WO2012160916A1 - Adhesive composition, film adhesive, adhesive sheet and semiconductor device - Google Patents

Adhesive composition, film adhesive, adhesive sheet and semiconductor device Download PDF

Info

Publication number
WO2012160916A1
WO2012160916A1 PCT/JP2012/060706 JP2012060706W WO2012160916A1 WO 2012160916 A1 WO2012160916 A1 WO 2012160916A1 JP 2012060706 W JP2012060706 W JP 2012060706W WO 2012160916 A1 WO2012160916 A1 WO 2012160916A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
film
resin
adhesive composition
semiconductor element
Prior art date
Application number
PCT/JP2012/060706
Other languages
French (fr)
Japanese (ja)
Inventor
増子 崇
悟史 黒澤
伊澤 弘行
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to JP2013516253A priority Critical patent/JP5910630B2/en
Publication of WO2012160916A1 publication Critical patent/WO2012160916A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3142Sealing arrangements between parts, e.g. adhesion promotors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2475/00Presence of polyurethane
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2479/00Presence of polyamine or polyimide
    • C09J2479/08Presence of polyamine or polyimide polyimide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68377Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support with parts of the auxiliary support remaining in the finished device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2743Manufacturing methods by blanket deposition of the material of the layer connector in solid form
    • H01L2224/27436Lamination of a preform, e.g. foil, sheet or layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29355Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2224/29388Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/2939Base material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Definitions

  • the present invention relates to an adhesive composition, a film adhesive, an adhesive sheet, and a semiconductor device using the same.
  • silver paste is mainly used as a die bonding adhesive for forming a die bonding layer for bonding a semiconductor element to a semiconductor element mounting support member such as a lead frame.
  • the die bonding layer protrudes after die bonding due to wetting and spreadability, and the wires due to the inclination of the semiconductor elements
  • Problems such as occurrence of defects during bonding, insufficient film thickness accuracy of the die bonding layer, and voids in the die bonding layer are likely to occur. For this reason, it has been difficult to satisfy the demands for miniaturization and densification of support members for miniaturization and high performance of semiconductor packages.
  • film adhesives that are advantageous for miniaturization and densification of support members have been widely used as adhesives for die bonding (see, for example, Patent Document 1 and Patent Document 2).
  • This film adhesive is used, for example, in a method of manufacturing a semiconductor package (semiconductor device) of a piece laminating process and a wafer back-side laminating process.
  • a reel-like film adhesive was cut into pieces by cutting or punching and bonded to a support member, and then separated into pieces by dicing through the film adhesive on the support member.
  • the semiconductor element is bonded to the support member (die bonding).
  • a semiconductor device is manufactured through a wire bonding process, a sealing process, and the like (see, for example, Patent Document 3).
  • a dedicated assembly device for cutting out the film adhesive and bonding it to the support member is required, so that the manufacturing cost is higher than when silver paste is used. There was a problem.
  • a film adhesive is pasted on the back surface of a semiconductor wafer, a dicing tape is pasted on the pasted film adhesive, and then the semiconductor wafer is diced by dicing.
  • a semiconductor element with a film adhesive is obtained, and this is picked up and bonded (die bonding) to the support member.
  • a semiconductor device is manufactured through a wire bonding process, a sealing process, and the like.
  • a semiconductor device using a die bonding film is required to have reliability, that is, heat resistance, moisture resistance, reflow resistance, and the like.
  • reliability that is, heat resistance, moisture resistance, reflow resistance, and the like.
  • it is required to have a high adhesive strength that can suppress the peeling or breakage of the die bonding layer at a reflow heating temperature of around 260 ° C.
  • a heat-resistant resin composition 100 parts by weight of a polyimide resin consisting of a specific acid component and a specific amine component and having a glass transition temperature of 350 ° C. or less soluble in an organic solvent, and (B) in one molecule Containing as main components 5 to 100 parts by weight of an epoxy compound having at least two epoxy groups and (C) 0.1 to 20 parts by weight of a compound having an active hydrogen group capable of reacting with the epoxy compound A composition is disclosed (Patent Document 5).
  • an adhesive sheet in which a dicing sheet is bonded to one surface of a film adhesive that is, a film in which a dicing sheet and a die bonding film are integrated (hereinafter referred to as “integrated type”).
  • integrated type a film in which a dicing sheet and a die bonding film are integrated
  • the softening temperature of the dicing tape is 150 ° C. or lower, and in order to suppress the wafer warp due to thermal stress at the time of bonding to the wafer back surface, the temperature is lower than 150 ° C. It is required that pasting is possible.
  • a die bonding film that can achieve a high degree of compatibility between process characteristics including low-temperature laminating properties and reliability of semiconductor devices including reflow resistance.
  • a material capable of achieving both high temperature fluidity that enables embedding in the above-described step and high temperature heat resistance including low temperature sticking property and reflow resistance, and its design Is not enough.
  • the present invention is an adhesive assembly that is excellent in film formability, low-temperature stickability, and fluidity during heat, and can satisfy the reliability of a semiconductor device such as peel strength. And a film-like adhesive, an adhesive sheet and a semiconductor device using the same.
  • the present invention includes a polyurethane resin and a thermosetting component, and the flow amount at 120 ° C. at the B stage is 500 ⁇ m or more, and the flow amount at 120 ° C. at the C stage is less than 500 ⁇ m.
  • an adhesive composition in which the value of (A)-(B) is 100 ⁇ m or more, where (A) is the flow amount at 120 ° C. and (B) is the flow amount at 120 ° C. in the C stage. .
  • the above adhesive composition is excellent in film formability, low-temperature sticking property, and hot fluidity, and can satisfy the reliability of the semiconductor device such as peel strength.
  • B stage means that a film-like adhesive layer having a thickness of 40 ⁇ 5 ⁇ m is formed on a biaxially stretched polypropylene (OPP) base material having a thickness of 60 ⁇ m using a later-described adhesive layer forming varnish.
  • OPP biaxially stretched polypropylene
  • flow amount means that an adhesive sheet in which a film-like adhesive layer having a thickness of 40 ⁇ 5 ⁇ m is formed on an OPP substrate having a thickness of 60 ⁇ m is cut into a size of 10 mm ⁇ 10 mm.
  • a sample is prepared by sandwiching the adhesive sheet between two slide glasses (manufactured by Matsunami Glass Industry Co., Ltd., 76 mm ⁇ 26 mm ⁇ 1.0 to 1.2 mm thickness). The average obtained by arithmetic average from the values obtained by measuring the amount of protrusion of the adhesive from the four sides of the OPP substrate after applying a load of 100 kgf / cm 2 above and thermocompression bonding for 15 seconds, respectively, with an optical microscope. Value.
  • thermosetting component preferably contains an epoxy resin or a bismaleimide resin. Moreover, it is preferable that the said adhesive composition contains a filler further.
  • the adhesive composition is preferably for bonding between semiconductor elements or between a semiconductor element and a semiconductor element mounting support member, and the semiconductor element mounting support member has a wiring step on a surface on which the semiconductor element is mounted.
  • An organic substrate is preferred.
  • the present invention also provides a film adhesive formed by forming the adhesive composition into a film. Since such a film-like adhesive uses the above-mentioned adhesive composition, it is excellent in low-temperature sticking property and hot fluidity, and can satisfy the reliability of the semiconductor device such as peel strength.
  • the present invention further provides an adhesive sheet comprising a supporting substrate and the film adhesive formed on the main surface of the supporting substrate. Since such an adhesive sheet uses the above-mentioned adhesive composition, it is excellent in low-temperature sticking property and hot fluidity and can satisfy the reliability of the semiconductor device such as peel strength.
  • the support substrate is preferably a dicing sheet, and the dicing sheet preferably has a base film and an adhesive layer provided on the base film.
  • the present invention also provides a structure in which a semiconductor element and a semiconductor element mounting support member are bonded by a cured product of the adhesive composition, or a structure in which adjacent semiconductor elements are bonded by a cured product of the adhesive composition.
  • a semiconductor device is provided. Since such a semiconductor device uses the above-described adhesive composition, it has high reliability such as peel strength.
  • the present invention includes a polyurethane resin and a thermosetting component, and the flow amount at 120 ° C. at the B stage is 500 ⁇ m or more, and the flow amount at 120 ° C. at the C stage is less than 500 ⁇ m.
  • the adhesive composition which is excellent in film forming property, low-temperature sticking property, and fluidity at the time of heat, and can satisfy the reliability of a semiconductor device such as peel strength, and a film using the same
  • An adhesive can be provided.
  • Such an adhesive composition and a film-like adhesive can be suitably used for fixing a semiconductor element of a wafer back surface attachment type that can be applied to an ultra-thin wafer and a semiconductor device in which a plurality of semiconductor elements are laminated.
  • a film adhesive When a film adhesive is affixed to the back side of the wafer, it is usually heated to a temperature at which the film adhesive melts. If the film adhesive of the present invention is used, a protective tape for ultra-thin wafer or dicing to be bonded is used. It becomes possible to affix on the wafer back surface at a temperature lower than the softening temperature of the tape. Thereby, thermal stress is also reduced, and problems such as warping of the wafer that is increased in diameter and thinned can be solved.
  • the heat and pressure at the time of die bonding can ensure the fluidity at the time of heating that enables good embedding in the wiring step on the substrate surface, and a plurality of semiconductor elements are laminated. It can respond suitably to the manufacturing process of a semiconductor device.
  • the film adhesive of the present invention high adhesive strength at high temperature can be secured, so that heat resistance after curing can be improved. Furthermore, the manufacturing process of the semiconductor device can be simplified. Further, since it can be attached at a low temperature, it has excellent stress relaxation characteristics, and it is possible to suppress chip scattering during dicing while reducing thermal stress such as wafer warpage.
  • the film adhesive of the present invention it is possible to ensure good cutting performance at the time of dicing and good pick-up performance after dicing, so that the workability at the time of manufacturing the semiconductor device can be improved.
  • the present invention it is possible to provide an adhesive composition having excellent film forming properties and low cost. Moreover, according to this invention, the adhesive sheet which bonded the above-mentioned film adhesive and the dicing sheet can be provided.
  • the adhesive sheet of the present invention it is possible to provide a material that can simplify the pasting process up to the dicing process and ensure stable characteristics against the assembly heat history of the package. Moreover, according to this invention, the adhesive sheet which consists of an adhesive layer and a base material which have both functions of the dicing sheet and the die-bonding film can be provided.
  • the adhesive sheet 100 shown in FIG. 1 consists of only the adhesive layer 1 which shape
  • the thickness of the adhesive layer 1 is preferably about 1 to 100 ⁇ m.
  • the adhesive sheet 100 is stored and transported, it is preferably in the form of a tape having a width of about 1 to 20 mm or a sheet having a width of about 10 to 50 cm and wound around a winding core. Thereby, storage and conveyance of the adhesive sheet 100 are facilitated.
  • the adhesive sheet 100 may be a laminate in which a plurality of adhesive layers 1 are stacked and bonded together.
  • the adhesive sheet 110 shown in FIG. 2 includes a supporting base material (base film 2) and a film-like adhesive layer 1 laminated on both main surfaces of the base film 2. Further, the film-like adhesive layer 1 may be provided only on one surface of the base film 2.
  • the base film 2 is not particularly limited as long as it can withstand the heating when the adhesive layer 1 is formed.
  • polyester film, polypropylene film, polyethylene terephthalate film, polyimide film, polyetherimide film Polyether naphthalate film, methyl pentene film and the like can be suitably used.
  • the base film 2 may be a multilayer film in which two or more of these films are combined.
  • the surface of the base film 2 may be treated with a release agent such as silicone or silica.
  • the adhesive sheet 120 shown in FIG. 3 is opposite to the base film 2, the film-like adhesive layer 1 laminated on one main surface of the base film 2, and the base film 2 of the adhesive layer 1 And a protective film (protective tape) 3 laminated on the side surface.
  • the protective film 3 is provided so as to cover the surface of the adhesive layer 1 opposite to the base film 2 in order to prevent damage and contamination of the adhesive layer 1.
  • the adhesive sheet 120 is used for die bonding after the protective film 3 is peeled off.
  • the film-like adhesive layer 1 is obtained by forming the adhesive composition of the present invention into a film shape.
  • the adhesive composition of the present invention will be described.
  • the adhesive composition of the present invention contains at least a polyurethane resin and a thermosetting component.
  • the polyurethane resin is not particularly limited as long as it is a polymer having a urethane (carbamic acid ester) bond in the main chain, but it may be a polymer having a weight average molecular weight of 5,000 to 500,000 and a heat flow temperature of 200 ° C. or less. From the viewpoints of solubility in organic solvents such as N-methyl-2-pyrrolidone (NMP), film-forming properties, and fluidity during heating. Among these, a polyurethane resin represented by the following formula (I) is preferably used in that it can impart high adhesiveness in addition to solubility in an organic solvent and thin film formability.
  • NMP N-methyl-2-pyrrolidone
  • n represents an integer of 1 to 100, preferably 5 to 100, and more preferably 10 to 100.
  • m represents an integer of 1 to 100, preferably 2 to 100, and more preferably 5 to 50.
  • * indicates a bond.
  • polyurethane resin examples include PANDEX series, Desmopan series, and Texin series manufactured by DIC Bayer Polymer (DCI Bayer Polymer).
  • the temperature at which the adhesive composition can be applied to the back surface of the wafer is preferably equal to or lower than the softening temperature of the protective tape and dicing tape of the wafer, and also from the viewpoint of suppressing warpage of the semiconductor wafer, 20-100 ° C is preferable, 20-80 ° C is more preferable, and 20-60 ° C is even more preferable.
  • the adhesive composition preferably has a Tg of 100 ° C. or lower, and for this purpose, a polyurethane resin having a heat flow temperature of 200 ° C. or lower is selected. It is desirable.
  • the adhesive design that can make the temperature of attaching to the back surface of the wafer 100 ° C. or lower tends to be easier.
  • the lower limit value of the heat flow temperature of the polyurethane resin is not particularly limited, but can be 0 ° C. or higher.
  • the temperature is 0 ° C. or higher, the adhesive force on the film surface in the B-stage state tends to be moderately strong, and handling properties are further improved, and dicing after dicing the semiconductor wafer with the adhesive composition There is a tendency that the pickup property from the tape is further improved.
  • the weight average molecular weight is a standard polystyrene conversion value obtained by measurement under the following measurement conditions by gel permeation chromatography (GPC; manufactured by Shimadzu Corporation, trade name: C-R4A). It is. Solvent: dimethylformamide (DMF) + lithium bromide (LiBr) (0.03 mol (vs DMF1L) + phosphoric acid (0.06 mol (vs DMF1L)) Column: G6000HXL + G4000HXL + G2000HXL (manufactured by Tosoh Corporation) Sample concentration: 10 mg / 5 mL Injection volume: 0.5 mL Pressure: 100 kgf / cm 2 Flow rate: 1.00 mL / min Measurement temperature: 25 ° C.
  • the heat flow temperature is a film sample, and a rheometric viscoelasticity analyzer RSA-2 is used, and the film size is 35 mm ⁇ 10 mm ⁇ 40 ⁇ m thickness, the heating rate is 5 ° C./min, and the frequency is 1 Hz.
  • the measurement temperature is a temperature at which the storage elastic modulus is 0.1 MPa or less as measured under the condition of -150 to 300 ° C.
  • the content of the polyurethane resin is preferably 5 to 95% by mass, more preferably 10 to 90% by mass, and still more preferably 20 to 80% by mass with respect to the total amount of the adhesive composition. .
  • the thermosetting component is not particularly limited as long as it is a component composed of a reactive compound that causes a crosslinking reaction by heat.
  • a reactive compound that causes a crosslinking reaction by heat For example, epoxy resin, cyanate ester resin, bismaleimide resin, bisallyl nadiimide resin, phenol resin, urea resin , Melamine resin, alkyd resin, acrylic resin, unsaturated polyester resin, diallyl phthalate resin, silicone resin, resorcinol formaldehyde resin, xylene resin, furan resin, ketone resin, triallyl cyanurate resin, polyisocyanate resin, tris (2-hydroxy Ethyl) isocyanurate-containing resin, triallyl trimellitate-containing resin, thermosetting resin synthesized from cyclopentadiene, thermosetting resin by trimerization of aromatic dicyanamide, and other polyfunctional acrylates as well as Or methacrylate compound, a compound containing a vinyl group or a styryl
  • thermosetting components can be used individually or in combination of 2 or more types.
  • the content of the thermosetting component is preferably 5 to 300 parts by mass, more preferably 10 to 200 parts by mass, and still more preferably 20 to 150 parts by mass with respect to 100 parts by mass of the polyurethane resin. If the content exceeds 300 parts by mass, outgassing during heating tends to increase, and film formability (toughness) tends to be impaired. If the content is less than 5 parts by mass, heat at the B stage There is a high possibility that the fluidity at the time, the heat resistance at the C stage and the high-temperature adhesiveness cannot be effectively imparted.
  • thermosetting component a curing agent, a catalyst, or a peroxide can be used, and a curing agent and a curing accelerator or a catalyst and a promoter can be used in combination as necessary.
  • a curing agent and a curing accelerator or a catalyst and a promoter can be used in combination as necessary.
  • curing agent, a hardening accelerator, and a peroxide, and the presence or absence of addition it judges and adjusts in the range which can ensure the desired thermal fluidity mentioned later and the heat resistance after hardening.
  • epoxy resin which is one of the preferred thermosetting components
  • those containing at least two epoxy groups in the molecule are more preferable, and phenol glycidyl ether type epoxy resins are extremely preferable in terms of curability and cured product characteristics. preferable.
  • Such resins include bisphenol A type, AD type, S type or F type glycidyl ether, water added bisphenol A type glycidyl ether, ethylene oxide adduct bisphenol A type glycidyl ether, propylene oxide adduct bisphenol A.
  • these epoxy resins have a high purity in which impurity ions, alkali metal ions, alkaline earth metal ions and halogen ions (especially chlorine ions), and hydrolyzable chlorine that generates impurity ions are reduced to 300 ppm or less. It is preferable to use a product for preventing electromigration and preventing corrosion of a metal conductor circuit.
  • a curing agent When using the above epoxy resin, a curing agent can be used as necessary.
  • the curing agent include phenolic compounds, aliphatic amines, alicyclic amines, aromatic polyamines, polyamides, aliphatic acid anhydrides, alicyclic acid anhydrides, aromatic acid anhydrides, dicyandiamide, organic acids. Examples thereof include dihydrazide, boron trifluoride amine complex, imidazoles, and tertiary amines.
  • phenolic compounds are preferable, and phenolic compounds having at least two phenolic hydroxyl groups in the molecule are more preferable.
  • the curing agent examples include phenol novolak resin, cresol novolak resin, t-butylphenol novolak resin, dicyclopentadiene cresol novolak resin, dicyclopentadiene phenol novolak resin, xylylene-modified phenol novolak resin, naphthol compound, trisphenol compound, tetrakis Phenol novolac resin, bisphenol A novolak resin, poly-p-vinylphenol resin, phenol aralkyl resin and the like can be mentioned.
  • the compounding amount of these phenolic compounds is such that the equivalent ratio of the epoxy equivalent of the epoxy resin and the OH equivalent of the phenolic compound is 0.95: 1.05 to It is preferably 1.05: 0.95.
  • a curing accelerator can be used as necessary.
  • the curing accelerator is not particularly limited as long as it can cure a thermosetting resin.
  • the bismaleimide resin that is one of the preferred thermosetting components preferably contains two or more maleimide groups in the molecule.
  • the bismaleimide compound represented by the following general formula (III) and the following general formula (IV) It is more preferable that it is at least 1 sort (s) chosen from the novolak-type maleimide compound represented by this.
  • R represents a divalent organic group containing an aromatic ring or a linear, branched or cyclic aliphatic hydrocarbon group.
  • R is preferably a divalent group composed of a benzene residue, a toluene residue, a xylene residue, a naphthalene residue, a linear, branched or cyclic saturated hydrocarbon group, or a combination thereof.
  • r represents an integer of 0 to 20.
  • the bismaleimide resin is divalent in which R is represented by the following formula (v), (vi), or (vii) in that the heat resistance and high-temperature adhesive strength at the C stage of the adhesive composition can be imparted to a higher degree. It is preferable that it is a bismaleimide compound represented by the general formula (III) which is a group, or a novolac maleimide compound represented by the general formula (IV). In addition, these bismaleimide resins can be used individually by 1 type or in combination of 2 or more types, respectively.
  • an organic peroxide may be contained in the adhesive composition as necessary. It is preferable to use an organic peroxide having a one-minute half-life temperature of 120 ° C. or higher from the viewpoint of suppressing the curing during the preparation of the adhesive sheet and storage stability at the B stage.
  • the content of the organic peroxide contained in the adhesive composition is preferably 0.01 to 10% by mass based on the amount of the maleimide compound from the viewpoints of storage stability, low outgassing properties, and curability.
  • the adhesive composition preferably further contains a filler.
  • the filler include metal fillers such as silver powder, gold powder, copper powder, and nickel powder, alumina, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, Inorganic fillers such as aluminum oxide, aluminum nitride, crystalline silica, amorphous silica, boron nitride, titania, glass, iron oxide, and ceramics, and organic fillers such as carbon and rubber fillers are included. Regardless, it can be used without any particular restrictions.
  • ⁇ Fillers can be used properly according to the desired function.
  • the metal filler is added for the purpose of imparting conductivity, thermal conductivity, thixotropy, etc. to the adhesive composition
  • the nonmetallic inorganic filler is thermally conductive, low thermal expansion, low hygroscopicity to the adhesive layer.
  • the organic filler is added for the purpose of imparting toughness to the adhesive layer.
  • metal fillers, inorganic fillers or insulating fillers are preferred, and inorganic fillers or insulating fillers are preferred in that they can provide the electrical conductivity, thermal conductivity, low moisture absorption characteristics, insulating properties, etc. required for adhesive materials for semiconductor devices.
  • a boron nitride filler or a silica filler is more preferable in that the dispersibility with respect to the resin varnish is good and a high adhesive force during heating can be imparted.
  • the amount of filler used is determined according to the properties or functions imparted to the adhesive layer, but is 10 to 40% by volume, preferably 10 to 30% by volume, more preferably 10 to 10% by volume based on the total of the resin component and the filler. 20% by volume.
  • the film surface can be reduced in adhesion and elastic modulus, dicing (cutting with a dicer blade), pick-up (easy peeling from dicing tape), wire bonding (ultrasonic) Efficiency) and can effectively improve the adhesive strength during heating.
  • the filler is increased more than necessary, the low-temperature sticking property, interfacial adhesion to the adherend and hot fluidity tend to be impaired, leading to a decrease in reliability including reflow resistance. Is preferably within the above range.
  • the optimal filler content is determined to balance the required properties. Mixing and kneading in the case of using a filler can be performed by appropriately combining dispersers such as a normal stirrer, a raking machine, a three-roller, and a ball mill.
  • various coupling agents can be added in order to improve interfacial bonding between different materials.
  • the coupling agent include silane-based, titanium-based, and aluminum-based, and among them, a silane-based coupling agent is preferable because it is highly effective.
  • the amount of the coupling agent used is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the polyurethane resin, from the viewpoint of the effect of the coupling agent, heat resistance after curing, and cost.
  • an ion scavenger can be further added in order to adsorb ionic impurities and improve insulation reliability during moisture absorption.
  • an ion scavenger is not particularly limited, for example, a triazine thiol compound, a compound known as a copper damage inhibitor to prevent copper from being ionized and dissolved, such as a bisphenol reducing agent, and the like, Examples thereof include inorganic ion adsorbents such as zirconium-based and antimony bismuth-based magnesium aluminum compounds.
  • the amount of the ion scavenger used is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the polyurethane resin from the viewpoints of the effect of adding the ion scavenger, heat resistance after curing, cost and the like.
  • thermoplastic polymer component may be appropriately added to the adhesive composition.
  • thermoplastic polymer components used to improve adhesion and provide stress relaxation during curing include polyester resin, polyamide resin, polyimide resin, polyvinyl butyral resin, xylene resin, phenoxy resin, urea resin, acrylic rubber, etc. Is mentioned. These polymer components preferably have a weight average molecular weight of 5,000 to 1,000,000.
  • a reactive plasticizer may be added as necessary.
  • a plasticizer is not particularly limited as long as it is liquid, but an epoxy group-containing solvent-free liquid acrylic polymer (for example, UG-4010 manufactured by Toa Gosei Co., Ltd.) is preferably used.
  • the content of the epoxy group-containing solvent-free liquid acrylic polymer is 1 with respect to 100 parts by mass of the polyurethane resin from the viewpoint of good thermal fluidity at the B stage, low outgassing property, and heat resistance at the C stage. It is preferably from ⁇ 300 parts by weight, more preferably from 5 to 200 parts by weight, even more preferably from 10 to 100 parts by weight. If the content is less than 1 part by mass, the effect of achieving the above characteristics tends to be small. If the content exceeds 300 parts by mass, outgassing during heating increases, and the film formability and handleability gradually decrease. Tend to.
  • (A)-(B) when the flow amount at 120 ° C. at the B stage is (A) and the flow amount at the C stage is (B), (A)-(B) is 100 ⁇ m or more, More preferably, it is 200 ⁇ m or more, and further preferably 500 ⁇ m or more. If (A)-(B) is less than 100 ⁇ m, it tends to be difficult to achieve both thermocompression bonding due to thermal fluidization at the B stage and high-temperature adhesiveness due to thermal fluidity suppression at the C stage. It becomes difficult to provide a function as a film adhesive.
  • the flow amount at 120 ° C. of the B stage of the adhesive composition of the present invention is 500 ⁇ m or more, more preferably 1000 ⁇ m or more, and further preferably 2000 ⁇ m or more. Further, the flow amount at 120 ° C. of the C-stage of the adhesive composition is less than 500 ⁇ m, more preferably less than 300 ⁇ m, and even more preferably less than 100 ⁇ m.
  • the semiconductor element is pressure-bonded to a support member having surface irregularities such as an organic substrate having wirings or the like formed on the surface at a temperature of 80 to 200 ° C. and a pressure of 1 MPa or less, the support member surface irregularities Sufficient embedding with respect to the level difference due to can be ensured.
  • the flow amount at 120 ° C. of the B stage is less than 500 ⁇ m, there is a high possibility that the temperature at which the thermocompression bonding due to the above-described heat flow can be ensured exceeds 120 ° C., which affects the thermal strain such as the occurrence of warpage due to thermal stress.
  • the embedding property with respect to the unevenness on the substrate is reduced.
  • the upper limit of the flow amount at 120 ° C. of the B stage is not particularly limited, but can be, for example, 5000 ⁇ m or less. If it exceeds 5000 ⁇ m, the heat flow at the time of thermocompression bonding at 80 to 150 ° C. tends to be too large, and voids tend to remain inside the film adhesive due to air entrainment or foaming remaining at the support member interface. There is.
  • the flow amount at 120 ° C. on the C stage exceeds 500 ⁇ m, it becomes difficult to ensure the high-temperature adhesiveness described above, and it becomes difficult to ensure reflow resistance such as foaming due to thermal flow during solder reflow.
  • the lower limit of the flow amount at 120 ° C. in the C stage is not particularly limited, but may be, for example, 0 ⁇ m or more.
  • the film-like adhesive is prepared by mixing and kneading the above components in an organic solvent to prepare a varnish (adhesive layer forming varnish), and then forming the varnish layer on a base film and drying by heating. It can be obtained by removing the substrate.
  • the above mixing and kneading can be carried out by appropriately combining ordinary stirrers, raking machines, three rolls, ball mills and other dispersing machines.
  • the heating and drying conditions are not particularly limited as long as the solvent used is sufficiently volatilized, but it is usually performed by heating at 50 to 200 ° C. for 0.1 to 90 minutes.
  • the organic solvent used in the production of the adhesive layer is not limited as long as the material can be uniformly dissolved, kneaded, or dispersed.
  • dimethylformamide, dimethylacetamide, N-methyl-2- Examples include pyrrolidone, dimethyl sulfoxide, diethylene glycol dimethyl ether, toluene, benzene, xylene, methyl ethyl ketone, methyl isobutyl ketone, tetrahydrofuran, ethyl cellosolve, ethyl cellosolve acetate, butyl cellosolve, dioxane, cyclohexanone, and ethyl acetate.
  • the base film used in the production of the film adhesive is not particularly limited as long as it can withstand the above-mentioned heat drying conditions.
  • polyester film, polypropylene film, polyethylene terephthalate film, polyimide film, polyether Examples include imide films, polyether naphthalate films, and methylpentene films. Two or more kinds of these base films may be combined to form a multilayer film, or the surface may be treated with a release agent such as a silicone or silica.
  • the adhesive sheet 130 shown in FIG. 4 includes a dicing sheet 5 having a pressure-sensitive adhesive layer 6 laminated on one main surface of a support base material (base film 7) and the support base material, and a pressure-sensitive adhesive layer of the dicing sheet 5. 6 and a film-like adhesive layer 1 laminated on top of each other.
  • the base film 7 can be the same as the base film 2 described above, but is preferably a film that can ensure elongation (commonly known as an expand) when a tensile tension is applied, and the material is polyolefin. These films are preferably used.
  • the adhesive layer 1 in the adhesive sheet 130 is formed in advance in a shape close to the shape of the semiconductor wafer to which the adhesive layer 1 is attached.
  • the adhesive sheet 130 includes the pressure-sensitive adhesive layer 6 that functions as a dicing film, and the adhesive layer 1 as an adhesive for die bonding laminated on the pressure-sensitive adhesive layer 6.
  • the semiconductor element with the film-like adhesive layer 1 is attached. It can be picked up from the dicing sheet 5 and used as it is in the die bonding step.
  • the pressure-sensitive adhesive layer 6 may be formed of either a pressure-sensitive or radiation-curable pressure-sensitive adhesive, and has a sufficient adhesive force that prevents the semiconductor element from scattering during dicing. Any conventionally known material can be used without particular limitation as long as it has a low adhesive strength that does not damage the element. Especially, it is preferable that the adhesive layer 6 is formed with the radiation curing type adhesive.
  • the radiation curable pressure-sensitive adhesive has a high adhesive strength when dicing, and has a low adhesive strength when picked up after dicing and has a low adhesive strength due to radiation irradiation before picking up.
  • the film-like adhesive for the semiconductor wafer When 90 ° peel peel strength at 25 ° C. is C, and 90 ° peel peel strength at 25 ° C. is 25 ° C. with respect to the film adhesive of the pressure-sensitive adhesive layer after UV irradiation under the condition of exposure amount 500 mJ / cm 2
  • the value of (CD) is preferably 1 N / m or more.
  • the value of (CD) is more preferably 5 N / m or more, and further preferably 10 N / m or more.
  • the semiconductor element may be damaged at the time of pick-up, or peeling may occur first at the interface between the semiconductor wafer and the film-like adhesive at the time of pick-up, making it impossible to pick up normally. It tends to be.
  • the adhesive sheet according to the present embodiment is an adhesive sheet 140 provided with a dicing sheet 5 made of only the base film 7 instead of the dicing sheet 5 in the adhesive sheet 130, as in the adhesive sheet 140 shown in FIG. May be.
  • the film-like adhesive layer 1 is formed in advance in a shape close to the wafer (precut).
  • the adhesive sheets 130 and 140 include at least the adhesive layer 1 and a base film 7 that can ensure elongation (commonly referred to as expanded) when a dicing sheet or tensile tension is applied.
  • It is an integrated adhesive sheet. That is, it is an adhesive sheet having characteristics required for both a dicing sheet and a die bonding film. Therefore, the above-mentioned integrated adhesive sheet is laminated on the back surface of the wafer while heating the film adhesive of the integrated adhesive sheet on the back surface of the semiconductor wafer, diced, and then picked up as a semiconductor element with a film adhesive. Can be used.
  • the adhesive composition and the film-like adhesive of the present invention include semiconductor elements such as IC and LSI, lead frames such as 42 alloy lead frames and copper lead frames; plastic films such as polyimide resins and epoxy resins; A material obtained by impregnating and curing a plastic such as polyimide resin or epoxy resin on a material; can be used as an adhesive material for die bonding for bonding an adherend such as a ceramic mounting support member such as ceramics such as alumina. .
  • an adhesive material for die bonding for bonding an organic substrate having an uneven surface to a semiconductor element such as an organic substrate having an organic resist layer on the surface and an organic substrate having wiring on the surface. Used for.
  • a Stacked-PKG having a structure in which a plurality of semiconductor elements are stacked, it is also suitably used as an adhesive material for bonding the semiconductor elements to the semiconductor elements.
  • film adhesive a semiconductor device provided with the film adhesive will be specifically described with reference to the drawings.
  • the use of the above-mentioned film adhesive is not limited to the semiconductor device according to the embodiment described below.
  • a semiconductor element 9 is bonded to a semiconductor element mounting support member 10 via a die bonding layer (cured adhesive layer) 8 formed by the film adhesive.
  • 9 connection terminals (not shown) are electrically connected to external connection terminals (not shown) via wires 11, and are further sealed with a sealing material 12.
  • the first-stage semiconductor element 9a is bonded to the semiconductor element mounting support member 10 via the die bonding layer (cured adhesive layer) 8 formed of the film adhesive.
  • the semiconductor element 9b is bonded onto the semiconductor element 9a via the die bonding layer (cured adhesive layer) 8 formed of the film adhesive, and the whole is sealed with the sealing material 12. Have.
  • the connection terminals (not shown) of the semiconductor elements 9a and 9b are electrically connected to external connection terminals (not shown) via wires 11, respectively.
  • the semiconductor device (semiconductor package) shown in FIGS. 6 and 7 includes a die bonding process using the film adhesive according to the present embodiment, a subsequent wire bonding process, a sealing process using a sealing material, and the like. , Can be manufactured by a manufacturing method.
  • the die bonding step the semiconductor element laminated with the film adhesive is heated and pressurized in a state where the semiconductor element is placed on the support member so that the film adhesive is sandwiched between the semiconductor element and the support member. Thus, the semiconductor element is bonded to the support member.
  • the heating conditions in the die bonding step are usually 20 to 250 ° C. and 0.1 to 300 seconds.
  • Examples 1 to 3 Comparative Examples 1 to 6
  • the compositions (parts by mass) shown in Table 1 were mixed to prepare adhesive layer forming varnishes of Examples 1 to 3 and Comparative Examples 1 to 6, respectively.
  • ⁇ material ⁇ PU DIC Bayer Polymer (DCI Bayer Polymer), polyurethane resin T-8175 (Tg: -23 ° C, weight average molecular weight: 81000) ZX-1395: Tohto Kasei, bisphenol F type phenoxy resin (Tg: 68 ° C., weight average molecular weight: 88000)
  • ESCN-195 Sumitomo Chemical, cresol novolac type epoxy resin (epoxy equivalent 200) HP-850N: Hitachi Chemical, phenol novolac resin (OH equivalent: 106) TPPK: Tokyo Kasei, tetraphenylphosphonium tetraphenylborate 2P4MHZ: Shikoku Kasei Co., Ltd., 2-phenyl-4-methyl-5-hydroxymethylimidazole BMI-1000: Tokyo Kasei Co., Ltd., 4,4'-bismaleimide Diphenylmethane Park Mill D: manufactured by Nippon Oil & Fats Co., Ltd., Dicumyl Peroxide UG-4010: manufactured by Toagosei Co., Ltd., epoxy group-containing solvent-free liquid acrylic polymer (ARUFON, Tg: -57 ° C, weight average molecular weight: 2900) HP-P1: Mizushima alloy iron, boron nitride filler NMP: Kanto Chemical, N-methyl
  • PI-1 Polyimide resin produced by the following method 1,3-bis (3-aminopropyl) tetramethyldisiloxane (Shin-Etsu) in a 300 mL flask equipped with a thermometer, stirrer, condenser, and nitrogen inlet pipe Chemical Industry Co., Ltd., trade name: LP-7100) 15.53 g, polyoxypropylenediamine (BASF Corporation, trade name: D400, molecular weight: 450) 28.13 g, and NMP 100.0 g were charged and stirred. A reaction solution was prepared.
  • the Tg of the polyimide resin (PI-1) was 45 ° C.
  • PI-2 Polyimide resin produced by the following method In a 300 mL flask equipped with a thermometer, stirrer, condenser, and nitrogen inlet pipe, 13.68 g of 2,2-bis (4-aminophenoxyphenyl) propane, 4.80 g of 4,9-dioxadodecane-1,12-diamine and 165.8 g of NMP were charged and stirred to prepare a reaction solution. After 4,9-dioxadodecane-1,12-diamine was dissolved, 34.80 g of decamethylene bistrimellitic dianhydride purified in advance by recrystallization from acetic anhydride while cooling the flask in an ice bath.
  • the film formability of the adhesive sheet obtained under the above conditions was evaluated according to the following criteria.
  • the film forming property evaluation is A based on the following criteria, it means that the thin film forming property is excellent.
  • A A film-like adhesive layer can be applied without cissing on a supporting substrate, and the supporting substrate can be peeled off from the obtained adhesive sheet.
  • C A film-like adhesive on the supporting substrate. There is repelling of the layer (the obtained film area is reduced to 70% or less)
  • test piece having a width of 10 mm and a length of 40 mm was cut out from each of the obtained adhesive sheets.
  • This test piece was laminated on the back surface (surface opposite to the support table) of the silicon wafer (6 inch diameter, thickness 400 ⁇ m) placed on the support table so that the adhesive layer was on the silicon wafer side.
  • Lamination was performed by a method of pressurizing with a roll (temperature 100 ° C., linear pressure 4 kgf / cm, feed rate 0.5 m / min).
  • the sample thus prepared was subjected to a 90 ° peel test at room temperature using a rheometer (“Torograph ES” (trade name) manufactured by Toyo Seiki Seisakusho Co., Ltd.), and the adhesive layer-silicon wafer
  • the peel strength was measured. From the measurement results, the low temperature sticking property was evaluated according to the following criteria.
  • the evaluation of peel strength is A based on the following criteria, it means that the low temperature sticking property is excellent.
  • C Peel strength is less than 2 N / cm
  • This test piece was sandwiched between two slide glasses (Matsunami Glass Industry Co., Ltd., 76 mm ⁇ 26 mm ⁇ 1.0 to 1.2 mm thickness), and 100 kgf / cm 2 overall on a 120 ° C. hot platen. The pressure bonding was performed for 15 seconds while applying a load.
  • the amount of protrusion of the film adhesive from the four sides of the OPP substrate after thermocompression bonding was measured with an optical microscope, and the average value thereof was taken as the flow amount.
  • This flow amount was measured for the adhesive sheet in the B stage state and the adhesive sheet in the C stage state.
  • the B stage refers to the state after the adhesive layer forming varnish is coated on the OPP substrate and then heated in an oven at 80 ° C. for 30 minutes and then at 120 ° C. for 30 minutes.
  • the C stage is a state after being further cured by heating in an oven at 180 ° C. for 5 hours.
  • the film thickness was adjusted with an error of ⁇ 5 ⁇ m. The larger the amount of flow in the B stage and the smaller the amount of flow in the C stage, the better the thermal fluidity.
  • the 260 ° C. peel strength was measured using the adhesive strength evaluation apparatus shown in FIG.
  • the adhesive force evaluation apparatus 300 shown in FIG. 8 has a hot platen 36 and a push-pull gauge 31.
  • a handle 32 is provided at a tip end of a rod attached to the push-pull gauge 31 so as to have a variable angle around a fulcrum 33.
  • a laminated body in which the silicon wafer 9 and the 42 alloy lead frame 35 are bonded to each other via the cured adhesive layer 1 is heated on the heating platen heated to 260 ° C., and the 42 alloy lead frame 35 is placed on the heating platen 36 side. And the sample was heated for 20 seconds.
  • the handle 32 hooked on the protrusion of the silicon wafer 9, the handle 32 is moved at 0.5 mm / second in a direction parallel to the main surface of the sample, and the peeling stress of the silicon wafer 9 at that time is pushed-pull Measurement was performed with a gauge 31.
  • the measured peel stress was defined as 260 ° C. peel strength.
  • Table 1 summarizes the characteristics evaluation results of Examples 1 to 3 and Comparative Examples 1 to 6.
  • those using the adhesive compositions of the examples are excellent in thin film forming properties, low-temperature sticking properties, and hot fluidity as compared with the comparative examples, and have a sufficient 260 ° C. peel strength. Clearly high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Die Bonding (AREA)
  • Adhesive Tapes (AREA)

Abstract

The present invention provides an adhesive composition which comprises a polyurethane resin and a thermosetting component and which exhibits a flow of 500μm or more in B-stage at 120°C and a flow of less than 500μm in C-stage at 120°C and satisfies the relationship: (A) - (B) ≥ 100μm [wherein (A) is the flow in B-stage at 120°C, and (B) is the flow in C-stage at 120°C].

Description

接着剤組成物、フィルム状接着剤、接着シート及び半導体装置Adhesive composition, film adhesive, adhesive sheet and semiconductor device
 本発明は、接着剤組成物、フィルム状接着剤、接着シート及びこれを用いた半導体装置に関する。 The present invention relates to an adhesive composition, a film adhesive, an adhesive sheet, and a semiconductor device using the same.
 従来、半導体素子をリードフレーム等の半導体素子搭載用支持部材に接着するためのダイボンディング層を形成するダイボンディング用接着剤としては、銀ペーストが主に使用されていた。しかし、銀ペーストの場合、近年の半導体素子の大型化、半導体パッケージの小型化及び高性能化に伴って、ぬれ広がり性によるダイボンディング後のダイボンディング層のはみ出し、半導体素子の傾きに起因するワイヤボンディング時の不具合の発生、ダイボンディング層の膜厚精度の不足、及びダイボンディング層におけるボイド等の問題が生じやすくなる。そのために、半導体パッケージの小型化及び高性能化のための支持部材の小型化及び細密化の要求を満足することが困難となっていた。そこで、近年、支持部材の小型化及び細密化に対して有利な、フィルム状接着剤がダイボンディング用の接着剤として広く用いられている(例えば、特許文献1、特許文献2参照。)。このフィルム状接着剤は、例えば、個片貼付け方式(piece lamination process)及びウェハ裏面貼付方式(wafer back-side lamination process)の半導体パッケージ(半導体装置)の製造方法において使用される。 Conventionally, silver paste is mainly used as a die bonding adhesive for forming a die bonding layer for bonding a semiconductor element to a semiconductor element mounting support member such as a lead frame. However, in the case of silver paste, with the recent increase in size of semiconductor elements, downsizing and high performance of semiconductor packages, the die bonding layer protrudes after die bonding due to wetting and spreadability, and the wires due to the inclination of the semiconductor elements Problems such as occurrence of defects during bonding, insufficient film thickness accuracy of the die bonding layer, and voids in the die bonding layer are likely to occur. For this reason, it has been difficult to satisfy the demands for miniaturization and densification of support members for miniaturization and high performance of semiconductor packages. Therefore, in recent years, film adhesives that are advantageous for miniaturization and densification of support members have been widely used as adhesives for die bonding (see, for example, Patent Document 1 and Patent Document 2). This film adhesive is used, for example, in a method of manufacturing a semiconductor package (semiconductor device) of a piece laminating process and a wafer back-side laminating process.
 個片貼付け方式においては、リール状のフィルム状接着剤をカッティング又はパンチングによって個片に切り出して支持部材に接着した後、支持部材上のフィルム状接着剤を介して、ダイシングによって個片化された半導体素子を支持部材に接着(ダイボンディング)する。その後、ワイヤボンド工程、封止工程等を経て半導体装置が製造される(例えば、特許文献3参照。)。しかし、この個片貼付け方式の場合、フィルム状接着剤を切り出して支持部材に接着するための専用の組立装置が必要となるために、銀ペーストを使用する場合に比べて製造コストが高くなるという問題があった。 In the piece pasting method, a reel-like film adhesive was cut into pieces by cutting or punching and bonded to a support member, and then separated into pieces by dicing through the film adhesive on the support member. The semiconductor element is bonded to the support member (die bonding). Thereafter, a semiconductor device is manufactured through a wire bonding process, a sealing process, and the like (see, for example, Patent Document 3). However, in the case of this piece pasting method, a dedicated assembly device for cutting out the film adhesive and bonding it to the support member is required, so that the manufacturing cost is higher than when silver paste is used. There was a problem.
 一方、ウェハ裏面貼付け方式においては、半導体ウェハの裏面にフィルム状接着剤を貼り付け、貼り付けられたフィルム状接着剤の上にダイシングテープを貼り付けた後、半導体ウェハをダイシングによって個片化することによりフィルム状接着剤付きの半導体素子を得、これをピックアップして支持部材に接着(ダイボンディング)する。その後、ワイヤボンド工程、封止工程等を経て半導体装置が製造される。このウェハ裏面貼付け方式の場合、フィルム状接着剤を切り出して支持部材に接着するための専用の組立装置を必要とせず、従来の銀ペースト用の組立装置をそのまま用いるか、又はこれに熱盤(heating platen)を付加する等の部分的な改造を施した装置を用いて行うことができる。そのため、フィルム状接着剤を用いた組立方法の中では、製造コストが比較的安く抑えられる方法として注目されている(例えば、特許文献4参照。)。 On the other hand, in the wafer back surface pasting method, a film adhesive is pasted on the back surface of a semiconductor wafer, a dicing tape is pasted on the pasted film adhesive, and then the semiconductor wafer is diced by dicing. Thus, a semiconductor element with a film adhesive is obtained, and this is picked up and bonded (die bonding) to the support member. Thereafter, a semiconductor device is manufactured through a wire bonding process, a sealing process, and the like. In the case of this wafer back surface pasting method, a dedicated assembly device for cutting out the film adhesive and bonding it to the support member is not required, and a conventional silver paste assembly device is used as it is, or a heating plate ( It can be performed using a device that has been partially modified such as adding a heating platen. Therefore, in the assembly method using a film adhesive, it attracts attention as a method in which the manufacturing cost can be kept relatively low (for example, see Patent Document 4).
 ダイボンディングフィルムを用いた半導体装置には、信頼性、すなわち、耐熱性、耐湿性、耐リフロー性等が求められる。耐リフロー性を確保するためには、260℃前後のリフロー加熱温度において、ダイボンディング層の剥離又は破壊を抑制できる高い接着強度を有することが求められる。 A semiconductor device using a die bonding film is required to have reliability, that is, heat resistance, moisture resistance, reflow resistance, and the like. In order to ensure reflow resistance, it is required to have a high adhesive strength that can suppress the peeling or breakage of the die bonding layer at a reflow heating temperature of around 260 ° C.
 これまで、耐熱性樹脂組成物として、特定の酸成分と特定のアミン成分とからなり、有機溶剤に可溶なガラス転移温度が350℃以下のポリイミド樹脂100重量部と、(B)1分子中に少なくとも2個以上のエポキシ基を有するエポキシ化合物5~100重量部と、(C)該エポキシ化合物と反応可能な活性水素基を有する化合物0.1~20重量部とを主たる成分として含有する樹脂組成物が開示されている(特許文献5)。 Up to now, as a heat-resistant resin composition, 100 parts by weight of a polyimide resin consisting of a specific acid component and a specific amine component and having a glass transition temperature of 350 ° C. or less soluble in an organic solvent, and (B) in one molecule Containing as main components 5 to 100 parts by weight of an epoxy compound having at least two epoxy groups and (C) 0.1 to 20 parts by weight of a compound having an active hydrogen group capable of reacting with the epoxy compound A composition is disclosed (Patent Document 5).
特開平03-192178号公報Japanese Patent Laid-Open No. 03-192178 特開平04-234472号公報Japanese Patent Laid-Open No. 04-234472 特開平09-017810号公報Japanese Patent Application Laid-Open No. 09-017810 特開平04-196246号公報Japanese Patent Laid-Open No. 04-196246 特許第3014578号Patent No. 3014578
 ところで、最近になって、多機能化を目的として支持部材に複数の半導体素子が積層された、いわゆる3Dパッケージの半導体装置が急増している。そして、このような3Dパッケージの半導体装置においても、半導体装置全体の厚さを薄くすることが求められるため、半導体ウェハの更なる極薄化が進行している。これに伴い、ウェハ裏面へダイボンディングフィルムを貼付けた時のウェハ反りが顕在化してきている。そこで、これを防止するために、150℃よりも低温でウェハ裏面への貼り付けが可能なダイボンディングフィルムが求められている。 By the way, recently, a so-called 3D package semiconductor device in which a plurality of semiconductor elements are stacked on a support member for the purpose of achieving multi-functionality has been rapidly increasing. Even in such a semiconductor device of a 3D package, since it is required to reduce the thickness of the entire semiconductor device, further ultrathinning of the semiconductor wafer is progressing. Along with this, wafer warpage when a die bonding film is attached to the back surface of the wafer has become apparent. Therefore, in order to prevent this, there is a demand for a die bonding film that can be attached to the back surface of the wafer at a temperature lower than 150 ° C.
 また、組立プロセスの簡略化を目的に、フィルム状接着剤の一方の面に、ダイシングシートを貼り合せた接着シート、すなわちダイシングシートとダイボンディングフィルムとを一体化させたフィルム(以下、「一体型フィルム」という。)とすることによって、ウェハ裏面への貼り合せプロセスの簡略化を図った手法が提案されている。このような一体型フィルムの形態にするためには、ダイシングテープの軟化温度が150℃以下であり、ウェハ裏面への貼り合せ時の熱応力によるウェハ反りの抑制のため、150℃よりも低温で貼り付けが可能であることが求められる。このように、低温ラミネート性を含むプロセス特性と、耐リフロー性を含む半導体装置の信頼性を高度に両立できるダイボンディングフィルムに対する要求が強くなってきている。 For the purpose of simplifying the assembly process, an adhesive sheet in which a dicing sheet is bonded to one surface of a film adhesive, that is, a film in which a dicing sheet and a die bonding film are integrated (hereinafter referred to as “integrated type”). A method for simplifying the bonding process on the back surface of the wafer has been proposed. In order to make such an integrated film form, the softening temperature of the dicing tape is 150 ° C. or lower, and in order to suppress the wafer warp due to thermal stress at the time of bonding to the wafer back surface, the temperature is lower than 150 ° C. It is required that pasting is possible. As described above, there is an increasing demand for a die bonding film that can achieve a high degree of compatibility between process characteristics including low-temperature laminating properties and reliability of semiconductor devices including reflow resistance.
 一方、例えば支持部材が表面に配線を有する有機基板である場合のように、接着面に配線段差等の段差が存在する場合、上述した特性に加えて、この段差に対する十分な充填性(埋め込み性)を確保することが、半導体装置の耐湿信頼性及び配線間の絶縁信頼性を確保する上で重要である。この埋め込み性が確保されなかった場合、未充填による空隙が原因で、耐湿信頼性及び耐リフロー性の低下が懸念される。このような半導体装置の最下段である半導体素子及び配線段差付き有機基板との接着に用いられるダイボンディングフィルムにおいては、半導体装置の組立工程において、発泡することなく、またボイドが発生することなく、基板表面の配線段差への埋め込み性を確保できる熱時流動性(hot fluidity)を有することが望まれる。 On the other hand, when there is a step such as a wiring step on the adhesive surface, for example, when the support member is an organic substrate having a wiring on the surface, in addition to the above-described characteristics, sufficient filling property (embedding property) It is important to ensure the moisture resistance reliability of the semiconductor device and the insulation reliability between the wirings. If this embedding property is not ensured, there is a concern that the moisture resistance reliability and the reflow resistance may be deteriorated due to voids due to unfilling. In the die bonding film used for bonding with the semiconductor element at the bottom of such a semiconductor device and an organic substrate with a wiring step, in the assembly process of the semiconductor device, without foaming and without generating voids, It is desirable to have hot fluidity that can ensure embedding in the wiring step on the substrate surface.
 しかしながら、上述した段差への埋め込みを可能にする熱時流動性の確保と、低温貼付性及び耐リフロー性を含めた高温時の耐熱性とを両立できる材料(接着剤組成物)、及びその設計はまだ十分ではない。 However, a material (adhesive composition) capable of achieving both high temperature fluidity that enables embedding in the above-described step and high temperature heat resistance including low temperature sticking property and reflow resistance, and its design Is not enough.
 本発明は、上述した従来技術の問題に鑑み、成膜性、低温貼付性及び熱時流動性に優れ、かつ、ピール強度等の半導体装置の信頼性を満足することができる接着剤組性物、並びにこれを用いたフィルム状接着剤、接着シート及び半導体装置を提供することを目的とする。 In view of the above-described problems of the prior art, the present invention is an adhesive assembly that is excellent in film formability, low-temperature stickability, and fluidity during heat, and can satisfy the reliability of a semiconductor device such as peel strength. And a film-like adhesive, an adhesive sheet and a semiconductor device using the same.
 本発明は、ポリウレタン樹脂と熱硬化性成分とを含み、Bステージでの120℃におけるフロー量が500μm以上であり、かつCステージでの120℃におけるフロー量が500μm未満であり、上記Bステージでの120℃におけるフロー量を(A)、上記Cステージでの120℃におけるフロー量を(B)としたとき、(A)-(B)の値が100μm以上である接着剤組成物を提供する。 The present invention includes a polyurethane resin and a thermosetting component, and the flow amount at 120 ° C. at the B stage is 500 μm or more, and the flow amount at 120 ° C. at the C stage is less than 500 μm. Provided is an adhesive composition in which the value of (A)-(B) is 100 μm or more, where (A) is the flow amount at 120 ° C. and (B) is the flow amount at 120 ° C. in the C stage. .
 上記接着剤組成物は、成膜性、低温貼付性及び熱時流動性に優れ、かつ、ピール強度等の半導体装置の信頼性を満足することができる。 The above adhesive composition is excellent in film formability, low-temperature sticking property, and hot fluidity, and can satisfy the reliability of the semiconductor device such as peel strength.
 本明細書中、「Bステージ」とは、後述する接着剤層形成用ワニスを厚さ60μmの二軸延伸ポリプロピレン(OPP)基材上に厚さ40±5μmのフィルム状の接着剤層を形成するように塗工した後、オーブン中で、80℃で30分、続いて120℃で30分の条件で加熱した後の状態をいい、「Cステージ」とはオーブン中で更に180℃で5時間の条件で加熱硬化した後の状態をいう。 In this specification, “B stage” means that a film-like adhesive layer having a thickness of 40 ± 5 μm is formed on a biaxially stretched polypropylene (OPP) base material having a thickness of 60 μm using a later-described adhesive layer forming varnish. After coating, the state after heating in an oven at 80 ° C. for 30 minutes and then at 120 ° C. for 30 minutes is referred to as “C stage”. The state after heat-curing under time conditions.
 また、本明細書中、「フロー量」とは、厚さが60μmのOPP基材上に厚さ40±5μmのフィルム状の接着剤層が形成された接着シートを、10mm×10mmサイズに切断し、この接着シートを2枚のスライドグラス(松浪硝子工業株式会社製、76mm×26mm×1.0~1.2mm厚)の間に挟んだサンプルを用意し、このサンプルに120℃の熱盤上で100kgf/cmの荷重をかけ、15秒間加熱圧着した後の上記OPP基材の四辺からの接着剤のはみ出し量をそれぞれ光学顕微鏡で計測して得られた値から算術平均により求めた平均値をいう。 In addition, in this specification, “flow amount” means that an adhesive sheet in which a film-like adhesive layer having a thickness of 40 ± 5 μm is formed on an OPP substrate having a thickness of 60 μm is cut into a size of 10 mm × 10 mm. A sample is prepared by sandwiching the adhesive sheet between two slide glasses (manufactured by Matsunami Glass Industry Co., Ltd., 76 mm × 26 mm × 1.0 to 1.2 mm thickness). The average obtained by arithmetic average from the values obtained by measuring the amount of protrusion of the adhesive from the four sides of the OPP substrate after applying a load of 100 kgf / cm 2 above and thermocompression bonding for 15 seconds, respectively, with an optical microscope. Value.
 上記熱硬化性成分はエポキシ樹脂又はビスマレイミド樹脂を含むことが好ましい。また、上記接着剤組成物は更にフィラーを含有することが好ましい。 The thermosetting component preferably contains an epoxy resin or a bismaleimide resin. Moreover, it is preferable that the said adhesive composition contains a filler further.
 上記接着剤組成物は、半導体素子同士、又は半導体素子と半導体素子搭載用支持部材との接着用であることが好ましく、半導体素子搭載用支持部材は、半導体素子を搭載する面に配線段差を有する有機基板であることが好ましい。 The adhesive composition is preferably for bonding between semiconductor elements or between a semiconductor element and a semiconductor element mounting support member, and the semiconductor element mounting support member has a wiring step on a surface on which the semiconductor element is mounted. An organic substrate is preferred.
 本発明はまた、上記接着剤組成物をフィルム状に形成してなるフィルム状接着剤を提供する。かかるフィルム状接着剤は、上記接着剤組成物を用いているため、低温貼付性、熱時流動性に優れ、ピール強度等の半導体装置の信頼性を満足することができる。 The present invention also provides a film adhesive formed by forming the adhesive composition into a film. Since such a film-like adhesive uses the above-mentioned adhesive composition, it is excellent in low-temperature sticking property and hot fluidity, and can satisfy the reliability of the semiconductor device such as peel strength.
 本発明は更に、支持基材と、該支持基材の主面上に形成された上記フィルム状接着剤とを備える接着シートを提供する。かかる接着シートは、上記接着剤組成物を用いているため、低温貼付性及び熱時流動性に優れ、かつピール強度等の半導体装置の信頼性を満足することができる。 The present invention further provides an adhesive sheet comprising a supporting substrate and the film adhesive formed on the main surface of the supporting substrate. Since such an adhesive sheet uses the above-mentioned adhesive composition, it is excellent in low-temperature sticking property and hot fluidity and can satisfy the reliability of the semiconductor device such as peel strength.
 上記支持基材はダイシングシートであることが好ましく、ダイシングシートは、基材フィルム及び該基材フィルム上に設けられた粘着材層を有することが好ましい。 The support substrate is preferably a dicing sheet, and the dicing sheet preferably has a base film and an adhesive layer provided on the base film.
 本発明はまた、半導体素子と半導体素子搭載用支持部材とが上記接着剤組成物の硬化物により接着された構造、又は隣接する半導体素子同士が上記接着剤組成物の硬化物により接着された構造を備える半導体装置を提供する。かかる半導体装置は、上記接着剤組成物を用いているため、ピール強度等の信頼性が高いものとなる。 The present invention also provides a structure in which a semiconductor element and a semiconductor element mounting support member are bonded by a cured product of the adhesive composition, or a structure in which adjacent semiconductor elements are bonded by a cured product of the adhesive composition. A semiconductor device is provided. Since such a semiconductor device uses the above-described adhesive composition, it has high reliability such as peel strength.
 本発明は、ポリウレタン樹脂と熱硬化性成分とを含み、Bステージでの120℃におけるフロー量が500μm以上であり、かつCステージでの120℃におけるフロー量が500μm未満であり、Bステージでの120℃におけるフロー量を(A)、前記Cステージでの120℃におけるフロー量を(B)としたとき、(A)-(B)の値が100μm以上である組成物の接着剤としての応用、及び当該組成物の接着剤の製造のための応用ということもできる。 The present invention includes a polyurethane resin and a thermosetting component, and the flow amount at 120 ° C. at the B stage is 500 μm or more, and the flow amount at 120 ° C. at the C stage is less than 500 μm. Application of a composition having a value of (A)-(B) of 100 μm or more as an adhesive when the flow amount at 120 ° C. is (A) and the flow amount at 120 ° C. in the C stage is (B). And the application of the composition for the production of an adhesive.
 本発明によれば、成膜性、低温貼付性及び熱時流動性に優れ、かつ、ピール強度等の半導体装置の信頼性を満足することができる接着剤組性物、並びにこれを用いたフィルム状接着剤を提供することができる。このような接着剤組成物及びフィルム状接着剤は、極薄ウェハ及び複数の半導体素子を積層した半導体装置に対応できるウェハ裏面貼付け方式の半導体素子の固定用に好適に用いることができる。 ADVANTAGE OF THE INVENTION According to this invention, the adhesive composition which is excellent in film forming property, low-temperature sticking property, and fluidity at the time of heat, and can satisfy the reliability of a semiconductor device such as peel strength, and a film using the same An adhesive can be provided. Such an adhesive composition and a film-like adhesive can be suitably used for fixing a semiconductor element of a wafer back surface attachment type that can be applied to an ultra-thin wafer and a semiconductor device in which a plurality of semiconductor elements are laminated.
 ウェハ裏面にフィルム状接着剤を貼り付ける際に、通常、フィルム状接着剤が溶融する温度まで加熱するが、本発明のフィルム状接着剤を使用すれば、極薄ウェハの保護テープ又は貼り合わせるダイシングテープの軟化温度よりも低い温度でウェハ裏面に貼り付けることが可能となる。これにより、熱応力も低減され、大径化及び薄化するウェハの反り等の問題を解決できる。 When a film adhesive is affixed to the back side of the wafer, it is usually heated to a temperature at which the film adhesive melts. If the film adhesive of the present invention is used, a protective tape for ultra-thin wafer or dicing to be bonded is used. It becomes possible to affix on the wafer back surface at a temperature lower than the softening temperature of the tape. Thereby, thermal stress is also reduced, and problems such as warping of the wafer that is increased in diameter and thinned can be solved.
 また、本発明のフィルム状接着剤によれば、ダイボンド時の熱と圧力によって、基板表面の配線段差への良好な埋め込みを可能にする熱時流動性を確保でき、複数の半導体素子を積層した半導体装置の製造工程に好適に対応できる。 In addition, according to the film adhesive of the present invention, the heat and pressure at the time of die bonding can ensure the fluidity at the time of heating that enables good embedding in the wiring step on the substrate surface, and a plurality of semiconductor elements are laminated. It can respond suitably to the manufacturing process of a semiconductor device.
 また、本発明のフィルム状接着剤によれば、高温時の高い接着強度を確保できるため、硬化後の耐熱性を向上できる。さらに半導体装置の製造工程を簡略化できる。さらに、低温での貼り付けが可能であるため、応力緩和特性に優れており、ウェハの反り等の熱応力を低減しつつ、ダイシング時のチップ飛び(chip scattering)を抑えることができる。 Further, according to the film adhesive of the present invention, high adhesive strength at high temperature can be secured, so that heat resistance after curing can be improved. Furthermore, the manufacturing process of the semiconductor device can be simplified. Further, since it can be attached at a low temperature, it has excellent stress relaxation characteristics, and it is possible to suppress chip scattering during dicing while reducing thermal stress such as wafer warpage.
 また、本発明のフィルム状接着剤によれば、ダイシング時の良好な切断性及びダイシング後の良好なピックアップ性を確保できるため、半導体装置の製造時の作業性を向上できる。 In addition, according to the film adhesive of the present invention, it is possible to ensure good cutting performance at the time of dicing and good pick-up performance after dicing, so that the workability at the time of manufacturing the semiconductor device can be improved.
 また、本発明によれば、成膜性に優れ、かつ低コストの接着剤組成物を提供できる。また、本発明によれば、上述のフィルム状接着剤とダイシングシートを貼りあわせた接着シートを提供することができる。 Moreover, according to the present invention, it is possible to provide an adhesive composition having excellent film forming properties and low cost. Moreover, according to this invention, the adhesive sheet which bonded the above-mentioned film adhesive and the dicing sheet can be provided.
 本発明の接着シートによれば、ダイシング工程までの貼付工程を簡略化し、パッケージの組立熱履歴に対しても安定した特性を確保できる材料を提供することが可能である。また、本発明によれば、ダイシングシートとダイボンディングフィルムの両機能を併せ持った粘接着剤層と基材とからなる接着シートを提供することができる。 According to the adhesive sheet of the present invention, it is possible to provide a material that can simplify the pasting process up to the dicing process and ensure stable characteristics against the assembly heat history of the package. Moreover, according to this invention, the adhesive sheet which consists of an adhesive layer and a base material which have both functions of the dicing sheet and the die-bonding film can be provided.
本発明の実施形態に係る接着シートの一例を示す模式断面図である。It is a schematic cross section which shows an example of the adhesive sheet which concerns on embodiment of this invention. 本発明の実施形態に係る接着シートの一例を示す模式断面図である。It is a schematic cross section which shows an example of the adhesive sheet which concerns on embodiment of this invention. 本発明の実施形態に係る接着シートの一例を示す模式断面図である。It is a schematic cross section which shows an example of the adhesive sheet which concerns on embodiment of this invention. 本発明の実施形態に係る接着シートの一例を示す模式断面図である。It is a schematic cross section which shows an example of the adhesive sheet which concerns on embodiment of this invention. 本発明の実施形態に係る接着シートの一例を示す模式断面図である。It is a schematic cross section which shows an example of the adhesive sheet which concerns on embodiment of this invention. 本発明の実施形態に係る半導体装置の一例を示す模式断面図である。1 is a schematic cross-sectional view showing an example of a semiconductor device according to an embodiment of the present invention. 本発明の実施形態に係る半導体装置の一例を示す模式断面図である。1 is a schematic cross-sectional view showing an example of a semiconductor device according to an embodiment of the present invention. 接着力評価装置を示す模式部分断面図である。It is a model fragmentary sectional view which shows an adhesive force evaluation apparatus.
 以下、必要に応じて図面を参照しつつ、本発明の好適な実施形態について詳細に説明する。図面中、同一又は相当部分には同一符号を付し、重複する説明は適宜省略する。上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。図面の寸法比率は図示の比率に限られるものではない。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as necessary. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and repeated description will be omitted as appropriate. The positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. The dimensional ratios in the drawings are not limited to the illustrated ratios.
 図1に示す接着シート100は、後述する接着剤組成物をフィルム状に成形した接着剤層1のみからなるものである。接着剤層1の厚みは、1~100μm程度であることが好ましい。接着シート100を保存及び搬送する際には、幅1~20mm程度のテープ状又は、幅10~50cm程度のシート状とし、巻き芯に巻きつけた状態とすることが好ましい。これにより、接着シート100の保管及び搬送が容易となる。接着シート100は、接着剤層1を複数重ねて貼り合せた積層体であってもよい。 The adhesive sheet 100 shown in FIG. 1 consists of only the adhesive layer 1 which shape | molded the adhesive composition mentioned later into a film form. The thickness of the adhesive layer 1 is preferably about 1 to 100 μm. When the adhesive sheet 100 is stored and transported, it is preferably in the form of a tape having a width of about 1 to 20 mm or a sheet having a width of about 10 to 50 cm and wound around a winding core. Thereby, storage and conveyance of the adhesive sheet 100 are facilitated. The adhesive sheet 100 may be a laminate in which a plurality of adhesive layers 1 are stacked and bonded together.
 図2に示す接着シート110は、支持基材(基材フィルム2)と、基材フィルム2の両主面上に積層されたフィルム状の接着剤層1とを備える。また、基材フィルム2の片面上のみにフィルム状の接着剤層1が設けられていてもよい。基材フィルム2としては、接着剤層1を形成する際の加熱に耐えることができるものであれば特に限定されず、例えば、ポリエステルフィルム、ポリプロピレンフィルム、ポリエチレンテレフタレートフィルム、ポリイミドフィルム、ポリエーテルイミドフィルム、ポリエーテルナフタレートフィルム、メチルペンテンフィルム等を好適に用いることができる。基材フィルム2はこれらのフィルムを2種以上組み合わせた多層フィルムであってもよい。また、基材フィルム2の表面はシリコーン系、シリカ系等の離型剤で処理されていてもよい。 The adhesive sheet 110 shown in FIG. 2 includes a supporting base material (base film 2) and a film-like adhesive layer 1 laminated on both main surfaces of the base film 2. Further, the film-like adhesive layer 1 may be provided only on one surface of the base film 2. The base film 2 is not particularly limited as long as it can withstand the heating when the adhesive layer 1 is formed. For example, polyester film, polypropylene film, polyethylene terephthalate film, polyimide film, polyetherimide film Polyether naphthalate film, methyl pentene film and the like can be suitably used. The base film 2 may be a multilayer film in which two or more of these films are combined. The surface of the base film 2 may be treated with a release agent such as silicone or silica.
 図3に示す接着シート120は、基材フィルム2と、基材フィルム2の一方の主面上に積層されたフィルム状の接着剤層1と、接着剤層1の基材フィルム2とは反対側の面上に積層された保護フィルム(保護テープ)3とを備える。保護フィルム3は、接着剤層1の損傷及び汚染を防ぐために、接着剤層1の基材フィルム2とは反対側の面を覆うように設けられている。この場合、接着シート120は、保護フィルム3を剥離してからダイボンディングに用いられる。 The adhesive sheet 120 shown in FIG. 3 is opposite to the base film 2, the film-like adhesive layer 1 laminated on one main surface of the base film 2, and the base film 2 of the adhesive layer 1 And a protective film (protective tape) 3 laminated on the side surface. The protective film 3 is provided so as to cover the surface of the adhesive layer 1 opposite to the base film 2 in order to prevent damage and contamination of the adhesive layer 1. In this case, the adhesive sheet 120 is used for die bonding after the protective film 3 is peeled off.
 フィルム状の接着剤層1は、本発明の接着剤組成物をフィルム状に形成することにより得られる。以下、本発明の接着剤組成物について説明する。 The film-like adhesive layer 1 is obtained by forming the adhesive composition of the present invention into a film shape. Hereinafter, the adhesive composition of the present invention will be described.
 本発明の接着剤組成物は、ポリウレタン樹脂及び熱硬化性成分を少なくとも含有する。 The adhesive composition of the present invention contains at least a polyurethane resin and a thermosetting component.
 ポリウレタン樹脂としては、主鎖中にウレタン(カルバミド酸エステル)結合を持つ重合体であれば特に限定されないが、重量平均分子量が5000~500000、熱流動温度が200℃以下の重合体であることが、N-メチル-2-ピロリドン(NMP)等の有機溶剤への溶解性、薄膜形成性、熱時流動性等の点で好ましい。中でも、下記式(I)で表されるポリウレタン樹脂が、有機溶剤への溶解性及び薄膜形成性に加えて、高接着性等を付与できる点で好ましく用いられる。 The polyurethane resin is not particularly limited as long as it is a polymer having a urethane (carbamic acid ester) bond in the main chain, but it may be a polymer having a weight average molecular weight of 5,000 to 500,000 and a heat flow temperature of 200 ° C. or less. From the viewpoints of solubility in organic solvents such as N-methyl-2-pyrrolidone (NMP), film-forming properties, and fluidity during heating. Among these, a polyurethane resin represented by the following formula (I) is preferably used in that it can impart high adhesiveness in addition to solubility in an organic solvent and thin film formability.
Figure JPOXMLDOC01-appb-C000001
 式(I)中、nは1~100の整数を示し、好ましくは5~100であり、より好ましくは10~100である。式(I)中、mは1~100の整数を示し、好ましくは2~100であり、より好ましくは5~50である。一般式(I)中、*は結合手を示す。
Figure JPOXMLDOC01-appb-C000001
In the formula (I), n represents an integer of 1 to 100, preferably 5 to 100, and more preferably 10 to 100. In the formula (I), m represents an integer of 1 to 100, preferably 2 to 100, and more preferably 5 to 50. In general formula (I), * indicates a bond.
 上記ポリウレタン樹脂の具体例としては、DIC Bayer Polymer(ディーアイシー バイエル ポリマー)(株)製PANDEXシリーズ、Desmopanシリーズ、Texinシリーズ等が挙げられる。 Specific examples of the polyurethane resin include PANDEX series, Desmopan series, and Texin series manufactured by DIC Bayer Polymer (DCI Bayer Polymer).
 接着剤組成物のウェハ裏面への貼り付け可能温度は、ウェハの保護テープ及びダイシングテープの軟化温度以下であることが好ましく、また半導体ウェハの反りを抑えるという観点からも、上記貼り付け温度は、20~100℃が好ましく、20~80℃がより好ましく、20~60℃がさらにより好ましい。 The temperature at which the adhesive composition can be applied to the back surface of the wafer is preferably equal to or lower than the softening temperature of the protective tape and dicing tape of the wafer, and also from the viewpoint of suppressing warpage of the semiconductor wafer, 20-100 ° C is preferable, 20-80 ° C is more preferable, and 20-60 ° C is even more preferable.
 これらの範囲の温度での貼り付けを可能にするためには、接着剤組成物のTgが100℃以下であることが好ましく、そのためには、熱流動温度が200℃以下のポリウレタン樹脂を選択することが望ましい。 In order to enable application at a temperature in these ranges, the adhesive composition preferably has a Tg of 100 ° C. or lower, and for this purpose, a polyurethane resin having a heat flow temperature of 200 ° C. or lower is selected. It is desirable.
 ポリウレタン樹脂の熱流動温度が200℃以下であると、ウェハ裏面への貼り付け温度を100℃以下にできる接着剤設計がより容易となる傾向にある。ポリウレタン樹脂の熱流動温度の下限値は特に制限はないが、0℃以上とすることができる。0℃以上であると、Bステージ状態でのフィルム表面の粘着力が適度な強さになる傾向にあり、取り扱い性がより向上する他、本接着剤組成物付き半導体ウェハをダイシングした後のダイシングテープからのピックアップ性がより向上する傾向がある。 When the heat flow temperature of the polyurethane resin is 200 ° C. or lower, the adhesive design that can make the temperature of attaching to the back surface of the wafer 100 ° C. or lower tends to be easier. The lower limit value of the heat flow temperature of the polyurethane resin is not particularly limited, but can be 0 ° C. or higher. When the temperature is 0 ° C. or higher, the adhesive force on the film surface in the B-stage state tends to be moderately strong, and handling properties are further improved, and dicing after dicing the semiconductor wafer with the adhesive composition There is a tendency that the pickup property from the tape is further improved.
 熱流動温度が上記範囲内のポリウレタン樹脂を選択することにより、ウェハ裏面への貼り付け温度を低く抑えることができるだけでなく、低温でのダイボンドも確保することができ、半導体素子の反りの増大を抑制できる。 By selecting a polyurethane resin having a heat flow temperature within the above range, not only can the temperature of bonding to the backside of the wafer be kept low, but also die bonding at a low temperature can be secured, increasing the warpage of the semiconductor element. Can be suppressed.
 なお、本明細書において、重量平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC;例えば株式会社島津製作所製、商品名:C-R4A)により、下記測定条件で測定して得られる標準ポリスチレン換算値である。
溶媒:ジメチルホルムアミド(DMF)+臭化リチウム(LiBr)(0.03mol(対DMF1L)+りん酸(0.06mol(対DMF1L))
カラム:G6000HXL+G4000HXL+G2000HXL(東ソー株式会社製)試料濃度:10mg/5mL
注入量:0.5mL
圧力:100kgf/cm
流量:1.00mL/分
測定温度:25℃。
 また、上記熱流動温度とは、フィルム化した試料を使用して、レオメトリックス製粘弾性アナライザーRSA-2を用いて、フィルムサイズ35mm×10mm×40μm厚、昇温速度5℃/分、周波数1Hz、測定温度-150~300℃の条件で測定し、貯蔵弾性率が0.1MPa以下となる温度である。
In the present specification, the weight average molecular weight is a standard polystyrene conversion value obtained by measurement under the following measurement conditions by gel permeation chromatography (GPC; manufactured by Shimadzu Corporation, trade name: C-R4A). It is.
Solvent: dimethylformamide (DMF) + lithium bromide (LiBr) (0.03 mol (vs DMF1L) + phosphoric acid (0.06 mol (vs DMF1L))
Column: G6000HXL + G4000HXL + G2000HXL (manufactured by Tosoh Corporation) Sample concentration: 10 mg / 5 mL
Injection volume: 0.5 mL
Pressure: 100 kgf / cm 2
Flow rate: 1.00 mL / min Measurement temperature: 25 ° C.
The heat flow temperature is a film sample, and a rheometric viscoelasticity analyzer RSA-2 is used, and the film size is 35 mm × 10 mm × 40 μm thickness, the heating rate is 5 ° C./min, and the frequency is 1 Hz. The measurement temperature is a temperature at which the storage elastic modulus is 0.1 MPa or less as measured under the condition of -150 to 300 ° C.
 ポリウレタン樹脂の含有量は、接着剤組成物全量に対して、5~95質量%であることが好ましく、10~90質量%であることがより好ましく、20~80質量%であることが更に好ましい。 The content of the polyurethane resin is preferably 5 to 95% by mass, more preferably 10 to 90% by mass, and still more preferably 20 to 80% by mass with respect to the total amount of the adhesive composition. .
 熱硬化性成分は、熱により架橋反応を起こす反応性化合物からなる成分であれば特に制限はなく、例えば、エポキシ樹脂、シアネートエステル樹脂、ビスマレイミド樹脂、ビスアリルナジイミド樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、アルキド樹脂、アクリル樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、シリコーン樹脂、レゾルシノールホルムアルデヒド樹脂、キシレン樹脂、フラン樹脂、ケトン樹脂、トリアリルシアヌレート樹脂、ポリイソシアネート樹脂、トリス(2-ヒドロキシエチル)イソシアヌラートを含有する樹脂、トリアリルトリメリタートを含有する樹脂、シクロペンタジエンから合成された熱硬化性樹脂、芳香族ジシアナミドの三量化による熱硬化性樹脂等の他、多官能のアクリレート及び/又はメタクリレート化合物、ビニル基あるいはスチリル基を含む化合物、及びそれらの重合体等が挙げられる。中でも、高温での優れた接着力をもたせることができる点で、エポキシ樹脂が好ましく、高温での高い弾性率を付与できる点で、ビスマレイミド樹脂が好ましい。なお、これら熱硬化性成分は単独で又は2種類以上を組み合わせて用いることができる。 The thermosetting component is not particularly limited as long as it is a component composed of a reactive compound that causes a crosslinking reaction by heat. For example, epoxy resin, cyanate ester resin, bismaleimide resin, bisallyl nadiimide resin, phenol resin, urea resin , Melamine resin, alkyd resin, acrylic resin, unsaturated polyester resin, diallyl phthalate resin, silicone resin, resorcinol formaldehyde resin, xylene resin, furan resin, ketone resin, triallyl cyanurate resin, polyisocyanate resin, tris (2-hydroxy Ethyl) isocyanurate-containing resin, triallyl trimellitate-containing resin, thermosetting resin synthesized from cyclopentadiene, thermosetting resin by trimerization of aromatic dicyanamide, and other polyfunctional acrylates as well as Or methacrylate compound, a compound containing a vinyl group or a styryl group, and their polymers, and the like. Among them, an epoxy resin is preferable in that it can have an excellent adhesive force at a high temperature, and a bismaleimide resin is preferable in that a high elastic modulus can be imparted at a high temperature. In addition, these thermosetting components can be used individually or in combination of 2 or more types.
 熱硬化性成分の含有量は、ポリウレタン樹脂100質量部に対して、5~300質量部が好ましく、10~200質量部がより好ましく、20~150質量部がさらに好ましい。上記含有量が300質量部を超えると、加熱時のアウトガスが多くなる他、フィルム形成性(靭性)が損なわれる傾向があり、上記含有量が5質量部未満であると、Bステージでの熱時流動性付与及びCステージでの耐熱性並びに高温接着性を有効に付与できなくなる可能性が高くなる。 The content of the thermosetting component is preferably 5 to 300 parts by mass, more preferably 10 to 200 parts by mass, and still more preferably 20 to 150 parts by mass with respect to 100 parts by mass of the polyurethane resin. If the content exceeds 300 parts by mass, outgassing during heating tends to increase, and film formability (toughness) tends to be impaired. If the content is less than 5 parts by mass, heat at the B stage There is a high possibility that the fluidity at the time, the heat resistance at the C stage and the high-temperature adhesiveness cannot be effectively imparted.
 上記熱硬化性成分の硬化のために、硬化剤、触媒、過酸化物を使用することができ、必要に応じて硬化剤と硬化促進剤又は触媒と助触媒を併用することができる。上記硬化剤及び硬化促進剤、過酸化物の添加量並びに添加の有無については、後述する望ましい熱時流動性及び硬化後の耐熱性を確保できる範囲で判断、調整する。 For curing the thermosetting component, a curing agent, a catalyst, or a peroxide can be used, and a curing agent and a curing accelerator or a catalyst and a promoter can be used in combination as necessary. About the addition amount of the said hardening | curing agent, a hardening accelerator, and a peroxide, and the presence or absence of addition, it judges and adjusts in the range which can ensure the desired thermal fluidity mentioned later and the heat resistance after hardening.
 好ましい熱硬化性成分の一つであるエポキシ樹脂としては、分子内に少なくとも2個のエポキシ基を含むものがより好ましく、硬化性及び硬化物特性の点からフェノールのグリシジルエーテル型のエポキシ樹脂が極めて好ましい。 As the epoxy resin which is one of the preferred thermosetting components, those containing at least two epoxy groups in the molecule are more preferable, and phenol glycidyl ether type epoxy resins are extremely preferable in terms of curability and cured product characteristics. preferable.
 このような樹脂としては、例えば、ビスフェノールA型、AD型、S型又はF型のグリシジルエーテル、水添加ビスフェノールA型のグリシジルエーテル、エチレンオキシド付加体ビスフェノールA型のグリシジルエーテル、プロピレンオキシド付加体ビスフェノールA型のグリシジルエーテル、フェノールノボラック樹脂のグリシジルエーテル、クレゾールノボラック樹脂のグリシジルエーテル、ビスフェノールAノボラック樹脂のグリシジルエーテル、ナフタレン樹脂のグリシジルエーテル、3官能型(又は4官能型)のグリシジルエーテル、ジシクロペンタジエンフェノール樹脂のグリシジルエーテル、ジアリルビスフェノールAジグリシジルエーテル、アリル化ビスフェノールAとエピクロルヒドリンの重縮合物、ダイマー酸のグリシジルエステル、3官能型(又は4官能型)のグリシジルアミン、ナフタレン樹脂のグリシジルアミン等が挙げられる。これらは単独で又は2種類以上を組み合わせて使用することができる。 Examples of such resins include bisphenol A type, AD type, S type or F type glycidyl ether, water added bisphenol A type glycidyl ether, ethylene oxide adduct bisphenol A type glycidyl ether, propylene oxide adduct bisphenol A. Type glycidyl ether, glycidyl ether of phenol novolac resin, glycidyl ether of cresol novolac resin, glycidyl ether of bisphenol A novolac resin, glycidyl ether of naphthalene resin, trifunctional (or tetrafunctional type) glycidyl ether, dicyclopentadienephenol Resin glycidyl ether, diallyl bisphenol A diglycidyl ether, polycondensate of allylated bisphenol A and epichlorohydrin, dimer acid group Glycidyl ester, 3 glycidylamine functional type (or tetrafunctional), and glycidyl amines of naphthalene resins. These can be used alone or in combination of two or more.
 また、これらのエポキシ樹脂には不純物イオンである、アルカリ金属イオン、アルカリ土類金属イオン及びハロゲンイオン(特に塩素イオン)、並びに不純物イオンを発生する加水分解性塩素等を300ppm以下に低減した高純度品を用いることがエレクトロマイグレーション防止及び金属導体回路の腐食防止のために好ましい。 In addition, these epoxy resins have a high purity in which impurity ions, alkali metal ions, alkaline earth metal ions and halogen ions (especially chlorine ions), and hydrolyzable chlorine that generates impurity ions are reduced to 300 ppm or less. It is preferable to use a product for preventing electromigration and preventing corrosion of a metal conductor circuit.
 上記エポキシ樹脂を使用する場合は、必要に応じて硬化剤を使用することもできる。上記硬化剤としては、例えば、フェノール系化合物、脂肪族アミン、脂環族アミン、芳香族ポリアミン、ポリアミド、脂肪族酸無水物、脂環族酸無水物、芳香族酸無水物、ジシアンジアミド、有機酸ジヒドラジド、三フッ化ホウ素アミン錯体、イミダゾール類、第3級アミン等が挙げられ、中でもフェノール系化合物が好ましく、分子中に少なくとも2個のフェノール性水酸基を有するフェノール系化合物がより好ましい。 When using the above epoxy resin, a curing agent can be used as necessary. Examples of the curing agent include phenolic compounds, aliphatic amines, alicyclic amines, aromatic polyamines, polyamides, aliphatic acid anhydrides, alicyclic acid anhydrides, aromatic acid anhydrides, dicyandiamide, organic acids. Examples thereof include dihydrazide, boron trifluoride amine complex, imidazoles, and tertiary amines. Among them, phenolic compounds are preferable, and phenolic compounds having at least two phenolic hydroxyl groups in the molecule are more preferable.
 硬化剤としては、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、t-ブチルフェノールノボラック樹脂、ジシクロペンタジエンクレゾールノボラック樹脂、ジシクロペンタジエンフェノールノボラック樹脂、キシリレン変性フェノールノボラック樹脂、ナフトール系化合物、トリスフェノール系化合物、テトラキスフェノールノボラック樹脂、ビスフェノールAノボラック樹脂、ポリ-p-ビニルフェノール樹脂、フェノールアラルキル樹脂等が挙げられる。 Examples of the curing agent include phenol novolak resin, cresol novolak resin, t-butylphenol novolak resin, dicyclopentadiene cresol novolak resin, dicyclopentadiene phenol novolak resin, xylylene-modified phenol novolak resin, naphthol compound, trisphenol compound, tetrakis Phenol novolac resin, bisphenol A novolak resin, poly-p-vinylphenol resin, phenol aralkyl resin and the like can be mentioned.
 これらの中で、数平均分子量が400~1500の範囲内のものが好ましい。これにより、半導体装置を組立てて加熱する際に、半導体素子、装置等の汚染の原因となるアウトガスを有効に低減できる。なお、硬化物の耐熱性を確保するためにも、これらのフェノール系化合物の配合量は、エポキシ樹脂のエポキシ当量と、フェノール系化合物のOH当量の当量比が、0.95:1.05~1.05:0.95となることが好ましい。 Of these, those having a number average molecular weight in the range of 400 to 1500 are preferred. Thereby, when the semiconductor device is assembled and heated, outgas that causes contamination of the semiconductor element, the device, and the like can be effectively reduced. In order to ensure the heat resistance of the cured product, the compounding amount of these phenolic compounds is such that the equivalent ratio of the epoxy equivalent of the epoxy resin and the OH equivalent of the phenolic compound is 0.95: 1.05 to It is preferably 1.05: 0.95.
 また、必要に応じて、硬化促進剤を使用することもできる。硬化促進剤としては、熱硬化性樹脂を硬化させるものであれば特に制限はなく、例えば、イミダゾール類、ジシアンジアミド誘導体、ジカルボン酸ジヒドラジド、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、2-エチル-4-メチルイミダゾール-テトラフェニルボレート、1,8-ジアザビシクロ[5.4.0]ウンデセン-7-テトラフェニルボレート等が挙げられる。 Also, a curing accelerator can be used as necessary. The curing accelerator is not particularly limited as long as it can cure a thermosetting resin. For example, imidazoles, dicyandiamide derivatives, dicarboxylic acid dihydrazide, triphenylphosphine, tetraphenylphosphonium tetraphenylborate, 2-ethyl-4 -Methylimidazole-tetraphenylborate, 1,8-diazabicyclo [5.4.0] undecene-7-tetraphenylborate and the like.
 好ましい熱硬化性成分の一つであるビスマレイミド樹脂としては、分子内にマレイミド基を2個以上含むことが好ましく、下記一般式(III)で表されるビスマレイミド化合物、及び下記一般式(IV)で表されるノボラック型マレイミド化合物から選ばれる少なくとも1種であることがより好ましい。 The bismaleimide resin that is one of the preferred thermosetting components preferably contains two or more maleimide groups in the molecule. The bismaleimide compound represented by the following general formula (III) and the following general formula (IV) It is more preferable that it is at least 1 sort (s) chosen from the novolak-type maleimide compound represented by this.
Figure JPOXMLDOC01-appb-C000002
 一般式(III)中、Rは、芳香族環又は直鎖、分岐鎖又は環状脂肪族炭化水素基を含む2価の有機基を示す。Rは、ベンゼン残基、トルエン残基、キシレン残基、ナフタレン残基若しくは直鎖、分岐鎖若しくは環状飽和炭化水素基、又はこれらの組み合わせから構成される2価の基であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
In general formula (III), R represents a divalent organic group containing an aromatic ring or a linear, branched or cyclic aliphatic hydrocarbon group. R is preferably a divalent group composed of a benzene residue, a toluene residue, a xylene residue, a naphthalene residue, a linear, branched or cyclic saturated hydrocarbon group, or a combination thereof.
Figure JPOXMLDOC01-appb-C000003
 一般式(IV)中、rは0~20の整数を示す。
Figure JPOXMLDOC01-appb-C000003
In the general formula (IV), r represents an integer of 0 to 20.
 接着剤組成物のCステージでの耐熱性及び高温接着力をより高度に付与できる点で、ビスマレイミド樹脂は、Rが下記式(v)、(vi)若しくは(vii)で表される2価の基である一般式(III)で表されるビスマレイミド化合物、又は一般式(IV)で表されるノボラック型マレイミド化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 なお、これらのビスマレイミド樹脂は、それぞれ、1種を単独で又は2種以上を組み合わせて使用することができる。
The bismaleimide resin is divalent in which R is represented by the following formula (v), (vi), or (vii) in that the heat resistance and high-temperature adhesive strength at the C stage of the adhesive composition can be imparted to a higher degree. It is preferable that it is a bismaleimide compound represented by the general formula (III) which is a group, or a novolac maleimide compound represented by the general formula (IV).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
In addition, these bismaleimide resins can be used individually by 1 type or in combination of 2 or more types, respectively.
 ビスマレイミド樹脂の加熱による硬化を促進するために、必要に応じて有機過酸化物が接着剤組成物に含有されていてもよい。接着シート作製時の硬化抑制、及びBステージでの保存安定性の点から、1分間半減期温度が120℃以上の有機過酸化物を使用することが好ましい。接着剤組成物に含まれる有機過酸化物の含有量は、保存安定性、低アウトガス性、硬化性の観点から、マレイミド化合物の量を基準として0.01~10質量%であることが好ましい。 In order to accelerate curing of the bismaleimide resin by heating, an organic peroxide may be contained in the adhesive composition as necessary. It is preferable to use an organic peroxide having a one-minute half-life temperature of 120 ° C. or higher from the viewpoint of suppressing the curing during the preparation of the adhesive sheet and storage stability at the B stage. The content of the organic peroxide contained in the adhesive composition is preferably 0.01 to 10% by mass based on the amount of the maleimide compound from the viewpoints of storage stability, low outgassing properties, and curability.
 接着剤組成物は、更にフィラーを含有することが好ましい。フィラーとしては、例えば、銀粉、金粉、銅粉、ニッケル粉等の金属フィラー、アルミナ、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、結晶性シリカ、非晶性シリカ、窒化ホウ素、チタニア、ガラス、酸化鉄、セラミック等の無機フィラー、カーボン、ゴム系フィラー等の有機フィラー等が挙げられ、種類・形状等にかかわらず特に制限なく使用することができる。 The adhesive composition preferably further contains a filler. Examples of the filler include metal fillers such as silver powder, gold powder, copper powder, and nickel powder, alumina, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, Inorganic fillers such as aluminum oxide, aluminum nitride, crystalline silica, amorphous silica, boron nitride, titania, glass, iron oxide, and ceramics, and organic fillers such as carbon and rubber fillers are included. Regardless, it can be used without any particular restrictions.
 フィラーは所望する機能に応じて使い分けることができる。例えば、金属フィラーは、接着剤組成物に導電性、熱伝導性、チキソ性等を付与する目的で添加され、非金属無機フィラーは、接着剤層に熱伝導性、低熱膨張性、低吸湿性等を付与する目的で添加され、有機フィラーは接着剤層に靭性等を付与する目的で添加される。これら金属フィラー、無機フィラー又は有機フィラーは、単独で又は2種類以上を組み合わせて使用することができる。 ∙ Fillers can be used properly according to the desired function. For example, the metal filler is added for the purpose of imparting conductivity, thermal conductivity, thixotropy, etc. to the adhesive composition, and the nonmetallic inorganic filler is thermally conductive, low thermal expansion, low hygroscopicity to the adhesive layer. The organic filler is added for the purpose of imparting toughness to the adhesive layer. These metal fillers, inorganic fillers or organic fillers can be used alone or in combination of two or more.
 上記した中でも、半導体装置用接着材料に求められる、導電性、熱伝導性、低吸湿特性、絶縁性等を付与できる点で、金属フィラー、無機フィラー又は絶縁性のフィラーが好ましく、無機フィラー又は絶縁性フィラーの中では、樹脂ワニスに対する分散性が良好でかつ、熱時の高い接着力を付与できる点で窒化ホウ素フィラー又はシリカフィラーがより好ましい。 Among the above, metal fillers, inorganic fillers or insulating fillers are preferred, and inorganic fillers or insulating fillers are preferred in that they can provide the electrical conductivity, thermal conductivity, low moisture absorption characteristics, insulating properties, etc. required for adhesive materials for semiconductor devices. Among the fillers, a boron nitride filler or a silica filler is more preferable in that the dispersibility with respect to the resin varnish is good and a high adhesive force during heating can be imparted.
 フィラーの使用量は、接着剤層に付与する特性又は機能に応じて決められるが、樹脂成分とフィラーの合計に対して10~40体積%、好ましくは10~30体積%、より好ましくは10~20体積%である。フィラーを適度に増量させることにより、フィルム表面低粘着化及び高弾性率化が図れ、ダイシング性(ダイサー刃による切断性)、ピックアップ性(ダイシングテープとの易はく離性)、ワイヤボンディング性(超音波効率)、熱時の接着強度を有効に向上できる。 The amount of filler used is determined according to the properties or functions imparted to the adhesive layer, but is 10 to 40% by volume, preferably 10 to 30% by volume, more preferably 10 to 10% by volume based on the total of the resin component and the filler. 20% by volume. By appropriately increasing the amount of filler, the film surface can be reduced in adhesion and elastic modulus, dicing (cutting with a dicer blade), pick-up (easy peeling from dicing tape), wire bonding (ultrasonic) Efficiency) and can effectively improve the adhesive strength during heating.
 フィラーを必要以上に増量させると、低温貼付性、被着体との界面接着性及び熱時流動性が損なわれ、耐リフロー性を含む信頼性の低下を招く傾向にあるため、フィラーの使用量は上記の範囲内に収めることが好ましい。求められる特性のバランスをとるべく、最適フィラー含量を決定する。フィラーを用いた場合の混合・混練は、通常の攪拌機、らいかい機、三本ロール、ボールミル等の分散機を適宜、組み合わせて行うことができる。 If the filler is increased more than necessary, the low-temperature sticking property, interfacial adhesion to the adherend and hot fluidity tend to be impaired, leading to a decrease in reliability including reflow resistance. Is preferably within the above range. The optimal filler content is determined to balance the required properties. Mixing and kneading in the case of using a filler can be performed by appropriately combining dispersers such as a normal stirrer, a raking machine, a three-roller, and a ball mill.
 接着剤組成物には、異種材料間の界面結合を良くするために、各種カップリング剤を添加することもできる。カップリング剤としては、例えば、シラン系、チタン系、アルミニウム系等が挙げられ、中でも効果が高い点で、シラン系カップリング剤が好ましい。上記カップリング剤の使用量は、カップリング剤の効果、硬化後の耐熱性及びコストの面から、ポリウレタン樹脂100質量部に対して、0.01~20質量部とするのが好ましい。 In the adhesive composition, various coupling agents can be added in order to improve interfacial bonding between different materials. Examples of the coupling agent include silane-based, titanium-based, and aluminum-based, and among them, a silane-based coupling agent is preferable because it is highly effective. The amount of the coupling agent used is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the polyurethane resin, from the viewpoint of the effect of the coupling agent, heat resistance after curing, and cost.
 接着剤組成物には、イオン性不純物を吸着して、吸湿時の絶縁信頼性を良くするために、更にイオン捕捉剤を添加することもできる。このようなイオン捕捉剤としては、特に制限はなく、例えば、トリアジンチオール化合物、及びビスフェノール系還元剤等の銅がイオン化して溶け出すのを防止するため銅害防止剤として知られる化合物、並びに、ジルコニウム系及びアンチモンビスマス系マグネシウムアルミニウム化合物等の無機イオン吸着剤等が挙げられる。上記イオン捕捉剤の使用量は、イオン補足剤の添加による効果、硬化後の耐熱性、コスト等の点から、ポリウレタン樹脂100質量部に対して、0.01~10質量部が好ましい。 In the adhesive composition, an ion scavenger can be further added in order to adsorb ionic impurities and improve insulation reliability during moisture absorption. Such an ion scavenger is not particularly limited, for example, a triazine thiol compound, a compound known as a copper damage inhibitor to prevent copper from being ionized and dissolved, such as a bisphenol reducing agent, and the like, Examples thereof include inorganic ion adsorbents such as zirconium-based and antimony bismuth-based magnesium aluminum compounds. The amount of the ion scavenger used is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the polyurethane resin from the viewpoints of the effect of adding the ion scavenger, heat resistance after curing, cost and the like.
 また、接着剤組成物には、適宜、軟化剤、老化防止剤、着色剤、難燃剤、テルペン系樹脂等の粘着付与剤、熱可塑系高分子成分を添加してもよい。接着性向上及び硬化時の応力緩和性を付与するため用いられる熱可塑系高分子成分としては、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリビニルブチラール樹脂、キシレン樹脂、フェノキシ樹脂、尿素樹脂、アクリルゴム等が挙げられる。これら高分子成分は、重量平均分子量が5000~1000000のものが好ましい。 In addition, a softener, an anti-aging agent, a colorant, a flame retardant, a tackifier such as a terpene resin, and a thermoplastic polymer component may be appropriately added to the adhesive composition. Examples of thermoplastic polymer components used to improve adhesion and provide stress relaxation during curing include polyester resin, polyamide resin, polyimide resin, polyvinyl butyral resin, xylene resin, phenoxy resin, urea resin, acrylic rubber, etc. Is mentioned. These polymer components preferably have a weight average molecular weight of 5,000 to 1,000,000.
 接着剤組成物の熱時流動性を調整するために、必要に応じて反応性可塑剤を添加してもよい。このような可塑剤としては、液状であれば特に制限はないが、エポキシ基含有無溶剤型液状アクリルポリマー(例えば、東亜合成(株)製:UG-4010)等が好ましく用いられる。 In order to adjust the hot fluidity of the adhesive composition, a reactive plasticizer may be added as necessary. Such a plasticizer is not particularly limited as long as it is liquid, but an epoxy group-containing solvent-free liquid acrylic polymer (for example, UG-4010 manufactured by Toa Gosei Co., Ltd.) is preferably used.
 上記エポキシ基含有無溶剤型液状アクリルポリマーの含有量は、Bステージでの良好な熱時流動性、低アウトガス性とCステージでの耐熱性の点から、ポリウレタン樹脂100質量部に対して、1~300質量部であることが好ましく、5~200質量部であることがより好ましく、10~100質量部であることがさらに好ましい。この含有量が1質量部未満であると、上記特性を両立する効果が小さくなる傾向があり、300質量部を超えると、加熱時のアウトガスが多くなり、成膜性及び取り扱い性が徐々に低下する傾向にある。 The content of the epoxy group-containing solvent-free liquid acrylic polymer is 1 with respect to 100 parts by mass of the polyurethane resin from the viewpoint of good thermal fluidity at the B stage, low outgassing property, and heat resistance at the C stage. It is preferably from ˜300 parts by weight, more preferably from 5 to 200 parts by weight, even more preferably from 10 to 100 parts by weight. If the content is less than 1 part by mass, the effect of achieving the above characteristics tends to be small. If the content exceeds 300 parts by mass, outgassing during heating increases, and the film formability and handleability gradually decrease. Tend to.
 本発明の接着剤組成物は、Bステージでの120℃におけるフロー量を(A)、Cステージでのフロー量を(B)としたとき、(A)-(B)が100μm以上であり、200μm以上であるとより好ましく、500μm以上であるとさらに好ましい。(A)-(B)が100μm未満であると、Bステージでの熱流動による熱圧着性とCステージでの熱流動抑制による高温接着性を両立が困難となる傾向にあり、半導体素子固定用フィルム状接着剤としての機能を備えることが困難になる。 In the adhesive composition of the present invention, when the flow amount at 120 ° C. at the B stage is (A) and the flow amount at the C stage is (B), (A)-(B) is 100 μm or more, More preferably, it is 200 μm or more, and further preferably 500 μm or more. If (A)-(B) is less than 100 μm, it tends to be difficult to achieve both thermocompression bonding due to thermal fluidization at the B stage and high-temperature adhesiveness due to thermal fluidity suppression at the C stage. It becomes difficult to provide a function as a film adhesive.
 本発明の接着剤組成物のBステージの120℃におけるフロー量は500μm以上であり、1000μm以上であるとより好ましく、2000μm以上であるとさらに好ましい。また、接着剤組成物のCステージの120℃におけるフロー量は500μm未満であり、300μm未満であるとより好ましく、100μm未満であるとさらにより好ましい。 The flow amount at 120 ° C. of the B stage of the adhesive composition of the present invention is 500 μm or more, more preferably 1000 μm or more, and further preferably 2000 μm or more. Further, the flow amount at 120 ° C. of the C-stage of the adhesive composition is less than 500 μm, more preferably less than 300 μm, and even more preferably less than 100 μm.
 これにより、表面に配線等が形成されている有機基板のような表面凹凸を有する支持部材に、半導体素子を80~200℃の温度で1MPa以下の圧力で圧着したときに、上記支持部材表面凹凸による段差に対する十分な埋め込み性を確保できる。 As a result, when the semiconductor element is pressure-bonded to a support member having surface irregularities such as an organic substrate having wirings or the like formed on the surface at a temperature of 80 to 200 ° C. and a pressure of 1 MPa or less, the support member surface irregularities Sufficient embedding with respect to the level difference due to can be ensured.
 上記Bステージの120℃におけるフロー量が500μm未満であると、上述した熱流動による熱圧着性を確保できる温度が120℃を超える可能性が高くなり、熱応力による反りの発生等熱ひずみに影響を与える可能性が高くなる他、基板上の凹凸に対する埋め込み性が低下する。 When the flow amount at 120 ° C. of the B stage is less than 500 μm, there is a high possibility that the temperature at which the thermocompression bonding due to the above-described heat flow can be ensured exceeds 120 ° C., which affects the thermal strain such as the occurrence of warpage due to thermal stress. The embedding property with respect to the unevenness on the substrate is reduced.
 上記Bステージの120℃におけるフロー量の上限は特に限定されないが、例えば5000μm以下とすることができる。5000μmを超えると、80~150℃での加熱圧着時の熱流動が大きくなりすぎて、支持部材界面に残存する空気の巻き込み又は発泡等により、フィルム状接着剤内部にボイドが残存し易くなる傾向がある。 The upper limit of the flow amount at 120 ° C. of the B stage is not particularly limited, but can be, for example, 5000 μm or less. If it exceeds 5000 μm, the heat flow at the time of thermocompression bonding at 80 to 150 ° C. tends to be too large, and voids tend to remain inside the film adhesive due to air entrainment or foaming remaining at the support member interface. There is.
 また、上記Cステージでの120℃におけるフロー量が500μmを超えると、上述した高温接着性の確保が困難になり、はんだリフロー時の熱流動による発泡等、耐リフロー性の確保が困難になる。上記Cステージでの120℃におけるフロー量の下限は特に限定されないが、例えば0μm以上とすることができる。 Further, if the flow amount at 120 ° C. on the C stage exceeds 500 μm, it becomes difficult to ensure the high-temperature adhesiveness described above, and it becomes difficult to ensure reflow resistance such as foaming due to thermal flow during solder reflow. The lower limit of the flow amount at 120 ° C. in the C stage is not particularly limited, but may be, for example, 0 μm or more.
 フィルム状接着剤は、上述の成分を有機溶媒中で混合、混練してワニス(接着剤層形成用ワニス)を調製した後、基材フィルム上に上記ワニスの層を形成させ、加熱乾燥した後に基材を除去することで得ることができる。 The film-like adhesive is prepared by mixing and kneading the above components in an organic solvent to prepare a varnish (adhesive layer forming varnish), and then forming the varnish layer on a base film and drying by heating. It can be obtained by removing the substrate.
 上記の混合、混練は、通常の攪拌機、らいかい機、三本ロール、ボールミル等の分散機を適宜、組み合わせて行うことができる。上記の加熱乾燥の条件は、使用した溶媒が充分に揮散する条件であれば特に制限はないが、通常50~200℃で、0.1~90分間加熱して行う。 The above mixing and kneading can be carried out by appropriately combining ordinary stirrers, raking machines, three rolls, ball mills and other dispersing machines. The heating and drying conditions are not particularly limited as long as the solvent used is sufficiently volatilized, but it is usually performed by heating at 50 to 200 ° C. for 0.1 to 90 minutes.
 上記接着剤層の製造の際に用いる有機溶媒、即ちワニス溶剤は、材料を均一に溶解、混練又は分散できるものであれば制限はなく、例えば、ジメチルホルムアミド、ジメチルアセトアミド、N―メチル-2-ピロリドン、ジメチルスルホキシド、ジエチレングリコールジメチルエーテル、トルエン、ベンゼン、キシレン、メチルエチルケトン、メチルイソブチルケトン、テトラヒドロフラン、エチルセロソルブ、エチルセロソルブアセテート、ブチルセロソルブ、ジオキサン、シクロヘキサノン、酢酸エチル等が挙げられる。 The organic solvent used in the production of the adhesive layer, that is, the varnish solvent is not limited as long as the material can be uniformly dissolved, kneaded, or dispersed. For example, dimethylformamide, dimethylacetamide, N-methyl-2- Examples include pyrrolidone, dimethyl sulfoxide, diethylene glycol dimethyl ether, toluene, benzene, xylene, methyl ethyl ketone, methyl isobutyl ketone, tetrahydrofuran, ethyl cellosolve, ethyl cellosolve acetate, butyl cellosolve, dioxane, cyclohexanone, and ethyl acetate.
 フィルム状接着剤の製造時に使用する基材フィルムは、上記の加熱乾燥の条件に耐えるものであれば特に制限するものではなく、例えば、ポリエステルフィルム、ポリプロピレンフィルム、ポリエチレンテレフタレートフィルム、ポリイミドフィルム、ポリエーテルイミドフィルム、ポリエーテルナフタレートフィルム、メチルペンテンフィルム等が挙げられる。これらの基材としてのフィルムは2種以上組み合わせて多層フィルムとしてもよく、表面がシリコーン系、シリカ系等の離型剤等で処理されたものであってもよい。 The base film used in the production of the film adhesive is not particularly limited as long as it can withstand the above-mentioned heat drying conditions. For example, polyester film, polypropylene film, polyethylene terephthalate film, polyimide film, polyether Examples include imide films, polyether naphthalate films, and methylpentene films. Two or more kinds of these base films may be combined to form a multilayer film, or the surface may be treated with a release agent such as a silicone or silica.
 図4に示す接着シート130は、支持基材(基材フィルム7)及び支持基材の一方の主面上に積層された粘着剤層6を有するダイシングシート5と、ダイシングシート5の粘着剤層6上に積層されたフィルム状の接着剤層1とを備える。基材フィルム7は、上述の基材フィルム2と同様のものを使用することができるが、引張テンションを加えたときの伸び(通称、エキスパンド)を確保できるフィルムであることが好ましく、材質がポリオレフィンのフィルムが好ましく用いられる。また、接着シート130における接着剤層1は、これを貼り付ける半導体ウェハの形状に近い形状に予め形成されていることが好ましい。 The adhesive sheet 130 shown in FIG. 4 includes a dicing sheet 5 having a pressure-sensitive adhesive layer 6 laminated on one main surface of a support base material (base film 7) and the support base material, and a pressure-sensitive adhesive layer of the dicing sheet 5. 6 and a film-like adhesive layer 1 laminated on top of each other. The base film 7 can be the same as the base film 2 described above, but is preferably a film that can ensure elongation (commonly known as an expand) when a tensile tension is applied, and the material is polyolefin. These films are preferably used. Moreover, it is preferable that the adhesive layer 1 in the adhesive sheet 130 is formed in advance in a shape close to the shape of the semiconductor wafer to which the adhesive layer 1 is attached.
 上記接着シート130は、ダイシングフィルムとしての機能を果たす粘着剤層6と、粘着剤層6上に積層されたダイボンディング用接着剤としての接着剤層1とを備えていることにより、ダイシング工程においてはダイシングフィルムとして、ダイボンディング工程においてはダイボンディングフィルムとして機能することができる。例えば、半導体ウェハの裏面にフィルム状の接着剤層1の側が半導体ウェハと密着するように接着シート130が貼り付けられた状態でダイシングした後、フィルム状の接着剤層1が付いた半導体素子をダイシングシート5からピックアップして、これをそのままダイボンディング工程に用いることができる。 In the dicing process, the adhesive sheet 130 includes the pressure-sensitive adhesive layer 6 that functions as a dicing film, and the adhesive layer 1 as an adhesive for die bonding laminated on the pressure-sensitive adhesive layer 6. Can function as a dicing film and in the die bonding step as a die bonding film. For example, after dicing in a state where the adhesive sheet 130 is attached so that the film-like adhesive layer 1 side is in close contact with the semiconductor wafer on the back surface of the semiconductor wafer, the semiconductor element with the film-like adhesive layer 1 is attached. It can be picked up from the dicing sheet 5 and used as it is in the die bonding step.
 粘着剤層6は、感圧型又は放射線硬化型の粘着剤のいずれで形成されていてもよく、ダイシング時には半導体素子が飛散しない十分な粘着力を有し、その後の半導体素子のピックアップ工程においては半導体素子を傷つけない程度の低い粘着力を有するものであれば特に制限することなく従来公知のものを使用することができる。中でも、粘着剤層6は、放射線硬化型の粘着剤で形成されていることが好ましい。放射線硬化型の粘着剤は、ダイシングの際には高粘着力で、ダイシング後のピックアップの際にはピックアップ前の放射線照射によって低粘着力となるといったように、粘着力の制御が容易である。 The pressure-sensitive adhesive layer 6 may be formed of either a pressure-sensitive or radiation-curable pressure-sensitive adhesive, and has a sufficient adhesive force that prevents the semiconductor element from scattering during dicing. Any conventionally known material can be used without particular limitation as long as it has a low adhesive strength that does not damage the element. Especially, it is preferable that the adhesive layer 6 is formed with the radiation curing type adhesive. The radiation curable pressure-sensitive adhesive has a high adhesive strength when dicing, and has a low adhesive strength when picked up after dicing and has a low adhesive strength due to radiation irradiation before picking up.
 粘着剤層6が放射線硬化型の粘着剤で形成されている場合、半導体ウェハの裏面に接着剤層1が密着するように接着シート130を貼り付けた場合に、半導体ウェハに対するフィルム状接着剤の25℃での90°ピール剥離力をCとし、露光量500mJ/cmの条件でUV照射した後の粘着剤層のフィルム状接着剤に対する25℃での90°ピール剥離力をDとしたときに、(C-D)の値が1N/m以上であることが好ましい。この(C-D)の値は5N/m以上がより好ましく、10N/m以上がさらに好ましい。(C-D)の値が1N/m未満であると、ピックアップ時に半導体素子を傷つけたり、ピックアップ時に半導体ウェハとフィルム状接着剤との界面において先に剥離を生じてしまい、正常にピックアップできなくなったりする傾向にある。 When the pressure-sensitive adhesive layer 6 is formed of a radiation curable pressure-sensitive adhesive, when the adhesive sheet 130 is attached so that the adhesive layer 1 is in close contact with the back surface of the semiconductor wafer, the film-like adhesive for the semiconductor wafer When 90 ° peel peel strength at 25 ° C. is C, and 90 ° peel peel strength at 25 ° C. is 25 ° C. with respect to the film adhesive of the pressure-sensitive adhesive layer after UV irradiation under the condition of exposure amount 500 mJ / cm 2 In addition, the value of (CD) is preferably 1 N / m or more. The value of (CD) is more preferably 5 N / m or more, and further preferably 10 N / m or more. If the value of (C−D) is less than 1 N / m, the semiconductor element may be damaged at the time of pick-up, or peeling may occur first at the interface between the semiconductor wafer and the film-like adhesive at the time of pick-up, making it impossible to pick up normally. It tends to be.
 なお、本実施形態に係る接着シートは、図5に示す接着シート140のように、接着シート130におけるダイシングシート5に代えて基材フィルム7のみからなるダイシングシート5を設けた接着シート140であってもよい。この態様の場合には、フィルム状の接着剤層1が予めウェハに近い形状に形成されている(プリカット(precut))ことが好ましい。 Note that the adhesive sheet according to the present embodiment is an adhesive sheet 140 provided with a dicing sheet 5 made of only the base film 7 instead of the dicing sheet 5 in the adhesive sheet 130, as in the adhesive sheet 140 shown in FIG. May be. In the case of this aspect, it is preferable that the film-like adhesive layer 1 is formed in advance in a shape close to the wafer (precut).
 接着シート130及び140は、半導体装置製造工程を簡略化する目的で、接着剤層1とダイシングシート又は引張テンションを加えたときの伸び(通称、エキスパンド)を確保できる基材フィルム7とを少なくとも備える一体型の接着シートである。即ち、ダイシングシートとダイボンディングフィルムの両者に要求される特性を兼ね備える接着シートである。そのため、上述の一体型の接着シートは、半導体ウェハの裏面に一体型接着シートのフィルム状接着剤を加熱しながらウェハ裏面にラミネートし、ダイシングした後、フィルム状接着剤付き半導体素子としてピックアップして使用することができる。 For the purpose of simplifying the semiconductor device manufacturing process, the adhesive sheets 130 and 140 include at least the adhesive layer 1 and a base film 7 that can ensure elongation (commonly referred to as expanded) when a dicing sheet or tensile tension is applied. It is an integrated adhesive sheet. That is, it is an adhesive sheet having characteristics required for both a dicing sheet and a die bonding film. Therefore, the above-mentioned integrated adhesive sheet is laminated on the back surface of the wafer while heating the film adhesive of the integrated adhesive sheet on the back surface of the semiconductor wafer, diced, and then picked up as a semiconductor element with a film adhesive. Can be used.
 本発明の接着剤組成物及びフィルム状接着剤は、IC、LSI等の半導体素子と、42アロイリードフレーム、銅リードフレーム等のリードフレーム;ポリイミド樹脂、エポキシ樹脂等のプラスチックフィルム;ガラス不織布等基材にポリイミド樹脂、エポキシ樹脂等のプラスチックを含浸、硬化させたもの;アルミナ等のセラミックス等の半導体搭載用支持部材等の被着体とを貼り合せるためのダイボンディング用接着材料として用いることができる。 The adhesive composition and the film-like adhesive of the present invention include semiconductor elements such as IC and LSI, lead frames such as 42 alloy lead frames and copper lead frames; plastic films such as polyimide resins and epoxy resins; A material obtained by impregnating and curing a plastic such as polyimide resin or epoxy resin on a material; can be used as an adhesive material for die bonding for bonding an adherend such as a ceramic mounting support member such as ceramics such as alumina. .
 上記した中でも、表面に有機レジスト層を具備してなる有機基板、表面に配線を有する有機基板等の、表面に凹凸を有する有機基板と半導体素子とを接着するためのダイボンディング用接着材料として好適に用いられる。また、複数の半導体素子を積み重ねた構造のStacked-PKGにおいて、半導体素子と半導体素子とを接着するための接着材料としても好適に用いられる。 Among the above, it is suitable as an adhesive material for die bonding for bonding an organic substrate having an uneven surface to a semiconductor element, such as an organic substrate having an organic resist layer on the surface and an organic substrate having wiring on the surface. Used for. Further, in a Stacked-PKG having a structure in which a plurality of semiconductor elements are stacked, it is also suitably used as an adhesive material for bonding the semiconductor elements to the semiconductor elements.
 上記フィルム状接着剤の用途のうち、このフィルム状接着剤を備える半導体装置について図面を用いて具体的に説明する。ただし、上述のフィルム状接着剤の用途は、以下に説明する実施形態に係る半導体装置に限定されるものではない。 Among the uses of the film adhesive, a semiconductor device provided with the film adhesive will be specifically described with reference to the drawings. However, the use of the above-mentioned film adhesive is not limited to the semiconductor device according to the embodiment described below.
 図6に示す半導体装置200は、半導体素子9が、上記フィルム状接着剤によって形成されたダイボンディング層(硬化した接着剤層)8を介して半導体素子搭載用支持部材10に接着され、半導体素子9の接続端子(図示せず)がワイヤ11を介して外部接続端子(図示せず)と電気的に接続され、更に、封止材12によって封止された構成を有している。 In a semiconductor device 200 shown in FIG. 6, a semiconductor element 9 is bonded to a semiconductor element mounting support member 10 via a die bonding layer (cured adhesive layer) 8 formed by the film adhesive. 9 connection terminals (not shown) are electrically connected to external connection terminals (not shown) via wires 11, and are further sealed with a sealing material 12.
 図7に示す半導体装置210は、一段目の半導体素子9aが上記フィルム状接着剤によって形成されたダイボンディング層(硬化した接着剤層)8、を介して半導体素子搭載用支持部材10に接着され、半導体素子9aの上に半導体素子9bが上記フィルム状接着剤によって形成されたダイボンディング層(硬化した接着剤層)8を介して接着され、全体が封止材12によって封止された構成を有している。半導体素子9a及び半導体素子9bの接続端子(図示せず)は、それぞれワイヤ11を介して外部接続端子(図示せず)と電気的に接続されている。 In the semiconductor device 210 shown in FIG. 7, the first-stage semiconductor element 9a is bonded to the semiconductor element mounting support member 10 via the die bonding layer (cured adhesive layer) 8 formed of the film adhesive. The semiconductor element 9b is bonded onto the semiconductor element 9a via the die bonding layer (cured adhesive layer) 8 formed of the film adhesive, and the whole is sealed with the sealing material 12. Have. The connection terminals (not shown) of the semiconductor elements 9a and 9b are electrically connected to external connection terminals (not shown) via wires 11, respectively.
 図6及び図7に示す半導体装置(半導体パッケージ)は、本実施形態に係るフィルム状接着剤を用いたダイボンディング工程と、これに続くワイヤボンディング工程、封止材による封止工程等の工程と、を備える製造方法により製造することができる。ダイボンディング工程においては、フィルム状接着剤が積層された半導体素子を、支持部材との間にフィルム状接着剤が挟まれるように支持部材の上に載せた状態で、全体を加熱及び加圧することにより、半導体素子が支持部材に接着される。ダイボンディング工程における加熱の条件は、通常、20~250℃で0.1~300秒間である。 The semiconductor device (semiconductor package) shown in FIGS. 6 and 7 includes a die bonding process using the film adhesive according to the present embodiment, a subsequent wire bonding process, a sealing process using a sealing material, and the like. , Can be manufactured by a manufacturing method. In the die bonding step, the semiconductor element laminated with the film adhesive is heated and pressurized in a state where the semiconductor element is placed on the support member so that the film adhesive is sandwiched between the semiconductor element and the support member. Thus, the semiconductor element is bonded to the support member. The heating conditions in the die bonding step are usually 20 to 250 ° C. and 0.1 to 300 seconds.
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described more specifically based on Examples and Comparative Examples, but the present invention is not limited to these.
〔実施例1~3、比較例1~6〕
 下記材料を用い、表1に示す組成(質量部)で混合し、実施例1~3及び比較例1~6の接着剤層形成用ワニスをそれぞれ調製した。
[Examples 1 to 3, Comparative Examples 1 to 6]
Using the following materials, the compositions (parts by mass) shown in Table 1 were mixed to prepare adhesive layer forming varnishes of Examples 1 to 3 and Comparative Examples 1 to 6, respectively.
〔材料〕
 PU:DIC Bayer Polymer(ディーアイシー バイエル ポリマー)、ポリウレタン樹脂T-8175(Tg:-23℃,重量平均分子量:81000)
 ZX-1395:東都化成、ビスフェノールF型フェノキシ樹脂(Tg:68℃、重量平均分子量:88000)
〔material〕
PU: DIC Bayer Polymer (DCI Bayer Polymer), polyurethane resin T-8175 (Tg: -23 ° C, weight average molecular weight: 81000)
ZX-1395: Tohto Kasei, bisphenol F type phenoxy resin (Tg: 68 ° C., weight average molecular weight: 88000)
 ESCN-195:住友化学、クレゾールノボラック型エポキシ樹脂(エポキシ当量200)
 HP-850N:日立化成、フェノールノボラック樹脂(OH当量:106)
 TPPK:東京化成、テトラフェニルホスホニウムテトラフェニルボラート
 2P4MHZ:四国化成株式会社製、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール
 BMI-1000:東京化成株式会社製、4,4’-ビスマレイミドジフェニルメタン
 パークミルD:日本油脂株式会社製、ジクミルパーオキサイド
 UG-4010:東亜合成株式会社製、エポキシ基含有無溶剤型液状アクリルポリマー(ARUFON,Tg:-57℃,重量平均分子量:2900)
 HP-P1:水島合金鉄、窒化ホウ素フィラー
 NMP:関東化学、N-メチル-2-ピロリドン
ESCN-195: Sumitomo Chemical, cresol novolac type epoxy resin (epoxy equivalent 200)
HP-850N: Hitachi Chemical, phenol novolac resin (OH equivalent: 106)
TPPK: Tokyo Kasei, tetraphenylphosphonium tetraphenylborate 2P4MHZ: Shikoku Kasei Co., Ltd., 2-phenyl-4-methyl-5-hydroxymethylimidazole BMI-1000: Tokyo Kasei Co., Ltd., 4,4'-bismaleimide Diphenylmethane Park Mill D: manufactured by Nippon Oil & Fats Co., Ltd., Dicumyl Peroxide UG-4010: manufactured by Toagosei Co., Ltd., epoxy group-containing solvent-free liquid acrylic polymer (ARUFON, Tg: -57 ° C, weight average molecular weight: 2900)
HP-P1: Mizushima alloy iron, boron nitride filler NMP: Kanto Chemical, N-methyl-2-pyrrolidone
 PI-1:下記の方法により製造されたポリイミド樹脂
 温度計、攪拌機、冷却管、及び窒素流入管を装着した300mLフラスコ中に、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(信越化学工業株式会社製、商品名:LP-7100)15.53g、ポリオキシプロピレンジアミン(BASF株式会社製、商品名:D400、分子量:450)28.13g、及びNMP100.0gを仕込んで攪拌して、反応液を調製した。ポリオキシプロピレンジアミンが溶解した後、フラスコを氷浴中で冷却しながら、予め無水酢酸からの再結晶により精製した4,4’-オキシジフタル酸二無水物32.30gを反応液に少量ずつ添加した。常温(25℃)で8時間反応させた後、キシレン67.0gを加え、窒素ガスを吹き込みながら180℃で加熱することにより、水と共にキシレンを共沸除去した。その反応液を大量の水中に注ぎ、沈澱した樹脂を濾過により採取し、乾燥してポリイミド樹脂(PI-1)を得た。得られたポリイミド樹脂(PI-1)の分子量をGPCにて測定したところ、ポリスチレン換算で、数平均分子量Mn=21200、重量平均分子量Mw=43400であった。ポリイミド樹脂(PI-1)のTgは45℃であった。
PI-1: Polyimide resin produced by the following method 1,3-bis (3-aminopropyl) tetramethyldisiloxane (Shin-Etsu) in a 300 mL flask equipped with a thermometer, stirrer, condenser, and nitrogen inlet pipe Chemical Industry Co., Ltd., trade name: LP-7100) 15.53 g, polyoxypropylenediamine (BASF Corporation, trade name: D400, molecular weight: 450) 28.13 g, and NMP 100.0 g were charged and stirred. A reaction solution was prepared. After the polyoxypropylenediamine was dissolved, 32.30 g of 4,4′-oxydiphthalic dianhydride purified in advance by recrystallization from acetic anhydride was added to the reaction solution little by little while the flask was cooled in an ice bath. . After reacting at room temperature (25 ° C.) for 8 hours, 67.0 g of xylene was added and heated at 180 ° C. while blowing nitrogen gas to azeotropically remove xylene together with water. The reaction solution was poured into a large amount of water, and the precipitated resin was collected by filtration and dried to obtain a polyimide resin (PI-1). When the molecular weight of the obtained polyimide resin (PI-1) was measured by GPC, it was number average molecular weight Mn = 21200 and weight average molecular weight Mw = 43400 in terms of polystyrene. The Tg of the polyimide resin (PI-1) was 45 ° C.
 PI-2:下記の方法により製造されたポリイミド樹脂
 温度計、攪拌機、冷却管、及び窒素流入管を装着した300mLフラスコ中に、2,2-ビス(4-アミノフェノキシフェニル)プロパン13.68g、4,9-ジオキサドデカン-1,12-ジアミン6.80g、及びNMP165.8gを仕込んで攪拌して、反応液を調製した。4,9-ジオキサドデカン-1,12-ジアミンが溶解した後、フラスコを氷浴中で冷却しながら、予め無水酢酸からの再結晶により精製したデカメチレンビストリメリテート二無水物34.80gを反応液に少量ずつ添加した。常温(25℃)で8時間反応させた後、キシレン110.5gを加え、窒素ガスを吹き込みながら180℃で加熱することにより、水と共にキシレンを共沸除去した。その反応液を大量の水中に注ぎ、沈澱した樹脂を濾過により採取し、乾燥してポリイミド樹脂(PI-3)を得た。得られたポリイミド樹脂(PI-2)の分子量をGPCにて測定したところ、ポリスチレン換算で、数平均分子量Mn=28900、重量平均分子量Mw=88600であった。ポリイミド樹脂(PI-2)のTgは67℃であった。
PI-2: Polyimide resin produced by the following method In a 300 mL flask equipped with a thermometer, stirrer, condenser, and nitrogen inlet pipe, 13.68 g of 2,2-bis (4-aminophenoxyphenyl) propane, 4.80 g of 4,9-dioxadodecane-1,12-diamine and 165.8 g of NMP were charged and stirred to prepare a reaction solution. After 4,9-dioxadodecane-1,12-diamine was dissolved, 34.80 g of decamethylene bistrimellitic dianhydride purified in advance by recrystallization from acetic anhydride while cooling the flask in an ice bath. To the reaction solution was added little by little. After reacting at room temperature (25 ° C.) for 8 hours, 110.5 g of xylene was added, and heated at 180 ° C. while blowing nitrogen gas to azeotropically remove xylene together with water. The reaction solution was poured into a large amount of water, and the precipitated resin was collected by filtration and dried to obtain a polyimide resin (PI-3). When the molecular weight of the obtained polyimide resin (PI-2) was measured by GPC, it was number average molecular weight Mn = 28900 and weight average molecular weight Mw = 88600 in terms of polystyrene. The Tg of the polyimide resin (PI-2) was 67 ° C.
 実施例1~3及び比較例1~6の接着剤組成物の特性評価を以下に記載の方法に従って行った。
〔成膜性の評価〕
接着シートの作製
 実施例1~3及び比較例1~6の接着剤層形成用ワニスを、乾燥後の膜厚が40μm±5μmとなるように、それぞれ支持フィルム上に塗布した。支持フィルムとして二軸延伸ポリプロピレン(OPP)フィルム(厚さ60μm)を用いた。塗布された接着剤層形成用ワニスをオーブン中にて80℃で30分間、続いて、120℃で30分間加熱することにより乾燥して、支持フィルム及び該支持フィルム上に形成されたフィルム状の接着剤層を有する接着シートを得た。
The properties of the adhesive compositions of Examples 1 to 3 and Comparative Examples 1 to 6 were evaluated according to the methods described below.
[Evaluation of film formability]
Production of Adhesive Sheets The adhesive layer forming varnishes of Examples 1 to 3 and Comparative Examples 1 to 6 were each applied on a support film so that the film thickness after drying was 40 μm ± 5 μm. A biaxially stretched polypropylene (OPP) film (thickness 60 μm) was used as the support film. The applied varnish for forming an adhesive layer is dried by heating in an oven at 80 ° C. for 30 minutes and then at 120 ° C. for 30 minutes to form a support film and a film-like film formed on the support film. An adhesive sheet having an adhesive layer was obtained.
成膜性の評価
 上記条件で得られた接着シートについて、以下の基準により成膜性を評価した。下記基準で成膜性の評価がAであるとき、薄膜形成性が優れることを意味する。
A:フィルム状の接着剤層が支持基材上でハジキ(cissing)がなく塗工可能であり、得られた接着シートから支持基材をはく離可能
C:支持基材上でフィルム状の接着剤層のハジキがある(得られたフィルム面積が70%以下に縮小)
Evaluation of film formability The film formability of the adhesive sheet obtained under the above conditions was evaluated according to the following criteria. When the film forming property evaluation is A based on the following criteria, it means that the thin film forming property is excellent.
A: A film-like adhesive layer can be applied without cissing on a supporting substrate, and the supporting substrate can be peeled off from the obtained adhesive sheet. C: A film-like adhesive on the supporting substrate. There is repelling of the layer (the obtained film area is reduced to 70% or less)
〔低温貼付性の評価〕
接着シートの作製
 実施例1~3及び比較例1~6の接着剤層形成用ワニスを40μmの厚さに、それぞれ基材(剥離剤処理PET)上に塗布し、オーブン中で、80℃で30分、続いて120℃で30分加熱し、基材及び該基材上に形成されたフィルム状の接着剤層を有する接着シートを得た。
[Evaluation of low temperature adhesiveness]
Production of Adhesive Sheets The adhesive layer forming varnishes of Examples 1 to 3 and Comparative Examples 1 to 6 were each applied to a thickness of 40 μm on a substrate (peeling agent-treated PET), and then in an oven at 80 ° C. It was heated for 30 minutes and then at 120 ° C. for 30 minutes to obtain an adhesive sheet having a base material and a film-like adhesive layer formed on the base material.
低温貼付性の評価
 得られた各接着シートから、幅10mm、長さ40mmの試験片を切り出した。この試験片を、支持台上に載せたシリコンウェハ(6インチ径、厚さ400μm)の裏面(支持台と反対側の面)に、接着剤層がシリコンウェハ側になる向きで積層した。積層は、ロール(温度100℃、線圧4kgf/cm、送り速度0.5m/分)で加圧する方法により行った。
Evaluation of low-temperature sticking property A test piece having a width of 10 mm and a length of 40 mm was cut out from each of the obtained adhesive sheets. This test piece was laminated on the back surface (surface opposite to the support table) of the silicon wafer (6 inch diameter, thickness 400 μm) placed on the support table so that the adhesive layer was on the silicon wafer side. Lamination was performed by a method of pressurizing with a roll (temperature 100 ° C., linear pressure 4 kgf / cm, feed rate 0.5 m / min).
 このようにして準備したサンプルについて、レオメータ(株式会社東洋精機製作所製、「ストログラフE-S」(商品名))を用いて常温で90°ピール試験を行って、接着剤層-シリコンウェハ間のピール強度を測定した。測定結果から、以下の基準により低温貼付性を評価した。下記基準でピール強度の評価がAであるとき、低温貼付性が優れることを意味する。
A:ピール強度が2N/cm以上
C:ピール強度が2N/cm未満
The sample thus prepared was subjected to a 90 ° peel test at room temperature using a rheometer (“Torograph ES” (trade name) manufactured by Toyo Seiki Seisakusho Co., Ltd.), and the adhesive layer-silicon wafer The peel strength was measured. From the measurement results, the low temperature sticking property was evaluated according to the following criteria. When the evaluation of peel strength is A based on the following criteria, it means that the low temperature sticking property is excellent.
A: Peel strength is 2 N / cm or more C: Peel strength is less than 2 N / cm
〔フロー量〕
 成膜性の評価と同様の方法により得られた、厚さ60μmのOPP基材上に40μm厚にフィルム状の接着剤層を形成させた接着シートを、10mm×10mmサイズに切断して試験片とした。この試験片を、2枚のスライドグラス(松浪硝子工業株式会社製、76mm×26mm×1.0~1.2mm厚)の間に挟み、120℃の熱盤上で全体に100kgf/cmの荷重を加えながら15秒間加熱圧着した。加熱圧着後の上記OPP基材の四辺からのフィルム状接着剤のはみ出し量をそれぞれ光学顕微鏡で計測し、それらの平均値をフロー量とした。Bステージ状態の接着シート及びCステージ状態の接着シートについて、このフロー量を測定した。なお、Bステージとは、接着剤層形成用ワニスをOPP基材上に塗工後、オーブン中にて80℃で30分間、続いて120℃で30分間の条件で加熱した後の状態のことであり、Cステージとはオーブン中で更に180℃で5時間の条件で加熱硬化した後の状態のことである。また、フィルムの厚さは±5μmの誤差で調整した。Bステージでのフロー量が多く、Cステージでのフロー量が少ない程、熱時流動性に優れることを意味する。
[Flow amount]
A test piece obtained by cutting a 10 mm × 10 mm size adhesive sheet obtained by forming a film-like adhesive layer to a thickness of 40 μm on an OPP base material having a thickness of 60 μm, obtained by the same method as the evaluation of film formability It was. This test piece was sandwiched between two slide glasses (Matsunami Glass Industry Co., Ltd., 76 mm × 26 mm × 1.0 to 1.2 mm thickness), and 100 kgf / cm 2 overall on a 120 ° C. hot platen. The pressure bonding was performed for 15 seconds while applying a load. The amount of protrusion of the film adhesive from the four sides of the OPP substrate after thermocompression bonding was measured with an optical microscope, and the average value thereof was taken as the flow amount. This flow amount was measured for the adhesive sheet in the B stage state and the adhesive sheet in the C stage state. The B stage refers to the state after the adhesive layer forming varnish is coated on the OPP substrate and then heated in an oven at 80 ° C. for 30 minutes and then at 120 ° C. for 30 minutes. The C stage is a state after being further cured by heating in an oven at 180 ° C. for 5 hours. The film thickness was adjusted with an error of ± 5 μm. The larger the amount of flow in the B stage and the smaller the amount of flow in the C stage, the better the thermal fluidity.
〔ピール強度〕
 成膜性の評価と同様の方法により得られた各接着シートの接着剤層(5mm×5mm×40μm厚)を、42アロイリードフレームと、突起部を有するシリコンチップ(5mm×5mm×400μm厚)との間に介在させ、その状態で加熱圧着した。加熱温度は実施例1~3、比較例1、3、5及び6では150℃、比較例2及び4では200℃に設定した。加圧は荷重:1kgf/chip、時間:5秒間の条件で行った。加熱圧着後、オーブン中で180℃で5時間加熱して接着剤層を硬化させて、ピール強度測定用のサンプルとしての積層体を得た。
[Peel strength]
The adhesive layer (5 mm × 5 mm × 40 μm thickness) of each adhesive sheet obtained by the same method as the evaluation of film formability was used, and a silicon chip (5 mm × 5 mm × 400 μm thickness) having 42 alloy lead frames and protrusions. Between them and heat-pressed in that state. The heating temperature was set to 150 ° C. in Examples 1 to 3, Comparative Examples 1, 3, 5 and 6, and 200 ° C. in Comparative Examples 2 and 4. The pressurization was performed under the conditions of load: 1 kgf / chip, time: 5 seconds. After thermocompression bonding, the adhesive layer was cured by heating at 180 ° C. for 5 hours in an oven to obtain a laminate as a sample for peel strength measurement.
 図8に示す接着力評価装置を用いて260℃ピール強度を測定した。図8に示す接着力評価装置300は、熱盤36とプッシュプルゲージ31とを有する。プッシュプルゲージ31に取り付けられたロッドの先端に、取手32が支点33の周りで角度可変に設けられている。 The 260 ° C. peel strength was measured using the adhesive strength evaluation apparatus shown in FIG. The adhesive force evaluation apparatus 300 shown in FIG. 8 has a hot platen 36 and a push-pull gauge 31. A handle 32 is provided at a tip end of a rod attached to the push-pull gauge 31 so as to have a variable angle around a fulcrum 33.
 260℃に加熱された熱盤36上に、シリコンウェハ9と42アロイリードフレーム35とが硬化した接着剤層1を介して接着された積層体を、42アロイリードフレーム35が熱盤36側になる向きで載置し、サンプルを20秒間加熱した。次いで、シリコンウェハ9の突起部に取手32を引っ掛けた状態で、取手32を0.5mm/秒でサンプルの主面に平行な向きで移動させ、そのときのシリコンウェハ9の剥離応力をプッシュプルゲージ31で測定した。測定された剥離応力を260℃ピール強度とした。 A laminated body in which the silicon wafer 9 and the 42 alloy lead frame 35 are bonded to each other via the cured adhesive layer 1 is heated on the heating platen heated to 260 ° C., and the 42 alloy lead frame 35 is placed on the heating platen 36 side. And the sample was heated for 20 seconds. Next, with the handle 32 hooked on the protrusion of the silicon wafer 9, the handle 32 is moved at 0.5 mm / second in a direction parallel to the main surface of the sample, and the peeling stress of the silicon wafer 9 at that time is pushed-pull Measurement was performed with a gauge 31. The measured peel stress was defined as 260 ° C. peel strength.
 実施例1~3及び比較例1~6の特性評価結果を表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000007
Table 1 summarizes the characteristics evaluation results of Examples 1 to 3 and Comparative Examples 1 to 6.
Figure JPOXMLDOC01-appb-T000007
 表1に示されるように、実施例の接着剤組成物を用いたものは、比較例と比較して、薄膜形成性、低温貼付性、熱時流動性に優れ、260℃ピール強度が十分に高いことが明らかである。 As shown in Table 1, those using the adhesive compositions of the examples are excellent in thin film forming properties, low-temperature sticking properties, and hot fluidity as compared with the comparative examples, and have a sufficient 260 ° C. peel strength. Clearly high.
 1…接着剤層、2…基材フィルム、3…保護フィルム、5…ダイシングシート、6…粘着剤層、7…基材フィルム、8…ダイボンディング層(硬化した接着剤層)、9,9a,9b…半導体素子(シリコンチップ、シリコンウェハ等)、10…半導体素子搭載用支持部材、11…ワイヤ、12…封止材、13…端子、31…プッシュプルゲージ、32…取手、33…支点、35…42アロイリードフレーム、36…熱盤、100、110、120、130、140…接着シート、200、210…半導体装置、300…接着力評価装置。 DESCRIPTION OF SYMBOLS 1 ... Adhesive layer, 2 ... Base film, 3 ... Protective film, 5 ... Dicing sheet, 6 ... Adhesive layer, 7 ... Base film, 8 ... Die bonding layer (hardened adhesive layer), 9, 9a , 9b ... Semiconductor element (silicon chip, silicon wafer, etc.), 10 ... Semiconductor element mounting support member, 11 ... Wire, 12 ... Sealing material, 13 ... Terminal, 31 ... Push-pull gauge, 32 ... Handle, 33 ... Support point 35 ... 42 alloy lead frame, 36 ... hot plate, 100, 110, 120, 130, 140 ... adhesive sheet, 200, 210 ... semiconductor device, 300 ... adhesive strength evaluation device.

Claims (11)

  1.  ポリウレタン樹脂と熱硬化性成分とを含み、
     Bステージでの120℃におけるフロー量が500μm以上であり、かつCステージでの120℃におけるフロー量が500μm未満であり、
     前記Bステージでの120℃におけるフロー量を(A)、前記Cステージでの120℃におけるフロー量を(B)としたとき、(A)-(B)の値が100μm以上である接着剤組成物。
    Including a polyurethane resin and a thermosetting component,
    The flow amount at 120 ° C. at the B stage is 500 μm or more, and the flow amount at 120 ° C. at the C stage is less than 500 μm,
    Adhesive composition in which the value of (A)-(B) is 100 μm or more when the flow rate at 120 ° C. in the B stage is (A) and the flow amount at 120 ° C. in the C stage is (B) object.
  2.  前記熱硬化性成分がエポキシ樹脂を含む、請求項1に記載の接着剤組成物。 The adhesive composition according to claim 1, wherein the thermosetting component comprises an epoxy resin.
  3.  前記熱硬化性成分がビスマレイミド樹脂を含む、請求項1に記載の接着剤組成物。 The adhesive composition according to claim 1, wherein the thermosetting component comprises a bismaleimide resin.
  4.  更にフィラーを含有する、請求項1~3のいずれか一項に記載の接着剤組成物。 The adhesive composition according to any one of claims 1 to 3, further comprising a filler.
  5.  半導体素子同士、又は半導体素子と半導体素子搭載用支持部材との接着用である、請求項1~4のいずれか一項に記載の接着剤組成物。 The adhesive composition according to any one of claims 1 to 4, which is used for bonding between semiconductor elements or between a semiconductor element and a semiconductor element mounting support member.
  6.  前記半導体素子搭載用支持部材が、前記半導体素子を搭載する面に配線段差を有する有機基板である、請求項5に記載の接着剤組成物。 The adhesive composition according to claim 5, wherein the semiconductor element mounting support member is an organic substrate having a wiring step on a surface on which the semiconductor element is mounted.
  7.  請求項1~4のいずれか一項に記載の接着剤組成物をフィルム状に形成してなるフィルム状接着剤。 A film adhesive formed by forming the adhesive composition according to any one of claims 1 to 4 into a film.
  8.  支持基材と、該支持基材の主面上に形成された請求項7に記載のフィルム状接着剤と、を備える接着シート。 An adhesive sheet comprising: a support substrate; and the film adhesive according to claim 7 formed on the main surface of the support substrate.
  9.  前記支持基材がダイシングシートである、請求項8に記載の接着シート。 The adhesive sheet according to claim 8, wherein the support substrate is a dicing sheet.
  10.  前記ダイシングシートが、基材フィルム及び該基材フィルム上に設けられた粘着剤層を有する、請求項9に記載の接着シート。 The adhesive sheet according to claim 9, wherein the dicing sheet has a base film and an adhesive layer provided on the base film.
  11.  半導体素子と半導体素子搭載用支持部材とが請求項1~4のいずれか一項に記載の接着剤組成物の硬化物により接続された構造、又は隣接する半導体素子同士が請求項1~4のいずれか一項に記載の接着剤組成物の硬化物により接続された構造を備える半導体装置。 A structure in which a semiconductor element and a supporting member for mounting a semiconductor element are connected by a cured product of the adhesive composition according to any one of claims 1 to 4, or adjacent semiconductor elements are in accordance with claims 1 to 4. A semiconductor device provided with the structure connected by the hardened | cured material of the adhesive composition as described in any one.
PCT/JP2012/060706 2011-05-20 2012-04-20 Adhesive composition, film adhesive, adhesive sheet and semiconductor device WO2012160916A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013516253A JP5910630B2 (en) 2011-05-20 2012-04-20 Adhesive composition, film adhesive, adhesive sheet and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011113901 2011-05-20
JP2011-113901 2011-05-20

Publications (1)

Publication Number Publication Date
WO2012160916A1 true WO2012160916A1 (en) 2012-11-29

Family

ID=47217000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060706 WO2012160916A1 (en) 2011-05-20 2012-04-20 Adhesive composition, film adhesive, adhesive sheet and semiconductor device

Country Status (3)

Country Link
JP (1) JP5910630B2 (en)
TW (1) TW201247823A (en)
WO (1) WO2012160916A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3187555A4 (en) * 2014-08-29 2018-02-21 Furukawa Electric Co. Ltd. Maleimide film
EP3187557A4 (en) * 2014-08-29 2018-04-18 Furukawa Electric Co. Ltd. Adhesive film and semiconductor package using adhesive film
CN111656499A (en) * 2018-01-30 2020-09-11 日立化成株式会社 Film-like adhesive and method for producing same, and semiconductor device and method for producing same
WO2021002248A1 (en) * 2019-07-03 2021-01-07 昭和電工マテリアルズ株式会社 Adhesive composition, film-like adhesive, adhesive sheet, dicing/die-bonding integrated adhesive sheet, semiconductor apparatus, and method for manufacturing same
JP7288563B1 (en) * 2021-12-27 2023-06-07 古河電気工業株式会社 Adhesive composition, film-like adhesive, semiconductor package using film-like adhesive, and manufacturing method thereof
WO2023127378A1 (en) * 2021-12-27 2023-07-06 古河電気工業株式会社 Adhesive agent composition, film-like adhesive agent, semiconductor package using film-like adhesive agent, and method for producing same
KR20240022466A (en) 2021-09-28 2024-02-20 후루카와 덴키 고교 가부시키가이샤 Adhesive composition and film-type adhesive, and semiconductor package using film-type adhesive and method of manufacturing the same
KR102683506B1 (en) 2021-12-27 2024-07-12 후루카와 덴키 고교 가부시키가이샤 Adhesive composition, film-type adhesive, semiconductor package using film-type adhesive, and method of manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912984A (en) * 1995-06-28 1997-01-14 Sumitomo Bakelite Co Ltd Thermosetting bonding tape and its production
JPH10178066A (en) * 1996-10-15 1998-06-30 Toray Ind Inc Adhesive composition for semiconductor device and adhesive sheet for semiconductor device using the same
JP2006241174A (en) * 2005-02-07 2006-09-14 Hitachi Chem Co Ltd Film-formed adhesive for die-bonding, and adhesive sheet and semi-conductor device by using the same
JP2010024431A (en) * 2008-06-17 2010-02-04 Hitachi Chem Co Ltd Adhesive composition, film type adhesive, adhesive sheet, and semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5263050B2 (en) * 2009-07-21 2013-08-14 日立化成株式会社 Adhesive composition, semiconductor device manufacturing method using the same, and semiconductor device
JP5488365B2 (en) * 2009-10-09 2014-05-14 東亞合成株式会社 Adhesive composition, coverlay film and flexible copper-clad laminate using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912984A (en) * 1995-06-28 1997-01-14 Sumitomo Bakelite Co Ltd Thermosetting bonding tape and its production
JPH10178066A (en) * 1996-10-15 1998-06-30 Toray Ind Inc Adhesive composition for semiconductor device and adhesive sheet for semiconductor device using the same
JP2006241174A (en) * 2005-02-07 2006-09-14 Hitachi Chem Co Ltd Film-formed adhesive for die-bonding, and adhesive sheet and semi-conductor device by using the same
JP2010024431A (en) * 2008-06-17 2010-02-04 Hitachi Chem Co Ltd Adhesive composition, film type adhesive, adhesive sheet, and semiconductor device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3187555A4 (en) * 2014-08-29 2018-02-21 Furukawa Electric Co. Ltd. Maleimide film
EP3187557A4 (en) * 2014-08-29 2018-04-18 Furukawa Electric Co. Ltd. Adhesive film and semiconductor package using adhesive film
US10115707B2 (en) 2014-08-29 2018-10-30 Furukawa Electric Co., Ltd. Adhesive film and semiconductor package using adhesive film
CN111656499A (en) * 2018-01-30 2020-09-11 日立化成株式会社 Film-like adhesive and method for producing same, and semiconductor device and method for producing same
WO2021002248A1 (en) * 2019-07-03 2021-01-07 昭和電工マテリアルズ株式会社 Adhesive composition, film-like adhesive, adhesive sheet, dicing/die-bonding integrated adhesive sheet, semiconductor apparatus, and method for manufacturing same
JP2021011512A (en) * 2019-07-03 2021-02-04 昭和電工マテリアルズ株式会社 Adhesive composition, film-like adhesive, adhesive sheet, dicing/die bonding-integrated type adhesive sheet, and semiconductor device and manufacturing method thereof
KR20240022466A (en) 2021-09-28 2024-02-20 후루카와 덴키 고교 가부시키가이샤 Adhesive composition and film-type adhesive, and semiconductor package using film-type adhesive and method of manufacturing the same
JP7288563B1 (en) * 2021-12-27 2023-06-07 古河電気工業株式会社 Adhesive composition, film-like adhesive, semiconductor package using film-like adhesive, and manufacturing method thereof
WO2023127378A1 (en) * 2021-12-27 2023-07-06 古河電気工業株式会社 Adhesive agent composition, film-like adhesive agent, semiconductor package using film-like adhesive agent, and method for producing same
KR20230169927A (en) 2021-12-27 2023-12-18 후루카와 덴키 고교 가부시키가이샤 Adhesive composition, film-type adhesive, semiconductor package using film-type adhesive, and method of manufacturing the same
KR102683506B1 (en) 2021-12-27 2024-07-12 후루카와 덴키 고교 가부시키가이샤 Adhesive composition, film-type adhesive, semiconductor package using film-type adhesive, and method of manufacturing the same

Also Published As

Publication number Publication date
JP5910630B2 (en) 2016-04-27
JPWO2012160916A1 (en) 2014-07-31
TW201247823A (en) 2012-12-01

Similar Documents

Publication Publication Date Title
JP5445455B2 (en) Adhesive composition, film adhesive, adhesive sheet and semiconductor device
JP4952585B2 (en) Adhesive composition, film adhesive, adhesive sheet, and semiconductor device using the same
JP5910630B2 (en) Adhesive composition, film adhesive, adhesive sheet and semiconductor device
JP5664455B2 (en) Adhesive composition, adhesive sheet, and semiconductor device
KR101058632B1 (en) Film adhesive, adhesive sheet and semiconductor device using same
JP5553108B2 (en) Adhesive composition, adhesive sheet, and semiconductor device
JP5803123B2 (en) Adhesive sheet for semiconductor, semiconductor wafer using the same, semiconductor device, and method for manufacturing semiconductor device
JP5484792B2 (en) Adhesive composition, adhesive sheet, and semiconductor device
JP2009084563A (en) Adhesive composition, film adhesive, adhesion sheet, and semiconductor device
JP4466397B2 (en) Adhesive film for semiconductor and semiconductor device using the same
JP2011042730A (en) Adhesive composition, film-shaped adhesive, adhesive sheet, and semiconductor device
JP5569148B2 (en) Dicing tape, dicing tape integrated adhesive sheet, semiconductor device, and method for manufacturing semiconductor device
JP5899622B2 (en) Adhesive sheet for semiconductor, method for producing adhesive sheet for semiconductor, semiconductor wafer, semiconductor device, and method for producing semiconductor device
JP5439842B2 (en) Adhesive sheet and semiconductor device
JP2006241174A (en) Film-formed adhesive for die-bonding, and adhesive sheet and semi-conductor device by using the same
JP6094031B2 (en) Adhesive composition, adhesive sheet, and semiconductor device
JP4839628B2 (en) Film adhesive, adhesive sheet and semiconductor device using the same
JP5754072B2 (en) Adhesive composition, adhesive member sheet for connecting circuit members, and method for manufacturing semiconductor device
JP2010059387A (en) Adhesive composition, film-shaped adhesive, adhesive sheet, and semiconductor device
JP5564782B2 (en) Adhesive composition, film adhesive, adhesive sheet and semiconductor device
JP2009068003A (en) Adhesive composition, film adhesive, adhesive sheet and semiconductor device using the same
JP5696772B2 (en) Adhesive composition, adhesive sheet, and semiconductor device
JP5481828B2 (en) Adhesive composition, film adhesive, adhesive sheet, semiconductor wafer with adhesive layer, semiconductor device, and method for manufacturing semiconductor device
JP5732881B2 (en) Adhesive film for semiconductor, adhesive sheet, semiconductor wafer, and semiconductor device
JP2011082559A (en) Adhesive film for semiconductor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789858

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013516253

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12789858

Country of ref document: EP

Kind code of ref document: A1