and Korea Institute of Industrial Technology Evaluation and Management. [Task Management Number: 10038419, Title: Intelligent Image Diagnosis and Treatment Support system.]
- a photographing apparatus for observing the internal state of the human body in more detail has been developed and released, and such a photographing apparatus includes a computer tomography apparatus (CT), a magnetic resonance imaging apparatus (MRI), and a nuclear medical imaging apparatus (SPECT), positron emission tomography (PET), and the like.
- CT computer tomography apparatus
- MRI magnetic resonance imaging apparatus
- SPECT nuclear medical imaging apparatus
- PET positron emission tomography
- radiology The most basic examination of radiology is the use of X-rays.
- a radiological examination is a test in which radiation is transmitted to a patient's body to obtain a photographic image.
- an image In a radiographic image, an image is basically composed of X-ray dose and absorption and scattering spectrum of a living body. After passing through the offset and recorder, it is expressed as two-dimensional information through the conversion process (phenomena).
- the fidelity of the obtained information depends on the intensity and dose of X-rays, the size of the focal point, the physiological-physical movement of the subject, the scattering line, the sensitivity of the sensitizer or the film, the chemical composition of the developing process, the developing temperature, and the developing time.
- the medical image obtained by radiography is determined by the radiation dose and the transmittance of the subject, it is necessary to maintain the quality of the X-ray source at a consistent level. Therefore, in the conventional radiographic apparatus and the detector, quality assurance (QA) of the radiation source is performed every certain period (for example, 1 month, 3 months, 6 months or 1 year).
- the quality test is performed using a structure called phantom instead of the patient as the subject.
- Conventional phantoms are often cylindrical or models manufactured by mimicking the shape of a human body.
- Korean Laid-Open Patent Publication No. 10-2010-0063909 “Method of measuring jaw bone density and assistive device for jaw bone density measurement” is a technology developed by the Korea Electronics and Telecommunications Research Institute. An auxiliary device and a phantom attached to an outer case of the auxiliary device.
- this prior art is not only difficult to use unless the patient's teeth are measured, there is a problem that the user should take the inconvenience and mount the auxiliary device.
- An object of the present invention is to solve the problems of the prior art as described above, unlike the conventional method in which the phantom has a separate layer to occupy the volume, the virtual phantom without taking up the volume (virtual) To provide a device that can function like a phantom.
- an object of the present invention is not only used for the examination of the quality, but using additional information (including the minimum / maximum value of the brightness value window) of the medical image by the virtual phantom taken with the subject during radiography. It is to provide a radiographic technique that can post-process and process the medical image more precisely. In addition, it is an object of the present invention to analyze the medical image using the additional information obtained at this time, which can help to intelligently diagnose the lesion of the patient.
- a digital phantom for medical radiography is located between a radiation source and a detector, and a plurality of spots are formed in an array form by partitions that cross vertically and horizontally.
- a grid module having an angle of the partition wall formed to correspond to a light propagation path of the radiation;
- at least one reference object attached to at least one of the spots of the grid module and designed to correspond to a predetermined degree of transmission of the radiation.
- the type or thickness of the composition material of each of the one or more reference objects may be determined in correspondence with the target degree of transmission for the radiation.
- Medical radiation detection system is positioned so as to be exposed to the radiation emitted from the radiation source, a plurality of spots are arranged in an array form by the longitudinally intersecting partition wall, the angle of the partition wall A grid module formed corresponding to the light propagation path of the radiation; At least one reference object attached to at least one of the spots of the grid module, the at least one reference object being designed to correspond to a predetermined degree of transmission of the radiation; And a detector that is emitted from the radiation source and detects radiation via the grid module and the at least one reference object.
- the diagnostic subject (which means the patient, etc.) may be exposed to the radiation by being exposed to the radiation together with a part of the grid module and the at least one reference object.
- a plurality of spots are arranged in an array form by partitions that cross vertically and horizontally, and an angle of the partitions corresponds to an optical path of the radiation.
- a grid module formed; And at least one reference object attached to at least one of the spots of the grid module, the at least one reference object being designed to correspond to a predetermined degree of transmission of the radiation, and the digital phantom and the diagnostic subject to be exposed to the radiation emitted from the radiation source.
- the digital phantom of the present invention is a virtual phantom without taking up a large volume.
- the digital phantom of the present invention is formed on the grid so that the patient does not need to attach a separate assistive device to perform imaging, and a plurality of digital phantoms are formed on the grid to radiate a plurality of digital phantoms even in one shot. Since transmission results can be obtained, there is an advantage in that sufficient data can be obtained to correct or post-process a medical image.
- the digital phantom of the present invention and a radiation detection system using the same can perform a quality assessment of a radiation source near real-time simultaneously with imaging of a patient.
- a quality assessment of a radiation source near real-time simultaneously with imaging of a patient.
- the digital phantom of the present invention and the radiation detection system using the same are not only used for quality inspection, but additional information (minimum / maximum value of the brightness value window) of the corresponding medical image by the digital phantom taken with the subject during radiography. And the like).
- the additional information obtained here may be used to post-process and process the medical image more precisely.
- by using the additional information obtained at this time by analyzing the medical image it is possible to support the intelligent diagnosis of the lesion of the patient.
- FIG. 1 is a schematic configuration diagram of a digital phantom and a radiation detection system using the same according to an embodiment of the present invention.
- FIG. 2 is a diagram illustrating in more detail the digital phantom according to an embodiment of the present invention.
- FIG. 3 is a diagram illustrating a relationship between a digital phantom according to an embodiment of the present invention and a medical image obtained by using the same.
- FIG. 4 is a schematic configuration diagram of a digital phantom and a radiation detection system using the same according to another embodiment of the present invention.
- 5 to 8 are flowcharts illustrating a method for generating a medical image for diagnosis according to another embodiment of the present invention.
- a digital phantom for medical radiography is located between a radiation source and a detector, and a plurality of spots are formed in an array form by partitions that cross vertically and horizontally.
- a grid module having an angle of the partition wall formed to correspond to a light propagation path of the radiation;
- at least one reference object attached to at least one of the spots of the grid module and designed to correspond to a predetermined degree of transmission of the radiation.
- the type or thickness of the composition material of each of the one or more reference objects may be determined in correspondence with the target degree of transmission for the radiation.
- Medical radiation detection system is positioned so as to be exposed to the radiation emitted from the radiation source, a plurality of spots are arranged in an array form by the longitudinally intersecting partition wall, the angle of the partition wall A grid module formed corresponding to the light propagation path of the radiation; At least one reference object attached to at least one of the spots of the grid module, the at least one reference object being designed to correspond to a predetermined degree of transmission of the radiation; And a detector that is emitted from the radiation source and detects radiation via the grid module and the at least one reference object.
- the diagnostic subject (which means the patient, etc.) may be exposed to the radiation by being exposed to the radiation together with a part of the grid module and the at least one reference object.
- a plurality of spots are arranged in an array form by partitions that cross vertically and horizontally, and an angle of the partitions corresponds to an optical path of the radiation.
- a grid module formed; And at least one reference object attached to at least one of the spots of the grid module, the at least one reference object being designed to correspond to a predetermined degree of transmission of the radiation, and the digital phantom and the diagnostic subject to be exposed to the radiation emitted from the radiation source.
- ... unit means a unit for processing at least one function or operation, which may be implemented in hardware or software or a combination of hardware and software.
- FIG. 1 is a schematic configuration diagram of a digital phantom and a radiation detection system using the same according to an embodiment of the present invention.
- a radiation source 100 is a component that radiates radiation, including X-rays, to the subject 110 to store and read an image of the subject. Likewise, it consists of non-electron radiation, ionizing radiation such as alpha ( ⁇ ) rays, beta ( ⁇ ) rays, gamma ( ⁇ ) rays, and neutron (n) rays.
- a portion of the radiation generated from the radiation source 100 is absorbed by the subject 110, which is the human body of the patient, and the rest of the radiation is detected by the digital detector 130 after being transmitted through the subject.
- the tube voltage is a potential difference applied between the cathode and the anode of the X-ray tube.
- a typical peak value is expressed as [Kv]
- the tube current is the anode flowing by the electron beam that collides with the anode of the X-ray tube during X-ray irradiation.
- Current expressed as an average value [mA].
- the crest value [mAp] is displayed.
- the photographing time is a time during which the radiation dose rate exceeds a value effective for photographing.
- the digital phantom 120 includes a grid module 122 and a reference object 124.
- the grid module 122 is located between the radiation source 100 and the digital detector 130.
- the scattering line is removed from the radiation passing through the subject 110 and the scattering line is used to prevent a noise effect on the medical image.
- the grid module 122 includes a plurality of spots 122a that are separated by partition walls that cross vertically and horizontally.
- the spots 122a are divided by partition walls and arranged vertically and horizontally in an array form.
- the angle of the partition wall may be formed to be inclined according to the light propagation path of the radiation.
- the inclination of the partition wall is exaggerated for clarity, but in practice, a fine inclination may be formed along the optical path.
- the partition wall of the grid module 122 is formed of a material having a high radiation absorption, it is advantageous to absorb the scattered radiation. That is, a material having a high radiation absorption rate such as aluminum (Al) or lead (Pb) may be coated on the partition to form a thin film. At this time, since the scattering line is more likely to be thicker than the case where the photographing portion of the subject 110 is thin, the grid module 122 is further required.
- the reference object 124 may be inserted into a specific spot 122a of the grid module 122.
- the composition material of the reference object 124 may be a material having a relatively high radiation absorption rate such as aluminum (Al) or lead (Pb).
- Al aluminum
- Pb lead
- the composition of the reference object 124 may be determined corresponding to the target radiation transmission rate. That is, the ratio of aluminum and lead of the reference object 124 may be adjusted according to the target radiation transmittance.
- the thickness of the reference object 124 may also be determined according to a predetermined target radiation transmittance.
- thickness means the length of the path direction to which a radiation advances. That is, if the thickness is large, the probability that the radiation is absorbed may increase.
- the reference object 124 is determined by the target material transmittance, the thickness and the like, the medical image is detected with a gray scale level (gray scale level) according to the radiation transmittance at the time of radiation detection. Since the spot 122a on which the reference object 124 is mounted may adjust the gray level, the spot 122a may be called a gray-scalable spot.
- the reference object 124 has a shape corresponding to the shape of the spot 122a of the grid module 122.
- the partition wall of the grid module 122 is formed with a fine inclined surface
- the outer wall surface corresponds to the fine inclined surface. It may be formed as an inclined surface.
- the shape of the reference object 124 is hexahedral in FIG. 2, it is apparent to those skilled in the art that the spirit of the present invention is not limited thereto.
- the digital phantom 120 may include scalable spots formed to have different radiation transmittances in at least two or more spots 122a of the grid module 122.
- scalable spots having different radiation transmittances are formed by the plurality of reference objects 124.
- a first reference object having a first transmittance may be mounted in a first spot
- a second reference object having a second transmittance may be mounted in a second spot.
- the digital phantom 120 of the present invention may further include a grid driver. Since the line by the partition wall of the grid module 122 can be observed in the digital detector 130, the grid module 122 is moved among the X, Y, and Z axes to irradiate radiation while moving the partition to eliminate such a line. One axis or at least two or more axes can be driven simultaneously.
- Digital detector (130) is an image sensor that converts X-ray image into digital image information.
- the digital detector replaces the film and transfers the image to the monitor (not shown). You can save time.
- the digital detector 130 detects the remaining transmitted radiation in which the radiation emitted from the radiation source 100 is partially absorbed by the reference object 124.
- the radiation detected by the digital detector 130 is output as a digital value in a digital image file.
- a film forming a radiographic image may be applied instead of the digital detector 130 of the embodiment of FIG. 2, and in this case, radiation by an intensifying screen coated with a photosensitive material on the film. This can be absorbed.
- the digital detector 130 may measure and correct an image, at least two measured images may be used for image correction, and non-linear phenomenon may be avoided.
- FIG. 3 is a diagram illustrating a relationship between a digital phantom and a medical image obtained by using the same according to an embodiment of the present invention.
- FIG. 3 a plan view of the digital phantom 120 in the direction of the radiation source 100 is shown.
- the grid module 122 of the digital phantom 120 is shown in an array in the form of a grid.
- the reference object 124 may be disposed at the edge of the grid module 122 to avoid the center of the medical image to minimize the influence on the doctor's diagnosis.
- the gray level by the reference object 124 is represented in the radiomedical image.
- Reference object 124 is shown and four gray levels by four reference objects 124 are displayed as brightness reference values.
- the number of the reference objects 124 is too large, it may interfere with the diagnosis using the medical image, so that the tradeoff between the convenience of diagnosis and the precision of the extraction of the brightness values may be used.
- the number can be determined. In general, the distance between the radiation source 100, the subject 110, and the detector 130 is maintained within a predetermined range. Accordingly, the number of reference objects 214 need not be very large, and valid information can be obtained with only a relatively small number of samples.
- the radiation source 100 is generally arranged to be closest to the center portion of the grid module 122. Therefore, the brightness value when the reference object 124 is located at the center portion and at the edge thereof has a slight difference. It becomes visible. Therefore, the position of the reference object 124 may also be considered when determining the composition quality and thickness of the reference object 124 in consideration of the target gray level for a more accurate brightness value comparison.
- FIG. 4 is a diagram illustrating a digital phantom and a medical radiation detection system using the same according to another embodiment of the present invention.
- the functions of the digital phantom 120, the radiation source 100, the subject 110, and the detector 130 are similar to those of the embodiment of FIG. 1, and thus descriptions thereof will be omitted.
- the image generator 140 generates a medical image for diagnosis based on the amount of radiation detected by the detector 130.
- the medical image generated at this time may be a raw image or an image in which minimal preprocessing is performed.
- the raw image includes the trajectory of the reference object 124 and the radiographic image of the diagnosis subject 110, that is, the patient.
- the image processor 150 may extract a trajectory of the reference object 124 from the raw image.
- the brightness value extracted from the trajectory of the reference object 124 may be compared with a predetermined target transmittance or target gray level.
- the image processor 150 may generate characteristic information that is a reference for the post-processing process for the unprocessed image, based on a comparison result between the brightness value extracted from the trajectory of the reference object 124 and the preset target gray level. . For example, when the extracted brightness value is lower than the target gray level, it may be determined that the brightness value of the entire raw image is low, and the raw image may be post-processed. If the extracted brightness value is higher than the target gray level, it may be determined that the brightness value of the entire raw image is high. If the difference between the extracted brightness value and the target gray level is within a predetermined reference range, The process can be minimized.
- the characteristic information of the raw image obtained at this time may include information on minimum and maximum values of the filtering window, which is a standard for future image processing.
- the filtering window is information that serves as a reference for segmentation of an image.
- the brightness value extracted from the trajectory of the reference object 124 may be used to display the raw image. That is, the brightness value of the medical image displayed to the user (doctor or radiologist) may be corrected using the extracted brightness value.
- an appropriate display brightness value may be selected by using not only the difference between the target gray level and the extracted brightness value but also environment information such as the user's surrounding brightness and atmosphere.
- the radiation detection system of the present invention feeds back the brightness value extracted from the trajectory of the scalable spot, and compares the initially-targeted gray level with the actually extracted brightness value. Accordingly, the extracted brightness value may be used to determine an optimal brightness value in terms of processing, displaying, and diagnosing a medical image for diagnosis.
- FIG. 5 is a flowchart illustrating a method of generating a medical image for diagnosis according to another embodiment of the present invention.
- the digital phantom 120 and the diagnostic subject 110 are exposed to radiation emitted from the radiation source 100 together (S510).
- the radiation emitted from the radiation source 100 by the detector 130 and transmitted through the digital phantom 120 and the diagnostic subject 110 is detected (S520).
- the image generating unit 140 uses the radiation detected by the detector 130 to generate a diagnostic medical image (S530).
- the image processor 150 extracts the brightness value from the trajectory of the scalable spot or the reference object 124 shown in the diagnostic medical image (S540).
- 6 to 8 are flowcharts illustrating in detail some processes of a method for generating a medical image for diagnosis according to various embodiments of the present disclosure.
- the image processor 150 selects a brightness value window of a raw medical image using the brightness value extracted from the trajectory of the reference object 124 (S610).
- the brightness value window is a filtering window and is information used as a reference value such as segmentation.
- the filtering window may be determined by further considering the organs, lesions, and personal characteristics of the patient (including gender and age).
- the image processor 150 may post-process and process the raw medical image by using the filtering window information (S620).
- the image processor 150 may diagnose a lesion of the diagnostic subject 110 using the brightness value extracted from the trajectory of the reference object 124 (S710). Since each of the reference objects 124 corresponds to a preset target gray level, the reference object 124 may provide a guide for brightness when the organ displayed on the medical image is in a healthy state and brightness when there is a lesion. Therefore, the image processor 150 may diagnose a lesion of the organ of the patient displayed on the corresponding medical image by using the brightness value extracted from the trajectory of the reference object 124.
- the image processor 150 may evaluate quality of the radiation source 100 (QA) using brightness values extracted from the trajectory of the reference object 124 (S810). Comparing the target gray level of each of the reference objects 124 with the brightness value shown in the actual trajectory, it is determined whether the radiation source 100 is exposing excessive radiation, insufficient radiation, or proper radiation. Can be. The image processor 150 may feed back the quality evaluation result to the control device of the radiation source 100 to support exposure of appropriate radiation when the next patient is photographed.
- the method for generating a medical image for diagnosis may be implemented in the form of program instructions that can be executed by various computer means and recorded in a computer readable medium.
- the computer readable medium may include program instructions, data files, data structures, etc. alone or in combination.
- Program instructions recorded on the media may be those specially designed and constructed for the purposes of the present invention, or they may be of the kind well-known and available to those having skill in the computer software arts. Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tape, optical media such as CD-ROMs, DVDs, and magnetic disks, such as floppy disks.
- Magneto-optical media and hardware devices specifically configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like.
- program instructions include not only machine code generated by a compiler, but also high-level language code that can be executed by a computer using an interpreter or the like.
- the hardware device described above may be configured to operate as one or more software modules to perform the operations of the present invention, and vice versa.
- the present invention relates to a digital phantom for radiography used for medical purposes and a method for obtaining a medical image using the digital phantom.
- a digital phantom is disposed between a radiation source and a detector, and a plurality of spots are arranged in an array form by partitions that cross vertically and horizontally, and the angle of the partitions is determined by the light of the radiation.
- a grid module formed in correspondence with a progress path; And at least one reference object attached to at least one of the spots of the grid module, the at least one reference object being designed to correspond to a predetermined degree of transmission of the radiation.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- High Energy & Nuclear Physics (AREA)
- Computational Mathematics (AREA)
- Pathology (AREA)
- Mathematical Physics (AREA)
- Pure & Applied Mathematics (AREA)
- Business, Economics & Management (AREA)
- Educational Administration (AREA)
- Educational Technology (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Analysis (AREA)
- Biophysics (AREA)
- Algebra (AREA)
- Medicinal Chemistry (AREA)
- Optics & Photonics (AREA)
- Mathematical Optimization (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Engineering & Computer Science (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
본 발명은 의료용으로 이용되는 방사선 촬영용 디지털 팬텀과, 상기 디지털 팬텀을 이용한 의료 영상 획득 방법에 관한 것이다. 본 발명의 일 실시예에 따른 디지털 팬텀은 방사선 소스와 검출기와의 사이에 위치하고, 종횡으로 교차되는 격벽에 의하여 다수의 스폿(spot)이 어레이 형태로 배열되며, 상기 격벽의 각도는 상기 방사선의 광 진행 경로에 대응하여 형성되는 그리드 모듈; 및 상기 그리드 모듈의 스폿 중 적어도 하나 이상에 부착되며, 미리 설정된 상기 방사선에 대한 투과 정도에 대응하여 설계되는 적어도 하나 이상의 기준 오브젝트;를 포함한다.
Description
본 발명은 의료용 방사선 촬영을 위한 디지털 팬텀, 그 디지털 팬텀을 이용한 의료 영상 처리 방법 및 시스템에 관한 것이다. 보다 상세하게는 실시간 선질 평가를 실현할 수 있는 디지털 팬텀에 관한 것이다.
본 발명은 지식경제부 및 한국산업기술평가관리원의 지식경제 기술혁신사업(산업원천기술개발사업)의 일환으로 수행한 연구로부터 도출된 것이다[과제관리번호 : 10038419, 과제명 : 지능형 영상진단 및 치료지원 시스템.]
일반적으로 의료장비는 과학기술의 발달로 인해 첨단화하고 있다. 이로 인하여 인체내부의 상태를 보다 자세히 관찰할 수 있는 촬영장치가 개발 및 출시되고 있으며, 이러한 촬영장치로는 컴퓨터 단층 촬영장치(CT), 자기공명 영상 촬영장치(MRI), 핵의학 영상 촬영장치(SPECT), 양전자 방출 단층 촬영장치(PET) 등이 있다.
하지만 이러한 의료장비로부터 얻어진 의료영상은 일반인이 보기에는 구별이 어려우며, 고도의 훈련과 교육을 경험한 숙련된 전문가들만이 의료영상을 통하여 환자의 병변을 진단할 수 있다. 이처럼 전문가들이 의료영상을 판독하고 환자를 진단하는 학문을 영상의학이라 하기도 한다.
영상의학 중 가장 기본적인 검사는 방사선(X-ray)을 이용한 것이다. 방사선을 이용한 검사는 다시 말하면 방사선을 환자의 신체에 투과시켜 촬영상을 얻는 검사로, 방사선 사진에서 화상은 기본적으로 X-선량과 생체의 흡수 및 산란 스팩트럼에 의해 구성되며, 여기서 얻어진 생체정보는 결상계와 기록계를 거친 후 변환과정(현상)을 통하여 2차원의 정보로 표현이 된다. 이때 얻어진 정보에 대한 충실도는 X-선의 강도 및 선량, 초점의 크기, 피사체의 생리적-물리적 움직임, 산란선, 증감지나 필름의 감도, 현상 과정의 약제성분, 현상온도, 현상시간 등에 따라 좌우된다.
방사선 촬영에 의하여 얻어진 의료영상은 방사선의 피폭량과 피사체의 투과도에 의하여 결정되기 때문에 방사선 소스(X-ray source)의 선질 (quality)을 일관된 수준으로 유지할 필요가 있다. 따라서 종래의 방사선 촬영 장치 및 검출기에서는 일정 주기(예를 들어, 1 개월, 3개월, 6개월 또는 1년)마다 방사선 소스의 선질 검사(QA, quality assurance)를 수행하였다. 선질 검사는 피사체로서 환자 대신 팬텀(phantom)이라 불리는 구조물을 이용하여 수행된다. 종래의 일반적인 팬텀은 원통형이거나, 인체의 형상을 모방하여 제조된 모형인 경우가 많았다.
그러나 실제로는 방사선 소스의 선질 검사 후 상당한 기간이 경과하면 방사선 소스의 선질이 그대로 유지되는지 알 도리가 없었다. 이와 같은 문제점으로 인하여 진료 현장에서는 방사선 촬영 시 명확한 의료영상을 얻을 수 있도록 방사선사의 판단으로 방사선량을 증가시켜(과선량, over-exposure) 촬영하는 경우가 비일비재하였다.
방사선량을 증가시키면 명확한 의료영상을 얻을 수 있는 대신 환자의 피폭량이 증가하므로 장기적으로는 환자의 건강을 해칠 수 있는 문제점이 있는 것이다. 따라서 방사선 촬영 시 팬텀(phantom)을 함께 촬영하여 실시간으로 선질 검사(QA)를 수행하는 내용에 대한 기술이 개발되었다.
한국공개특허공보 제10-2010-0063909호 "악골밀도 측정 방법 및 악골밀도 측정을 위한 보조장치"는 한국전자통신연구원에서 개발한 기술로, 환자의 치아에 대한 방사선 촬영 시 환자의 치아가 끼워지는 보조장치와, 보조장치의 외장케이스에 부착되는 팬텀을 포함한다. 그러나 이러한 선행기술은 환자의 치아를 측정하는 경우가 아니면 사용하기 어려울 뿐 아니라, 사용자가 불편함을 감수하고 보조장치를 장착해야 하는 문제점이 있었다. 더구나 환자의 신체의 크기 또는 형상이 개인마다 차이가 있어 모든 사람이 편리하게 사용할 수 있는 보조장치를 개발하는 것도 지극히 어려운 일이었다.
본 발명의 목적은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 팬텀(phantom)이 별도의 레이어를 구비하여 부피를 차지하는 기존 방식과는 달리, 부피를 차지하지 않으면서도 가상적인 팬텀(virtual phantom)처럼 기능할 수 있는 장치를 제공하는 데 있다.
또한 본 발명의 목적은 환자가 별도로 보조장치를 마련하거나 여러 번 반복하여 촬영할 필요 없이, 한번의 촬영만으로도 방사선 촬영에서 만족할 만한 의료영상을 얻을 수 있는 새로운 방사선 촬영 기법을 제공하는 데 있다.
또한 본 발명의 목적은 실시간(real-time)에 가깝게 방사선 소스의 선질 평가를 수행함으로써, 환자의 피폭량을 불필요하게 증가시키지 않고도 명확한 방사선 의료영상을 얻을 수 있는 방사선 촬영 기법을 제공하는 데 있다.
또한 본 발명의 목적은 단순히 선질 검사에만 이용되는 것이 아니라, 방사선 촬영 시 피사체와 함께 촬영된 가상 팬텀에 의하여 해당 의료 영상에 대한 부가 정보(밝기 값 윈도우의 최소/최대 값 등을 포함함)를 이용하여 해당 의료 영상을 보다 정밀하게 후처리 및 가공할 수 있는 방사선 촬영 기법을 제공하는 데 있다. 또한 이 때 얻어진 부가 정보를 이용하여 해당 의료 영상을 분석하여, 환자의 병변을 지능적으로 진단하는 데에 도움을 줄 수 있는 데에도 본 발명의 목적이 있다.
상기한 바와 같은 목적을 달성하기 위하여, 본 발명의 일 실시예에 따른 의료 방사선 촬영용 디지털 팬텀은 방사선 소스와 검출기와의 사이에 위치하고, 종횡으로 교차되는 격벽에 의하여 다수의 스폿(spot)이 어레이 형태로 배열되며, 상기 격벽의 각도는 상기 방사선의 광 진행 경로에 대응하여 형성되는 그리드 모듈; 및 상기 그리드 모듈의 스폿 중 적어도 하나 이상에 부착되며, 미리 설정된 상기 방사선에 대한 투과 정도에 대응하여 설계되는 적어도 하나 이상의 기준 오브젝트(reference object);를 포함할 수 있다.
이 때 상기 적어도 하나 이상의 기준 오브젝트 각각의 조성 물질의 종류 또는 두께는 상기 미리 설정된 상기 방사선에 대한 투과 정도(의 목표치)에 대응하여 결정될 수 있다.
본 발명의 또 다른 실시예에 따른 의료용 방사선 검출 시스템은 방사선 소스로부터 방출되는 방사선에 노출되도록 위치하고, 종횡으로 교차되는 격벽에 의하여 다수의 스폿(spot)이 어레이 형태로 배열되며, 상기 격벽의 각도는 상기 방사선의 광 진행 경로에 대응하여 형성되는 그리드 모듈; 상기 그리드 모듈의 스폿 중 적어도 하나 이상에 부착되며, 미리 설정된 상기 방사선에 대한 투과 정도에 대응하여 설계되는 적어도 하나 이상의 기준 오브젝트; 및 상기 방사선 소스로부터 방출되어 상기 그리드 모듈 및 상기 적어도 하나 이상의 기준 오브젝트를 경유한 방사선을 검출하는 검출기;를 포함할 수 있다.
이 때 진단용 피사체(환자 등을 의미함)는 상기 그리드 모듈의 일부 및 상기 적어도 하나 이상의 기준 오브젝트와 함께 상기 방사선에 노출되어 방사선에 피폭될 수 있다.
본 발명의 또 다른 실시예에 따른 진단용 의료 영상 생성 방법은, 종횡으로 교차되는 격벽에 의하여 다수의 스폿(spot)이 어레이 형태로 배열되며, 상기 격벽의 각도는 상기 방사선의 광 진행 경로에 대응하여 형성되는 그리드 모듈; 및 상기 그리드 모듈의 스폿 중 적어도 하나 이상에 부착되며, 미리 설정된 상기 방사선에 대한 투과 정도에 대응하여 설계되는 적어도 하나 이상의 기준 오브젝트를 포함하는 디지털 팬텀과 진단용 피사체를 함께 방사선 소스로부터 방출되는 방사선에 노출하는 단계; 상기 방사선 소스로부터 방출되고 상기 디지털 팬텀 또는 상기 진단용 피사체를 경유한 방사선을 검출기를 이용하여 검출하는 단계; 상기 검출된 방사선을 이용하여 진단용 의료 영상을 생성하는 단계;를 포함할 수 있다.
이상에서 설명한 본 발명의 구성에 따르면, 팬텀(phantom)이 별도의 레이어를 구비하여 부피를 차지하는 기존 방식과는 달리, 본 발명의 디지털 팬텀은 부피를 크게 차지하지 않으면서도 가상적인 팬텀(virtual phantom)처럼 기능할 수 있다.
또한 본 발명의 디지털 팬텀은 그리드 상에 형성되어 환자가 별도의 보조장치를 장착하고 촬영에 임할 필요가 없으며, 또한 복수의 디지털 팬텀이 그리드 상에 형성되어 한번의 촬영에서도 복수의 디지털 팬텀에 대한 방사선 투과 결과를 얻을 수 있으므로 의료영상을 보정하거나 후처리할 수 있는 충분한 데이터를 얻을 수 있는 장점이 있다.
또한 본 발명의 디지털 팬텀 및 이를 이용한 방사선 검출 시스템은 환자에 대한 촬영과 동시에 실시간(real-time)에 가깝게 방사선 소스의 선질 평가를 수행할 수 있다. 현재의 방사선 소스의 상태를 정확하게 파악할 수 있으므로, 다음 환자에 대한 피폭량을 불필요하게 증가시키지 않고도 명확한 방사선 의료영상을 얻을 수 있다.
또한 본 발명의 디지털 팬텀 및 이를 이용한 방사선 검출 시스템은 단순히 선질 검사에만 이용되는 것이 아니라, 방사선 촬영 시 피사체와 함께 촬영된 디지털 팬텀에 의하여 해당 의료 영상에 대한 부가 정보(밝기 값 윈도우의 최소/최대 값 등을 포함함)를 추출할 수 있다. 여기서 얻어진 부가 정보를 이용하여 해당 의료 영상을 보다 정밀하게 후처리 및 가공할 수 있다. 또한 이 때 얻어진 부가 정보를 이용하여 해당 의료 영상을 분석하여, 환자의 병변에 대한 지능적 진단을 지원할 수 있다.
도 1는 본 발명의 일 실시예에 의한 디지털 팬텀 및 이를 이용한 방사선 검출 시스템의 개략적인 구성도이다.
도 2는 본 발명의 일 실시예에 의한 디지털 팬텀을 더욱 자세히 도시한 도면이다.
도 3은 본 발명의 실시예에 의한 디지털 팬텀과, 이를 이용하여 얻어진 의료 영상 간의 관계를 나타내는 도면이다.
도 4는 본 발명의 다른 실시예에 의한 디지털 팬텀 및 이를 이용한 방사선 검출 시스템의 개략적인 구성도이다.
도 5 내지 도 8은 본 발명의 또 다른 실시예에 따른 진단용 의료 영상 생성 방법을 도시하는 동작 흐름도이다.
상기한 바와 같은 목적을 달성하기 위하여, 본 발명의 일 실시예에 따른 의료 방사선 촬영용 디지털 팬텀은 방사선 소스와 검출기와의 사이에 위치하고, 종횡으로 교차되는 격벽에 의하여 다수의 스폿(spot)이 어레이 형태로 배열되며, 상기 격벽의 각도는 상기 방사선의 광 진행 경로에 대응하여 형성되는 그리드 모듈; 및 상기 그리드 모듈의 스폿 중 적어도 하나 이상에 부착되며, 미리 설정된 상기 방사선에 대한 투과 정도에 대응하여 설계되는 적어도 하나 이상의 기준 오브젝트(reference object);를 포함할 수 있다.
이 때 상기 적어도 하나 이상의 기준 오브젝트 각각의 조성 물질의 종류 또는 두께는 상기 미리 설정된 상기 방사선에 대한 투과 정도(의 목표치)에 대응하여 결정될 수 있다.
본 발명의 또 다른 실시예에 따른 의료용 방사선 검출 시스템은 방사선 소스로부터 방출되는 방사선에 노출되도록 위치하고, 종횡으로 교차되는 격벽에 의하여 다수의 스폿(spot)이 어레이 형태로 배열되며, 상기 격벽의 각도는 상기 방사선의 광 진행 경로에 대응하여 형성되는 그리드 모듈; 상기 그리드 모듈의 스폿 중 적어도 하나 이상에 부착되며, 미리 설정된 상기 방사선에 대한 투과 정도에 대응하여 설계되는 적어도 하나 이상의 기준 오브젝트; 및 상기 방사선 소스로부터 방출되어 상기 그리드 모듈 및 상기 적어도 하나 이상의 기준 오브젝트를 경유한 방사선을 검출하는 검출기;를 포함할 수 있다.
이 때 진단용 피사체(환자 등을 의미함)는 상기 그리드 모듈의 일부 및 상기 적어도 하나 이상의 기준 오브젝트와 함께 상기 방사선에 노출되어 방사선에 피폭될 수 있다.
본 발명의 또 다른 실시예에 따른 진단용 의료 영상 생성 방법은, 종횡으로 교차되는 격벽에 의하여 다수의 스폿(spot)이 어레이 형태로 배열되며, 상기 격벽의 각도는 상기 방사선의 광 진행 경로에 대응하여 형성되는 그리드 모듈; 및 상기 그리드 모듈의 스폿 중 적어도 하나 이상에 부착되며, 미리 설정된 상기 방사선에 대한 투과 정도에 대응하여 설계되는 적어도 하나 이상의 기준 오브젝트를 포함하는 디지털 팬텀과 진단용 피사체를 함께 방사선 소스로부터 방출되는 방사선에 노출하는 단계; 상기 방사선 소스로부터 방출되고 상기 디지털 팬텀 또는 상기 진단용 피사체를 경유한 방사선을 검출기를 이용하여 검출하는 단계; 상기 검출된 방사선을 이용하여 진단용 의료 영상을 생성하는 단계;를 포함할 수 있다.
본 명세서 및 청구범위에 사용된 용어나 단어는 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부"라는 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
이하에서는 도 1 내지 도 8의 도면을 참고하여 본 발명의 실시예에 따른 디지털 팬텀, 디지털 팬텀을 이용하는 방사선 검출시스템, 및 진단용 의료 영상 생성 방법을 상세히 설명한다.
도 1는 본 발명의 일 실시예에 의한 디지털 팬텀 및 이를 이용한 방사선 검출 시스템의 개략적인 구성도이다.
도 1을 참조하면, 방사선 소스(radiation source 100)는 피사체(object)의 이미지 저장 및 판독을 위해 X-ray(엑스레이) 등을 포함하는 방사선을 피사체(110)에 방사하는 구성요소로, 햇빛과 같이 비전리 방사선과, 알파(α)선, 베타(β)선, 감마(γ)선, 중성자(n)선 등과 같은 전리 방사선으로 구성된다.
이때, 방사선 소스(100)에서 발생하는 방사선은 촬영 시 환자의 인체인 피사체(110)에 일부가 흡수되고, 그 나머지는 피사체를 투과한 후 디지털 디텍터(130)에 의해 방사선 촬영 영상으로 검출된다.
여기서, 방사선의 선질을 결정하는 3가지 요인으로, 전압(kV), 전류(mA), 시간 (msec)이 있다. 관전압은 X선관의 음극과 양극 사이에 인가되는 전위차로, 통상적인 절정값(peak value)은 [Kv]로 표시되고, 관전류는 X선 조사 중에 X선관의 양극에 충돌하는 전자 빔에 의하여 흐르는 양극전류로, 평균치[mA]로 표시된다. 콘덴서식 X선 고전압장치를 이용하여 촬영하는 경우에는 파고치[mAp]로 표시한다. 그리고 촬영시간은 방사선량률이 촬영에 유효한 값을 초과하는 동안의 시간이다.
도 2는 본 발명의 일 실시에에 의한 디지털 팬텀(120)을 더욱 상세히 도시한 도면이다. 도 2를 참조하면, 디지털 팬텀(120)은 그리드 모듈(122)과 기준 오브젝트(reference object)(124)를 포함한다.
그리드 모듈(122)은 방사선 소스(100)와 디지털 디텍터(130) 사이에 위치한다. 피사체(110)를 투과한 방사선 중 산란선을 제거하고, 산란선이 의료 영상에 미치는 노이즈 효과를 방지하기 위하여 사용된다.
그리드 모듈(122)은 종횡으로 교차되는 격벽에 의하여 구분되는 다수의 스폿(122a)을 포함한다. 스폿(122a)는 격벽에 의하여 구분되며 어레이 형태로 종횡으로 배열된다. 이 때 도 2에 도시된 바와 같이 격벽의 각도는 방사선의 광 진행 경로에 맞추어 경사지게 형성될 수 있다. 도 2에서는 이해를 돕기 위하여 격벽의 경사도가 과장되어 도시되었으나, 실제로는 광 경로에 따라 미세한 경사를 형성할 수 있다.
그리드 모듈(122)의 격벽은 방사선 흡수율이 높은 물질로 형성되어 산란된 방사선을 흡수하는 것이 유리하다. 즉 격벽에 알루미늄(Al) 또는 납(Pb) 등과 같은 방사선 흡수율이 높은 물질이 도포되어 박막을 형성할 수도 있다. 이 때 피사체(110)의 촬영 부위가 얇은 경우보다 두꺼운 경우가 산란선의 발생 가능성이 높으므로 그리드 모듈(122)이 더욱 더 필요하다.
기준 오브젝트(124)는 그리드 모듈(122)의 특정 스폿(122a)에 삽입될 수 있다. 기준 오브젝트(124)의 조성 물질은 알루미늄(Al) 또는 납(Pb) 등 방사선 흡수율이 상대적으로 높은 물질일 수 있다. 이 때 알루미늄과 납의 방사선 흡수율 또한 다르기 때문에, 기준 오브젝트(124)의 조성은 목표하는 방사선 투과율에 대응하여 결정될 수 있다. 즉, 목표하는 방사선 투과율에 따라 기준 오브젝트(124)의 알루미늄 및 납의 비율이 조정될 수 있다.
또한 기준 오브젝트(124)의 두께 또한 미리 설정된 목표 방사선 투과율에 따라 결정될 수 있다. 여기서 두께라 함은, 방사선이 진행하는 경로 방향의 길이를 말한다. 즉, 두께가 크면 방사선이 흡수될 확률이 높아질 수 있다.
이처럼 기준 오브젝트(124)는 목표 방사선 투과율에 의하여 조성 물질 및 두께 등이 결정되며, 방사선 검출 시 의료 영상에서는 방사선 투과율에 따른 그레이 스케일 레벨(gray scale level)을 가지고 나타내어진다. 기준 오브젝트(124)가 장착된 스폿(122a)은 그레이 레벨을 조정할 수 있으므로, 그레이 스케일러블 스폿(Gray-scalable spot)이라 할 수 있다.
기준 오브젝트(124)는 그리드 모듈(122)의 스폿(122a)의 형상과 대응되는 형상을 취하며, 그리드 모듈(122)의 격벽이 미세한 경사면으로 형성될 경우, 상기 미세 경사면에 대응되도록 외벽면이 경사면으로 형성될 수 있다. 한편, 도 2에서는 기준 오브젝트(124)의 형상이 육면체인 것으로 예시하였으나, 본 발명의 사상은 이에 국한되지 않음은 당업자에게 자명하다.
디지털 팬텀(120)은 그리드 모듈(122)의 적어도 둘 이상의 스폿(122a)에 각각 서로 다른 방사선 투과율을 가지도록 형성된 스케일러블 스폿을 포함할 수 있다. 이 때 서로 다른 방사선 투과율을 가지는 스케일러블 스폿은 복수의 기준 오브젝트(124)에 의하여 형성된다. 예를 들어 제1 스폿에는 제1 투과율을 가지는 제1 기준 오브젝트가, 제2 스폿에는 제2 투과율을 가지는 제2 기준 오브젝트가 장착될 수 있다.
도 2에 도시되지는 않았으나, 본 발명의 디지털 팬텀(120)은 그리드 구동부를 더 포함할 수 있다. 디지털 디텍터(130)에 그리드 모듈(122)의 격벽에 의한 선이 관찰될 수 있기 때문에 이러한 선을 없애기 위하여 격벽을 움직이면서 방사선을 조사하도록 상기 그리드 모듈(122)을 X축, Y축 및 Z축 중 하나의 축 또는 적어도 2축 이상을 동시에 구동시킬 수 있다.
디지털 디텍터(Digital detector: 130)는 X-ray 영상을 디지털 영상정보로 변환해주는 이미지 센서로, 디지털 디텍터가 필름 역할을 대신하면서 촬영과 동시에 영상을 모니터(도면에 미도시)로 전송해 보여줌으로써 현상 시간을 줄일 수 있다. 이때, 디지털 디텍터(130)는 방사선 소스(100)에서 방출되는 방사선이 기준 오브젝트(124)에 일부 흡수된 나머지 투과된 방사선을 검출한다. 디지털 디텍터(130)에 의하여 검출된 방사선은 디지털 이미지 파일(Digital Image File)에 디지털값(Digital Value)으로 출력된다.
한편, 본 발명에서는 도 2의 실시예의 디지털 디텍터(130) 대신에 방사선 촬영상을 형성하는 필름을 적용할 수 있으며, 이 경우, 필름 상에 광감물질로 코팅된 보력 스크린(intensifying screen)에 의해 방사선이 흡수될 수 있다.
한편, 디지털 디텍터(130)는 이미지의 측정 및 보정이 가능하므로 이미지 보정을 위해 적어도 두 개의 측정 이미지를 사용 가능하고, 비선형 현상을 피할 수도 있다.
도 3은 도 3은 본 발명의 실시예에 의한 디지털 팬텀과, 이를 이용하여 얻어진 의료 영상 간의 관계를 나타내는 도면이다.
도 3을 참조하면, 디지털 팬텀(120)을 방사선 소스(100)의 방향에서 바라본 평면도가 도시된다. 디지털 팬텀(120)의 그리드 모듈(122)은 격자 형태의 어레이로 도시된다. 이 때 기준 오브젝트(124)는 의료 영상의 중심부를 피하여 의사의 진단에 대한 영향을 최소화할 수 있도록 그리드 모듈(122)의 가장자리에 배치될 수 있다.
기준 오브젝트(124) 및 그리드 모듈(122)의 적어도 일부는 환자, 즉 피사체(110와 함께 방사선에 노출되므로, 방사선 의료 영상에는 기준 오브젝트(124)에 의한 그레이 레벨이 표현된다. 도 3에는 4개의 기준 오브젝트(124)가 도시되었고, 4개의 기준 오브젝트(124)에 의한 4개의 그레이 레벨이 밝기 기준값으로서 표시되었다.
한편, 방사선의 노출에 대한 정밀한 정보를 얻기 위해서는 기준 오브젝트(124)의 수가 많은 것이 유리하다. 그러나 기준 오브젝트(124)의 수가 지나치게 많은 경우, 의료 영상을 이용한 진단에 방해가 될 수 있으므로 진단의 편의성과 밝기 값 추출의 정밀도 간의 트레이드 오프(trade-off)를 통하여 최적의 기준 오브젝트(124)의 수를 결정할 수 있다. 한편, 일반적으로 방사선 소스(100)와 피사체(110) 및 검출기(130) 간의 거리는 일정한 범위 내에서 유지된다. 따라서 기준 오브젝트(214)의 수는 매우 많을 필요는 없으며, 상대적으로 적은 수의 샘플만으로도 유효한 정보의 획득이 가능하다.
한편 방사선 소스(100)는 일반적으로 그리드 모듈(122)의 중앙부에 가장 가깝게 배치되게 마련인데, 이 때문에 기준 오브젝트(124)가 중앙부에 위치하는 경우와 가장자리에 위치하는 경우의 밝기 값은 미세한 차이를 보이게 된다. 따라서 보다 정밀한 밝기 값 비교를 위하여 목표 그레이 레벨을 고려하여 기준 오브젝트(124)의 조성물질과 두께를 결정할 때에 기준 오브젝트(124)의 위치 또한 고려 대상이 될 수 있다.
도 4는 본 발명의 다른 실시예에 따른 디지털 팬텀과 이를 이용하는 의료용 방사선 검출 시스템을 도시하는 도면이다.
도 4에서, 디지털 팬텀(120), 방사선 소스(100), 피사체(110), 검출기(130)의 기능은 도 1의 실시예와 유사하므로 설명을 생략한다.
영상 생성부(140)는 검출기(130)에 의하여 검출된 방사선의 양에 기초하여 진단용 의료 영상을 생성한다. 이 때 생성된 의료 영상은 미가공된 영상(raw image)이거나 최소한의 전처리가 수행된 영상일 수 있다. 미가공된 영상은 기준 오브젝트(124)의 궤적 및 진단용 피사체(110), 즉 환자의 방사선 영상을 포함한다.
영상 처리부(150)는 미가공된 영상으로부터 기준 오브젝트(124)의 궤적(trajectory)을 추출할 수 있다. 기준 오브젝트(124)의 궤적으로부터 추출된 밝기값은 미리 설정된 목표 투과율 또는 목표 그레이 레벨과 비교될 수 있다.
영상 처리부(150)는 기준 오브젝트(124)의 궤적으로부터 추출된 밝기 값과 미리 설정된 목표 그레이 레벨 간의 비교 결과에 기초하여, 미가공된 영상에 대한 후처리 공정의 기준이 되는 특성 정보를 생성할 수 있다. 예를 들어, 목표 그레이 레벨보다 추출된 밝기 값이 낮으면 미가공된 영상 전반의 밝기 값이 낮게 촬영된 것으로 판단하고, 미가공된 영상을 후처리할 수 있다. 추출된 밝기 값이 목표 그레이 레벨보다 높으면 미가공된 영상 전반의 밝기 값이 높게 촬영된 것으로 판단할 수 있으며, 추출된 밝기 값과 목표 그레이 레벨 간의 차이가 소정의 기준 범위 이내이면 미가공된 영상에 대한 후처리 과정을 최소화할 수 있다.
이 때 얻어지는 미가공된 영상의 특성 정보는 향후 영상 처리의 기준이 되는 필터링 윈도우의 최소, 최대 값에 대한 정보를 포함할 수 있다. 필터링 윈도우는 영상의 세그멘테이션(segmentation) 등의 기준이 되는 정보이다.
도 4에 도시되지는 않았으나, 미가공된 영상에 대한 디스플레이를 위하여 기준 오브젝트(124)의 궤적으로부터 추출된 밝기 값이 이용될 수 있다. 즉, 사용자(의사 또는 방사선사)에게 디스플레이되는 의료 영상의 밝기 값을 상기 추출된 밝기 값을 이용하여 보정할 수 있는 것이다. 이 때 목표 그레이 레벨과 추출된 밝기 값 간의 차이 뿐만 아니라 사용자의 주변 환경 밝기, 분위기 등의 환경 정보를 이용해서도 적절한 디스플레이용 밝기 값을 선택할 수 있다.
즉, 본 발명의 방사선 검출 시스템은 스케일러블 스폿의 궤적으로부터 추출된 밝기 값을 피드백하여, 최초에 목표한 그레이 레벨과 실제로 추출된 밝기 값을 비교한다. 이로써 진단용 의료 영상의 처리, 표시, 진단의 측면에서 최적의 밝기 값을 결정하는 데 추출된 밝기 값을 이용할 수 있다.
도 5는 본 발명의 또 다른 실시예에 따른 진단용 의료 영상 생성 방법을 도시하는 동작 흐름도이다.
도 5를 참조하면, 디지털 팬텀(120)과 진단용 피사체(110)가 함께 방사선 소스(100)로부터 방출되는 방사선에 노출된다(S510).
검출기(130)에 의하여 방사선 소스(100)로부터 방출되고 디지털 팬텀(120)과 진단용 피사체(110)를 투과하여 경유한 방사선을 검출한다(S520).
검출기(130)에 의하여 검출된 방사선을 이용하여, 영상 생성부(140)에 의하여 진단용 의료 영상을 생성한다(S530).
영상 처리부(150)에 의하여, 진단용 의료 영상에 나타난 스케일러블 스폿 또는 기준 오브젝트(124)의 궤적으로부터 밝기 값을 추출한다(S540).
도 6 내지 도 8은 본 발명의 다수의 실시예들에 따른 진단용 의료 영상 생성 방법의 일부 과정을 상세히 도시하는 동작 흐름도이다.
먼저 도 6을 참조하면, 영상 처리부(150)는 기준 오브젝트(124)의 궤적으로부터 추출된 밝기 값을 이용하여 미가공된 의료 영상의 밝기 값 윈도우를 선택한다(S610). 이 때 밝기 값 윈도우는 필터링 윈도우이며, 세그멘테이션 등의 기준 값이 되는 정보이다. 필터링 윈도우는 진단 대상이 되는 장기, 병변, 환자의 개인적인 특성(성별, 연령 등을 포함함)을 추가적으로 고려하여 결정될 수 있다.
영상 처리부(150)는 필터링 윈도우 정보를 이용하여 미가공된 의료 영상을 후처리 및 가공할 수 있다(S620).
도 7을 참조하면, 영상 처리부(150)는 기준 오브젝트(124)의 궤적으로부터 추출된 밝기 값을 이용하여 진단용 피사체(110)의 병변을 진단할 수 있다(S710). 기준 오브젝트(124) 각각은 미리 설정된 목표 그레이 레벨에 대응하므로, 해당 의료 영상에 나타나는 장기가 건강한 상태일 때에 가지는 밝기와 병변이 있을 때에 가지는 밝기에 대한 가이드를 제공할 수 있다. 따라서 영상 처리부(150)는 기준 오브젝트(124)의 궤적으로부터 추출된 밝기 값을 이용하여 해당 의료 영상에 나타난 환자의 장기에 대한 병변을 진단할 수 있다.
도 8을 참조하면, 영상 처리부(150)는 기준 오브젝트(124)의 궤적으로부터 추출된 밝기 값을 이용하여 방사선 소스(100)의 선질을 평가(QA, quality assurance)할 수 있다(S810). 기준 오브젝트(124) 각각의 목표 그레이 레벨과, 실제 궤적에서 나타난 밝기 값을 비교하면 방사선 소스(100)가 과다한 방사선을 노출하고 있는지, 부족한 방사선을 노출하고 있는지, 또는 적당한 방사선을 노출하고 있는지를 확인할 수 있다. 영상 처리부(150)는 이러한 선질 평가 결과를 방사선 소스(100)의 제어 장치로 피드백하여, 다음 환자에 대한 촬영 시 적절한 방사선이 노출되도록 지원할 수 있다.
본 발명의 일 실시예에 따른 진단용 의료영상 생성 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 본 발명의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
그러므로 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
본 발명은 의료용으로 이용되는 방사선 촬영용 디지털 팬텀과, 상기 디지털 팬텀을 이용한 의료 영상 획득 방법에 관한 것이다. 본 발명의 일 실시예에 따른 디지털 팬텀은 방사선 소스와 검출기와의 사이에 위치하고, 종횡으로 교차되는 격벽에 의하여 다수의 스폿(spot)이 어레이 형태로 배열되며, 상기 격벽의 각도는 상기 방사선의 광 진행 경로에 대응하여 형성되는 그리드 모듈; 및 상기 그리드 모듈의 스폿 중 적어도 하나 이상에 부착되며, 미리 설정된 상기 방사선에 대한 투과 정도에 대응하여 설계되는 적어도 하나 이상의 기준 오브젝트;를 포함한다.
Claims (13)
- 방사선 소스와 검출기와의 사이에 위치하고, 종횡으로 교차되는 격벽에 의하여 다수의 스폿(spot)이 어레이 형태로 배열되며, 상기 격벽의 각도는 상기 방사선의 광 진행 경로에 대응하여 형성되는 그리드 모듈; 및상기 그리드 모듈의 스폿 중 적어도 하나 이상에 부착되며, 미리 설정된 상기 방사선에 대한 투과 정도에 대응하여 설계되는 적어도 하나 이상의 기준 오브젝트;를 포함하는 의료 방사선 촬영용 디지털 팬텀.
- 제1항에 있어서,상기 적어도 하나 이상의 기준 오브젝트 각각은상기 미리 설정된 상기 방사선에 대한 투과 정도에 대응하여 조성 물질의 종류 또는 두께가 결정되는 의료 방사선 촬영용 디지털 팬텀.
- 제1항에 있어서,상기 적어도 하나 이상의 기준 오브젝트는상기 그리드 모듈의 제1 스폿에 부착되며, 상기 방사선에 대한 제1 투과 정도를 가지는 제1 기준 오브젝트 및 상기 그리드 모듈의 제2 스폿에 부탁되며, 상기 방사선에 대한 제2 투과 정도를 가지는 제2 기준 오브젝트를 포함하는 의료 방사선 촬영용 디지털 팬텀.
- 방사선 소스로부터 방출되는 방사선에 노출되도록 위치하고, 종횡으로 교차되는 격벽에 의하여 다수의 스폿(spot)이 어레이 형태로 배열되며, 상기 격벽의 각도는 상기 방사선의 광 진행 경로에 대응하여 형성되는 그리드 모듈;상기 그리드 모듈의 스폿 중 적어도 하나 이상에 부착되며, 미리 설정된 상기 방사선에 대한 투과 정도에 대응하여 설계되는 적어도 하나 이상의 기준 오브젝트; 및상기 방사선 소스로부터 방출되어 상기 그리드 모듈 및 상기 적어도 하나 이상의 기준 오브젝트를 경유한 방사선을 검출하는 검출기;를 포함하는 의료용 방사선 검출 시스템.
- 제4항에 있어서,상기 그리드 모듈의 일부 및 상기 적어도 하나 이상의 기준 오브젝트는 진단용 피사체와 함께 상기 방사선에 노출되는 의료용 방사선 검출 시스템.
- 제4항에 있어서,상기 검출기에 의하여 검출된 상기 방사선의 양에 기초하여 진단용 의료 영상을 생성하는 영상 생성부; 및상기 진단용 의료 영상에 나타난 상기 적어도 하나 이상의 기준 오브젝트의 밝기에 기초하여 상기 진단용 의료 영상의 특성 정보를 생성하는 영상 처리부;를 더 포함하는 의료용 방사선 검출 시스템.
- 제4항에 있어서,상기 검출기에 의하여 검출된 상기 방사선의 양에 기초하여 진단용 의료 영상을 생성하는 영상 생성부; 및상기 진단용 의료 영상에 나타난 상기 적어도 하나 이상의 기준 오브젝트의 밝기에 기초하여 상기 그리드 모듈 및 상기 적어도 하나 이상의 기준 오브젝트와 함께 상기 방사선에 노출된 진단용 피사체의 영상을 처리하는 영상 처리부;를 더 포함하는 의료용 방사선 검출 시스템.
- 종횡으로 교차되는 격벽에 의하여 다수의 스폿(spot)이 어레이 형태로 배열되며, 상기 격벽의 각도는 상기 방사선의 광 진행 경로에 대응하여 형성되는 그리드 모듈; 및 상기 그리드 모듈의 스폿 중 적어도 하나 이상에 부착되며, 미리 설정된 상기 방사선에 대한 투과 정도에 대응하여 설계되는 적어도 하나 이상의 기준 오브젝트를 포함하는 디지털 팬텀과 진단용 피사체가 함께 방사선 소스로부터 방출되는 방사선에 노출되는 단계;상기 방사선 소스로부터 방출되고 상기 디지털 팬텀 또는 상기 진단용 피사체를 경유한 방사선을 검출기를 이용하여 검출하는 단계; 및상기 검출된 방사선을 이용하여 진단용 의료 영상을 생성하는 단계;를 포함하는 진단용 의료 영상 생성 방법.
- 제8항에 있어서,상기 진단용 의료 영상에 나타난 상기 적어도 하나 이상의 기준 오브젝트의 밝기 값에 기초하여 상기 진단용 의료 영상에 대한 특성 정보를 추출하는 단계;를 더 포함하는 진단용 의료 영상 생성 방법.
- 제8항에 있어서,상기 진단용 의료 영상에 나타난 상기 적어도 하나 이상의 기준 오브젝트의 밝기 값에 기초하여 상기 진단용 의료 영상을 후처리하는 단계;를 더 포함하는 진단용 의료 영상 생성 방법.
- 제8항에 있어서,상기 진단용 의료 영상에 나타난 상기 적어도 하나 이상의 기준 오브젝트의 밝기 값에 기초하여 상기 진단용 피사체에 대한 진단 정보를 생성하는 단계;를 더 포함하는 진단용 의료 영상 생성 방법.
- 제8항에 있어서,상기 진단용 의료 영상에 나타난 상기 적어도 하나 이상의 기준 오브젝트의 밝기 값에 기초하여 상기 방사선 소스의 선질 평가를 수행하는 단계;를 더 포함하는 진단용 의료 영상 생성 방법.
- 제8항 내지 제12항 중 어느 한 항의 방법을 실행하기 위한 프로그램이 기록되어 있는 것을 특징으로 하는 컴퓨터에서 판독 가능한 기록매체.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2011-0047643 | 2011-05-20 | ||
KR1020110047643A KR101239133B1 (ko) | 2011-05-20 | 2011-05-20 | 의료용 방사선 촬영을 위한 디지털 팬텀, 디지털 팬텀을 이용한 의료 영상 처리 방법 및 시스템 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012161470A2 true WO2012161470A2 (ko) | 2012-11-29 |
WO2012161470A3 WO2012161470A3 (ko) | 2013-03-21 |
Family
ID=47217868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2012/003918 WO2012161470A2 (ko) | 2011-05-20 | 2012-05-17 | 의료용 방사선 촬영을 위한 디지털 팬텀, 디지털 팬텀을 이용한 의료 영상 처리 방법 및 시스템 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101239133B1 (ko) |
WO (1) | WO2012161470A2 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4029452A1 (en) * | 2021-01-15 | 2022-07-20 | GE Precision Healthcare LLC | Operating method of medical imaging system and medical imaging system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101602928B1 (ko) * | 2015-02-24 | 2016-03-11 | 가톨릭대학교 산학협력단 | 두경부 모사 팬텀 장치 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080093544A1 (en) * | 2006-10-18 | 2008-04-24 | Eastman Kodak | Phantom for radiological system calibration |
JP2009082498A (ja) * | 2007-09-28 | 2009-04-23 | Fujifilm Corp | 乳房用の放射線撮影装置、放射線撮影システム、情報処理装置、及び入射線量導出方法 |
JP2010075555A (ja) * | 2008-09-26 | 2010-04-08 | Toshiba Corp | X線画像診断装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6694047B1 (en) | 1999-07-15 | 2004-02-17 | General Electric Company | Method and apparatus for automated image quality evaluation of X-ray systems using any of multiple phantoms |
JP5206426B2 (ja) | 2009-01-08 | 2013-06-12 | 株式会社島津製作所 | 放射線撮像装置 |
-
2011
- 2011-05-20 KR KR1020110047643A patent/KR101239133B1/ko active IP Right Grant
-
2012
- 2012-05-17 WO PCT/KR2012/003918 patent/WO2012161470A2/ko active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080093544A1 (en) * | 2006-10-18 | 2008-04-24 | Eastman Kodak | Phantom for radiological system calibration |
JP2009082498A (ja) * | 2007-09-28 | 2009-04-23 | Fujifilm Corp | 乳房用の放射線撮影装置、放射線撮影システム、情報処理装置、及び入射線量導出方法 |
JP2010075555A (ja) * | 2008-09-26 | 2010-04-08 | Toshiba Corp | X線画像診断装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4029452A1 (en) * | 2021-01-15 | 2022-07-20 | GE Precision Healthcare LLC | Operating method of medical imaging system and medical imaging system |
Also Published As
Publication number | Publication date |
---|---|
KR101239133B1 (ko) | 2013-03-11 |
WO2012161470A3 (ko) | 2013-03-21 |
KR20120129405A (ko) | 2012-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6320931B1 (en) | Automated x-ray bone densitometer | |
Lanca et al. | Digital imaging systems for plain radiography | |
US5276726A (en) | Method of and apparatus for standardizing and monitoring image quality in mammography | |
US5844965A (en) | Method and apparatus for using film density measurements of a radiograph to monitor the reproducibility of X-ray exposure parameters of a mammography unit | |
WO2011083973A2 (en) | Method and system of processing multi-energy x-ray images | |
Andria et al. | Dose optimization in chest radiography: System and model characterization via experimental investigation | |
Rodríguez Pérez et al. | Characterization and validation of the thorax phantom Lungman for dose assessment in chest radiography optimization studies | |
Ofori et al. | Relationship between patient anatomical thickness and radiographic exposure factors for selected radiologic examinations | |
JP2002065653A (ja) | 放射線撮像装置、並びに該装置に関連した制御に関する方法及びプログラム | |
CN111542267A (zh) | 用于呈现暗场x射线图像信息的装置 | |
Carroll | Digital Radiography in Practice | |
WO2012161470A2 (ko) | 의료용 방사선 촬영을 위한 디지털 팬텀, 디지털 팬텀을 이용한 의료 영상 처리 방법 및 시스템 | |
JP2006300826A (ja) | 核医学診断システム | |
JP6823310B2 (ja) | 被ばく線量管理方法および管理装置 | |
Annemari | Design of a universal phatom for Quality Assurance in Diagnostic Radiology x-ray imaging | |
Oglat | Comparison of X-ray films in term of kVp, mA, exposure time and distance using Radiographic Chest Phantom as a radiation quality | |
JP2011163966A (ja) | 医用画像診断装置及び放射線量算出用制御プログラム | |
Ratini et al. | Anode heel effect application with step wedge against effect of signal to noise ratio in computed radiography | |
KR101762616B1 (ko) | 방사선 영상 획득 및 분석 장치, 그 방법 | |
RU2400141C2 (ru) | Способ определения минеральной плотности костной ткани | |
Seeram et al. | Dose Optimization in Digital Radiography | |
Nyathi | Dose optimization in diagnostic radiology | |
Pise et al. | Assessment Of Radiation Dose In Digital Radiography System-A Review Article | |
GIMBA et al. | Determination of Optimum Exposure Factors at Constant Focal Film Distance (FFD) to Produce Quality Skull Radiographs with Minimum Absorbed Dose Using a Skull Phantom | |
Baxtiyorovna et al. | PRINCIPLES OF RADIATION DIAGNOSTICS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12790252 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12790252 Country of ref document: EP Kind code of ref document: A2 |