WO2012161277A1 - 超電導限流器用の超電導素子、超電導限流器用の超電導素子の製造方法および超電導限流器 - Google Patents

超電導限流器用の超電導素子、超電導限流器用の超電導素子の製造方法および超電導限流器 Download PDF

Info

Publication number
WO2012161277A1
WO2012161277A1 PCT/JP2012/063374 JP2012063374W WO2012161277A1 WO 2012161277 A1 WO2012161277 A1 WO 2012161277A1 JP 2012063374 W JP2012063374 W JP 2012063374W WO 2012161277 A1 WO2012161277 A1 WO 2012161277A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting
layer
metal fine
fine particle
current limiter
Prior art date
Application number
PCT/JP2012/063374
Other languages
English (en)
French (fr)
Inventor
智裕 中山
偉銘 周
甫 笠原
健吾 中尾
章文 中嶋
松井 正和
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to EP12789945.8A priority Critical patent/EP2717342B9/en
Priority to JP2013516444A priority patent/JP6046036B2/ja
Priority to SG2013086194A priority patent/SG195087A1/en
Publication of WO2012161277A1 publication Critical patent/WO2012161277A1/ja
Priority to US14/088,146 priority patent/US20140249034A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/30Devices switchable between superconducting and normal states
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • H02H9/023Current limitation using superconducting elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0744Manufacture or deposition of electrodes

Definitions

  • the present invention relates to a superconducting element for a superconducting current limiter, a method for manufacturing a superconducting element for a superconducting current limiter, and a superconducting current limiter.
  • a superconducting element used in a superconducting current limiter a superconducting element in which an intermediate layer and a superconducting layer are formed on a substrate and electrodes are connected to the superconducting layer has been used.
  • a method of fixing the electrode a method of fixing the electrode using solder containing indium, tin or the like on the superconducting layer is disclosed.
  • Japanese Patent Application Laid-Open No. 05-251761 discloses a method of fixing current leads on a superconducting film using indium solder.
  • Japanese Patent Application Laid-Open No. 2003-298129 discloses a superconducting film provided on a substrate, an electrode having a laminated structure of an Au layer and an Ag layer provided on the superconducting film, and a superconducting film with In, There is disclosed a superconducting member having an InAg alloy, Sn or a wire containing solder connected with a SnAg alloy.
  • Japanese Patent Laid-Open No. 11-204845 discloses a method of interposing a conductive bump such as an In bump when bonding a conductive thin film and an electrode thin film, and performing electrical and mechanical bonding with the conductive bump. It is disclosed.
  • the electrodes are bonded by soldering or crimping using indium or the like.
  • they are quenched when an overcurrent flows (superconducting state).
  • indium which is used for the purpose of stress relaxation during soldering and crimping, diffuses into the superconducting layer due to Joule heat generated during quenching, causing device destruction There was a problem.
  • the superconducting element for the superconducting current limiter changes from the superconducting state to the normal conducting state (resistor state) at the time of quenching, a large voltage is applied to the superconducting element that is in the normal conducting state, resulting in resistance.
  • a large amount of Joule heat is generated, the temperature of the superconducting element rises greatly, a temperature cycle with a large temperature change occurs, and film peeling occurs at the bonded portion between the electrode and the superconducting layer. Therefore, even when the electrodes are bonded without using a member such as indium, the superconducting element for the superconducting fault current limiter is required to have an electrode bonding structure having an adhesive force that can withstand the temperature cycle.
  • the present invention has been made in view of the above-mentioned facts, and a superconducting element for a superconducting current limiter in which the occurrence of film peeling is suppressed even by a temperature cycle during quenching, and a method of manufacturing the superconducting element for the superconducting current limiter
  • Another object of the present invention is to provide a superconducting current limiting device including a superconducting element for the superconducting current limiting device.
  • the surface roughness Ra of the surface on the substrate side in contact with the metal fine particle sintered layer is 100 nm or less
  • the metal fine particle sintered layer is The superconducting element for a superconducting fault current limiter according to ⁇ 1>, wherein the particle size of the metal fine particles to be formed is less than the surface roughness Ra.
  • the metal fine particle sintered layer is composed of single metal or alloy metal fine particles containing at least one selected from Ag, Au, Cu, and Pt.
  • the superconducting element for a superconducting fault current limiter according to any one of ⁇ 1> to ⁇ 3>, further comprising a metal protective film between the superconducting layer and the metal fine particle sintered layer.
  • RE is a single rare earth element or a plurality of rare earth elements, and ⁇ is an oxygen non-stoichiometric amount
  • the superconducting element for a superconducting fault current limiter according to any one of the above ⁇ 1> to ⁇ 4>, comprising a superconductor as a main component.
  • the substrate is a sapphire substrate, and the intermediate layer includes at least one selected from CeO 2 and REMnO 3 (RE is a single rare earth element or a plurality of rare earth elements).
  • RE is a single rare earth element or a plurality of rare earth elements.
  • An intermediate layer forming step of forming an intermediate layer on the substrate, a superconducting layer forming step of forming a superconducting layer on the intermediate layer, and metal fine particles containing metal fine particles at least in part on the superconducting layer A metal fine particle film forming step for forming a film, an electrode connecting step for connecting an electrode to the superconducting layer through the metal fine particle film, and sintering the metal fine particles of the metal fine particle film to form a metal fine particle sintered layer
  • the surface roughness Ra of the surface in contact with the metal fine particle film of the layer adjacent to the metal fine particle film is adjusted to 100 nm or less, and the metal fine particle film forming step
  • ⁇ 10> The method according to any one of ⁇ 7> to ⁇ 9>, further including a metal protective film forming step of forming a metal protective film on the superconductive layer after the superconducting layer forming step and before the metal fine particle film forming step.
  • the superconducting layer forming step is represented by a composition formula REBa 2 Cu 3 O 7- ⁇ (RE is a single rare earth element or a plurality of rare earth elements, and ⁇ is an oxygen non-stoichiometric amount).
  • RE is a single rare earth element or a plurality of rare earth elements
  • is an oxygen non-stoichiometric amount.
  • the substrate is a sapphire substrate, and the intermediate layer forming step includes at least one selected from CeO 2 and REMnO 3 (RE is a single rare earth element or a plurality of rare earth elements).
  • RE is a single rare earth element or a plurality of rare earth elements.
  • a superconducting fault current limiter comprising: a superconducting current limiting element configured using the superconducting element described above and connected to the current introduction / exit section in the sealed container.
  • a superconducting element for a superconducting current limiter in which occurrence of film peeling due to a temperature cycle during quenching is suppressed a method of manufacturing a superconducting element for the superconducting current limiter, and a superconducting element for the superconducting current limiter A superconducting fault current limiter can be provided.
  • FIG. 2 is an image obtained by photographing the surface of the superconducting layer formed in Example 1.
  • FIG. 2 is an image obtained by photographing the surface of the metal protective film formed in Example 1.
  • FIG. 6 is a sectional view showing a sectional structure of a superconducting element formed in Comparative Example 2.
  • FIG. 1 is a schematic configuration diagram of a superconducting fault current limiter 10 according to an embodiment of the present invention.
  • the superconducting fault current limiter 10 uses a superconducting-normal state transitions (S / N transition) of a superconductor, and normally has zero resistance and an overcurrent exceeding a critical current flows. This is a device with high resistance and a function to suppress overcurrent.
  • the superconducting fault current limiter 10 includes a sealed container 12 that is sealed by closing a container body 12A with a lid 12B.
  • a refrigerator 14 is connected to the container body 12 ⁇ / b> A, and liquid nitrogen is introduced into the sealed container 12 from the refrigerator 14.
  • the lid 12B is connected to a current introduction / extraction portion 16 that introduces and flows out current from the outside to the inside of the sealed container 12.
  • the current introduction / extraction unit 16 is configured by a three-phase AC circuit, and specifically includes three current introduction units 16A and three current outflow units 16B corresponding thereto.
  • Each of the current introduction portion 16A and the current outflow portion 16B includes a conducting wire 18 that penetrates the lid 12B and extends in the vertical direction, and a cylindrical body 20 that covers the conducting wire 18.
  • One end of the conducting wire 18 of the current introduction portion 16A exposed to the outside is connected to one end of the corresponding conducting wire 18 of the current outflow portion 16B exposed to the outside via an external resistor 22 as a shunt resistor.
  • An element storage container 24 is supported on an end portion of each cylindrical body 20 inside the container main body 12A.
  • the element storage container 24 is built in the sealed container 12 and cooled to the inside by liquid nitrogen filled in the sealed container 12.
  • a current limiting unit 26 composed of a plurality of thin film superconducting elements 30 is incorporated.
  • the current limiting unit 26 is configured by three sets in which the thin film superconducting elements 30 are arranged in four rows and two columns.
  • This current limiting unit 26 is supported by the other end inside the conducting wire 18 of the current introducing portion 16A, the other end inside the conducting wire 18 of the current outflow portion 16B, and the support column 28, and is a three-phase alternating current.
  • the other end inside the conducting wire 18 of the current introducing portion 16A and the other end inside the conducting wire 18 of the current outflow portion 16B are electrically connected via the thin film superconducting element 30 so as to constitute a circuit. It is connected to the.
  • FIG. 2 is a diagram showing a cross-sectional structure of the thin film superconducting element 30 according to the embodiment of the present invention.
  • the thin film superconducting element 30 includes a superconducting thin film 100 having a laminated structure in which an intermediate layer 34, a superconducting layer 36, and a metal protective film 38 are sequentially formed on a substrate 32.
  • a pair of electrodes 44 that are electrically connected to the conductive wire 18 are disposed.
  • the electrodes 44 are disposed on the metal protective film 38 with the metal fine particle sintered layer 40 interposed therebetween. It is fixed.
  • a metal coat layer 42 is formed between the metal fine particle sintered layer 40 and the electrode 44.
  • the metal fine particle sintered layer 40 is a layer that is interposed between the superconducting layer 36 and the electrode 44 and connects the superconducting layer 36 and the electrode 44, and is adjacent to the superconducting layer 36 (in FIG. 2, a metal protective film 38. ) And the adjacent layer on the electrode 44 side (metal coat layer 42 in FIG. 2).
  • the metal fine particle sintered layer 40 is formed by sintering metal fine particles.
  • the superconducting state changes from the superconducting state to the normal conducting state (resistor state) at the time of quenching. Is generated in large quantities, and the temperature of the superconducting element is greatly increased (for example, there is a temperature change of about 100 ° C. from the temperature under liquid nitrogen ( ⁇ 196 ° C.)), and a temperature cycle with a large temperature change occurs. Therefore, even when an electrode is bonded to a superconducting element, a superconducting element used for a superconducting current limiter is required to have an electrode bonding structure having an adhesive force that can withstand the above temperature cycle.
  • a metal fine particle sintered layer 40 formed by sintering metal fine particles as a layer that is interposed between the superconductive layer 36 and the electrode 44 and connects the superconductive layer 36 and the electrode 44. It has.
  • Each of the adjacent layer on the superconducting layer 36 side (metal protective film 38 in FIG. 2) and the adjacent layer on the electrode 44 side (metal coat layer 42 in FIG. 2) has a strong adhesion to the metal fine particle sintered layer 40. Therefore, the occurrence of film peeling in the layer between the superconducting layer 36 and the electrode 44 due to the temperature cycle during quenching is suppressed.
  • the electrode 44 can be connected to the superconducting layer 36 without using a member that diffuses inside the superconducting layer such as indium. Further, element destruction caused by diffusion of indium or the like into the superconducting layer is prevented.
  • the superconducting layer 36 and the electrode 44 can be connected by a simple configuration in which the metal fine particle sintered layer 40 is interposed between the superconducting layer 36 and the electrode 44, the weight and volume of the superconducting element are reduced.
  • a superconducting fault current limiter requires a cooling mechanism to reduce the liquid nitrogen temperature. If the weight and volume of the superconducting element can be reduced, the arrangement of elements inside the cooling mechanism and the weight resistance of the cooling mechanism The degree of freedom in designing the cooling mechanism, such as the properties and the amount of liquid nitrogen to be injected, can be improved.
  • the particle size of the metal fine particles used for forming the metal fine particle sintered layer 40 is preferably 150 nm or less from the viewpoint that deterioration of device characteristics can be suppressed because sintering is possible at a low temperature. , 100 nm or less is particularly preferable because the low-temperature sinterability is further improved.
  • the particle diameter of the metal fine particles represents the number average particle diameter.
  • the particle diameter of the metal fine particles is generally measured by direct observation with an electron beam microscope or the like, and a value provided by a material manufacturer can be used.
  • silver nanoparticles manufactured by Harima Kasei If it is NPS, it is described as “average particle diameter 12 nm (particle diameter range 8 nm or more and 15 nm or less)”
  • the particle diameter of the metal fine particles is the surface of the layer adjacent to the metal fine particle sintered layer 40 of the layer adjacent to the metal fine particle sintered layer 40 (hereinafter simply referred to as “substrate adjacent layer”). It is preferable that the surface roughness is less than Ra.
  • substrate adjacent layer a metal protective film 38 as shown in FIG. 2 can be mentioned, but the superconductive layer 36 and the metal fine particle sintered layer 40 are adjacent to each other without the metal protective film 38. In this case, the adjacent layer on the substrate side becomes the superconducting layer 36.
  • the surface roughness Ra of the substrate-side adjacent layer is preferably 100 nm or less for the reason of improving the critical current value.
  • the metal fine particles before sintering enter the irregularities on the surface of the substrate side adjacent layer, and the metal fine particles are buried in the irregularities It is considered that the metal fine particle sintered layer 40 is formed. Therefore, it is presumed that a higher adhesion force was obtained by increasing the contact area between the metal fine particle sintered layer 40 and the substrate side adjacent layer.
  • the maximum particle diameter of the metal fine particles is more preferably less than the surface roughness Ra of the substrate side adjacent layer.
  • the maximum particle diameter of the metal fine particles refers to a maximum value measured by direct observation with an electron beam microscope or the like, or a maximum value provided by a material manufacturer.
  • the material of the said metal fine particle is not specifically limited,
  • the single metal or alloy containing at least 1 type chosen from Ag, Au, Cu, and Pt is mentioned.
  • Ag simple metal is preferable because the electrical resistance value is particularly low in the liquid nitrogen temperature region.
  • the thickness of the metal fine particle sintered layer 40 is not particularly limited, but is preferably 1 ⁇ m or more and 10 ⁇ m or less from the viewpoint of low contact resistance.
  • Electrode and metal coating layer Examples of the material of the pair of electrodes 44 include simple metals such as copper, gold, and silver, and conductive members such as alloys containing them. In addition, as a shape of the electrode 44, plate shape, mesh shape, block shape, etc. are mentioned. Further, from the viewpoint of the affinity between the electrode 44 and the metal fine particle component, a metal coat layer 42 mainly composed of a substance having an affinity for the metal fine particles is interposed between the electrode 44 and the metal fine particle sintered layer 40. Also good. Examples of the metal coat layer 42 include silver plating, and are formed by a conventionally known method. The thickness of the metal coat layer 42 is not particularly limited, but is preferably 1 ⁇ m or more and 5 ⁇ m or less from the viewpoint of adhesion between the electrode 44 and the metal coat layer 42.
  • the substrate 32 has a single crystal structure of metal oxide or ceramic.
  • As the shape of the substrate 32 various shapes can be adopted on the premise that there is a main surface on which the film for the superconducting layer 36 is formed, but a rectangular flat plate shape that is easy to handle is adopted. Is preferred.
  • substrate 32 is not specifically limited, For example, it is 1 mm.
  • Al 2 O 3 aluminum oxide, particularly sapphire
  • Zr, Y yttria stabilized zirconia
  • LaAlO 3 lanthanum aluminate
  • SrTiO 3 titanium Strontium acid
  • (La x Sr 1-x ) Al x Ta 1-x ) O 3 (lanthanum strontium tantalum aluminum oxide)
  • NdGaO 3 neodymium gallate
  • YAlO 3 yttrium aluminate
  • MgO manganesium oxide
  • TiO 2 titanium
  • BaTiO 3 barium titanate
  • ceramics include silicon carbide and graphite. Among these, it is preferable to employ a sapphire substrate from the viewpoint of high strength and thermal conductivity.
  • the intermediate layer 34 is a layer formed on the substrate 32 in order to achieve high in-plane orientation in the superconducting layer 36, and may be composed of a single layer film or a multilayer film.
  • the intermediate layer 34 is not particularly limited, but specifically, preferably includes at least one selected from CeO 2 and REMnO 3 .
  • RE is a single rare earth element or a plurality of rare earth elements such as Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu.
  • the film thickness of the intermediate layer 34 is not particularly limited, but is 20 nm, for example.
  • the superconducting layer 36 is formed on the intermediate layer 34 and is made of an oxide superconductor, preferably a copper oxide superconductor.
  • the copper oxide superconductor can be configured by combining these crystal materials.
  • RE in REBa 2 Cu 3 O 7- ⁇ is a single rare earth element or a plurality of rare earth elements such as Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu, Among these, Y is preferable because substitution with the Ba site does not occur and the superconducting transition temperature Tc is high.
  • is an oxygen nonstoichiometric amount, for example, 0 or more and 1 or less, and is preferably closer to 0 from the viewpoint of a high superconducting transition temperature.
  • the oxygen non-stoichiometric amount may be less than 0, that is, take a negative value when high-pressure oxygen annealing or the like is performed using an apparatus such as an autoclave.
  • PrBa 2 Cu 3 O 7- ⁇ in which RE is Pr has not been confirmed at present, but when the superconducting phenomenon can be confirmed by controlling the oxygen non-stoichiometric amount ⁇ in the future.
  • ⁇ of the crystal material other than REBa 2 Cu 3 O 7- ⁇ represents an oxygen non - stoichiometric amount, for example, 0 or more and 1 or less.
  • the superconducting layer 36 preferably contains the oxide superconductor represented by REBa 2 Cu 3 O 7- ⁇ as a main component.
  • the “main component” means that the content is the largest among the constituent components contained in the superconducting layer 36, and preferably has a content of 50% or more.
  • the film thickness of the superconducting layer 36 is not particularly limited, but is set to 200 nm, for example.
  • the surface roughness Ra of the contacting surface is preferably 100 nm or less, and more preferably 50 nm or less, from the viewpoint of improving the critical current value.
  • the surface roughness Ra is measured in a scanning range of 10 ⁇ m ⁇ 10 ⁇ m using a scanning probe microscope (SPM).
  • the following method can be exemplified.
  • a method (wet process) in which the coating solution is applied and sintered it is controlled by the solution concentration of the coating solution, the number of rotations of the substrate during spin coating, the sintering temperature, and the like.
  • a method (dry process) formed by a PLD (Pulse Laser Deposition) method, a CVD (Chemical Vapor Deposition) method, or the like it is controlled by a film forming speed, a raw material gas flow rate, a substrate temperature, and the like.
  • a method of physically creating irregularities on the surface of the formed superconducting layer 36 by using plasma or the like can also be mentioned.
  • a metal protective film 38 may be formed on the surface of the superconducting layer 36.
  • Examples of the material of the metal protective film 38 include single metals such as gold, silver, and copper, and conductive members such as alloys containing them.
  • the thickness of the metal protective film 38 is not particularly limited, but is preferably 100 nm or more and 300 nm or less from the viewpoint of protection from moisture in the atmosphere and withstand voltage design.
  • the surface roughness Ra of the surface of the metal protective film 38 in contact with the metal fine particle sintered layer 40 is as follows. Is preferably 100 nm or less, and more preferably 50 nm or less from the viewpoint of improving adhesion and improving the critical current value because the unevenness of the superconducting layer is transferred.
  • the surface roughness Ra is measured by the same method as the measurement of the surface roughness Ra in the superconducting layer. Further, as a method of controlling the surface roughness Ra of the metal protective film 38 within the above range, the surface roughness Ra of the superconducting layer 36 is controlled by the above method, and then the metal protective film 38 is controlled within the above film thickness range. Examples thereof include a method of controlling by forming, and a method of physically forming irregularities on the surface of the metal protective film 38 by plasma or the like after the metal protective film 38 is formed.
  • an intermediate layer forming step for forming an intermediate layer on the polished substrate 32 is performed.
  • the method for forming the intermediate layer 34 include PLD, CVD, MOCVD (Metal Organic Chemical Vapor Deposition), IBAD (Ion Beam Assisted Deposition), TFA-MOD (Tri Fluoro Acetates-Metal Organic Deposition), and sputtering.
  • electron beam evaporation can be used.
  • an electron beam evaporation method in that a highly efficient film formation can be realized.
  • the intermediate layer forming step for example, when an electron beam evaporation method is used, plasma is generated in oxygen of 1 ⁇ 10 ⁇ 2 Pa or more and 1 ⁇ 10 ⁇ 1 Pa or less, and the substrate 32 is heated to 700 ° C. or more. A film made of CeO 2 or the like is deposited on the substrate 32 in the range of 10 nm to 20 nm to form the intermediate layer 34.
  • a superconducting layer forming step is performed.
  • a method for forming (depositing) the superconducting layer 36 include a PLD method, a CVD method, an MOCVD method, a MOD method, and a sputtering method.
  • MOCVD method it is preferable to use the MOCVD method because it does not require high vacuum, can be formed on a substrate 32 having a large area and a complicated shape, and is excellent in mass productivity.
  • the MOD method it is preferable to use the MOD method in that a highly efficient film formation can be realized.
  • the superconducting layer forming step when the superconducting layer 36 made of YBCO is formed using, for example, the MOD method, first, a solution of an organic complex of yttrium, barium, and copper is applied onto the surface of the intermediate layer 34 by a spin coater. Form a body film. Then, the precursor film is temporarily fired at, for example, 300 ° C. or more and 600 ° C. or less in the air. After removing the organic solvent by calcination, the precursor film is subjected to main calcination at 700 ° C. or more and 900 ° C. or less to obtain a superconducting layer 36 composed of a YBCO oxide superconductor from the precursor film. Moreover, in this main baking, baking can be performed first in an inert atmosphere and can be switched to an oxygen atmosphere in the middle.
  • a metal protective film 38 made of a conductive member such as a gold-silver alloy is formed on the obtained superconducting layer 36.
  • Examples of the method for forming the metal protective film 38 include a sputtering method and a vacuum deposition method, and among these, the sputtering method is preferable.
  • a metal fine particle film is formed by a coating method using the liquid. Examples of the coating method of the coating solution include a screen printing method and an ink jet method.
  • the electrode 44 is temporarily connected onto the metal fine particle film.
  • the metal coat layer 42 is provided between the electrode 44 and the metal fine particle sintered layer 40, the metal coat layer 42 is previously formed on the electrode 44 by electrolytic plating before the electrode 44 is temporarily connected. Can do.
  • the metal fine particle sintered layer 40 is formed.
  • the sintering is preferably performed at a temperature of 350 ° C. or lower in an air atmosphere or an oxygen atmosphere from the viewpoint of suppressing deterioration of element characteristics of the superconducting layer 36 due to oxygen defect generation.
  • the superconducting element for the superconducting fault current limiter according to this embodiment is manufactured.
  • the intermediate layer 34 may be formed on the substrate 32 via another layer.
  • the metal protective film 38 and the metal coat layer 42 can be omitted as appropriate.
  • Example 1 -Formation of intermediate layer While heating a commercially polished R-plane sapphire substrate (Kyocera single-side polished sapphire substrate, size 210 mm x 30 mm x 1 mm) at 800 ° C, EB (electron beam) vapor deposition is used to form cerium oxide (CeO 2 ) Was deposited on a sapphire substrate by 15 nm to form an intermediate layer. During film formation, a small amount of oxygen was introduced so that the oxygen partial pressure was 5 ⁇ 10 ⁇ 2 Pa, and oxygen plasma was generated using RF.
  • EB electron beam
  • metal protective film made of a gold-silver alloy (Au-23 atm% Ag) was formed on the obtained superconducting layer to a film thickness of 300 nm by sputtering.
  • the surface roughness of the superconducting layer was transferred to the surface of the metal protective film, and the surface roughness Ra of the metal protective film was 20 nm.
  • photographed the surface of this metal protective film is shown to FIG. 3B.
  • metal fine particle film formation of metal fine particle sintered layer
  • a silver nanoparticle (Harima Kasei Co., Ltd., NPS, average particle diameter of 12 nm) was used as the metal fine particle, and a metal fine particle film was formed by a screen printing method.
  • sintering was performed at 230 ° C. in an oxygen atmosphere to form a metal fine particle sintered layer.
  • the thickness of the sintered metal fine particle sintered layer was found to be in the range of 9.7 to 10.4 ⁇ m as a result of measurement using a step gauge (CS-5000, manufactured by Mitutoyo Corporation). Thus, a superconducting element for adhesion evaluation was obtained.
  • Example 1 the metal fine particle sintered layer was changed to a silver vapor deposition film formed by vapor deposition of silver, and the adhesion evaluation was performed by the method described in Example 1 except that the sintering was not performed. A superconducting element was obtained.
  • the obtained superconducting element was cooled under liquid nitrogen, and then returned to room temperature, thereby giving a temperature change larger than the temperature cycle accompanied by the temperature change when quenching occurred. At that time, film peeling occurred between the silver deposited film and the metal protective film.
  • a superconducting element shown in FIG. 4 was produced in which the electrode and the superconducting thin film were pressure-bonded using indium. Specifically, the processes up to “formation of the metal protective film” in Example 1 are similarly performed, and the substrate 132 (sapphire), the intermediate layer 134 (cerium oxide), the superconducting layer 136 (YBCO), and the metal protective film 138 ( A superconducting thin film 200 including a gold-silver alloy was formed. Next, as shown in FIG. 4, the end portion of the superconducting thin film 200 was sandwiched between the In block 140 and the copper block as the electrode 144, and the copper block was fixed to the superconducting thin film 200 by pressing to obtain a superconducting element.
  • Examples 2 to 15 A superconducting thin film having metal fine particles having different average particle diameters and metal protective films having different surface roughness Ra was prepared, and a superconducting element was formed in the same manner as in Example 1 except that.
  • superconducting elements of Examples 2 to 15 were formed by changing the average particle diameter of the used metal fine particles and the surface roughness Ra of the metal protective film.
  • the superconducting elements of Examples 1 to 15 and Comparative Example 1 thus obtained were evaluated for adhesion and critical current value.
  • Evaluation criteria were set as follows according to the state of film peeling. -A: No film peeling occurred-B: Less than 5% area of peeled film-C: Less than 5% area less than 10%-D: Film peeled area Area of 10% or more
  • Evaluation criteria for critical current values were set as follows. -A: 100A or more-B: 80A or more and less than 100A-C: 50A or more and less than 80A-D: Less than 50A

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

 基板32と、基板32上に形成された中間層34と、中間層34上に形成された超電導層36と、超電導層36に接続される電極44と、を有し、超電導層36と電極44との間に介在して超電導層36と電極44とを接続する金属微粒子焼結層40を有する超電導限流器用の超電導素子。

Description

超電導限流器用の超電導素子、超電導限流器用の超電導素子の製造方法および超電導限流器
 本発明は、超電導限流器用の超電導素子、超電導限流器用の超電導素子の製造方法および超電導限流器に関する。
 従来から、超電導限流器に用いられる超電導素子として、基板上に中間層と超電導層とを形成し、且つ該超電導層に電極を接続した超電導素子が用いられている。
 ここで、電極を固定する方法として、超電導層上にインジウムやスズ等を含むはんだを用いて電極を固定する方法が開示されている。
 例えば特開平05-251761号公報には、インジウムはんだを用いて超電導膜上に電流リードを固定する方法が開示されている。
 また特開2003-298129号公報には、基材上に設けられた超電導膜と、超電導膜上に設けられた、Au層とAg層の積層構造からなる電極と、超電導膜に対してIn、InAg合金、SnまたはSnAg合金を含むはんだを介して接続される線材とを有する超電導部材が開示されている。
 更に特開2009-211899号公報には、超電導導体に電極をはんだ接合する際に、超電導導体と支持部材との間の接着部を導電性樹脂の加熱硬化温度より低い温度に冷却しながらはんだ付けする方法が開示されている。
 また、電極を導電性薄膜に固定する方法として、電極部にインジウムを用いて導電性薄膜を圧着する方法が開示されている。
 例えば特開平11-204845号公報には、導電性薄膜と電極用薄膜の接合にあたって、Inバンプなどの導電性バンプを介在させ、この導電性バンプで電気的および機械的な接合を実施する方法が開示されている。
 従来の超電導限流器用の超電導素子では、電極の接着はインジウム等を用いたはんだや圧着によって行われていたが、超電導限流器用の超電導素子では、過電流が流れた際にクエンチ(超電導状態から常電導状態への切り替わり)を意図的に起こすため、はんだや圧着時の応力緩和を目的として用いられているインジウム等がクエンチ時に発生するジュール熱によって超電導層内部へ拡散し、素子破壊が生じるという問題があった。
 そのため、インジウム等の超電導層内部に拡散する部材を用いずに電極を接着させる方法が求められている。しかし、超電導限流器用の超電導素子ではクエンチの際に超電導状態から常電導状態(抵抗体の状態)へ変化するため、常電導状態となった超電導素子に大電圧が印加されることで抵抗によるジュール熱が大量に発生し、超電導素子の温度が大きく上昇し、温度変化の大きな温度サイクルが生じ、電極と超電導層の接着部分で膜剥れが生じてしまう。そのため、インジウム等の部材を用いずに電極を接着させる場合にも、超電導限流器用の超電導素子においては、上記温度サイクルに耐え得るような密着力を有する電極接着構造が求められる。
 本発明は上記事実に鑑みてなされたものであり、クエンチの際の温度サイクルによっても膜剥れの発生が抑制された超電導限流器用の超電導素子、該超電導限流器用の超電導素子の製造方法、該超電導限流器用の超電導素子を備えた超電導限流器を提供することを目的とする。
 本発明の上記課題は下記の手段によって解決された。
<1>基板と、前記基板上に形成された中間層と、前記中間層上に形成された超電導層と、前記超電導層に接続される電極と、を有し、前記超電導層と前記電極との間に介在して前記超電導層と前記電極とを接続する金属微粒子焼結層を有する超電導限流器用の超電導素子。
<2>前記金属微粒子焼結層に隣接する層のうち前記基板側の層の、前記金属微粒子焼結層に接する表面の表面粗さRaが100nm以下であり、且つ前記金属微粒子焼結層を形成する金属微粒子の粒子径が前記表面粗さRa未満である、前記<1>に記載の超電導限流器用の超電導素子。
<3>前記金属微粒子焼結層が、Ag,Au,Cu,およびPtのうちから選ばれる少なくとも一種を含む単体金属または合金の金属微粒子から構成されている、前記<1>または<2>に記載の超電導限流器用の超電導素子。
<4>前記超電導層と前記金属微粒子焼結層との間に金属保護膜を有する、前記<1>~<3>の何れか1項に記載の超電導限流器用の超電導素子。
<5>前記超電導層が、組成式REBaCu7-δ(REは単一の希土類元素または複数の希土類元素であり、前記δは酸素不定比量である)で表される酸化物超電導体を主成分として含有する、前記<1>~<4>の何れか1項に記載の超電導限流器用の超電導素子。
<6>前記基板は、サファイア基板であり、前記中間層は、CeOおよびREMnO(REは単一の希土類元素または複数の希土類元素である)から選ばれる少なくとも1つを含んで構成される、前記<5>に記載の超電導限流器用の超電導素子。
<7>基板上に中間層を形成する中間層形成工程と、前記中間層上に超電導層を形成する超電導層形成工程と、前記超電導層上の少なくとも一部に、金属微粒子を含有する金属微粒子膜を形成する金属微粒子膜形成工程と、前記金属微粒子膜を介して前記超電導層に電極を接続する電極接続工程と、前記金属微粒子膜の前記金属微粒子を焼結し金属微粒子焼結層を形成する焼結工程と、をこの順に有する超電導限流器用の超電導素子の製造方法。
<8>前記金属微粒子膜形成工程より前の段階において、前記金属微粒子膜に隣接する層の金属微粒子膜に接する表面の表面粗さRaが100nm以下に調整され、且つ前記金属微粒子膜形成工程にて用いる前記金属微粒子の粒子径が前記表面粗さRa未満である、前記<7>に記載の超電導限流器用の超電導素子の製造方法。
<9>前記金属微粒子膜形成工程にて用いる前記金属微粒子が、Ag,Au,Cu,およびPtのうちから選ばれる少なくとも一種を含む単体金属または合金の微粒子である、前記<7>または<8>に記載の超電導限流器用の超電導素子の製造方法。
<10>前記超電導層形成工程の後、前記金属微粒子膜形成工程の前に、前記超電導層上に金属保護膜を形成する金属保護膜形成工程を有する、前記<7>~<9>の何れか1項に記載の超電導限流器用の超電導素子の製造方法。
<11>前記超電導層形成工程は、組成式REBaCu7-δ(REは単一の希土類元素または複数の希土類元素であり、前記δは酸素不定比量である)で表される酸化物超電導体を主成分として含有する超電導層を形成する、前記<7>~<10>の何れか1項に記載の超電導限流器用の超電導素子の製造方法。
<12>前記基板は、サファイア基板であり、前記中間層形成工程は、CeOおよびREMnO(REは単一の希土類元素または複数の希土類元素である)から選ばれる少なくとも1つを含んで構成される中間層を形成する、前記<11>に記載の超電導限流器用の超電導素子の製造方法。
<13>内部に液体窒素が充填される密閉容器と、前記密閉容器の外部から内部へ電流を導入して流出する電流導入出部と、前記<1>~<6>の何れか1項に記載の超電導素子を用いて構成され、前記密閉容器内で前記電流導入出部に接続される超電導限流素子と、を備える超電導限流器。
 本発明によれば、クエンチの際の温度サイクルによる膜剥れの発生が抑制された超電導限流器用の超電導素子、該超電導限流器用の超電導素子の製造方法、該超電導限流器用の超電導素子を備えた超電導限流器を提供することができる。
本発明の実施形態に係る超電導限流器の概略構成図である。 本発明の実施形態に係る超電導素子の断面構造を示す断面図である。 実施例1で形成した超電導層の表面を撮影した画像である。 実施例1で形成した金属保護膜の表面を撮影した画像である。 比較例2において形成した超電導素子の断面構造を示す断面図である。
 以下、添付の図面を参照しながら、本発明の実施形態に係る超電導限流器用の超電導素子、その製造方法および超電導限流器について具体的に説明する。なお、図中、同一または対応する機能を有する部材(構成要素)には同じ符号を付して適宜説明を省略する。
<超電導限流器>
 図1は、本発明の実施形態に係る超電導限流器10の概略構成図である。
 本発明の実施形態に係る超電導限流器10は、超電導体のS/N転移(superconducting-normal state transitions)を利用して、通常時はゼロ抵抗で、臨界電流以上の過電流が流れた時には高抵抗となって過電流を抑制する機能を持つ機器である。
 この超電導限流器10は、容器本体12Aを蓋12Bで閉じて密閉される密閉容器12を備えている。
 容器本体12Aには、冷凍機14が接続され、冷凍機14から密閉容器12の内部に液体窒素が導入される。蓋12Bには、密閉容器12の外部から内部へ電流を導入して流出する電流導入出部16が接続されている。電流導入出部16は、3相交流回路で構成され、具体的には3つの電流導入部16Aと、これらに対応する3つの電流流出部16Bとを含んで構成されている。
 電流導入部16Aと電流流出部16Bは、それぞれ、蓋12Bに対して貫通して垂直方向に伸びた導線18と、当該導線18を被覆する筒体20とで構成される。
 電流導入部16Aの導線18のうち外部に露出した一端は、対応する電流流出部16Bの導線18のうち外部に露出した一端と、分流抵抗としての外部抵抗22を介して接続されている。
 各筒体20の容器本体12A内部にある端部には、素子収容容器24が支持されている。
 この素子収容容器24は、密閉容器12に内蔵され、密閉容器12に充填される液体窒素により内部まで冷却される。
 素子収容容器24には、複数の薄膜型超電導素子30で構成された限流ユニット26が内蔵されている。本発明の実施形態では、具体的に、薄膜型超電導素子30が4行2列で配列された組が3組で限流ユニット26を構成している。
 この限流ユニット26は、電流導入部16Aの導線18のうち内部にある他端と、電流流出部16Bの導線18のうち内部にある他端と、支柱28で支持されており、3相交流回路を構成するように、電流導入部16Aの導線18のうち内部にある他端と、電流流出部16Bの導線18のうち内部にある他端とが、薄膜型超電導素子30を介して電気的に接続されている。
<超電導素子>
 次に、薄膜型超電導素子30の概略を説明する。
 図2は、本発明の実施形態に係る薄膜型超電導素子30の断面構造を示す図である。
 図2に示すように、薄膜型超電導素子30は、基板32上に中間層34、超電導層36、金属保護膜38が順に形成された積層構造を有する超電導薄膜100を備える。そして、金属保護膜38上には、上述した導線18に電気的に接続される1対の電極44が配置され、該電極44は金属微粒子焼結層40を介在して金属保護膜38上に固定されている。また、金属微粒子焼結層40と電極44との間には金属コート層42が形成されている。
 (金属微粒子焼結層)
 金属微粒子焼結層40は、超電導層36と電極44との間に介在して超電導層36と電極44とを接続する層であり、超電導層36側の隣接層(図2では金属保護膜38)と電極44側の隣接層(図2では金属コート層42)とを接着させる役割を担う。尚、金属微粒子焼結層40は金属微粒子が焼結されて形成される。
 超電導限流器用の超電導素子ではクエンチの際に超電導状態から常電導状態(抵抗体の状態)へ変化するため、常電導状態となった超電導素子に大電圧が印加されることで抵抗によるジュール熱が大量に発生し、超電導素子の温度が大きく上昇し(例えば、液体窒素下の温度(-196℃)から100℃程度の温度変化がある)、温度変化の大きな温度サイクルが生じる。そのため、超電導素子に電極を接着させる場合にも、超電導限流器に用いる超電導素子においては、上記温度サイクルに耐え得るような密着力を有する電極接着構造が求められる。
 これに対し本実施形態では、超電導層36と電極44との間に介在して超電導層36と電極44とを接続する層として、金属微粒子が焼結されて形成された金属微粒子焼結層40を備えている。超電導層36側の隣接層(図2では金属保護膜38)と電極44側の隣接層(図2では金属コート層42)のそれぞれが、金属微粒子焼結層40と強固な密着力を有しているため、クエンチの際の温度サイクルによる超電導層36と電極44の間の層での膜剥れの発生が抑制される。
 また、超電導層36と電極44との間に金属微粒子焼結層40を備えることで、インジウム等の超電導層内部に拡散する部材を用いずとも電極44を超電導層36に接続させることができるため、インジウム等が超電導層内部へ拡散することで生じる素子破壊が防止される。
 更に、超電導層36と電極44との間に金属微粒子焼結層40を介在させるという簡易な構成によって、超電導層36と電極44とを接続することができるため、超電導素子の重さや体積を軽減することができ、超電導限流器の設計自由度が向上する。
 超電導限流器においては、液体窒素温度下にするための冷却機構が必要であり、超電導素子の重さや体積を小さくすることが出来れば、冷却機構内部での素子の配置や冷却機構の耐重量性、注入する液体窒素量等の冷却機構設計の自由度を向上させることができる。
 ・粒子径
 金属微粒子焼結層40の形成に用いられる金属微粒子の粒子径は、低温で焼結が可能であるため素子特性の劣化が抑制可能であるという点から、150nm以下であることが好ましく、100nm以下であると、低温焼結性が更に向上するため特に好ましい。
 尚、本明細書において金属微粒子の粒子径とは、個数平均粒子径を表す。
 金属微粒子の粒子径は、一般的には電子線顕微鏡等により直接観察することで測定され、また材料メーカから提供される値を用いることができる。(例えば、ハリマ化成製の銀ナノ粒子:NPSであれば「平均粒子径12nm(粒子径の範囲8nm以上15nm以下)」と記載されている)
 また、金属微粒子の粒子径は、金属微粒子焼結層40に隣接する層のうち基板32側の層(以下単に「基板側隣接層」と称す)の、金属微粒子焼結層40に接する表面の表面粗さRa未満であることが好ましい。上記基板側隣接層としては、図2に示したような金属保護膜38を挙げることができるが、金属保護膜38を有さず超電導層36と金属微粒子焼結層40とが隣接する態様とすることもでき、このときの基板側隣接層は超電導層36となる。また、上記基板側隣接層の上記表面粗さRaとしては、臨界電流値の向上という理由から100nm以下であることが好ましい。
 金属微粒子の粒子径が、基板側隣接層の上記表面粗さRa未満であることにより、基板側隣接層の表面の凹凸に焼結前の金属微粒子が入り込み、該凹凸に金属微粒子が埋まった状態で焼結され、金属微粒子焼結層40が形成されると考えられる。そのため、金属微粒子焼結層40と基板側隣接層との接触面積が増加することにより、より高い密着力が得られたと推測される。
 また、金属微粒子の最大粒子径も基板側隣接層の上記表面粗さRa未満であることが更に好ましい。尚、上記金属微粒子の最大粒子径とは、電子線顕微鏡等により直接観察することで測定された最大値や、材料メーカから提供される値の最大値をさす。
 ・材質
 前記金属微粒子の材質としては、特に限定されるものではないが、例えばAg,Au,Cu,およびPtのうちから選ばれる少なくとも一種を含む単体金属または合金が挙げられる。これらの中でも、特に液体窒素温度領域における電気抵抗値が低いという理由から、Ag単体金属が好ましい。
 金属微粒子焼結層40の厚みは、特に限定されないが、低接触抵抗という点から、1μm以上10μm以下であることが好ましい。
 (電極および金属コート層)
 1対の電極44の材質としては、銅、金、銀等の単体金属や、それらを含む合金等の導電部材が挙げられる。尚、電極44の形状としては、板状、網目状、ブロック状等が挙げられる。
 また、電極44と金属微粒子成分との親和性の点から、電極44と金属微粒子焼結層40との間には金属微粒子と親和性のある物質を主成分とした金属コート層42を介してもよい。金属コート層42としては、銀メッキ等が挙げられ、従来公知の方法により形成される。金属コート層42の厚みは、特に限定されないが、電極44と金属コート層42の密着性という点から、1μm以上5μm以下であることが好ましい。
 次いで、図2に示される超電導薄膜100の構成について説明する。
 (基板)
 基板32は、金属酸化物やセラミックスの単結晶構造を有している。基板32の形状は、その表面に超電導層36のための膜が形成される主面があることを前提として様々な形状を採用することができるが、取扱いが容易な矩形平板形状を採用することが好ましい。
 基板32の厚みは、特に限定されないが、例えば1mmとされている。
 ・組成物
 金属酸化物の具体例としては、Al(酸化アルミニウム、特にサファイア)、(Zr,Y)O(イットリア安定化ジルコニア)、LaAlO(ランタンアルミネート)、SrTiO(チタン酸ストロンチウム)、(LaSr1-x)(AlTa1-x)O(酸化ランタンストロンチウムタンタルアルミニウム)、NdGaO(ネオジムガレート)、YAlO(イットリウムアルミネート)、MgO(酸化マグネシウム)、TiO(チタニア)、BaTiO(チタン酸バリウム)等が挙げられる。セラミックスの具体例としては、炭化ケイ素、黒鉛等が挙げられる。
 特に、これらの中でも、高い強度と熱伝導率の面からサファイア基板を採用することが好ましい。
 (中間層)
 中間層34は、超電導層36において高い面内配向性を実現するために基板32上に形成される層であり、単層膜で構成されていても多層膜で構成されていてもよい。
 この中間層34は、特に限定されないが、具体的にはCeOおよびREMnOから選ばれる少なくとも1つを含んで構成されることが好ましい。尚、REは、Y、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、YbやLuなどの単一の希土類元素または複数の希土類元素である。
 中間層34の膜厚は、特に限定されないが、例えば20nmとされている。
 (超電導層)
 超電導層36は、中間層34上に形成され、酸化物超電導体、好ましくは銅酸化物超電導体で構成されている。
 銅酸化物超電導体としては、REBaCu7-δ(RE-123と称す),BiSrCaCu8+δ(BiサイトにPb等をドープしたものも含む),BiSrCaCu10+δ(BiサイトにPb等をドープしたものも含む),(La,Ba)CuO4-δ,(Ca,Sr)CuO2-δ[CaサイトはBaであってもよい],(Nd,Ce)CuO4-δ,(Cu,Mo)Sr(Ce,Y)CuO[(Cu,Mo)-12s2と称し、s=1、2、3,4である],Ba(Pb,Bi)OまたはTlBaCan-1Cu2n+4(nは2以上の整数である)等の組成式で表される結晶材料を用いることができる。また、銅酸化物超電導体は、これら結晶材料を組み合わせて構成することもできる。
 上記REBaCu7-δ中のREは、Y、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、YbやLuなどの単一の希土類元素または複数の希土類元素であり、これらの中でもBaサイトと置換が起きない、且つ超電導転移温度Tcが高い等の理由でYであることが好ましい。また、δは、酸素不定比量であり、例えば0以上1以下であり、超電導転移温度が高いという観点から0に近いほど好ましい。なお、酸素不定比量は、オートクレーブ等の装置を用いて高圧酸素アニール等を行えば、δは0未満、すなわち、負の値をとることもある。
 ここで、REをPrとしたPrBaCu7-δだけは、現在、超電導現象が確認されていないが、将来酸素不定比量δを制御するなどして超電導現象が確認できた場合には、本発明の実施形態に係わる酸化物超電導体にPrBaCu7-δも含むものとする。
 また、REBaCu7-δ以外の結晶材料のδも酸素不定比量を表し、例えば0以上1以下である。
 超電導層36は、上記REBaCu7-δで表される酸化物超電導体を主成分として含有することが好ましい。尚、「主成分」とは、超電導層36に含まれる構成成分中で含有量が最も多いことを示し、好ましくは50%以上の含有量を有する。
 また超電導層36の膜厚は、特に限定されないが、例えば200nmとされている。
 ・表面粗さRa
 本実施形態に係る超電導素子30が金属保護膜38を有さず超電導層36と金属微粒子焼結層40とが隣接する態様である場合には、超電導層36の少なくとも金属微粒子焼結層40に接する表面の表面粗さRaは、臨界電流値の向上という点から100nm以下であることが好ましく、更には50nm以下であることがより好ましい。
 尚、上記表面粗さRaは、走査型プローブ顕微鏡(SPM:Scanning Probe Microscope)を用いて走査範囲10μm×10μmで測定を行う。
 超電導層36の表面粗さRaを上記の範囲に制御する方法としては、次のような方法を挙げることができる。塗布液を塗布し焼結して形成する方法(ウェットプロセス)では、塗布液の溶液濃度、スピンコートによる塗布の際の基板の回転数、焼結温度等により制御される。また、PLD(Pulse Laser Deposition)法やCVD(Chemical Vapor Deposition)法等により形成する方法(ドライプロセス)では、成膜速度、原料ガス流量、基板温度等により、制御される。またプラズマ等を用いることによって、成膜された超電導層36の表面に物理的に凹凸を作り出す方法も挙げられる。
 (金属保護膜)
 超電導層36の表面には金属保護膜38を形成してもよい。金属保護膜38の材質としては、金、銀、銅等の単体金属や、それらを含む合金等の導電部材が挙げられる。金属保護膜38の膜厚は、特に限定されないが、大気中の水分からの保護と耐電圧設計という点から、100nm以上300nm以下であることが好ましい。
 ・表面粗さRa
 本実施形態に係る超電導素子30において、金属微粒子焼結層40に隣接する層が金属保護膜38である場合には、金属保護膜38の金属微粒子焼結層40に接する表面の表面粗さRaは、超電導層の凹凸が転写されるため密着性向上と臨界電流値向上という点から、100nm以下であることが好ましく、更には50nm以下であることがより好ましい。
 尚、上記表面粗さRaは、前述の超電導層における表面粗さRaの測定と同じ方法により測定される。
 また、金属保護膜38の表面粗さRaを上記の範囲に制御する方法としては、超電導層36の表面粗さRaを前述の方法により制御した後、金属保護膜38を上記膜厚の範囲で形成することにより制御する方法や、金属保護膜38を形成後に、プラズマ等によって金属保護膜38の表面に物理的に凹凸を作り出す方法が挙げられる。
<超電導素子の製造方法>
 次に、以上のような超電導素子30の製造方法について具体的に説明する。
-中間層形成工程-
 まず、研磨済みの基板32に対し中間層を形成する中間層形成工程を行う。中間層34の形成方法としては、例えばPLD法、CVD法、MOCVD(Metal Organic Chemical Vapor Deposition)法、IBAD(Ion Beam Assisted Deposition)法、TFA-MOD(Tri Fluoro Acetates-Metal Organic Deposition)法、スパッタ法、または電子ビーム蒸着法などを用いることができる。これらの中でも、高配向度を実現できるという点で、IBAD法を用いることが好ましい。また、高効率の成膜が実現できるという点で電子ビーム蒸着法を用いることが好ましい。
 中間層形成工程で、例えば電子ビーム蒸着法を用いる場合、1×10-2Pa以上1×10-1Pa以下の酸素中でプラズマを発生させ、700℃以上に基板32を加熱した状態で当該基板32上にCeO等からなる膜を10nm以上20nmの範囲で蒸着させて、中間層34を形成する。
-超電導層形成工程-
 次に、超電導層形成工程を行う。超電導層36の形成(成膜)方法としては、例えばPLD法、CVD法、MOCVD法、MOD法、またはスパッタ法などが挙げられる。これら成膜方法の中でも、高真空を必要としない、大面積、複雑な形状の基板32にも成膜可能、量産性に優れているという理由からMOCVD法を用いることが好ましい。また、高効率の成膜が実現できるという点でMOD法を用いることが好ましい。
 超電導層形成工程で、例えばMOD法を用いてYBCOからなる超電導層36を形成する場合、まず、イットリウム、バリウム、銅の有機錯体の溶液をスピンコーターで中間層34の表面上に塗布して前駆体の膜を形成する。そして、前駆体の膜を例えば空気中において300℃以上600℃以下で仮焼成する。
 仮焼成で有機溶媒を除去した後、前駆体の膜を700℃以上900℃以下で本焼成して、前駆体の膜からYBCOの酸化物超電導体で構成される超電導層36を得る。
 また、この本焼成において、最初に不活性雰囲気中で焼成を行ない、途中から酸素雰囲気に切り替えることもできる。
-金属保護膜形成工程-
 得られた超電導層36上に金銀合金等の導電部材からなる金属保護膜38を形成する。金属保護膜38を形成する方法としては、スパッタ法、真空蒸着法等が挙げられ、中でもスパッタ法が好ましい。
-金属微粒子膜形成工程-
 上記金属保護膜38を有する場合には該金属保護膜38の表面の少なくとも一部に、有しない場合には前記超電導層36の表面の少なくとも一部に、銀ナノ粒子等の金属微粒子を含む塗布液を用いて塗布法によって金属微粒子膜を形成する。
 上記塗布液の塗布法としては、スクリーン印刷法、インクジェット法等が挙げられる。
-電極接続工程-
 次いで、電極44を上記金属微粒子膜上に仮接続する。
 尚、電極44と金属微粒子焼結層40との間に金属コート層42を設ける場合には、電極44の仮接続前にあらかじめ電極44上に金属コート層42を電解メッキ法にて形成させることができる。
-焼結工程-
 電極44と金属微粒子膜とを仮接続したまま焼結することで、金属微粒子焼結層40を形成する。尚、上記焼結は、酸素欠陥生成による超電導層36の素子特性劣化を抑制する観点で、大気雰囲気ないしは酸素雰囲気下で350℃以下の温度で行うことが好ましい。
 こうして、本実施形態に係る超電導限流器用の超電導素子が製造される。
<変形例>
 なお、本発明を特定の実施形態について詳細に説明したが、本発明はかかる実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかであり、例えば上述の複数の実施形態は、適宜、組み合わせて実施可能である。また、以下の変形例同士を、適宜、組み合わせてもよい。
 例えば、基板32上に、他の層を介して中間層34を形成してもよい。
 また、金属保護膜38や金属コート層42も適宜省略することができる。
 なお、日本出願2011-116283の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
 以下に、本発明に係る超電導限流器用の超電導薄膜について、実施例により説明するが、本発明はこれら実施例により何ら限定されるものではない。
<実施例1>
 ・中間層の形成
 市販の研磨済みR面サファイア基板(京セラ製片面研磨サファイア基板、サイズ210mm×30mm×1mm)を800℃で加熱しながら、EB(電子ビーム)蒸着により、酸化セリウム(CeO)の薄膜をサファイア基板上に15nm蒸着し、中間層を形成した。尚、成膜時には、酸素分圧が5×10-2Paとなるように少量の酸素を導入しさらにRFを用いて酸素プラズマをたてた。
 ・超電導層の形成
 この中間層の表面に、イットリウム、バリウム、銅の有機錯体の溶液をスピンコーターで塗布し、500℃空気中で仮焼成を行ない、次いで不活性雰囲気中800℃で本焼成を行ない、途中から酸素雰囲気に切り替えて、最終的にYBCOからなる超電導層を形成した。超電導層の厚さは150nmであり、また超電導層の表面粗さRaを走査型プローブ顕微鏡(SPM)を用いて前述の方法により測定したところ、20nmであった。尚、この超電導層の表面を撮影した画像を図3Aに示す。
 ・金属保護膜の形成
 得られた超電導層上に金銀合金製(Au-23atm%Ag)の金属保護膜を、スパッタ法により膜厚300nmにて形成した。また金属保護膜の表面には超電導層の表面の粗さが転写されており、金属保護膜の表面粗さRaは20nmであった。尚、この金属保護膜の表面を撮影した画像を図3Bに示す。
 ・金属微粒子膜の形成および焼結(金属微粒子焼結層の形成)
 金属微粒子として銀ナノ粒子(ハリマ化成製、NPS、平均粒子径12nm)を用い、スクリーン印刷法にて金属微粒子膜を形成した。次いで、酸素雰囲気中230℃で焼結を行い金属微粒子焼結層を形成した。焼結され形成された金属微粒子焼結層の膜厚は、段差計(CS-5000、ミツトヨ製)を用いて測定した結果9.7~10.4μmの範囲であることが分かった。
 こうして密着性評価用の超電導素子を得た。
 -密着性の評価-
 得られた超電導素子を液体窒素下で冷却し、その後室温へ戻すことで、クエンチが生じた際の温度変化(約100℃)を伴う温度サイクルより大きい温度変化(約300℃)を与えた。しかし、金属微粒子焼結層と金属保護膜との間での膜剥れは生じなかった。
<比較例1>
 前記実施例1において、金属微粒子焼結層を、銀を蒸着させることで形成した銀蒸着膜に変更し且つ前記焼結を行わなかったこと以外、実施例1に記載の方法により密着性評価用の超電導素子を得た。
 -密着性の評価-
 実施例と同様に、得られた超電導素子を液体窒素下で冷却し、その後室温へ戻すことでクエンチが生じた際の温度変化を伴う温度サイクルより大きい温度変化を与えた。その際、銀蒸着膜と金属保護膜との間での膜剥れが生じた。
<比較例2>
 電極を固定する方法として、インジウムを用いて電極と超電導薄膜とを圧着した、図4に示す超電導素子を作製した。
 具体的には、前記実施例1における「金属保護膜の形成」までを同様に行い、基板132(サファイア)、中間層134(酸化セリウム)、超電導層136(YBCO)、および金属保護膜138(金銀合金)を備える超電導薄膜200を形成した。
 次いで、図4に示すようにInシート140を介して電極144としての銅ブロックで超電導薄膜200の端部を挟み、圧着して超電導薄膜200に銅ブロックを固定し、超電導素子を得た。
 -重量の評価-
 上記比較例2の超電導素子と、前記実施例1の超電導素子との重量比較を行った。圧着によって電極を固定した比較例2の超電導素子では420gであったのに対し、金属微粒子焼結層によって電極を固定した実施例1の超電導素子では80gであり、実施例1の方が重量として約80%軽量化されていることが分かった。
<実施例2~15>
 平均粒子径が異なる金属微粒子と、表面粗さRaの異なる金属保護膜を有する超電導薄膜を用意し、それ以外は前記実施例1と同様に超電導素子を形成した。
 具体的には、表1に示すように、用いた金属微粒子の平均粒子径と金属保護膜の表面粗さRaを変化させて、実施例2~15の超電導素子を形成した。
 得られた実施例1~15および比較例1の超電導素子に対して、密着性の評価および臨界電流値の評価を行った。
 -密着性の評価-
 密着性の評価は、得られた超電導素子を液体窒素下で冷却し、その後室温へ戻すことで、クエンチが生じた際の温度変化(約100℃)を伴う温度サイクルより大きい温度変化(約300℃)を与えた。その後、金属微粒子焼結層と金属保護膜との間での膜剥れの状態を、光学顕微鏡を用いて評価を行った。
 膜剥れの状態に応じて、次のように評価基準を設けた。
 ・A:膜剥れが全く生じていない
 ・B:膜剥れした部分の面積が5%未満
 ・C:膜剥れした部分の面積が5%以上10%未満
 ・D:膜剥れした部分の面積が10%以上
 -臨界電流値の評価-
 また、密着性の評価とは別に、臨界電流値の評価を行った。この評価は素子を液体窒素内へ浸漬し、電流値を変化させ、その電流-電圧特性によって評価を行った。
 臨界電流値の評価について、次のように評価基準を設けた。
 ・A:100A以上
 ・B:80A以上100A未満
 ・C:50A以上80A未満
 ・D:50A未満
Figure JPOXMLDOC01-appb-T000001
 表1から判るように、金属保護膜の表面粗さRa≦100nmかつ金属微粒子の粒子径<Raの場合、密着力と臨界電流値の評価の組み合わせがA-AないしA-B、B-Aとなり、高い密着性と良好な臨界電流値を示す。
 また、金属保護膜の表面粗さRa≦45nmかつ金属微粒子の粒子径<Raの場合には、更に臨界電流値が向上しており、高い密着性と高い臨界電流値を示し、特に好ましいことが判る。
10 超電導限流器
12 密閉容器
16 電流導入出部
24 素子収容容器
30 薄膜型超電導素子(超電導限流素子)
32、132 基板
34、134 中間層
36、136 超電導層
38、138 金属保護膜
40 金属微粒子焼結層
42 金属コート層
44、144 電極
100、200 超電導薄膜
140 Inシート
 

Claims (13)

  1.  基板と、
     前記基板上に形成された中間層と、
     前記中間層上に形成された超電導層と、
     前記超電導層に接続される電極と、を有し、
     前記超電導層と前記電極との間に介在して前記超電導層と前記電極とを接続する金属微粒子焼結層を有する超電導限流器用の超電導素子。
  2.  前記金属微粒子焼結層に隣接する層のうち前記基板側の層の、前記金属微粒子焼結層に接する表面の表面粗さRaが100nm以下であり、
     且つ前記金属微粒子焼結層を形成する金属微粒子の粒子径が前記表面粗さRa未満である、
     請求項1に記載の超電導限流器用の超電導素子。
  3.  前記金属微粒子焼結層が、Ag,Au,Cu,およびPtのうちから選ばれる少なくとも一種を含む単体金属または合金の金属微粒子から構成されている、
     請求項1または請求項2に記載の超電導限流器用の超電導素子。
  4.  前記超電導層と前記金属微粒子焼結層との間に金属保護膜を有する、
     請求項1~請求項3の何れか1項に記載の超電導限流器用の超電導素子。
  5.  前記超電導層が、組成式REBaCu7-δ(REは単一の希土類元素または複数の希土類元素であり、前記δは酸素不定比量である)で表される酸化物超電導体を主成分として含有する、
     請求項1~請求項4の何れか1項に記載の超電導限流器用の超電導素子。
  6.  前記基板は、サファイア基板であり、
     前記中間層は、CeOおよびREMnO(REは単一の希土類元素または複数の希土類元素である)から選ばれる少なくとも1つを含んで構成される、
     請求項5に記載の超電導限流器用の超電導素子。
  7.  基板上に中間層を形成する中間層形成工程と、
     前記中間層上に超電導層を形成する超電導層形成工程と、
     前記超電導層上の少なくとも一部に、金属微粒子を含有する金属微粒子膜を形成する金属微粒子膜形成工程と、
     前記金属微粒子膜を介して前記超電導層に電極を接続する電極接続工程と、
     前記金属微粒子膜の前記金属微粒子を焼結し金属微粒子焼結層を形成する焼結工程と、
     をこの順に有する超電導限流器用の超電導素子の製造方法。
  8.  前記金属微粒子膜形成工程より前の段階において、前記金属微粒子膜に隣接する層の金属微粒子膜に接する表面の表面粗さRaが100nm以下に調整され、且つ前記金属微粒子膜形成工程にて用いる前記金属微粒子の粒子径が前記表面粗さRa未満である、
     請求項7に記載の超電導限流器用の超電導素子の製造方法。
  9.  前記金属微粒子膜形成工程にて用いる前記金属微粒子が、Ag,Au,Cu,およびPtのうちから選ばれる少なくとも一種を含む単体金属または合金の微粒子である、
     請求項7または請求項8に記載の超電導限流器用の超電導素子の製造方法。
  10.  前記超電導層形成工程の後、前記金属微粒子膜形成工程の前に、前記超電導層上に金属保護膜を形成する金属保護膜形成工程を有する、
     請求項7~請求項9の何れか1項に記載の超電導限流器用の超電導素子の製造方法。
  11.  前記超電導層形成工程は、組成式REBaCu7-δ(REは単一の希土類元素または複数の希土類元素であり、前記δは酸素不定比量である)で表される酸化物超電導体を主成分として含有する超電導層を形成する、
     請求項7~請求項10の何れか1項に記載の超電導限流器用の超電導素子の製造方法。
  12.  前記基板は、サファイア基板であり、
     前記中間層形成工程は、CeOおよびREMnO(REは単一の希土類元素または複数の希土類元素である)から選ばれる少なくとも1つを含んで構成される中間層を形成する、
     請求項11に記載の超電導限流器用の超電導素子の製造方法。
  13.  内部に液体窒素が充填される密閉容器と、
     前記密閉容器の外部から内部へ電流を導入して流出する電流導入出部と、
     請求項1~請求項6の何れか1項に記載の超電導素子を用いて構成され、前記密閉容器内で前記電流導入出部に接続される超電導限流素子と、
     を備える超電導限流器。
     
PCT/JP2012/063374 2011-05-24 2012-05-24 超電導限流器用の超電導素子、超電導限流器用の超電導素子の製造方法および超電導限流器 WO2012161277A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12789945.8A EP2717342B9 (en) 2011-05-24 2012-05-24 Superconducting element for superconducting current limiter, method for manufacturing superconducting element for superconducting current limiter, and superconducting current limiter
JP2013516444A JP6046036B2 (ja) 2011-05-24 2012-05-24 超電導限流器用の超電導素子、超電導限流器用の超電導素子の製造方法および超電導限流器
SG2013086194A SG195087A1 (en) 2011-05-24 2012-05-24 Superconducting element for superconducting current limiter, method for manufacturing superconducting element for superconducting current limiter, and superconducting current limiter
US14/088,146 US20140249034A1 (en) 2011-05-24 2013-11-22 Superconducting element for superconducting fault current limiter, method for manufacturing superconducting element for superconducting fault current limiter, and superconducting fault current limiter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-116283 2011-05-24
JP2011116283 2011-05-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/088,146 Continuation-In-Part US20140249034A1 (en) 2011-05-24 2013-11-22 Superconducting element for superconducting fault current limiter, method for manufacturing superconducting element for superconducting fault current limiter, and superconducting fault current limiter

Publications (1)

Publication Number Publication Date
WO2012161277A1 true WO2012161277A1 (ja) 2012-11-29

Family

ID=47217349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063374 WO2012161277A1 (ja) 2011-05-24 2012-05-24 超電導限流器用の超電導素子、超電導限流器用の超電導素子の製造方法および超電導限流器

Country Status (5)

Country Link
US (1) US20140249034A1 (ja)
EP (1) EP2717342B9 (ja)
JP (1) JP6046036B2 (ja)
SG (1) SG195087A1 (ja)
WO (1) WO2012161277A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160322132A1 (en) * 2013-12-25 2016-11-03 Fujikura Ltd. Oxide superconducting wire and oxide superconducting wire manufacturing method
JP2017530668A (ja) * 2014-08-08 2017-10-12 古河電気工業株式会社 限流装置及び限流装置の製造方法
JP2020194870A (ja) * 2019-05-28 2020-12-03 国立大学法人東海国立大学機構 超伝導デバイスの製造方法及び超伝導デバイス
CN112419847A (zh) * 2020-11-12 2021-02-26 广东电网有限责任公司 一种限流器的动态展示方法及展示系统
WO2021054338A1 (ja) 2019-09-17 2021-03-25 国立大学法人埼玉大学 電流遮断装置及び電流遮断方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9355362B2 (en) * 2011-11-11 2016-05-31 Northrop Grumman Systems Corporation Quantum bits and method of forming the same
EP3338312B1 (en) * 2015-08-26 2020-04-01 American Superconductor Corporation Fabrication of long length high temperature superconducting wires with uniform ion implanted pinning microstructures
EP3795961B1 (en) * 2019-09-17 2023-09-06 Fundació Institut de Ciències Fotòniques A superconducting nanowire single-photon detector, and a method for obtaining such detector

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251761A (ja) 1992-03-04 1993-09-28 Mitsubishi Electric Corp 酸化物超電導膜を用いた限流導体
JPH11204845A (ja) 1998-01-07 1999-07-30 Toshiba Corp 超電導限流素子
JP2001217470A (ja) * 1999-12-02 2001-08-10 Abb Res Ltd 高温超電導体素子その製造方法
JP2001223399A (ja) * 1999-12-02 2001-08-17 Abb Res Ltd 高温超電導体素子
JP2003298129A (ja) 2002-03-28 2003-10-17 Toshiba Corp 超電導部材
JP2006013316A (ja) * 2004-06-29 2006-01-12 Toshiba Corp 超電導限流素子およびその製造方法
JP2009211899A (ja) 2008-03-04 2009-09-17 Fuji Electric Systems Co Ltd 超電導電流リードとその製造方法
JP2011116283A (ja) 2009-12-04 2011-06-16 Ihi Corp スペースデブリ除去方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5480728A (en) * 1994-01-03 1996-01-02 General Electric Company Low resistance electrical contact for oxide superconductors and a method for making
DE19520205A1 (de) * 1995-06-01 1996-12-05 Siemens Ag Resistive Strombegrenzungseinrichtung unter Verwendung von Hoch-T¶c¶Supraleitermaterial
WO2006001226A1 (ja) * 2004-06-24 2006-01-05 National Institute Of Advanced Industrial Science And Technology 超電導限流素子及びその作製方法
US7893006B2 (en) * 2007-03-23 2011-02-22 American Superconductor Corporation Systems and methods for solution-based deposition of metallic cap layers for high temperature superconductor wires
ES2350024T3 (es) * 2008-06-27 2011-01-17 Nexans Dispositivo limitador de corriente.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251761A (ja) 1992-03-04 1993-09-28 Mitsubishi Electric Corp 酸化物超電導膜を用いた限流導体
JPH11204845A (ja) 1998-01-07 1999-07-30 Toshiba Corp 超電導限流素子
JP2001217470A (ja) * 1999-12-02 2001-08-10 Abb Res Ltd 高温超電導体素子その製造方法
JP2001223399A (ja) * 1999-12-02 2001-08-17 Abb Res Ltd 高温超電導体素子
JP2003298129A (ja) 2002-03-28 2003-10-17 Toshiba Corp 超電導部材
JP2006013316A (ja) * 2004-06-29 2006-01-12 Toshiba Corp 超電導限流素子およびその製造方法
JP2009211899A (ja) 2008-03-04 2009-09-17 Fuji Electric Systems Co Ltd 超電導電流リードとその製造方法
JP2011116283A (ja) 2009-12-04 2011-06-16 Ihi Corp スペースデブリ除去方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2717342A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160322132A1 (en) * 2013-12-25 2016-11-03 Fujikura Ltd. Oxide superconducting wire and oxide superconducting wire manufacturing method
JP2017530668A (ja) * 2014-08-08 2017-10-12 古河電気工業株式会社 限流装置及び限流装置の製造方法
JP2020194870A (ja) * 2019-05-28 2020-12-03 国立大学法人東海国立大学機構 超伝導デバイスの製造方法及び超伝導デバイス
JP7360647B2 (ja) 2019-05-28 2023-10-13 国立大学法人東北大学 超伝導デバイスの製造方法及び超伝導デバイス
WO2021054338A1 (ja) 2019-09-17 2021-03-25 国立大学法人埼玉大学 電流遮断装置及び電流遮断方法
US20220360067A1 (en) * 2019-09-17 2022-11-10 National University Corporation Saitama University Current interrupting device and current interrupting method
US11646562B2 (en) * 2019-09-17 2023-05-09 National University Corporation Saitama University Devices and methods for current interrupting using current diversion path
CN112419847A (zh) * 2020-11-12 2021-02-26 广东电网有限责任公司 一种限流器的动态展示方法及展示系统
CN112419847B (zh) * 2020-11-12 2023-01-10 广东电网有限责任公司 一种限流器的动态展示方法及展示系统

Also Published As

Publication number Publication date
EP2717342A1 (en) 2014-04-09
JP6046036B2 (ja) 2016-12-14
US20140249034A1 (en) 2014-09-04
SG195087A1 (en) 2013-12-30
EP2717342B1 (en) 2018-02-21
JPWO2012161277A1 (ja) 2014-07-31
EP2717342A4 (en) 2014-11-05
EP2717342B9 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
JP6046036B2 (ja) 超電導限流器用の超電導素子、超電導限流器用の超電導素子の製造方法および超電導限流器
EP2958115B1 (en) Oxide superconducting wire
JP6178779B2 (ja) 超電導線材の接続構造体および超電導線材の接続構造体の製造方法
US8470744B2 (en) High temperature superconductor, in particular improved coated conductor
Kim et al. A perspective on conducting oxide buffers for Cu-based YBCO-coated conductors
JP5939648B2 (ja) 酸化物超電導薄膜、超電導限流器及び酸化物超電導薄膜の製造方法
US9672984B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JP6090794B2 (ja) 酸化物超電導薄膜および超電導限流器
JP5675232B2 (ja) 超電導電流リード
JP6155028B2 (ja) 超電導導体用基材の製造方法、超電導導体の製造方法、超電導導体用基材、および超電導導体
JP2013008962A (ja) 超電導素子、超電導素子の製造方法および超電導限流器
US20130137580A1 (en) Substrate for superconducting thin film, superconducting thin film, and method of producing superconducting thin film
JP5764421B2 (ja) 酸化物超電導導体
JP3623868B2 (ja) 高耐久性酸化物超電導体及びその製造方法
JP6131176B2 (ja) 酸化物超電導線材の製造方法
US8530389B2 (en) Process for the preparation of oxide superconducting rods
JP4741805B2 (ja) 超電導素子
JP2014022228A (ja) 酸化物超電導導体および酸化物超電導導体の製造方法並びにそれを用いた超電導機器
JPH04240174A (ja) 超電導部材の製造方法
JPH05251759A (ja) 酸化物超電導限流導体
JPH05251760A (ja) 酸化物超電導限流導体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789945

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013516444

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE