WO2012161351A1 - Method for producing blueberry fruits, and continuously flowering blueberry plant obtained thereby - Google Patents

Method for producing blueberry fruits, and continuously flowering blueberry plant obtained thereby Download PDF

Info

Publication number
WO2012161351A1
WO2012161351A1 PCT/JP2012/064249 JP2012064249W WO2012161351A1 WO 2012161351 A1 WO2012161351 A1 WO 2012161351A1 JP 2012064249 W JP2012064249 W JP 2012064249W WO 2012161351 A1 WO2012161351 A1 WO 2012161351A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
light
blueberry
temperature
production method
Prior art date
Application number
PCT/JP2012/064249
Other languages
French (fr)
Japanese (ja)
Inventor
勲 荻原
敬愛 車
尚美 堀内
Original Assignee
国立大学法人東京農工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京農工大学 filed Critical 国立大学法人東京農工大学
Priority to JP2013516478A priority Critical patent/JP5717111B2/en
Publication of WO2012161351A1 publication Critical patent/WO2012161351A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/05Fruit crops, e.g. strawberries, tomatoes or cucumbers

Definitions

  • the present invention relates to a method for producing blueberries that can be harvested in the off-season, that has a long harvest period, and has good fruit quality.
  • the present invention also relates to a continuous flowering blueberry obtained by such a production method, in which flower bud formation, flowering and fruiting can be seen simultaneously.
  • Blueberry reacts from July to short days, and by around September, flower buds differentiate (form) at the tip of the new treetop (newly grown stem) and the root of the leaf (leaf bud), and after flowering dormancy, it blooms the following year. Usually, it is a deciduous fruit tree that can be harvested only once a year. For example, in Tokyo, the formation of flower buds began in July after the summer solstice, and in November, when the daytime temperature was around 10-15 ° C, the fallen leaves were completed, and after dormancy, spring (around April) flowers The life cycle is generally about 60 days after the flower blooms, the fruit is formed and matured around the seed and harvested after early summer (June).
  • blueberries are deciduous trees, there is a dormancy period (period in which plant growth ⁇ photosynthesis of leaves >> stops), and breakage of dormancy requires a low temperature for a certain period. This is called a low temperature requirement time, and if this low temperature requirement time is not satisfied, defective germination occurs.
  • the low temperature requirement time is represented by an accumulated time of 7.2 ° C. or less, and blueberries vary depending on the variety. Some varieties have about 100 hours and some varieties require 1500 hours. In addition, blueberries are shipped from mid-June to early September using the difference in varieties, but when looking at one variety, the harvest period is only about 3 weeks per year.
  • the present invention can be harvested in the off-season, and the harvesting period is long, and the fruit quality is good. It is an object of the present invention to provide a continuous flowering blueberry that can not only generate flowering but also form flower buds.
  • the present inventors firstly, when the plant enters the dormancy period, the temperature requirement time is low no matter how good the growth conditions are (eg, when the temperature is high, when it is long days). Until we met, we focused on the fact that dormancy is not broken, and flowers do not bloom or bud. Then, the present inventors sought a method for performing flowering and fruiting without causing sleep.
  • the present inventors have developed that the blueberries of the varieties having a low dormancy (that is, the short time required for low temperature) do not enter the dormancy after forming the flower buds under certain environmental conditions, and the flower buds develop and bloom. I got the knowledge that I can do it.
  • the present inventors have kept the flowering without dormancy under another specific environmental condition for a long time. It has been found that flowering, fruiting and flower bud formation occur continuously, and that harvesting and shipping are possible even in the off-season, and the present invention has been completed. That is, the present invention includes the following.
  • the light period temperature is 30 to 35 ° C.
  • the first step is a day length condition in which the light period is 12 to 14 hours and the dark period is 10 to 12 hours.
  • the production method according to (1) wherein the light intensity in the light period of the second step is 20 to 1000 ⁇ mol ⁇ m ⁇ 2 ⁇ s ⁇ 1 PPFD.
  • the method further includes an intermediate step that is performed during the period of the second step and has a day length condition that shortens the light period and lengthens the dark period in the long day condition of the second step ( 1) The production method described.
  • (11) The production method according to (10), wherein in the intermediate process, conditions other than the day length condition are set to be the same as the conditions in the second process.
  • a continuous flowering blueberry produced by the production method according to the above (1) to (11), wherein flower buds, flowers and fruits are present simultaneously.
  • high-quality blueberry fruits can be put out early in the winter (December), which has been the off-season.
  • the production method according to the present invention it is possible to continuously generate flower bud formation, flowering, and fruiting while harvesting the fruit by controlling the fruit amount and environment under suitable conditions. It becomes possible. Therefore, by applying the production method according to the present invention, the harvest (shipment) period of blueberry fruits can be dramatically extended with one variety.
  • the production method according to the present invention it is possible to eliminate the need for flowering (plucking), so that the yield can be increased by 2 to 3 times.
  • the production method according to the present invention since the blueberry fruit gradually grows over a long period of time, the labor required for harvesting can be dispersed, and planned production (shipment) can be realized.
  • the production method according to the present invention enables the annual production of blueberry fruits, supply to the market in the off-season (October to May of the following year), increase in yield per unit area, self-sufficiency rate Improvements can be realized.
  • This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2011-116908 which is the basis of the priority of the present application.
  • FIG. 1 is a photograph showing a situation where flowers are growing in the first step of the production method of the present invention.
  • FIG. 2 is a photograph of a continuous flowering blueberry obtained by the production method of the present invention.
  • mature fruits tips
  • immature fruits middle parts
  • flowers and buds base parts
  • FIG. 3 shows a situation in which the blueberry shown in FIG. 2 was subjected to an intermediate process in March to induce flower bud differentiation at the tip of a new treetop and flower.
  • FIG. 4 shows a situation in which the blueberries shown in FIG. 3 are returned to the second step and the fruits are grown from the induced flower buds.
  • FIG. 5 is a photograph showing the stock status on the third day after the second step of the blueberries of Example 1 and Comparative Examples 1 and 2.
  • FIG. 6 is a photograph showing the stock status of about 120 days after starting the second step of blueberries shown in FIG.
  • the blueberry production method of the present invention is characterized in that a blueberry having a low temperature requirement time of 100 to 500 hours is subjected to a first step and a second step described later.
  • any blueberry having a low temperature requirement time of 100 to 500 hours (hrs) can be used as long as the blueberry has a low temperature requirement time within this range.
  • the low temperature requirement time is a time for maintaining a low temperature state necessary for breaking the dormancy period, and specifically, an integrated value of the time exposed to a low temperature condition of 7.2 ° C. or less.
  • the low temperature required time for blueberries is Method to determining chilling requirement in blueberry. J. et al. M.M. Spiers, D.M. A.
  • blueberry varieties having a low temperature requirement time of 100 to 500 hours include, for example, Biloxi (Biloxi: 400 hrs), Sharp blue (Sharpblue: 200 to 300 hrs), Emerald (Emerald: 200 to 300 hrs), Sunshine blue (Sunshine blue: 150-300 hrs), Southern high bush varieties such as Magnolia (Magnoria: 500 hrs), Cooper (Cooper: 400-500 hrs), Alice blue (Alice blue: 300 hrs), Becky blue (300-400 hrs) Rabbit Eyes such as Blue (Bonitblue: 350-400 hrs), Baldwin (450-500 hrs) Varieties, and the like.
  • Each low-temperature requirement time is added after the English notation of each product type.
  • the method for producing blueberries of the present invention it is preferable to target blueberries that are less dormant, more preferable to target blueberries having a low-temperature requirement time of 100 to 400 hours, and a low-temperature requirement time of 100 It is more preferable to target a blueberry of ⁇ 300 hours.
  • the application of the present invention prevents entering into dormancy, and more reliable characteristics such as continuous flowering, fruiting, and flower bud formation occur over a long period of time. Can be realized.
  • the blueberry production method according to the present invention may include a pre-process for forming flower buds on the target blueberry.
  • blueberry flower buds usually begin to differentiate into the tip of the shoot and the root of the leaf (leaf bud) several weeks after the growth of the tip of the shoot is stopped, and the length ( The swelled spheroids are formed to have a vertical diameter of about 4 to 6 mm and a diameter (lateral diameter) of about 2 to 3 mm.
  • “after flower bud formation” and “after flower bud formation” may be any stage of flower bud formation (flower bud differentiation), but are not particularly limited. ) Is preferably at the time when the flower buds are about 4 to 6 mm.
  • the first step described later may be carried out at any stage of flower bud formation (flower bud differentiation), but in particular, flower buds having a length (vertical diameter) of about 4 to 6 mm. It is preferable to implement the first step at this point.
  • the length (longitudinal diameter) of flower buds means the average value obtained by measuring the longitudinal diameter of a plurality of flower buds.
  • the dormancy introduction temperature means the highest temperature at which blueberries can be introduced into the dormant state. That is, the blueberry can be introduced into a dormant state by maintaining the blueberry at a temperature equal to or lower than the dormancy introduction temperature.
  • the dormancy introduction temperature is in the range of 10 to 20 ° C., although there are differences depending on the variety.
  • the temperature conditions of the light period in the 1st process of this invention are the temperature which a blueberry does not die and grow, the upper limit of temperature conditions will not be specifically limited. However, if the temperature is too high, it can be stressful for the plant and can cause high temperature damage.
  • the temperature be lower than the temperature at which high temperature failure occurs.
  • the light period is set to a temperature higher than the dormancy introduction temperature of the blueberry that has formed flower buds.
  • the light period is less than a temperature at which the blueberry photosynthesis rate is saturated. More specifically, in the first step, the light period is preferably 30 to 35 ° C, more preferably 30 to 32 ° C.
  • the temperature condition of the light period in a 1st process exceeds this range, there exists a possibility that a photosynthetic rate may be saturated and it may become stress rather for a plant.
  • the temperature condition of the light period in a 1st process is based also on the relationship of the below-mentioned light intensity
  • the temperature conditions in the light period are set as described above for the blueberries that have formed flower buds, thereby suppressing the decline in the photosynthetic function of the leaves and allowing the flower buds formed at the tip of the new tree to grow. It can blossom.
  • the dark period temperature in the first step is not particularly limited, but is preferably about 15 to 25 ° C., more preferably about 18 to 23 ° C.
  • the above-described temperature condition is realized by using various temperature control devices such as a heater, a cooling device, an air blower, a dehumidifier (humidifier), a ventilator, a dry mist, and a light-shielding curtain, alone or in combination. can do.
  • a closed room in which these temperature control devices are incorporated or a normal house equipped with these temperature control devices the blueberries having flower buds can be maintained at the above-described temperature conditions.
  • the light period is set to be the same time as the dark period or longer than the dark period.
  • the first step is preferably performed under conditions where the light period is 12 to 14 hours and the dark period is 10 to 12 hours. If the illumination time of light after flower bud formation, that is, the light period is too short, falling leaves may occur and dormancy is introduced, and conversely if the light period is too long, the development of flower buds may be stopped. Therefore, flower buds are formed by setting the day length condition of the first step to a condition in which the light period is the same as the dark period or longer than the dark period, specifically, the light period and dark period in the above-described range. The introduction of dormancy of the blueberry thus produced can be prevented, and the development of flower buds can be promoted.
  • the light period means that the light intensity condition is such that photosynthesis is possible.
  • the light period is about 100 to 1000 ⁇ mol ⁇ m ⁇ 2 ⁇ s ⁇ 1 PPFD, preferably 700 to 800 ⁇ mol ⁇ m ⁇ 2 in terms of light intensity (photosynthetic photon flux density).
  • the main wavelength (spectral energy occupying most) in the first step is not particularly limited, but is preferably in the range of 400 to 730 nm.
  • the light irradiated in the light period may be either sunlight (natural light) and artificial light, or both.
  • the light source of light irradiated in the light period is not particularly limited, and examples include not only the sun but also a high-pressure sodium lamp, a metal halide lamp, an LED (light emitting diode), and a laser light source.
  • these light sources may be used alone, or a plurality of light sources may be used in appropriate combination.
  • the intensity of natural light exceeds the above range, such as a hot summer day in midsummer, it is preferable to adjust the light intensity using a light shielding curtain or the like.
  • the light intensity is gradually increased by using a system supplemented with artificial light so as to approximate the cycle of natural light. It is preferable for a pore opening / closing system to increase the sensitivity.
  • a system supplemented with artificial light when introducing the dark period, it is preferable to adjust so as to gradually reduce the light intensity using a system supplemented with artificial light.
  • fertilizer concentration in addition to the above conditions (ambient temperature, light intensity / illumination time), relative humidity, CO 2 concentration, soil pH, soil EC (electric conductivity): fertilizer concentration can be estimated. Blueberries may be retained with various parameters such as) adjusted appropriately.
  • the relative humidity is preferably in the range of 30 to 80%
  • the CO 2 concentration is preferably in the range of 400 to 600 ⁇ mol ⁇ mol ⁇ 1
  • the soil pH is in the range of 5.0 to 6.0.
  • the soil EC is preferably about 0.7 to 1.2.
  • the light irradiation condition, the relative humidity condition, and the CO 2 concentration condition described above are various kinds of devices such as a blower, a dehumidifier (humidifier), a ventilation fan, a dry mist, a light-shielding curtain, and a CO 2 supply device.
  • the first step is performed until flowering is seen. That is, the end of the first step can be determined based on the flowering of the target blueberry. However, flowering here is not so strict.
  • the first flowering stage may be considered as flowering, and the first process may be terminated immediately after this. Alternatively, the first process may be finished when three to five wheels are blooming and the stage where they are scattered. good.
  • the first step may be completed when one or more flowers have been confirmed on the target blueberry, or as the time when more than 10% of the flower buds formed on the target blueberry have flowered. Alternatively, it may be the time when 20% or more of the flower buds have bloomed, or the time when 50% or more of the flower buds have bloomed.
  • the first step is usually continued for about 20 to 40 days from the processing start date of the first step when a day consisting of one light period and one dark period is set to 24 hours.
  • FIG. 1 shows blueberries (variety name: emerald) about 40 days after the first step. As shown in FIG.
  • the first step 1, dormancy introduction is inhibited by the first step, the decrease in leaf photosynthesis function can be suppressed, and the development and flowering of flower buds formed at the tip of the new tree can be induced.
  • ⁇ Second step> the blueberry after the completion of the first step is maintained under a temperature condition equal to or lower than the dormancy introduction temperature, a long-day condition, and a humidifying condition.
  • a flowering and a fruiting can be produced toward the base from the front-end
  • the long day condition in the second step is set to have a longer light period compared to the day length condition in the first step described above.
  • the light period is 15 to 16 hours and the dark period is 8 to 9 hours. If the light period in the second step, that is, the illumination time of light after flowering (light period) is too short, the fallen leaves may occur, or even if some shoots have fruited, flowering or fruiting will occur on another shoot. There is a risk of poor growth, such as when there is not. On the other hand, even if the light period in the second step is too long, the differentiation and development of new flower buds may be stopped. Therefore, by setting the light period in the second step to be in the above range, it is possible to avoid the growth failure and efficiently produce the fruit of blueberries.
  • the light period in the second step is not particularly limited, but the light intensity may be slightly weaker than the light period in the first step described above.
  • the light intensity of the light period in the second step can be, for example, 20 to 1000 ⁇ mol ⁇ m ⁇ 2 ⁇ s ⁇ 1 PPFD, and preferably 700 to 800 ⁇ mol ⁇ m ⁇ 2 ⁇ s ⁇ 1 PPFD.
  • the photosynthesis is sufficiently promoted, so that the fruit (fruit) can be fattened and the stress on the plant can be prevented.
  • the light intensity falls below the above range, photosynthesis is not promoted, and the fruit (fruit) may not be thickened.
  • light intensity may exceed the said range, water utilization efficiency, etc. may fall, or it may become stress for a plant.
  • the dark period is introduced (the end of the light period) or the like, it is preferable to gradually reduce the intensity of the light for sensitivity.
  • artificial light 20 to 130 ⁇ mol ⁇ m ⁇ 2 ⁇ s ⁇ 1 PPFD is measured for 1 to 2 hours before sunrise and 1 to 2 hours after sunset. It is preferable to irradiate for 2 to 4 hours under long day conditions of 15 to 16 hours of light period and 8 to 9 hours of dark period.
  • the same technique as in the first step can be employed.
  • the main wavelength (spectral energy occupying most) in the second step is not particularly limited, but is preferably in the range of 400 to 730 nm.
  • the temperature condition in the second step is set to a temperature equal to or lower than the dormancy introduction temperature defined as described above.
  • the dormancy introduction temperature is in the range of 10 to 20 ° C., although there are differences depending on the variety.
  • the temperature condition in the second step is preferably 10 to 30 ° C., more preferably 15 to 25 ° C.
  • the temperature condition in the second step is in the above range for both the light period and the dark period.
  • the humidification condition in the second step includes, for example, a condition in which the relative humidity is 30 to 90%, and a condition in which the relative humidity is 40 to 70% is preferable. In the second step, it is preferable to set the relative humidity within the above range for both the light period and the dark period.
  • the relative humidity in the second step is a very important factor for pollination of blueberries after flowering.
  • the second step by setting the temperature condition, long-day condition and humidification condition as described above, after the flower bud at the tip of the new treetop (a certain shoot) blooms, As a result, even flower buds that exist in different shoots can be flowered one after another and set.
  • the CO 2 concentration is preferably in the range of 400 to 600 ⁇ mol ⁇ mol ⁇ 1
  • the soil pH is preferably in the range of 5.0 to 6.0
  • the soil EC is 0.7 to 1.2. It is preferable to be in the range.
  • the light intensity in the light period is set to 700 to 800 ⁇ mol ⁇ m ⁇ 2 ⁇ s ⁇ 1 PPFD
  • the CO 2 concentration is set to about 600 ⁇ mol ⁇ mol ⁇ 1
  • the water supply and fertilizer supplementing the transpiration amount are added.
  • the second step it is preferable to control the temperature so that the photosynthetic rate is as high as possible during the daytime (in the light period), and to set the CO 2 concentration high when the photosynthetic rate is low. According to such a setting, it is possible to realize prevention of fruit dropping, promotion of fruit enlargement, promotion of flower bud formation, and omission of flowering (fruit extraction).
  • the second step is theoretically continued until the tree is exhausted (withered), but if one day, which is one light period and one dark period, is set to 24 hours, usually the second step It is preferable to continue for about 150 to 250 days from the treatment start date.
  • the assimilation product can be accumulated in the tree body (branches and roots) and then rested once (introduction of dormancy).
  • an intermediate step which will be described later, is inserted in the second step in order to form a flower bud at the tip of a newly grown new tree while growing the fruit in the second step.
  • the intermediate step is a step that can be performed in the middle of the second step described above.
  • the intermediate process is a process of relaxing the long day condition in the second process. Relaxing the long day condition means shortening the light period and lengthening the dark period.
  • the long-day condition in the second step is a condition for setting the light period longer than the day-long condition in the first process.
  • the long period is set to 15 to 16 hours and The dark period is 8 to 9 hours.
  • examples of the intermediate process include day length conditions in which the dark period is 11 to 13 hours and the dark period is 13 to 11 hours.
  • the temperature condition and the relative humidity condition it is preferable to set the temperature condition and the relative humidity condition to be the same as those in the second process, except that the long-day condition in the second process is relaxed. That is, in the intermediate process, the light intensity is 100 to 1000 ⁇ mol ⁇ m ⁇ 2 ⁇ s ⁇ 1 PPFD for 11 to 13 hours, and the temperature is 10 to 30 ° C.
  • the relative humidity is 30 to 90%.
  • maintain under the day length conditions of a time dark period can be mentioned.
  • the ambient temperature exceeds 30 ° C. as the temperature condition in the intermediate process, the period from the start of flower bud differentiation to flowering (development of flower vase) tends to be shortened, and the number of flowers may be reduced.
  • an intermediate step under such day length conditions, the growth of new shoots that have newly grown in the second step stops, the leaf color becomes darker, and the flower buds at the tip Formation is induced.
  • Such an intermediate step is preferably performed during the second step, for example, when the newly expanded shoots have become a predetermined length (for example, 15 cm) or more.
  • the illumination time (light period) of the light in the intermediate process is too short, the leaves will fall, and even if some shoots will bear fruit, other shoots may not flower or bear fruit. On the other hand, if it is too long, the differentiation and development of new flower buds will cease, so that the day length conditions of 11 to 13 hours light period and 13 to 11 hours dark period are set, preferably about 12 hours light period, about 12 hours dark period.
  • the same method as in the first process and the second process is used. Just take it.
  • the intermediate process when one day of one light period and one dark period is set as 24 hours, it is usually sufficient to continue for about 25 to 35 days from the processing start date of the intermediate process. What is necessary is just to return to such a 2nd process. Between the second step and the intermediate step, it is preferable to perform the treatment continuously without passing through another environmental condition. Further, the intermediate process may be performed once in the period of the second process or may be performed a plurality of times. In particular, if the intermediate process is performed once during the period of the second process, a sufficient effect can be expected, but even if it is performed a plurality of times, there is no particular problem.
  • a general soil disinfectant for blueberry cultivation a soil conditioner, an agrochemical, a chemical fertilizer, an organic fertilizer, a compost, or the like may be added as necessary, and appropriate pruning or Thinning can also be performed.
  • the amount of transpiration can be kept within the desired range of the first step, the second step, and the intermediate step by artificially managing and controlling the natural environment according to the seasons as appropriate.
  • FIG. 1 is a photograph about 40 days after the first step, as described above.
  • FIG. 2 is a photograph about 120 days after the second step, in which a mature fruit is formed at the tip part, an immature fruit is formed at the center part, and a flower and a bud are formed at the base part.
  • FIG. 3 is a photograph of the 30th day after the intermediate process was inserted about 150 days after the second process and after the intermediate process.
  • FIG. 4 is a photograph of the about 40th day after inserting the intermediate process for 30 days on the 150th day after the second process and returning to the second process. The situation where the fruit is growing from the flower bud formed in the front-end
  • Example 1 “Emerald (low temperature requirement time: 200 to 300 hrs)” of 5th grade Southern High Bush
  • Example 2 “Biloxy (low temperature requirement time: 400 hrs)” of a third grade Southern High Bush species
  • Example 3 “Sharp blue (low temperature requirement time: 200 to 300 hrs)” of 5th grade Southern High Bush
  • Example 4 “Cooper (low temperature requirement time: 400 to 500 hrs)” of a grade 3 Southern High Bush Comparative Example 1: “Spartan (low temperature requirement time: 1000 hrs)” of a grade 3 Northern High Bush Comparative Example 2: “Weymouth (low temperature requirement time: 950 hrs)” of 5th grade Northern High Bush Comparative Example 3: “Tiff Blue (low temperature requirement time: 600 to 850 hrs)” of 5th grade rabbit eye species Comparative example 4: “Home bell (low temperature required time: 550 to
  • Example 1 and Comparative Examples 1 and 2 that were flowering, and Examples 2 to 4 and Comparative Examples 3 and 4 that were not flowering were from November 2010 to March 2011 (about 150 days),
  • the second step was performed under the above conditions.
  • Examples 1 to 4 and Comparative Examples 3 and 4 that continued to flower and settled were subjected to an intermediate step under the following conditions for about one month from March 2011, and then returned to the second step.
  • the first step, the second step, and the intermediate step were all carried out in the field of Tokyo University of Agriculture and Technology (Fuchu City).
  • the daytime temperature is set to 30 to 35 ° C.
  • the light intensity and the day length were natural conditions (during this experiment, the light intensity was a day length condition of about 12 hours light period and about 12 hours dark period of 100 to 1000 ⁇ mol ⁇ m ⁇ 2 ⁇ s ⁇ 1 PPFD. )
  • the flowering time, harvest time (maturity period), appearance and coloring of the obtained fruit, etc. were observed with naked eyes in Examples 1 to 4 and Comparative Examples 1 to 4, and the results are shown in Table 1.
  • the “fruits that bloomed in the spring” in Table 1 are blueberry fruits that bloomed in the spring (April 2010) under the normal life cycle and were harvested in June of the same year (both the first and second steps). No fruit).
  • Example 1 and Comparative Examples 1 and 2 Hardness: In both Example 1 and Comparative Examples 1 and 2, those harvested in December or March tended to be higher in fruits, pericarp, and flesh than in June. (Table 2).
  • C Total anthocyanin content: There was no big difference in any of Example 1 and Comparative Examples 1 and 2 (Table 3).
  • D Sugar content: The blueberries in Example 1 were slightly lower in December but increased in March. In Comparative Examples 1 and 2, the value in December was the highest and decreased in March (Table 3).
  • E Acidity: Comparative Example 1 showed no difference over the entire period. In Example 1 and Comparative Example 2, the value in December was slightly higher, but decreased in March (Table 3).
  • the blueberry production method of the present invention not only accelerates the harvest start period, but also enables long-term harvest with one variety (up to 7 months). Therefore, off-season shipments, that is, year-round shipments, can be expected for blueberry cultivation with a shortage of supply in spite of a high-price trading market, and an improvement in the self-sufficiency rate of blueberries can be expected. All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Abstract

Provided is a method for producing blueberry fruits, said method enabling harvest in the off-season, extending the harvest time and giving fruits with good qualities. Also provided is a continuously flowering blueberry plant that is obtained by the aforesaid production method. The production method according to the present invention comprises: a first step for, after the flower bud formation of blueberry having a chill requirement of 100-500 hours, employing a temperature condition in the light period higher than the dormancy-inducing temperature; and a second step for, after flowering, employing a temperature condition not higher than the dormancy-inducing temperature, a long-day condition where the light period is longer than the light period in the first step, and a humidified condition.

Description

ブルーベリーの生産方法、及び該方法により得られる連続開花性ブルーベリーBlueberry production method and continuous flowering blueberry obtained by the method
 本発明は、オフシーズンに収穫が可能で、しかもその収穫期間が長く、果実の品質も良好なブルーベリーの生産方法に関する。
 また、本発明は、このような生産方法により得られ、花芽の形成や、開花、結実とが同時に見られる連続開花性ブルーベリーに関する。
The present invention relates to a method for producing blueberries that can be harvested in the off-season, that has a long harvest period, and has good fruit quality.
The present invention also relates to a continuous flowering blueberry obtained by such a production method, in which flower bud formation, flowering and fruiting can be seen simultaneously.
 ブルーベリーは、7月から短日に反応して、9月頃までに新梢(新しく伸びた茎)の先端や葉の付け根(葉腋)に花芽を分化(形成)し、休眠を経て翌年開花するので、通常、1年に1回しか収穫できない落葉果樹である。
 例えば、東京では、夏至が過ぎた7月頃から花芽の形成が始まり、日中の気温が10~15℃程度となる11月には落葉が完了し、休眠を経て、春(4月頃)花が咲き散ったあと、およそ60日ほどで種子のまわりに果肉が形成・成熟し、初夏(6月)以降に収穫、というライフサイクルが一般的である。
 このように、ブルーベリーは落葉樹であるため、休眠期(植物の成長≪葉の光合成≫が停止する期間)が存在し、休眠打破には一定期間低温にあたることが必要とされる。このことを低温要求時間と言い、この低温要求時間が満たされないと、萌芽の不良が起きる。
 低温要求時間は、7.2℃以下の積算時間で表され、ブルーベリーにおいては、品種によって様々で、100時間程度の品種もあれば、1500時間をも要する品種もあり、バラエティーに富んでいる。
 また、ブルーベリーは、品種の違いを利用して、6月中旬から9月上旬まで出荷されているが、1品種でみると、その収穫期間は、1年のうちたった3週間程度である。
 収穫期間が限られているゆえに、オフシーズン(10月から翌年の5月まで)が長く、サクランボやイチゴよりも単価が高い、天候面などにおいてリスクが大きい、などの問題がある。収穫期間が長くなれば(すなわち、周年生産が可能となれば)、このようなリスク回避はもとより、労働力の平準化、増産、消費者へのより一層の普及、自給率の向上なども期待できる。加えて、通常、摘花(摘果)も行われているので、収穫量が減少するという問題もあった。
Blueberry reacts from July to short days, and by around September, flower buds differentiate (form) at the tip of the new treetop (newly grown stem) and the root of the leaf (leaf bud), and after flowering dormancy, it blooms the following year. Usually, it is a deciduous fruit tree that can be harvested only once a year.
For example, in Tokyo, the formation of flower buds began in July after the summer solstice, and in November, when the daytime temperature was around 10-15 ° C, the fallen leaves were completed, and after dormancy, spring (around April) flowers The life cycle is generally about 60 days after the flower blooms, the fruit is formed and matured around the seed and harvested after early summer (June).
Thus, since blueberries are deciduous trees, there is a dormancy period (period in which plant growth << photosynthesis of leaves >> stops), and breakage of dormancy requires a low temperature for a certain period. This is called a low temperature requirement time, and if this low temperature requirement time is not satisfied, defective germination occurs.
The low temperature requirement time is represented by an accumulated time of 7.2 ° C. or less, and blueberries vary depending on the variety. Some varieties have about 100 hours and some varieties require 1500 hours.
In addition, blueberries are shipped from mid-June to early September using the difference in varieties, but when looking at one variety, the harvest period is only about 3 weeks per year.
Since the harvest period is limited, there are problems such as a long off-season (from October to May of the following year), a higher unit price than cherries and strawberries, and a greater risk in terms of weather. If the harvest period is long (that is, if year-round production is possible), in addition to avoiding such risks, it is expected that the workforce will be leveled, production will be increased, consumers will be further spread, and the self-sufficiency rate will be improved. it can. In addition, since flowering (fruit extraction) is usually performed, there is a problem that the yield is reduced.
特願2009−283306Japanese Patent Application No. 2009-283306 特願2009−283372Japanese Patent Application No. 2009-283372
 本発明は、このような現状に鑑み、オフシーズンに収穫が可能で、しかもその収穫期間が長く、果実の品質も良好なブルーベリーの生産方法と、この生産方法により得られ、果実を収穫しながら開花の発生はもとより花芽の形成をも見られる連続開花性ブルーベリーとを提供することを課題とする。
 本発明者らは、上記の課題を解決するために、まず、植物は休眠期に入ると、(例えば、高温にする、長日にする等)どんなに生育条件を良くしても、低温要求時間を満たすまでは、休眠は打破されず、花が咲いたり芽吹いたりしてこないことに着目した。そして、本発明者らは、休眠に入らせることなく、開花や結実を行わせる手法を追求した。その結果、本発明者らは、休眠の浅い(すなわち、低温要求時間が短い)品種のブルーベリーが、特定の環境条件下によっては花芽を形成した後に休眠に入らず、花芽を発育させ開花させることができるとの知見を得た。次に、本発明者らは、このような知見の下でさらに検討を重ねた結果、休眠することなく開花したものを、また別の特定の環境条件下に保持することで、長期に亘って開花と結実と花芽の形成とが連続して発生するようになり、オフシーズンであっても収穫や出荷が可能になることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下を包含する。
 (1)低温要求時間が100~500時間であるブルーベリーの花芽形成後、明期の温度を休眠導入温度よりも高温の条件下とする第1工程と、開花後、休眠導入温度以下の温度条件、上記第1工程における明期よりも長い明期とする長日条件且つ加湿条件とする第2工程と、を含むことを特徴とするブルーベリーの生産方法。
 (2)上記第1工程は、明期の温度を30~35℃とすることを特徴とする(1)記載の生産方法。
 (3)上記第1工程は、明期を12~14時間とし、暗期を10~12時間とする日長条件とすることを特徴とする(1)記載の生産方法。
 (4)上記第1工程の明期における光強度を100~1000μmol・m−2・s−1PPFDとすることを特徴とする(1)記載の生産方法。
 (5)上記第2工程は、明期を15~16時間とし、暗期を8~9時間とする長日条件とすることを特徴とする(1)記載の生産方法。
 (6)上記第2工程は、明期及び暗期における温度を10~30℃とすることを特徴とする(1)記載の生産方法。
 (7)上記第2工程では、相対湿度を30~90%とする加湿条件とすることを特徴とする(1)記載の生産方法。
 (8)上記第2工程における明期の光強度を、上記第1工程における明期の光強度よりも弱くすることを特徴とする(1)記載の生産方法。
 (9)上記第2工程の明期における光強度を20~1000μmol・m−2・s−1PPFDとすることを特徴とする(1)記載の生産方法。
 (10)上記第2工程の期間中に実施され、第2工程の長日条件において明期をより短くし、暗期を長くする日長条件とする中間工程を更に含むことを特徴とする(1)記載の生産方法。
 (11)上記中間工程では、日長条件以外の条件を上記第2工程の条件と同じに設定することを特徴とする(10)記載の生産方法。
 (12)上記(1)乃至(11)記載の生産方法により生産され、花芽、花及び果実が同時に存在することを特徴とする連続開花性ブルーベリー。
 上述したような本発明に係る生産方法によれば、高品質なブルーベリー果実をこれまでオフシーズンであった冬期(12月)から早出しすることが可能となる。本発明に係る生産方法によれば、その後も、果実の着果量や環境を好適な条件下に制御することで、果実を収穫しながら、連続的に花芽形成・開花・結実を発生させ続けることが可能となる。よって、本発明に係る生産方法を適用することで、ブルーベリー果実の収穫(出荷)期間を1品種で飛躍的に延長することができる。また、本発明に係る生産方法においては、摘花(摘果)を不要とすることもできるので、収量を2~3倍増加することも可能となる。さらに、本発明に係る生産方法では、ブルーベリー果実が長期に亘って徐々に実るので、収穫等に要する労働力を分散でき、計画的な生産(出荷)を実現することができる。
 このように、本発明に係る生産方法は、ブルーベリー果実の周年生産を可能とするものなので、オフシーズン(10月~翌年5月)における市場への供給、単位面積当たりの収量増加、自給率の向上などが実現できるものである。
 本明細書は本願の優先権の基礎である日本国特許出願2011−116908号の明細書及び/又は図面に記載される内容を包含する。
In view of the present situation, the present invention can be harvested in the off-season, and the harvesting period is long, and the fruit quality is good. It is an object of the present invention to provide a continuous flowering blueberry that can not only generate flowering but also form flower buds.
In order to solve the above-mentioned problems, the present inventors firstly, when the plant enters the dormancy period, the temperature requirement time is low no matter how good the growth conditions are (eg, when the temperature is high, when it is long days). Until we met, we focused on the fact that dormancy is not broken, and flowers do not bloom or bud. Then, the present inventors sought a method for performing flowering and fruiting without causing sleep. As a result, the present inventors have developed that the blueberries of the varieties having a low dormancy (that is, the short time required for low temperature) do not enter the dormancy after forming the flower buds under certain environmental conditions, and the flower buds develop and bloom. I got the knowledge that I can do it. Next, as a result of further investigation under such knowledge, the present inventors have kept the flowering without dormancy under another specific environmental condition for a long time. It has been found that flowering, fruiting and flower bud formation occur continuously, and that harvesting and shipping are possible even in the off-season, and the present invention has been completed.
That is, the present invention includes the following.
(1) The first step in which the temperature of the light period is higher than the dormancy introduction temperature after the formation of blueberry flower buds with a low temperature requirement time of 100 to 500 hours, and the temperature condition after the flowering is below the dormancy introduction temperature And a second step of making the light period longer than the light period in the first step and making it a humid condition.
(2) The production method according to (1), wherein in the first step, the light period temperature is 30 to 35 ° C.
(3) The production method according to (1), wherein the first step is a day length condition in which the light period is 12 to 14 hours and the dark period is 10 to 12 hours.
(4) The production method according to (1), wherein the light intensity in the light period of the first step is 100 to 1000 μmol · m −2 · s −1 PPFD.
(5) The production method according to (1), wherein the second step is a long-day condition in which the light period is 15 to 16 hours and the dark period is 8 to 9 hours.
(6) The production method according to (1), wherein the temperature in the light period and the dark period is 10 to 30 ° C. in the second step.
(7) The production method according to (1), wherein in the second step, humidification conditions are set such that the relative humidity is 30 to 90%.
(8) The production method according to (1), wherein the light intensity of the light period in the second step is made lower than the light intensity of the light period in the first step.
(9) The production method according to (1), wherein the light intensity in the light period of the second step is 20 to 1000 μmol · m −2 · s −1 PPFD.
(10) The method further includes an intermediate step that is performed during the period of the second step and has a day length condition that shortens the light period and lengthens the dark period in the long day condition of the second step ( 1) The production method described.
(11) The production method according to (10), wherein in the intermediate process, conditions other than the day length condition are set to be the same as the conditions in the second process.
(12) A continuous flowering blueberry produced by the production method according to the above (1) to (11), wherein flower buds, flowers and fruits are present simultaneously.
According to the production method according to the present invention as described above, high-quality blueberry fruits can be put out early in the winter (December), which has been the off-season. According to the production method according to the present invention, it is possible to continuously generate flower bud formation, flowering, and fruiting while harvesting the fruit by controlling the fruit amount and environment under suitable conditions. It becomes possible. Therefore, by applying the production method according to the present invention, the harvest (shipment) period of blueberry fruits can be dramatically extended with one variety. In addition, in the production method according to the present invention, it is possible to eliminate the need for flowering (plucking), so that the yield can be increased by 2 to 3 times. Furthermore, in the production method according to the present invention, since the blueberry fruit gradually grows over a long period of time, the labor required for harvesting can be dispersed, and planned production (shipment) can be realized.
Thus, since the production method according to the present invention enables the annual production of blueberry fruits, supply to the market in the off-season (October to May of the following year), increase in yield per unit area, self-sufficiency rate Improvements can be realized.
This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2011-116908 which is the basis of the priority of the present application.
 図1は、本発明の生産方法の第1工程により花が着生している状況を示す写真である。
 図2は、本発明の生産方法で得られた連続開花性ブルーベリーの写真であり、第2工程により、成熟果(先端部)、未熟果(中央部)、花と蕾(基部)が着生している状況を示す。
 図3は、図2に示したブルーベリーを、3月に、中間工程に処し、新梢先端部に花芽分化を誘導し、開花させた状況を示す。
 図4は、図3に示したブルーベリーを第2工程に戻し、誘導された花芽から果実を成育させている状況を示す。
 図5は、実施例1および比較例1,2のブルーベリーの第2工程を始めて約3日目の株状況を示す写真である。
 図6は、図5に示したブルーベリーの第2工程を始めて約120日目の株状況を示す写真である。
FIG. 1 is a photograph showing a situation where flowers are growing in the first step of the production method of the present invention.
FIG. 2 is a photograph of a continuous flowering blueberry obtained by the production method of the present invention. In the second step, mature fruits (tips), immature fruits (middle parts), flowers and buds (base parts) are formed. Shows the situation.
FIG. 3 shows a situation in which the blueberry shown in FIG. 2 was subjected to an intermediate process in March to induce flower bud differentiation at the tip of a new treetop and flower.
FIG. 4 shows a situation in which the blueberries shown in FIG. 3 are returned to the second step and the fruits are grown from the induced flower buds.
FIG. 5 is a photograph showing the stock status on the third day after the second step of the blueberries of Example 1 and Comparative Examples 1 and 2.
FIG. 6 is a photograph showing the stock status of about 120 days after starting the second step of blueberries shown in FIG.
 本発明のブルーベリーの生産方法は、低温要求時間が100~500時間であるブルーベリーを、後述の第1工程および第2工程に処することを特徴とする。
 本発明において、低温要求時間が100~500時間(hrs)であるブルーベリーとは、低温要求時間がこの範囲内であるブルーベリーであれば、いかなる品種を使用することができる。ここで、低温要求時間とは、休眠期を打破するために必要とされる低温状態を維持する時間であり、具体的には7.2℃以下の低温条件下に曝される時間の積算値として定義される。ブルーベリーに関する低温要求時間は、Method to determine chilling requirement in blueberry.J.M.Spiers,D.A.Marshall,B.J.Smith and J.H.Braswell.Acta Horticulturae. 715:VIII International Symposium on Vaccinium Culture.に記載された方法により決定することができる。公知のブルーベリー品種について、品種毎の低温要求時間は、例えば、同上に記載されている。すなわち、これら従来の知見に基づいて、低温要求時間が100~500時間であるブルーベリー品種を特定することができる。
 より具体的に、低温要求時間が100~500時間であるブルーベリー品種としては、例えば、ビロキシー(Biloxi:400hrs)、シャープブルー(Sharpblue:200~300hrs)、エメラルド(Emerald:200~300hrs)、サンシャインブルー(Sunshineblue:150~300hrs)、マグノリア(Magnoria:500hrs)、クーパー(Cooper:400~500hrs)などのサザンハイブッシュ系品種、アリスブルー(Aliceblue:300hrs)、ベッキーブルー(beckyblue:300~400hrs)、ボニータブルー(Bonitablue:350~400hrs)、バルドウィン(Baldwin:450~500hrs)などのラビットアイ系品種が挙げられる。なお、各品種の英文表記の後ろに、それぞれの低温要求時間を付記した。
 特に、本発明のブルーベリーの生産方法においては、より休眠の浅いブルーベリーを対象とすることが好ましく、低温要求時間が100~400時間であるブルーベリーを対象とすることがより好ましく、低温要求時間が100~300時間のブルーベリーを対象とすることが更に好ましい。低温要求時間が当該範囲にあるブルーベリーについては、本発明を適用することで休眠に入ることを防止し、長期に亘って開花と結実と花芽の形成とが連続して発生するといった特徴をより確実に実現することができる。
 また、特に、本発明のブルーベリーの生産方法においては、低温要求時間が上記範囲にあるブルーベリーであって、3年生以上のブルーベリーを対象とすることが好ましい。低温要求時間が上記範囲にある3年生以上のブルーベリーを対象とすることによって、より確実な周年生産を実現することができる。
 以下、本発明に係るブルーベリーの生産方法における各工程を説明するが、最初の工程である第1工程は、対象のブルーベリーが花芽を形成した後に実施される。言い換えると、本発明に係るブルーベリーの生産方法は、対象のブルーベリーに花芽を形成させる前工程を含むということもできる。ここで、ブルーベリーの花芽は、通常、新梢の先端部の発育が停止した後の数週間後に、該新梢の先端や葉の付け根(葉腋)に分化し始め、開花直前には長さ(縦径)が4~6mm程度、直径(横径)2~3mm程度にふっくらと膨れ球体状になる。
 本発明に係るブルーベリーの生産方法において、「花芽形成後」、「花芽を形成した後」とは、花芽形成(花芽分化)の如何なる段階であっても良く特に限定されないが、長さ(縦径)が4~6mm程度の花芽になった時点とすることが好ましい。すなわち、花芽の形成が認められれば花芽形成(花芽分化)の如何なる段階であっても後述する第1工程を実施して良いが、特に、長さ(縦径)が4~6mm程度の花芽になった時点で第1工程を実施することが好ましい。ここで、花芽の長さ(縦径)は、複数の花芽について縦径を測定し、その平均値を意味する。
<第1工程>
 本発明の第1工程では、上記のようにブルーベリーが花芽を形成した後、明期の温度を休眠導入温度よりも高温の条件下に保持する。これにより、第1工程において、花芽を発育させ開花を誘導することができる。ここで、休眠導入温度とは、ブルーベリーを休眠状態へ導入できる最高の温度を意味する。すなわち、ブルーベリーを休眠導入温度以下の条件に保持することで、当該ブルーベリーを休眠状態に導入できる。通常、ブルーベリーにおいては、品種による違いもあるが、休眠導入温度は10~20℃の範囲にある。
 また、本発明の第1工程における明期の温度条件は、ブルーベリーが枯死せず生育する温度であれば温度条件の上限値は特に限定されない。しかし、温度が高すぎると、植物にとってストレスになることがあり高温障害が生じる場合がある。よって、本発明の第1工程における明期では、高温障害が生じる温度未満とすることが好ましい。
 以上をまとめると、第1工程においては明期を、花芽を形成したブルーベリーを休眠導入温度よりも高温の条件とする。そして、第1工程においては明期を、ブルーベリーの光合成速度が飽和する温度未満とすることが好ましい。より具体的に第1工程においては、明期を30~35℃の温度とすることが好ましく、30~32℃とすることがより好ましい。
 第1工程における明期の温度条件がこの範囲を下回ると、花芽を形成した後のブルーベリーの周囲の温度が低すぎ、落葉が生じ、休眠導入される虞がある。また、第1工程における明期の温度条件がこの範囲を上回ると、光合成速度が飽和し、植物にとってむしろストレスになる虞がある。第1工程における明期の温度条件は、後述の光の強度や照明時間との関係にもよるものの、一般的には上記の範囲内において高い方が、開花開始時期が早くなる傾向があるため好ましい。
 第1工程では、花芽を形成したブルーベリーに対して明期における温度条件を上述のように設定することによって、葉の光合成機能の低下を抑制し、新梢の先端部に形成した花芽を発育させ開花させることができる。
 なお、第1工程における暗期の温度については、特に限定されないが、好ましくは15~25℃程度、より好ましくは18~23℃程度である。
 第1工程における、上述した温度条件は、暖房機、冷房設備、送風、除(加)湿器、換気扇、ドライミスト及び遮光カーテンといった各種の温度制御装置を単独で或いは組み合わせて使用することで実現することができる。これら温度制御装置を組み込んだ閉鎖系室内や、これら温度制御装置を備える通常のハウスを使用することで、花芽を形成したブルーベリーを上述した温度条件に保持することができる。
 一方、第1工程では、明期を暗期と同時間又は暗期より長時間とするように設定する。より具体的に、第1工程は、明期を12~14時間とし且つ暗期を10~12時間とする条件とすることが好ましい。花芽形成後の光の照明時間、すなわち明期が短すぎると、落葉が生じて休眠導入される虞があり、逆に明期が長すぎると、花芽の発育が停止する虞がある。よって、第1工程の日長条件を、明期を暗期と同時間又は暗期より長時間とする条件、具体的には上述した範囲の明期及び暗期とすることによって、花芽を形成したブルーベリーの休眠導入を防止し、且つ、花芽の発育を促進することができる。
 なお、明期とは、光合成が可能な程度の光強度条件であることを意味する。より具体的には、明期とは、光の強度(光合成光量子束密度:Photosynthetic Photon Flux Density)については、100~1000μmol・m−2・s−1PPFD、好ましくは700~800μmol・m−2・s−1PPFDの範囲にあること期間を意味する。光の強度がこの範囲を下回ると、光合成が十分に促進されず、花芽の発育を促進できない虞がある。なお、第1工程における主要な波長(大部分を占める分光エネルギー)としては、特に限定されないが400~730nmの範囲が好適である。
 明期において照射される光は、太陽光(自然光)及び人工光の一方でも良いし両方でも良い。すなわち、明期において照射される光の光源は、特に限定されず、太陽はもとより、高圧ナトリウムランプ、メタルハライドランプ、LED(発光ダイオード)、レーザー光源などを挙げることができる。なお、これら光源を単独で使用しても良いし、複数の光源を適宜組み合わせて用いても良い。例えば、曇り空や雨天時など自然光の強度が上記範囲を下回る場合、人工光にて補光することが好ましい。なお、例えば真夏の猛暑日など自然光の強度が上記範囲を上回る場合、遮光カーテンなどを用いて光強度を調整することが好ましい。
 また、第1工程において、明期の導入(すなわち、暗期の終了)時などには、自然光のサイクルに近似させるように、人工光にて補光するシステムを利用して徐々に光の強度を上げて感応させていく方が、気孔の開閉システムなどにとって好ましい。また、暗期の導入に際しても、人工光にて補光するシステムを利用して徐々に光の強度を下げるように調整することが好ましい。
 ところで、第1工程では、上記条件(周囲温度、光の強度・照明時間)の他に、相対湿度、CO濃度、土壌pH、土壌EC(Electric Conductivity(電気伝導度):肥料濃度を推定できる)等の各種パラメーターを適宜調節した状態でブルーベリーを保持しても良い。これら各種パラメーターを所望の範囲に調節することで、ブルーベリーの花芽の発育及び開花にとって望ましい環境とすることができ、成育を促進することができる。例えば、相対湿度は30~80%の範囲とすることが好ましく、CO濃度は400~600μmol・mol−1の範囲とすることが好ましく、土壌pHは5.0~6.0の範囲とすることが好ましく、土壌ECは0.7~1.2程度とすることが好ましい。
 第1工程における、上述した光照射条件、相対湿度条件、CO濃度条件は、送風、除(加)湿器、換気扇、ドライミスト、遮光カーテン、CO供給装置といった各種装置を単独で或いは組み合わせて使用することで実現することができる。これら装置を組み込んだ閉鎖系室内や、これら装置を備える通常のハウスを使用することで、花芽を形成したブルーベリーを上述した条件に保持することができる。
 第1工程は、開花が見られるまで行われる。すなわち、第1工程の終了は、対象となるブルーベリーにおける開花に基づいて判定することができる。但し、ここで開花とは、それほど厳密ではない。例えば、一番花が咲いた段階を開花とし、この直後に第1工程を終了しても良いし、3~5輪程度咲き、それらが散った段階を開花として第1工程を終了しても良い。また、例えば、対象となるブルーベリーに1以上の開花が確認できた時点で第1工程を終了しても良いし、対象となるブルーベリーに形成された花芽うち1割以上の花芽が開花した時点としても良いし、2割以上の花芽が開花した時点としても良いし、5割以上の花芽が開花した時点としても良い。
 第1工程は、1回の明期と1回の暗期とからなる1日を24時間と設定した場合、通常、第1工程の処理開始日から20~40日程度続けられる。一例として、図1に、第1工程に処してから約40日目のブルーベリー(品種名:エメラルド)を示す。図1に示すように、第1工程により休眠導入が阻害され、葉の光合成機能の低下を抑制し、新梢の先端部に形成した花芽の発育と開花を誘導することができる。
 なお、第1工程と、後述する第2工程との間には、別の環境条件を経ることなく、連続して処することが好ましい。すなわち、第1工程を実施した室内やハウス内の各種条件を、後述するように変更することによって第2工程を実施することが好ましい。
 例えば、7月に花芽を形成したブルーベリーに対して上述した第1工程を8~9月頃にかけて実施する。これにより品種によっては10月頃から開花がみられ、この段階で後述する第2工程を実施する。このように、収穫開始期を早めることができる。
<第2工程>
 本発明の第2工程は、上記第1工程が終了した後のブルーベリーを、休眠導入温度以下の温度条件、長日条件且つ加湿条件に保持する。これにより、第2工程において、シュート(新梢)の先端部から基部に向かって開花と結実とを生じさせることができ、続いて、別のシュートの花芽においても先端から基部に向かって連続的な開花と結実を生じ得る。
 第2工程における長日条件とは、上述した第1工程における日長条件と比較して明期の時間がより長く設定されている。第2工程の長日条件としては、例えば、明期を15~16時間とし且つ暗期を8~9時間とする。
 第2工程における明期、すなわち開花後の光の照明時間(明期)が短すぎると、落葉が生じる場合や、一部のシュートでは結実がみられても別のシュートで開花や結実が生じない場合など生育不良が生じる虞がある。一方、第2工程における明期が長すぎても、新たな花芽の分化や発育が停止してしまう虞がある。よって、第2工程における明期を上記範囲とすることで、生育不良を回避してブルーベリーの果実を効率良く実らせることができる。
 ここで、例えば、明期を15時間に設定した場合であって、太陽光(自然光)による日照時間が13時間であれば、日の出前の1時間程度、日の入り後の1時間程度、人工光にて補光する。このように、太陽光と人工光とを適宜組み合わせることで、上述したような長日条件を実現することができる。
 なお、第2工程における明期は、特に限定されないが、上述した第1工程における明期と比較してやや弱い光強度でもよい。第2工程における明期の光強度としては、例えば20~1000μmol・m−2・s−1PPFDとすることができ、700~800μmol・m−2・s−1PPFDとすることが好ましい。
 光強度をこの範囲とすることによって、十分に光合成が促進される結果、実(果肉)を太らせることができ、植物に対するストレスを防ぐことができる。換言すれば、光強度が上記範囲を下回ると光合成が促進されず、実(果肉)が太りにくくなる虞がある。また、光強度が上記範囲を上回る、水利用効率などが低下する虞や、植物にとってストレスになる虞がある。
 また、第2工程においても第1工程と同様に、明期と暗期の切り替え時においては、自然光のサイクルに近似させることが好ましい。すなわち、明期の導入(暗期の終了)時などには、徐々に光の強度を上げて感応させることが好ましい。暗期の導入(明期の終了)時などには、徐々に光の強度を下げて感応させることが好ましい。この場合、具体的には、上述した光強度の自然光に加えて、20~130μmol・m−2・s−1PPFDの人工光を、日の出前1~2時間と日の入り後1~2時間の計2~4時間照射して、15~16時間明期、8~9時間暗期の長日条件下とすることが好ましい。光強度や照射時間を上記範囲内に制御するには、第1工程と同様の手法を採用することができる。なお、第2工程における主要な波長(大部分を占める分光エネルギー)としては、特に限定されないが400~730nmの範囲が好適である。
 また、第2工程における温度条件は、上述のように定義される休眠導入温度以下の温度とする。上述したように、通常、ブルーベリーにおいては、品種による違いもあるが、休眠導入温度は10~20℃の範囲にある。第2工程における温度を休眠導入温度以下とすることで、光合成速度が飽和してストレスになることを防止し、且つ休眠要求量を徐々に満たすことができる。ただし、本発明の第2工程における温度が低すぎると、落葉が始まったり、別のシュートでは花芽が開花しない虞がある。よって、第2工程における温度条件は、10~30℃とすることが好ましく、15~25℃とすることがより好ましい。第2工程では、明期及び暗期ともに上記範囲の温度条件とする。なお、温度を上記範囲内に制御するには、第1工程と同様の手法を取ればよい。
 また、第2工程における加湿条件とは、例えば相対湿度を30~90%とする条件が挙げられ、相対湿度を40~70%とする条件が好ましい。なお、第2工程においては、明期及び暗期ともに上記範囲の相対湿度とすることが好ましい。相対湿度を上記範囲とすることにより、光合成を疎開することなく且つ受粉による結実率を高く維持できる。言い換えると、相対湿度が上記範囲を上回るが下回る場合、ブルーベリーの光合成が阻害され、或いは受粉による結実率が低下する虞がある。このように、第2工程における相対湿度は、開花後のブルーベリーの受粉にとって非常に重要な要素であると言える。
 第2工程において、上述したような温度条件、長日条件及び加湿条件とすることで、新梢(あるシュート)の先端にある花芽が開花した後、その下(基部)に存在する花芽をはじめとして、別のシュートに存在する花芽までも、次々に開花させ、結実させていくことができる。
 このような第2工程では、上記条件(周囲温度、相対湿度、光の強度・照射時間)の他に、CO濃度、土壌pH、土壌EC等の各種パラメーターを適宜調節した状態でブルーベリーを保持しても良い。これら各種パラメーターを所望の範囲に調節することで、ブルーベリーの花芽の連続的な開花及び果実収量の増大を図ることできる。例えば、CO濃度は400~600μmol・mol−1の範囲とすることが好ましく、土壌pHは5.0~6.0の範囲とすることが好ましく、土壌ECは0.7~1.2の範囲とすることが好ましい。また、第2工程では、少量多灌水とすることが好ましい。
 第2工程では、特に、明期の光強度を700~800μmol・m−2・s−1PPFDとし、CO濃度を600μmol・mol−1程度とし、蒸散量を補完する水分供給と肥料とを同時施与する養液管理を行うことにより、果実の肥大と花芽の発育・開花、並びに新梢の成長を同時に行わせることがより促進され、開花から収穫までを更に短縮することができる。例えば、上述した光強度、CO濃度及び養液管理によれば、開花から収穫まで通常60日ほどかかっていたものを、45日程度まで短縮することも可能である。
 このように、第2工程では、昼間(明期において)、光合成速度が極力高くなるように温度管理し、光合成速度が低いときにはCO濃度を高めに設定することが好ましい。このような設定によれば、落果の防止、果実肥大の促進、花芽形成の促進、摘花(摘果)の省略を実現することができる。
 第2工程は、理論上、樹体が疲弊(枯死)するまで続けられるが、1回の明期と1回の暗期とかなる1日を24時間と設定した場合、通常、第2工程の処理開始日から150~250日程度続けることが好ましい。また、第2工程の途中の段階で、樹体(枝や根)に同化産物を蓄積させ、その後一度休ませる(休眠を導入する)こともできる。
 特に、本発明に係るブルーベリーの生産方法では、第2工程において果実を発育させながら、新たに伸びた新梢の先端に花芽を形成させるために、第2工程中において、後述の中間工程を挿入することもできる。
<中間工程>
 本発明に係るブルーベリーの生産方法において中間工程は、上述した第2工程の途中の段階で実施できる工程である。中間工程は、第2工程における長日条件を緩和する工程である。長日条件を緩和するとは、明期をより短くし、暗期を長くすることを意味する。上述のように、第2工程における長日条件とは、第1工程における日長条件と比較して明期の時間がより長く設定する条件であり、例えば、明期を15~16時間とし且つ暗期を8~9時間とする条件である。よって、中間工程としては、例えば、暗期を11~13時間とし、暗期を13~11時間とする日長条件を挙げることができる。なお、中間工程は、第2工程における長日条件を緩和する以外は、温度条件及び相対湿度条件を第2工程と同じに設定することが好ましい。すなわち、中間工程は、温度を10~30℃、相対湿度を30~90%としたまま、光強度が100~1000μmol・m−2・s−1PPFDの11~13時間明期、13~11時間暗期の日長条件下に保持する条件を挙げることができる。なお、中間工程における温度条件として、周囲温度が30℃を超えると、花芽分化開始から開花までの(花器の発育)期間が短くなる傾向が現れ、花数が少なくなる虞がある。
 第2工程を処理中のブルーベリーに、このような日長条件の中間工程を処することで、第2工程で新たに伸びた新梢の成長がとまり、葉の葉色が濃くなり、先端に花芽の形成が誘導される。このような中間工程は、第2工程中、例えば新たに伸びた新梢が所定の長さ(例えば15cm)以上になった時に施すことが好ましい。
 中間工程の光の照明時間(明期)は、短すぎると、落葉が生じ、一部のシュートでは結実がみられても別のシュートで開花や結実が生じないことがある。一方、長すぎると、新たな花芽の分化や発育が停止してしまうので、11~13時間明期、13~11時間暗期の日長条件下とし、好ましくは、約12時間明期、約12時間暗期である。
 なお、中間工程において、周囲温度、相対湿度、光の強度・照射時間、CO濃度、土壌pH、土壌ECなどを上記範囲内に制御するには、第1工程や第2工程と同様の手法を取ればよい。
 中間工程は、1回の明期と1回の暗期とかなる1日を24時間と設定した場合、通常、中間工程の処理開始日から25~35日程度続ければよく、その後は、上記したような第2工程に戻せばよい。第2工程と中間工程との間には、別の環境条件を経ることなく、連続して処することが好ましい。
 また、中間工程は、第2工程の期間において1回実施しても良いし、複数回実施しても良い。特に、中間工程は、第2工程の期間において1回実施すれば十分な効果を期待することができるが、複数回実施しても特段の問題はない。
<その他>
 本発明の生産方法においては、必要に応じて、ブルーベリー栽培の一般的な土壌消毒剤、土壌改良剤、農薬、化学肥料、有機質肥料、堆肥などを適宜添加してもよいし、適宜な剪定や間引きを行うこともできる。
 本発明では、以上のような第1工程、第2工程及び中間工程における、周囲温度、光の強度・照射時間、相対湿度、CO濃度、土壌pH、土壌EC、灌水量、施肥、葉の蒸散量などについて、季節に応じた自然環境と適宜組み合わせながら、人工的に管理・制御することで、上記した第1工程、第2工程及び中間工程の所望の範囲内に保持することもできる。
 人工的な管理・制御の方法としては、本発明者らによる先願に記載の植物栽培システムを用いてもよい(特許文献1,2参照)。
 図1~4に、本発明の生産方法により得られる連続開花性ブルーベリー(品種名:エメラルド)を示す。
 図1は、前述したとおり、第1工程に処してから約40日目の写真である。
 図2は、第2工程に処してから約120日目の写真であり、先端部に成熟果、中央部に未熟果、基部に花と蕾が着生している。
 図3は、第2工程に処してから約150日目に中間工程を挿入し、該中間工程に処してから30日目の写真である。図3では、第2工程で新たに伸びた新梢の先端部に花芽が誘導され、該花芽が開花した状況を示す。
 図4は、第2工程に処してから約150日目に中間工程を30日間挿入し、その後、第2工程に戻して約40日目の写真である。第2工程で新たに伸びた新梢の先端部に形成された花芽から果実が生育している状況を示す。
 したがって、図2~4に示すように、本発明の連続開花性ブルーベリーは、花芽、花および果実が同時に存在することを特徴とする。例えば、あるシュートで果実を発育させながら、別のシュートでは開花や花芽の形成が生じるものなので、この連続開花現象ゆえに、オフシーズンであっても長期に亘って常に収穫できるブルーベリーを実現することができる。
 なお、サクランボやモモなど、一般的に、花が全て散ってから果実が形成する果樹においても、休眠が浅い品種では、本発明の周年生産方法を適宜応用することで、このような現象が見られると考えられ、早生品種の出現によりオフシーズンの出荷が可能になる。
The blueberry production method of the present invention is characterized in that a blueberry having a low temperature requirement time of 100 to 500 hours is subjected to a first step and a second step described later.
In the present invention, any blueberry having a low temperature requirement time of 100 to 500 hours (hrs) can be used as long as the blueberry has a low temperature requirement time within this range. Here, the low temperature requirement time is a time for maintaining a low temperature state necessary for breaking the dormancy period, and specifically, an integrated value of the time exposed to a low temperature condition of 7.2 ° C. or less. Is defined as The low temperature required time for blueberries is Method to determining chilling requirement in blueberry. J. et al. M.M. Spiers, D.M. A. Marshall, B.M. J. et al. Smith and J.M. H. Braswell. Acta Horticulturae. 715: VIII International Symposium on Vaccinium Culture. It can be determined by the method described in 1. For known blueberry varieties, the required low temperature for each variety is described, for example, above. That is, based on these conventional knowledge, a blueberry variety having a low temperature requirement time of 100 to 500 hours can be specified.
More specifically, blueberry varieties having a low temperature requirement time of 100 to 500 hours include, for example, Biloxi (Biloxi: 400 hrs), Sharp blue (Sharpblue: 200 to 300 hrs), Emerald (Emerald: 200 to 300 hrs), Sunshine blue (Sunshine blue: 150-300 hrs), Southern high bush varieties such as Magnolia (Magnoria: 500 hrs), Cooper (Cooper: 400-500 hrs), Alice blue (Alice blue: 300 hrs), Becky blue (300-400 hrs) Rabbit Eyes such as Blue (Bonitblue: 350-400 hrs), Baldwin (450-500 hrs) Varieties, and the like. Each low-temperature requirement time is added after the English notation of each product type.
In particular, in the method for producing blueberries of the present invention, it is preferable to target blueberries that are less dormant, more preferable to target blueberries having a low-temperature requirement time of 100 to 400 hours, and a low-temperature requirement time of 100 It is more preferable to target a blueberry of ~ 300 hours. For blueberries whose low temperature requirement time is in this range, the application of the present invention prevents entering into dormancy, and more reliable characteristics such as continuous flowering, fruiting, and flower bud formation occur over a long period of time. Can be realized.
In particular, in the method for producing blueberries according to the present invention, it is preferable to target blueberries having a required low temperature in the above-mentioned range and that are 3 years old or more. More reliable year-round production can be realized by targeting blueberries with a low temperature requirement time in the above-mentioned range.
Hereinafter, although each process in the production method of the blueberry which concerns on this invention is demonstrated, the 1st process which is the first process is implemented after the target blueberry forms a flower bud. In other words, the blueberry production method according to the present invention may include a pre-process for forming flower buds on the target blueberry. Here, blueberry flower buds usually begin to differentiate into the tip of the shoot and the root of the leaf (leaf bud) several weeks after the growth of the tip of the shoot is stopped, and the length ( The swelled spheroids are formed to have a vertical diameter of about 4 to 6 mm and a diameter (lateral diameter) of about 2 to 3 mm.
In the blueberry production method according to the present invention, “after flower bud formation” and “after flower bud formation” may be any stage of flower bud formation (flower bud differentiation), but are not particularly limited. ) Is preferably at the time when the flower buds are about 4 to 6 mm. That is, if formation of flower buds is recognized, the first step described later may be carried out at any stage of flower bud formation (flower bud differentiation), but in particular, flower buds having a length (vertical diameter) of about 4 to 6 mm. It is preferable to implement the first step at this point. Here, the length (longitudinal diameter) of flower buds means the average value obtained by measuring the longitudinal diameter of a plurality of flower buds.
<First step>
In the first step of the present invention, after the blueberries have formed flower buds as described above, the temperature of the light period is maintained under conditions higher than the dormancy introduction temperature. Thereby, in a 1st process, a flower bud can be developed and flowering can be induced | guided | derived. Here, the dormancy introduction temperature means the highest temperature at which blueberries can be introduced into the dormant state. That is, the blueberry can be introduced into a dormant state by maintaining the blueberry at a temperature equal to or lower than the dormancy introduction temperature. Usually, in blueberries, the dormancy introduction temperature is in the range of 10 to 20 ° C., although there are differences depending on the variety.
Moreover, if the temperature conditions of the light period in the 1st process of this invention are the temperature which a blueberry does not die and grow, the upper limit of temperature conditions will not be specifically limited. However, if the temperature is too high, it can be stressful for the plant and can cause high temperature damage. Therefore, in the light period in the first step of the present invention, it is preferable that the temperature be lower than the temperature at which high temperature failure occurs.
Summarizing the above, in the first step, the light period is set to a temperature higher than the dormancy introduction temperature of the blueberry that has formed flower buds. In the first step, it is preferable that the light period is less than a temperature at which the blueberry photosynthesis rate is saturated. More specifically, in the first step, the light period is preferably 30 to 35 ° C, more preferably 30 to 32 ° C.
When the temperature condition of the light period in a 1st process is less than this range, the temperature around the blueberry after forming a flower bud is too low, fallen leaves may occur, and dormancy may be introduced. Moreover, when the temperature condition of the light period in a 1st process exceeds this range, there exists a possibility that a photosynthetic rate may be saturated and it may become stress rather for a plant. Although the temperature condition of the light period in a 1st process is based also on the relationship of the below-mentioned light intensity | strength and illumination time, since the one where it is high within said range generally has a tendency for the flowering start time to become early. preferable.
In the first step, the temperature conditions in the light period are set as described above for the blueberries that have formed flower buds, thereby suppressing the decline in the photosynthetic function of the leaves and allowing the flower buds formed at the tip of the new tree to grow. It can blossom.
The dark period temperature in the first step is not particularly limited, but is preferably about 15 to 25 ° C., more preferably about 18 to 23 ° C.
In the first step, the above-described temperature condition is realized by using various temperature control devices such as a heater, a cooling device, an air blower, a dehumidifier (humidifier), a ventilator, a dry mist, and a light-shielding curtain, alone or in combination. can do. By using a closed room in which these temperature control devices are incorporated or a normal house equipped with these temperature control devices, the blueberries having flower buds can be maintained at the above-described temperature conditions.
On the other hand, in the first step, the light period is set to be the same time as the dark period or longer than the dark period. More specifically, the first step is preferably performed under conditions where the light period is 12 to 14 hours and the dark period is 10 to 12 hours. If the illumination time of light after flower bud formation, that is, the light period is too short, falling leaves may occur and dormancy is introduced, and conversely if the light period is too long, the development of flower buds may be stopped. Therefore, flower buds are formed by setting the day length condition of the first step to a condition in which the light period is the same as the dark period or longer than the dark period, specifically, the light period and dark period in the above-described range. The introduction of dormancy of the blueberry thus produced can be prevented, and the development of flower buds can be promoted.
The light period means that the light intensity condition is such that photosynthesis is possible. More specifically, the light period is about 100 to 1000 μmol · m −2 · s −1 PPFD, preferably 700 to 800 μmol · m −2 in terms of light intensity (photosynthetic photon flux density). Means a period in the range of s −1 PPFD. If the light intensity falls below this range, photosynthesis is not sufficiently promoted, and there is a possibility that the development of flower buds cannot be promoted. The main wavelength (spectral energy occupying most) in the first step is not particularly limited, but is preferably in the range of 400 to 730 nm.
The light irradiated in the light period may be either sunlight (natural light) and artificial light, or both. That is, the light source of light irradiated in the light period is not particularly limited, and examples include not only the sun but also a high-pressure sodium lamp, a metal halide lamp, an LED (light emitting diode), and a laser light source. Note that these light sources may be used alone, or a plurality of light sources may be used in appropriate combination. For example, when natural light intensity falls below the above range, such as in cloudy sky or rainy weather, it is preferable to supplement with artificial light. For example, when the intensity of natural light exceeds the above range, such as a hot summer day in midsummer, it is preferable to adjust the light intensity using a light shielding curtain or the like.
In the first step, when the light period is introduced (that is, the end of the dark period), the light intensity is gradually increased by using a system supplemented with artificial light so as to approximate the cycle of natural light. It is preferable for a pore opening / closing system to increase the sensitivity. In addition, when introducing the dark period, it is preferable to adjust so as to gradually reduce the light intensity using a system supplemented with artificial light.
By the way, in the first step, in addition to the above conditions (ambient temperature, light intensity / illumination time), relative humidity, CO 2 concentration, soil pH, soil EC (electric conductivity): fertilizer concentration can be estimated. Blueberries may be retained with various parameters such as) adjusted appropriately. By adjusting these various parameters to a desired range, it is possible to provide a desirable environment for the development and flowering of blueberry flower buds, and promote growth. For example, the relative humidity is preferably in the range of 30 to 80%, the CO 2 concentration is preferably in the range of 400 to 600 μmol · mol −1 , and the soil pH is in the range of 5.0 to 6.0. The soil EC is preferably about 0.7 to 1.2.
In the first step, the light irradiation condition, the relative humidity condition, and the CO 2 concentration condition described above are various kinds of devices such as a blower, a dehumidifier (humidifier), a ventilation fan, a dry mist, a light-shielding curtain, and a CO 2 supply device. It can be realized by using. By using a closed room in which these devices are incorporated, or a normal house equipped with these devices, the blueberries with flower buds can be maintained under the conditions described above.
The first step is performed until flowering is seen. That is, the end of the first step can be determined based on the flowering of the target blueberry. However, flowering here is not so strict. For example, the first flowering stage may be considered as flowering, and the first process may be terminated immediately after this. Alternatively, the first process may be finished when three to five wheels are blooming and the stage where they are scattered. good. In addition, for example, the first step may be completed when one or more flowers have been confirmed on the target blueberry, or as the time when more than 10% of the flower buds formed on the target blueberry have flowered. Alternatively, it may be the time when 20% or more of the flower buds have bloomed, or the time when 50% or more of the flower buds have bloomed.
The first step is usually continued for about 20 to 40 days from the processing start date of the first step when a day consisting of one light period and one dark period is set to 24 hours. As an example, FIG. 1 shows blueberries (variety name: emerald) about 40 days after the first step. As shown in FIG. 1, dormancy introduction is inhibited by the first step, the decrease in leaf photosynthesis function can be suppressed, and the development and flowering of flower buds formed at the tip of the new tree can be induced.
In addition, it is preferable to process continuously, without passing through another environmental condition between a 1st process and the 2nd process mentioned later. That is, it is preferable to implement the second step by changing various conditions in the room or the house where the first step is performed as described later.
For example, the first step described above is performed from August to September on blueberries that have formed flower buds in July. As a result, depending on the variety, flowering can be seen from around October, and the second step described later is carried out at this stage. In this way, the harvest start period can be advanced.
<Second step>
In the second step of the present invention, the blueberry after the completion of the first step is maintained under a temperature condition equal to or lower than the dormancy introduction temperature, a long-day condition, and a humidifying condition. Thereby, in a 2nd process, a flowering and a fruiting can be produced toward the base from the front-end | tip part of a chute | shoot (shoot), and also in the flower bud of another chute | shoot, it continues continuously from the front-end | tip to the base. Flowering and fruiting can occur.
The long day condition in the second step is set to have a longer light period compared to the day length condition in the first step described above. As long-day conditions for the second step, for example, the light period is 15 to 16 hours and the dark period is 8 to 9 hours.
If the light period in the second step, that is, the illumination time of light after flowering (light period) is too short, the fallen leaves may occur, or even if some shoots have fruited, flowering or fruiting will occur on another shoot. There is a risk of poor growth, such as when there is not. On the other hand, even if the light period in the second step is too long, the differentiation and development of new flower buds may be stopped. Therefore, by setting the light period in the second step to be in the above range, it is possible to avoid the growth failure and efficiently produce the fruit of blueberries.
Here, for example, when the light period is set to 15 hours and the sunshine time by sunlight (natural light) is 13 hours, the artificial light is used for about 1 hour before sunrise and about 1 hour after sunset. To supplement the light. Thus, long day conditions as described above can be realized by appropriately combining sunlight and artificial light.
In addition, the light period in the second step is not particularly limited, but the light intensity may be slightly weaker than the light period in the first step described above. The light intensity of the light period in the second step can be, for example, 20 to 1000 μmol · m −2 · s −1 PPFD, and preferably 700 to 800 μmol · m −2 · s −1 PPFD.
By setting the light intensity within this range, the photosynthesis is sufficiently promoted, so that the fruit (fruit) can be fattened and the stress on the plant can be prevented. In other words, if the light intensity falls below the above range, photosynthesis is not promoted, and the fruit (fruit) may not be thickened. Moreover, there exists a possibility that light intensity may exceed the said range, water utilization efficiency, etc. may fall, or it may become stress for a plant.
Also in the second step, it is preferable to approximate the cycle of natural light when switching between the light period and the dark period, as in the first process. In other words, it is preferable to gradually increase the light intensity when the light period is introduced (end of the dark period). When the dark period is introduced (the end of the light period) or the like, it is preferable to gradually reduce the intensity of the light for sensitivity. In this case, specifically, in addition to the natural light having the above-mentioned light intensity, artificial light of 20 to 130 μmol · m −2 · s −1 PPFD is measured for 1 to 2 hours before sunrise and 1 to 2 hours after sunset. It is preferable to irradiate for 2 to 4 hours under long day conditions of 15 to 16 hours of light period and 8 to 9 hours of dark period. In order to control the light intensity and irradiation time within the above ranges, the same technique as in the first step can be employed. The main wavelength (spectral energy occupying most) in the second step is not particularly limited, but is preferably in the range of 400 to 730 nm.
In addition, the temperature condition in the second step is set to a temperature equal to or lower than the dormancy introduction temperature defined as described above. As described above, normally, in blueberries, the dormancy introduction temperature is in the range of 10 to 20 ° C., although there are differences depending on the variety. By setting the temperature in the second step to be equal to or lower than the dormancy introduction temperature, it is possible to prevent the photosynthetic rate from becoming saturated and causing stress, and to gradually satisfy the dormancy request amount. However, if the temperature in the second step of the present invention is too low, defoliation may start or the flower buds may not bloom on another shoot. Therefore, the temperature condition in the second step is preferably 10 to 30 ° C., more preferably 15 to 25 ° C. In the second step, the temperature condition is in the above range for both the light period and the dark period. In addition, what is necessary is just to take the method similar to a 1st process, in order to control temperature in the said range.
In addition, the humidification condition in the second step includes, for example, a condition in which the relative humidity is 30 to 90%, and a condition in which the relative humidity is 40 to 70% is preferable. In the second step, it is preferable to set the relative humidity within the above range for both the light period and the dark period. By setting the relative humidity within the above range, it is possible to maintain a high fruit set rate by pollination without evacuating photosynthesis. In other words, if the relative humidity is above the range but below, blueberry photosynthesis may be inhibited, or the fruiting rate due to pollination may be reduced. Thus, it can be said that the relative humidity in the second step is a very important factor for pollination of blueberries after flowering.
In the second step, by setting the temperature condition, long-day condition and humidification condition as described above, after the flower bud at the tip of the new treetop (a certain shoot) blooms, As a result, even flower buds that exist in different shoots can be flowered one after another and set.
In such a second step, blueberries are held in a state where various parameters such as CO 2 concentration, soil pH, and soil EC are appropriately adjusted in addition to the above conditions (ambient temperature, relative humidity, light intensity / irradiation time). You may do it. By adjusting these various parameters to a desired range, it is possible to achieve continuous flowering of blueberry flower buds and increase fruit yield. For example, the CO 2 concentration is preferably in the range of 400 to 600 μmol · mol −1 , the soil pH is preferably in the range of 5.0 to 6.0, and the soil EC is 0.7 to 1.2. It is preferable to be in the range. In the second step, it is preferable to use a small amount of multi-irrigation.
In the second step, in particular, the light intensity in the light period is set to 700 to 800 μmol · m −2 · s −1 PPFD, the CO 2 concentration is set to about 600 μmol · mol −1, and the water supply and fertilizer supplementing the transpiration amount are added. By performing nutrient solution management that is applied simultaneously, it is further promoted that fruit enlargement, flower bud development and flowering, and growth of new shoots are simultaneously performed, and the time from flowering to harvesting can be further shortened. For example, according to the light intensity, CO 2 concentration, and nutrient solution management described above, what normally took about 60 days from flowering to harvesting can be shortened to about 45 days.
Thus, in the second step, it is preferable to control the temperature so that the photosynthetic rate is as high as possible during the daytime (in the light period), and to set the CO 2 concentration high when the photosynthetic rate is low. According to such a setting, it is possible to realize prevention of fruit dropping, promotion of fruit enlargement, promotion of flower bud formation, and omission of flowering (fruit extraction).
The second step is theoretically continued until the tree is exhausted (withered), but if one day, which is one light period and one dark period, is set to 24 hours, usually the second step It is preferable to continue for about 150 to 250 days from the treatment start date. Further, in the middle of the second step, the assimilation product can be accumulated in the tree body (branches and roots) and then rested once (introduction of dormancy).
In particular, in the method for producing blueberries according to the present invention, an intermediate step, which will be described later, is inserted in the second step in order to form a flower bud at the tip of a newly grown new tree while growing the fruit in the second step. You can also
<Intermediate process>
In the blueberry production method according to the present invention, the intermediate step is a step that can be performed in the middle of the second step described above. The intermediate process is a process of relaxing the long day condition in the second process. Relaxing the long day condition means shortening the light period and lengthening the dark period. As described above, the long-day condition in the second step is a condition for setting the light period longer than the day-long condition in the first process. For example, the long period is set to 15 to 16 hours and The dark period is 8 to 9 hours. Accordingly, examples of the intermediate process include day length conditions in which the dark period is 11 to 13 hours and the dark period is 13 to 11 hours. In the intermediate process, it is preferable to set the temperature condition and the relative humidity condition to be the same as those in the second process, except that the long-day condition in the second process is relaxed. That is, in the intermediate process, the light intensity is 100 to 1000 μmol · m −2 · s −1 PPFD for 11 to 13 hours, and the temperature is 10 to 30 ° C. and the relative humidity is 30 to 90%. The conditions which hold | maintain under the day length conditions of a time dark period can be mentioned. In addition, when the ambient temperature exceeds 30 ° C. as the temperature condition in the intermediate process, the period from the start of flower bud differentiation to flowering (development of flower vase) tends to be shortened, and the number of flowers may be reduced.
By treating the blueberry that is being processed in the second step with an intermediate step under such day length conditions, the growth of new shoots that have newly grown in the second step stops, the leaf color becomes darker, and the flower buds at the tip Formation is induced. Such an intermediate step is preferably performed during the second step, for example, when the newly expanded shoots have become a predetermined length (for example, 15 cm) or more.
If the illumination time (light period) of the light in the intermediate process is too short, the leaves will fall, and even if some shoots will bear fruit, other shoots may not flower or bear fruit. On the other hand, if it is too long, the differentiation and development of new flower buds will cease, so that the day length conditions of 11 to 13 hours light period and 13 to 11 hours dark period are set, preferably about 12 hours light period, about 12 hours dark period.
In the intermediate process, in order to control the ambient temperature, relative humidity, light intensity / irradiation time, CO 2 concentration, soil pH, soil EC and the like within the above ranges, the same method as in the first process and the second process is used. Just take it.
In the intermediate process, when one day of one light period and one dark period is set as 24 hours, it is usually sufficient to continue for about 25 to 35 days from the processing start date of the intermediate process. What is necessary is just to return to such a 2nd process. Between the second step and the intermediate step, it is preferable to perform the treatment continuously without passing through another environmental condition.
Further, the intermediate process may be performed once in the period of the second process or may be performed a plurality of times. In particular, if the intermediate process is performed once during the period of the second process, a sufficient effect can be expected, but even if it is performed a plurality of times, there is no particular problem.
<Others>
In the production method of the present invention, a general soil disinfectant for blueberry cultivation, a soil conditioner, an agrochemical, a chemical fertilizer, an organic fertilizer, a compost, or the like may be added as necessary, and appropriate pruning or Thinning can also be performed.
In the present invention, the ambient temperature, light intensity / irradiation time, relative humidity, CO 2 concentration, soil pH, soil EC, irrigation amount, fertilization, leaf in the first step, the second step and the intermediate step as described above. The amount of transpiration can be kept within the desired range of the first step, the second step, and the intermediate step by artificially managing and controlling the natural environment according to the seasons as appropriate.
As an artificial management / control method, the plant cultivation system described in the prior application by the present inventors may be used (see Patent Documents 1 and 2).
1 to 4 show continuous flowering blueberries (variety name: emerald) obtained by the production method of the present invention.
FIG. 1 is a photograph about 40 days after the first step, as described above.
FIG. 2 is a photograph about 120 days after the second step, in which a mature fruit is formed at the tip part, an immature fruit is formed at the center part, and a flower and a bud are formed at the base part.
FIG. 3 is a photograph of the 30th day after the intermediate process was inserted about 150 days after the second process and after the intermediate process. In FIG. 3, the flower bud is induced | guided | derived to the front-end | tip part of the new shoot newly extended by the 2nd process, and the condition which this flower bud blossomed is shown.
FIG. 4 is a photograph of the about 40th day after inserting the intermediate process for 30 days on the 150th day after the second process and returning to the second process. The situation where the fruit is growing from the flower bud formed in the front-end | tip part of the new treetop newly extended in the 2nd process is shown.
Therefore, as shown in FIGS. 2 to 4, the continuous flowering blueberry of the present invention is characterized in that flower buds, flowers and fruits are present simultaneously. For example, while a fruit grows in one shoot, flowering and flower bud formation occurs in another shoot, so this continuous flowering phenomenon makes it possible to realize a blueberry that can always be harvested for a long time even in the off season. it can.
Even in fruit trees that generally form fruits after the flowers are scattered, such as cherries and peaches, such a phenomenon can be observed by appropriately applying the year-round production method of the present invention to varieties with shallow dormancy. The advent of early varieties enables off-season shipping.
 以下、実施例により本発明を更に詳細に説明するが、本発明の技術的範囲は以下の実施例に限定されるものではない。
〔供試材料〕
実施例1:5年生サザンハイブッシュ種の“エメラルド(低温要求時間:200~300hrs)”
実施例2:3年生サザンハイブッシュ種の“ビロキシー(低温要求時間:400hrs)”
実施例3:5年生サザンハイブッシュ種の“シャープブルー(低温要求時間:200~300hrs)”
実施例4:3年生サザンハイブッシュ種の“クーパー(低温要求時間:400~500hrs)”
比較例1:3年生ノーザンハイブッシュ種の“スパルタン(低温要求時間:1000hrs)”
比較例2:5年生ノーザンハイブッシュ種の“ウェイマウス(低温要求時間:950hrs)”
比較例3:5年生ラビットアイ種の“ティフブルー(低温要求時間:600~850hrs)”
比較例4:5年生ラビットアイ種の“ホームベル(低温要求時間:550~650hrs)”
 実施例1~4、比較例1~4の各品種1樹を、花芽が形成した後、2010年8月に、下記の条件の第1工程に処したところ、実施例1および比較例1,2については、10月であるにも拘らず、開花が見られた。
 次いで、開花した実施例1および比較例1,2、並びに、開花していない実施例2~4および比較例3,4を、2010年11月~2011年3月まで(約150日間)、下記の条件の第2工程に処した。
 さらに、開花および着果が続いた実施例1~4および比較例3,4を2011年3月から約1ヶ月間、下記条件の中間工程に処し、その後第2工程に戻した。
 なお、第1工程、第2工程および中間工程は、いずれも、東京農工大学農学部(府中市)の圃場で行った。
<第1工程>
 昼間の温度が30~35℃になるように設定。
 光強度および日長は自然条件とした(本実験中、光強度が100~1000μmol・m−2・s−1PPFDの約13時間(9月)~約14時間(8月)明期の日長条件であった)。
<第2工程>
 夜間の最低温度が10℃以下にならないように設定。相対湿度30~90%。
 光強度が100~1000μmol・m−2・s−1PPFD程度の自然光に加えて20~130μmol・m−2・s−1PPFDの人工光を日の出前1~2時間と日の入り後1~2時間の計2~4時間照射して、約15~16時間明期、約8~9時間暗期の長日条件とした。
 上記人工光については、高圧ナトリウムランプおよびメタハライドランプ(400nm以下750nm以上の波長域も含む)を用いた。
<中間工程>
 温度を10~30℃、相対湿度を30~90%に設定。
 光強度および日長は自然条件とした(本実験中、光強度が100~1000μmol・m−2・s−1PPFDの約12時間明期、約12時間暗期の日長条件であった。)
 実施例1~4、比較例1~4の開花時期、収穫時期(成熟期間)、得られた果実の外観と着色の状況などについて、それぞれ肉眼で観察し、結果を表1に示す。
 表1中の“春季に開花した果実”とは、通常のライフサイクル下で春季(2010年4月)に開花し、同年6月に収穫したブルーベリー果実(第1工程も第2工程も処していない果実)を指す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-I000002
〔樹性および新梢の生長〕
 実施例1および比較例1,2のブルーベリーについて、2010年11月(第2工程を始めて約3日目)と2011年3月(第2工程を始めて約120日目)の樹体の様子を、図5,6に示す。
 図5(11月)、図6(3月)に示すように、第2工程に移ったばかりの11月の樹性は、いずれのブルーベリーも、通常のライフサイクル下で開花時期に相当する春季と同様であったが、比較例1,2については、3月になると部分的に落葉が生じてしまった。一方、実施例1は、3月になっても、新梢の生長はもとより、連続した開花も見られ、結実量も多かった。
〔果実品質〕
 実施例1および比較例1,2のブルーベリーについて、2010年12月(第2工程を始めて約40~50日目)と2011年3月(第2工程を始めて約120日目)に収穫した果実に関し、それぞれ、(A)1果重(1果当たりの重さ)、(B)硬度(果実硬度、果皮硬度、果肉硬度)、(C)全アントシアニン含量、(D)糖度(%)、(E)酸度(%)を測定した。結果を表2,3に示す。なお、表2,3中の数値は、果実9ヶの測定値の平均値である。
 また、通常のライフサイクル下で収穫される果実(第1工程も第2工程も処していない果実)と比較するために、2010年6月に収穫したブルーベリー果実の測定結果を併せて、表2,3に示す。
 (B)硬度については、物性測定器(レオアナライザー)にて、(C)全アントシアニン含量(ABS値)は分光光度計にて測定した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 (A)1果重:実施例1のブルーベリーは、6月、12月、3月に大きな差は無かったが、比較例1,2は、3月の果実が6月より小さかった(表2)。
 (B)硬度:実施例1および比較例1,2のいずれも、6月のものと比べると、12月や3月に収穫されたものの方が、果実、果皮、果肉において高い傾向にあった(表2)。
 (C)全アントシアニン含量:実施例1および比較例1,2のいずれも、大きな差は無かった(表3)。
 (D)糖度:実施例1のブルーベリーでは、12月のものが若干低かったが、3月になると糖の増加がみられた。比較例1,2では、12月のものが一番高く、3月になると低下してしまった(表3)。
 (E)酸度:比較例1は全期間で差が無かった。実施例1および比較例2では、12月のものが若干高くなったが、3月になると減少した(表3)。
 以上のように、実施例1のブルーベリーでは、翌春(第2工程を始めて約120日目)になっても、樹性および新梢の生長が続き、連続的な開花と結実とが見られ、12月に収穫した果実も、3月に収穫した果実も、正常に結実しており、その果実品質も著しく劣ってはいなかった。
 これに対し、比較例1,2のブルーベリーでは、翌春になると、シュートの一部で落葉が生じてしまった。その頃の果実品質は、著しく劣るほどではなかったが、果重や糖度の低下が見られるものであった。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, the technical scope of this invention is not limited to a following example.
[Sample materials]
Example 1: "Emerald (low temperature requirement time: 200 to 300 hrs)" of 5th grade Southern High Bush
Example 2: “Biloxy (low temperature requirement time: 400 hrs)” of a third grade Southern High Bush species
Example 3: "Sharp blue (low temperature requirement time: 200 to 300 hrs)" of 5th grade Southern High Bush
Example 4: “Cooper (low temperature requirement time: 400 to 500 hrs)” of a grade 3 Southern High Bush
Comparative Example 1: “Spartan (low temperature requirement time: 1000 hrs)” of a grade 3 Northern High Bush
Comparative Example 2: “Weymouth (low temperature requirement time: 950 hrs)” of 5th grade Northern High Bush
Comparative Example 3: “Tiff Blue (low temperature requirement time: 600 to 850 hrs)” of 5th grade rabbit eye species
Comparative example 4: “Home bell (low temperature required time: 550 to 650 hrs)” of 5th grade rabbit eye species
Each tree of each cultivar of Examples 1 to 4 and Comparative Examples 1 to 4 was subjected to the first step under the following conditions in August 2010 after flower buds were formed. As for 2, flowering was seen despite being in October.
Subsequently, Example 1 and Comparative Examples 1 and 2 that were flowering, and Examples 2 to 4 and Comparative Examples 3 and 4 that were not flowering were from November 2010 to March 2011 (about 150 days), The second step was performed under the above conditions.
Further, Examples 1 to 4 and Comparative Examples 3 and 4 that continued to flower and settled were subjected to an intermediate step under the following conditions for about one month from March 2011, and then returned to the second step.
The first step, the second step, and the intermediate step were all carried out in the field of Tokyo University of Agriculture and Technology (Fuchu City).
<First step>
The daytime temperature is set to 30 to 35 ° C.
Light intensity and day length were natural conditions (during this experiment, the light intensity was about 13 hours (September) to about 14 hours (August) when the light intensity was 100 to 1000 μmol · m −2 · s −1 PPFD. It was a long condition).
<Second step>
Set so that the minimum night temperature does not fall below 10 ° C. Relative humidity 30-90%.
In addition the light intensity to 100 ~ 1000μmol · m -2 · s -1 PPFD about natural light 20 ~ 130μmol · m -2 · s -1 PPFD of artificial light before sunrise 1-2 hours and 1-2 hours after sunset These were irradiated for a total of 2 to 4 hours, and the conditions were long days of about 15 to 16 hours light period and about 8 to 9 hours dark period.
For the artificial light, a high-pressure sodium lamp and a metahalide lamp (including a wavelength region of 400 nm or less and 750 nm or more) were used.
<Intermediate process>
Set temperature to 10-30 ° C and relative humidity to 30-90%.
The light intensity and the day length were natural conditions (during this experiment, the light intensity was a day length condition of about 12 hours light period and about 12 hours dark period of 100 to 1000 μmol · m −2 · s −1 PPFD. )
The flowering time, harvest time (maturity period), appearance and coloring of the obtained fruit, etc. were observed with naked eyes in Examples 1 to 4 and Comparative Examples 1 to 4, and the results are shown in Table 1.
The “fruits that bloomed in the spring” in Table 1 are blueberry fruits that bloomed in the spring (April 2010) under the normal life cycle and were harvested in June of the same year (both the first and second steps). No fruit).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-I000002
[Tree growth and growth of new treetops]
About the blueberries of Example 1 and Comparative Examples 1 and 2, the state of the trees in November 2010 (about 3 days after starting the second step) and March 2011 (about 120 days after starting the second step) 5 and 6.
As shown in FIG. 5 (November) and FIG. 6 (March), the tree structure in November, which has just moved to the second step, is the same as the spring season corresponding to the flowering time under the normal life cycle. Although it was the same, about Comparative Examples 1 and 2, the fallen leaves partially occurred in March. On the other hand, in Example 1, continuous flowering was observed as well as the growth of new shoots even in March, and the amount of fruit set was also large.
[Fruit quality]
Fruits harvested in December 2010 (about 40 to 50 days after starting the second step) and March 2011 (about 120 days after starting the second step) for the blueberries of Example 1 and Comparative Examples 1 and 2 (A) 1 fruit weight (weight per fruit), (B) hardness (fruit hardness, peel hardness, flesh hardness), (C) total anthocyanin content, (D) sugar content (%), ( E) Acidity (%) was measured. The results are shown in Tables 2 and 3. In addition, the numerical value in Table 2, 3 is an average value of the measured value of nine fruits.
Moreover, in order to compare with the fruit harvested under a normal life cycle (the fruit which did not process the 1st process and the 2nd process), together with the measurement result of the blueberry fruit harvested in June, 2010, Table 2 , 3.
(B) Hardness was measured with a physical property measuring instrument (Rheoanalyzer), and (C) total anthocyanin content (ABS value) was measured with a spectrophotometer.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
(A) 1 fruit weight: Although the blueberry of Example 1 did not have a big difference in June, December, and March, as for Comparative Examples 1 and 2, the fruit of March was smaller than June (Table 2). ).
(B) Hardness: In both Example 1 and Comparative Examples 1 and 2, those harvested in December or March tended to be higher in fruits, pericarp, and flesh than in June. (Table 2).
(C) Total anthocyanin content: There was no big difference in any of Example 1 and Comparative Examples 1 and 2 (Table 3).
(D) Sugar content: The blueberries in Example 1 were slightly lower in December but increased in March. In Comparative Examples 1 and 2, the value in December was the highest and decreased in March (Table 3).
(E) Acidity: Comparative Example 1 showed no difference over the entire period. In Example 1 and Comparative Example 2, the value in December was slightly higher, but decreased in March (Table 3).
As described above, in the blueberry of Example 1, even in the next spring (about 120 days after the second step), the tree nature and the growth of new shoots continue, and continuous flowering and fruiting are seen. The fruit harvested in December and the fruit harvested in March were fruiting normally, and the fruit quality was not significantly inferior.
On the other hand, in the blueberries of Comparative Examples 1 and 2, in the next spring, defoliation occurred in part of the shoot. The fruit quality at that time was not significantly inferior, but a decrease in fruit weight and sugar content was observed.
 本発明のブルーベリーの生産方法によって、収穫開始期が早まるばかりか、1品種で長期収穫が可能となる(最大7ヶ月)。
 したがって、高値取引市場がありながら、需要に対する供給不足のブルーベリー栽培にとって、オフシーズンの出荷、すなわち周年出荷が実現され、ブルーベリーの自給率の向上も期待できるものである。
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。
The blueberry production method of the present invention not only accelerates the harvest start period, but also enables long-term harvest with one variety (up to 7 months).
Therefore, off-season shipments, that is, year-round shipments, can be expected for blueberry cultivation with a shortage of supply in spite of a high-price trading market, and an improvement in the self-sufficiency rate of blueberries can be expected.
All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Claims (12)

  1. 低温要求時間が100~500時間であるブルーベリーの花芽形成後、明期の温度を休眠導入温度よりも高温の条件下とする第1工程と、
     開花後、休眠導入温度以下の温度条件、上記第1工程における明期よりも長い明期とする長日条件且つ加湿条件とする第2工程と、
     を含むことを特徴とするブルーベリーの生産方法。
    After the formation of blueberry flower buds having a low temperature requirement of 100 to 500 hours, the first step is to set the temperature of the light period higher than the dormancy introduction temperature;
    After flowering, a temperature condition below the dormancy induction temperature, a second step that is a long-day condition and a humidifying condition that is a light period longer than the light period in the first step, and
    A method for producing blueberries, comprising:
  2. 上記第1工程は、明期の温度を30~35℃とすることを特徴とする請求項1記載の生産方法。 The production method according to claim 1, wherein in the first step, the temperature of the light period is set to 30 to 35 ° C.
  3. 上記第1工程は、明期を12~14時間とし、暗期を10~12時間とする日長条件とすることを特徴とする請求項1記載の生産方法。 2. The production method according to claim 1, wherein the first step is a day length condition in which the light period is 12 to 14 hours and the dark period is 10 to 12 hours.
  4. 上記第1工程の明期における光強度を100~1000μmol・m−2・s−1PPFDとすることを特徴とする請求項1記載の生産方法。 2. The production method according to claim 1, wherein the light intensity in the light period of the first step is 100 to 1000 μmol · m −2 · s −1 PPFD.
  5. 上記第2工程は、明期を15~16時間とし、暗期を8~9時間とする長日条件とすることを特徴とする請求項1記載の生産方法。 2. The production method according to claim 1, wherein the second step is a long-day condition in which the light period is 15 to 16 hours and the dark period is 8 to 9 hours.
  6. 上記第2工程は、明期及び暗期における温度を10~30℃とすることを特徴とする請求項1記載の生産方法。 The production method according to claim 1, wherein the second step sets the temperature in the light period and dark period to 10 to 30 ° C.
  7. 上記第2工程では、相対湿度を30~90%とする加湿条件とすることを特徴とする請求項1記載の生産方法。 2. The production method according to claim 1, wherein in the second step, humidification conditions are set such that the relative humidity is 30 to 90%.
  8. 上記第2工程における明期の光強度を、上記第1工程における明期の光強度よりも弱くすることを特徴とする請求項1記載の生産方法。 2. The production method according to claim 1, wherein the light intensity of the light period in the second step is made lower than the light intensity of the light period in the first step.
  9. 上記第2工程の明期における光強度を20~1000μmol・m−2・s−1PPFDとすることを特徴とする請求項1記載の生産方法。 2. The production method according to claim 1, wherein the light intensity in the light period of the second step is 20 to 1000 μmol · m −2 · s −1 PPFD.
  10. 上記第2工程の期間中に実施され、第2工程の長日条件において明期をより短くし、暗期を長くする日長条件とする中間工程を更に含むことを特徴とする請求項1記載の生産方法。 2. The method according to claim 1, further comprising an intermediate step that is performed during the second step and has a day length condition that shortens the light period and lengthens the dark period in the long day condition of the second step. Production method.
  11. 上記中間工程では、日長条件以外の条件を上記第2工程の条件と同じに設定することを特徴とする請求項10記載の生産方法。 The production method according to claim 10, wherein in the intermediate process, conditions other than the day length condition are set to be the same as the conditions in the second process.
  12.  請求項1乃至11記載の生産方法により生産され、花芽、花及び果実が同時に存在することを特徴とする連続開花性ブルーベリー。 A continuous flowering blueberry produced by the production method according to claim 1, wherein flower buds, flowers and fruits are present simultaneously.
PCT/JP2012/064249 2011-05-25 2012-05-25 Method for producing blueberry fruits, and continuously flowering blueberry plant obtained thereby WO2012161351A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013516478A JP5717111B2 (en) 2011-05-25 2012-05-25 Blueberry production method and continuous flowering blueberry obtained by the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011116908 2011-05-25
JP2011-116908 2011-05-25

Publications (1)

Publication Number Publication Date
WO2012161351A1 true WO2012161351A1 (en) 2012-11-29

Family

ID=47217410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064249 WO2012161351A1 (en) 2011-05-25 2012-05-25 Method for producing blueberry fruits, and continuously flowering blueberry plant obtained thereby

Country Status (3)

Country Link
JP (1) JP5717111B2 (en)
TW (1) TW201300006A (en)
WO (1) WO2012161351A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007988A (en) * 2012-06-28 2014-01-20 Tokyo Univ Of Agriculture & Technology Plant cultivation system and plant cultivation method using the same
CN104054547A (en) * 2014-06-19 2014-09-24 朱姝杰 Cultivation method for blueberry ripening in winter
WO2014156939A1 (en) 2013-03-25 2014-10-02 国立大学法人東京農工大学 Plant cultivation method
CN104170609A (en) * 2013-05-25 2014-12-03 贵州瑞蓝果业科技发展有限责任公司 High-quality blueberry seedling cultivation technology
JP2016045091A (en) * 2014-08-22 2016-04-04 三井金属計測機工株式会社 Nondestructive measurement device and nondestructive measurement method of anthocyanin content in fruit and vegetable
JP2016165302A (en) * 2016-05-17 2016-09-15 国立大学法人東京農工大学 Plant cultivation system, and plant cultivation method using plant cultivation system
JP2018042476A (en) * 2016-09-12 2018-03-22 国立大学法人東京農工大学 Cultivation method of fruit-harvesting plant
CN115053741A (en) * 2022-06-24 2022-09-16 辽宁省果树科学研究所 Production and cultivation method of 'twigs' of blueberries

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110357944B (en) * 2019-04-15 2023-03-14 吉林省普蓝高科技有限公司 Polypeptide capable of promoting flowering of blueberries and application method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003070357A (en) * 2001-08-31 2003-03-11 Tokai Univ Method for graft breeding of blueberry using vaccinium bracteatum belonging genus vaccinium of family ericaceae as stock
JP5177349B2 (en) * 2007-03-12 2013-04-03 国立大学法人 宮崎大学 Raising seedlings
JP5019379B2 (en) * 2007-09-14 2012-09-05 中国電力株式会社 Cultivation soil and cultivation method for cuttings of blueberries

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ISAO OGIWARA: "Shuki Kaikasei Blueberry no Kaika Tokusei to Kajitsu no Hinshitsu", HORTICULTURAL RESEARCH (JAPAN), vol. 10, 20 March 2011 (2011-03-20), pages 333 *
YU-HONG YE: "Studies on the Forcing in Blueberry : Influences of the Onset of Forcing, Cultivar, Gibberellin Treatment and Hand Pollination on Harvesting Time, Yield and Berry Quality of Blueberry(l)", JOURNAL OF THE JAPANESE SOCIETY OF AGRICULTURAL TECHNOLOGY MANAGEMENT, vol. 10, no. 2, 2003, pages 81 - 87 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007988A (en) * 2012-06-28 2014-01-20 Tokyo Univ Of Agriculture & Technology Plant cultivation system and plant cultivation method using the same
WO2014156939A1 (en) 2013-03-25 2014-10-02 国立大学法人東京農工大学 Plant cultivation method
JPWO2014156939A1 (en) * 2013-03-25 2017-02-16 国立大学法人東京農工大学 Plant cultivation method
US10076083B2 (en) 2013-03-25 2018-09-18 National University Corporation Tokyo University Of Agriculture And Technology Plant cultivation method
CN104170609A (en) * 2013-05-25 2014-12-03 贵州瑞蓝果业科技发展有限责任公司 High-quality blueberry seedling cultivation technology
CN104054547A (en) * 2014-06-19 2014-09-24 朱姝杰 Cultivation method for blueberry ripening in winter
JP2016045091A (en) * 2014-08-22 2016-04-04 三井金属計測機工株式会社 Nondestructive measurement device and nondestructive measurement method of anthocyanin content in fruit and vegetable
JP2016165302A (en) * 2016-05-17 2016-09-15 国立大学法人東京農工大学 Plant cultivation system, and plant cultivation method using plant cultivation system
JP2018042476A (en) * 2016-09-12 2018-03-22 国立大学法人東京農工大学 Cultivation method of fruit-harvesting plant
CN115053741A (en) * 2022-06-24 2022-09-16 辽宁省果树科学研究所 Production and cultivation method of 'twigs' of blueberries

Also Published As

Publication number Publication date
JPWO2012161351A1 (en) 2014-07-31
JP5717111B2 (en) 2015-05-13
TW201300006A (en) 2013-01-01

Similar Documents

Publication Publication Date Title
JP5717111B2 (en) Blueberry production method and continuous flowering blueberry obtained by the method
JP6418697B2 (en) Plant cultivation method
JP5999552B2 (en) Plant cultivation system and plant cultivation method using the plant cultivation system
JP6795176B2 (en) How to grow plants
JP6296596B2 (en) Strawberry cultivation method
CN108464202B (en) South-breeding north-breeding method for strawberry plug seedlings
JP3878643B2 (en) Plant cultivation method
Takeda et al. Rotating cross-arm trellis technology for blackberry production
CN110731221B (en) Method for branching oranges in Wo mode
KR101123199B1 (en) methods for control of flowering, shortening the growing period of ginseng plantspanax ginseng C.A.Meyer
CN101919334A (en) Method for enhancing survival rate of seedling after cutting
JP6086414B2 (en) Plant cultivation system and plant cultivation method using the plant cultivation system
KR101870813B1 (en) Method for enhancing rooting and growth of &#39;Maehyang&#39; strawberry rooted cutting using over head irrigation or fog irrigation in summer season
CN109997541A (en) A kind of seedling grafting management method
WO2022017326A1 (en) Method for extending flowering periods of non-bulbous herbaceous flowers in plant factory
KR101352368B1 (en) Method for gardening phyllostachys nigra munro as landscape tree use for raw material of bamboo leaves, and landscape tree produced thereby
CN112166928A (en) Method for adjusting custard apple producing period
CN106613690B (en) Management method of walnut tree after grafting
US20190059313A1 (en) Methods for producing a standard form Hydrangea plants and cuttings thereof
KR102573495B1 (en) Method for increasing production of paprica
CN115486335B (en) Tomato rapid propagation and generation adding method
Pisciotta et al. Table-Grape Cultivation in Soil-Less Systems: A Review. Horticulturae 2022, 8, 553
CN108617430B (en) Breeding method of cold-resistant ornamental Stephania delavayi seedlings
Cocco et al. Desenvolvimento e produtividade do morangueiro influenciados pelo diâmetro da coroa e período de crescimento de mudas
JP2024031532A (en) How to grow strawberries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789663

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013516478

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12789663

Country of ref document: EP

Kind code of ref document: A1