WO2012160810A1 - High-efficiency active circuit - Google Patents

High-efficiency active circuit Download PDF

Info

Publication number
WO2012160810A1
WO2012160810A1 PCT/JP2012/003341 JP2012003341W WO2012160810A1 WO 2012160810 A1 WO2012160810 A1 WO 2012160810A1 JP 2012003341 W JP2012003341 W JP 2012003341W WO 2012160810 A1 WO2012160810 A1 WO 2012160810A1
Authority
WO
WIPO (PCT)
Prior art keywords
harmonic
frequency
circuit
processing circuit
efficiency
Prior art date
Application number
PCT/JP2012/003341
Other languages
French (fr)
Japanese (ja)
Inventor
内田 浩光
山内 和久
正敏 中山
中原 和彦
恵 小倉
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2013516209A priority Critical patent/JP5543024B2/en
Publication of WO2012160810A1 publication Critical patent/WO2012160810A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/193High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/601Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators using FET's, e.g. GaAs FET's

Definitions

  • each of the above-described second harmonic processing circuits is composed of a line having an electrical length of less than 90 °. Therefore, the circuit can be reduced in size as compared with the conventional high-efficiency active circuit shown in FIG.
  • the transistor 1 is connected to the distributed constant lines 4a and 4b having appropriate lengths via the wires 2a and 2b, and the impedance ZL is set to a desired value by the distributed constant lines 4a and 4b. can do.
  • a fundamental wave matching circuit for setting the fundamental impedance to an appropriate value is appropriately connected to the outside of the high-efficiency active circuit of FIG. 1 (left side of the harmonic processing circuit 3a, right side of the harmonic processing circuit 3b). Is done.

Abstract

Harmonic processing circuits (3a, 3b), which improve the efficiency of a transistor (1), are constituted by connecting, in parallel, distributed lines (4a, 4b) with electrical lengths of less than 90° at the second harmonic frequency (2fo) of the operating frequency of the transistor (1), and a capacitive coupling line that is interdigitally intersected by open-circuited stubs (5a, 5b) with electrical lengths of less than 90° at the second harmonic frequency (2fo).

Description

高効率能動回路High efficiency active circuit
 この発明は、例えば、トランジスタなどの能動素子の動作効率を高める高調波処理回路が付加されている高効率能動回路に関するものである。 The present invention relates to a high-efficiency active circuit to which a harmonic processing circuit for increasing the operating efficiency of an active element such as a transistor is added, for example.
 トランジスタなどの能動素子の動作効率を高める分布定数回路(高調波処理回路)が付加されている高効率能動回路では、分布定数回路として、高調波周波数で電気長が90°(長さが1/4波長)である先端開放スタブが用いられているものがある(例えば、非特許文献1を参照)。
 図4は非特許文献1に開示されている高効率能動回路を示す構成図である。
In a high-efficiency active circuit to which a distributed constant circuit (harmonic processing circuit) that increases the operating efficiency of an active element such as a transistor is added, the electrical length is 90 ° (length is 1 / Some have open-end stubs (4 wavelengths) (see, for example, Non-Patent Document 1).
FIG. 4 is a block diagram showing a high-efficiency active circuit disclosed in Non-Patent Document 1.
 図4の高効率能動回路は、能動素子であるトランジスタの基本次動作周波数foの2倍波周波数2fo及び3倍波周波数3foにおいて、トランジスタ側から見たインピーダンスZLを適切な値に設定するものであり、分布定数線路100は、トランジスタの基本次動作周波数foで電気長がλ/4(λは波長)になり、2倍波周波数2foで電気長がλ/2になる。
 また、先端開放スタブ101は、2倍波周波数2foで電気長がλ/4になり、先端開放スタブ102は、3倍波周波数3foで電気長がλ/4になる。
 なお、103aはトランジスタが接続される端子であり、103bは負荷が接続される出力側の端子である。
The high-efficiency active circuit of FIG. 4 sets the impedance ZL seen from the transistor side to an appropriate value at the second harmonic frequency 2fo and the third harmonic frequency 3fo of the basic next-order operating frequency fo of the transistor that is an active element. The distributed constant line 100 has an electrical length of λ / 4 (λ is a wavelength) at the fundamental next operation frequency fo of the transistor, and an electrical length of λ / 2 at the second harmonic frequency 2fo.
The open end stub 101 has an electrical length of λ / 4 at the second harmonic frequency 2fo, and the open end stub 102 has an electrical length of λ / 4 at the third harmonic frequency 3fo.
103a is a terminal to which a transistor is connected, and 103b is an output side terminal to which a load is connected.
 図4の高効率能動回路では、トランジスタ側から出力側を見込んだインピーダンスZLの偶数次高調波成分を0(反射位相180°)、そのインピーダンスZLの奇数次高調波成分を無限大(反射位相0°)とするF級動作増幅器を実現することができる。
 即ち、図4の高調波処理回路では、2倍波周波数2fo,3倍波周波数3foで電気長が90°となる先端開放スタブ101,102を含んでいるため、その先端開放スタブ101と先端開放スタブ102の接続点における各高調波周波数のインピーダンスが0となり、電気的に短絡状態となる。
In the high-efficiency active circuit of FIG. 4, the even-order harmonic component of the impedance ZL looking from the transistor side to the output side is 0 (reflection phase 180 °), and the odd-order harmonic component of the impedance ZL is infinite (reflection phase 0). F) class F operational amplifier can be realized.
That is, the harmonic processing circuit of FIG. 4 includes the tip open stubs 101 and 102 having the electrical frequency of 90 ° at the second harmonic frequency 2fo and the third harmonic frequency 3fo. The impedance of each harmonic frequency at the connection point of the stub 102 becomes 0, and the circuit is electrically short-circuited.
 また、その接続点とトランジスタの接続端子103aの間には、基本次動作周波数foで電気長が90°の分布定数線路100が接続されており、その偶数次高調波周波数では、その分布定数線路100の電気長が180°の整数倍となるため、前述した電気的短絡状態がそのままトランジスタの接続端子103aでも実現される。
 しかし、奇数次高調波周波数では、その電気長が90°の奇数倍となるため、そのインピーダンス変換機能によってトランジスタの出力端子は、インピーダンス無限大の電気的開放状態となる。
 したがって、図4の高効率能動回路によって、F級動作増幅器が実現されることになる。
Further, a distributed constant line 100 having a basic order operating frequency fo and an electrical length of 90 ° is connected between the connection point and the transistor connection terminal 103a. At the even harmonic frequency, the distributed constant line 100 is connected. Since the electrical length of 100 is an integral multiple of 180 °, the above-described electrical short-circuit state is also realized as it is at the connection terminal 103a of the transistor.
However, since the electrical length is an odd multiple of 90 ° at the odd-order harmonic frequency, the output terminal of the transistor is in an electrically open state with an infinite impedance due to the impedance conversion function.
Therefore, the class F operational amplifier is realized by the high efficiency active circuit of FIG.
 従来の高効率能動回路は以上のように構成されているので、F級動作増幅器を実現することができるが、2倍波周波数2foで電気長がλ/4になる先端開放スタブ101と、3倍波周波数3foで電気長がλ/4になる先端開放スタブ102とを実装する必要があるため、回路の大型化を招く課題があった。
 特に、高効率能動回路で2倍波処理回路を構成する場合、2倍波周波数2foで電気長がλ/4(基本波で電気長が1/8波長となり、決して無視できない長さ)の先端開放スタブ101が必要であり、とりわけ、並列配置された複数個のトランジスタと整合回路基板が小型なパッケージ内に収納されて構成される内部整合型の増幅器においては、上記の先端開放スタブ101を配置することが難しくなる。
 たとえ、先端開放スタブ101を配置することができても、並列配置された各トランジスタの直近ではなく、各トランジスタから遠い箇所に配置される(各トランジスタから相当の長さの伝送線路で接続される箇所に配置される)ことになるため、その伝送線路に起因して高調波処理回路の周波数依存性が大きくなる「長線路効果」によって、能動素子であるトランジスタの高効率動作が見込める動作周波数帯域が狭帯域化されてしまう課題もあった。
Since the conventional high-efficiency active circuit is configured as described above, a class F operational amplifier can be realized. However, the open-ended stub 101 having an electrical length of λ / 4 at a second harmonic frequency of 2fo and 3 Since it is necessary to mount the open-end stub 102 having an electrical length of λ / 4 at a harmonic frequency of 3 fo, there is a problem that causes an increase in circuit size.
In particular, when a harmonic processing circuit is configured with a high-efficiency active circuit, the electrical length is λ / 4 (the fundamental wave has an electrical length of 1/8 wavelength and cannot be ignored) at the frequency of 2nd harmonic 2fo. An open stub 101 is required. In particular, in an internal matching type amplifier configured by arranging a plurality of transistors arranged in parallel and a matching circuit board in a small package, the above-described open end stub 101 is arranged. It becomes difficult to do.
Even if the open-ended stub 101 can be arranged, it is arranged not in the immediate vicinity of the transistors arranged in parallel but in a place far from each transistor (connected from each transistor by a transmission line having a considerable length). Operating frequency band in which high-efficiency operation of the active transistor can be expected due to the “long-line effect” that increases the frequency dependence of the harmonic processing circuit due to the transmission line. However, there is a problem that the bandwidth becomes narrow.
 この発明は上記のような課題を解決するためになされたもので、回路寸法の大型化を招くことなく、能動素子の動作効率を高めることができる高効率能動回路を得ることを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a high-efficiency active circuit that can increase the operating efficiency of active elements without increasing the circuit size.
 この発明に係る高効率能動回路は、能動素子の動作効率を高める高調波処理回路が、所定の高調波周波数で電気長が90°未満の分布定数線路と、その高調波周波数で電気長が90°未満の容量性結合線路とが並列に接続されることで構成されているものである。 In the high-efficiency active circuit according to the present invention, the harmonic processing circuit that increases the operating efficiency of the active element includes a distributed constant line having an electrical length of less than 90 ° at a predetermined harmonic frequency, and an electrical length of 90 at the harmonic frequency. It is configured by connecting a capacitive coupling line of less than 0 ° in parallel.
 この発明によれば、能動素子の動作効率を高める高調波処理回路が、所定の高調波周波数で電気長が90°未満の分布定数線路と、その高調波周波数で電気長が90°未満の容量性結合線路とが並列に接続されることで構成されているので、回路寸法の大型化を招くことなく、能動素子の動作効率を高めることができる効果がある。 According to the present invention, a harmonic processing circuit that increases the operating efficiency of an active element includes a distributed constant line having an electrical length of less than 90 ° at a predetermined harmonic frequency, and a capacitance having an electrical length of less than 90 ° at the harmonic frequency. Since it is configured by being connected to the sexually coupled line in parallel, there is an effect that the operation efficiency of the active element can be increased without increasing the circuit size.
この発明の実施の形態1による高効率能動回路を示す構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows the highly efficient active circuit by Embodiment 1 of this invention. 高調波処理回路3a,3bの近似的な等価回路を示す説明図である。It is explanatory drawing which shows the approximate equivalent circuit of the harmonic processing circuits 3a and 3b. この発明の実施の形態2による高効率能動回路を示す構成図である。It is a block diagram which shows the highly efficient active circuit by Embodiment 2 of this invention. 非特許文献1に開示されている高効率能動回路を示す構成図である。It is a block diagram which shows the highly efficient active circuit currently disclosed by the nonpatent literature 1.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1はこの発明の実施の形態1による高効率能動回路を示す構成図である。
 図1では、高効率能動回路が高出力増幅器として動作するものを想定しているが、図1の高効率能動回路が発振器として動作するものであってもよい。
 図1において、トランジスタ1は高調波処理回路3a,3bによって動作効率が高められる能動素子である。
 この実施の形態1では、能動素子がトランジスタ1である例を説明するが、能動素子がトランジスタ1であるものに限るものではなく、例えば、ダイオードやICなどの能動素子であってもよい。
Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
1 is a block diagram showing a high-efficiency active circuit according to Embodiment 1 of the present invention.
Although FIG. 1 assumes that the high-efficiency active circuit operates as a high-power amplifier, the high-efficiency active circuit of FIG. 1 may operate as an oscillator.
In FIG. 1, a transistor 1 is an active element whose operating efficiency is enhanced by the harmonic processing circuits 3a and 3b.
In the first embodiment, an example in which the active element is the transistor 1 will be described. However, the active element is not limited to the transistor 1 and may be, for example, an active element such as a diode or an IC.
 高調波処理回路3aはワイヤ2aによってトランジスタ1の入力側と接続されており、トランジスタ1の動作周波数の2倍波周波数2fo(所定の高調波周波数)で、その通過係数が0になる共振状態が発生するように設計されている2倍波処理回路である。
 高調波処理回路3aの分布定数線路4aはトランジスタ1の動作周波数の2倍波周波数2foで電気長が90°未満になる線路である。
 高調波処理回路3aの先端開放スタブ5aはトランジスタ1の動作周波数の2倍波周波数2foで電気長が90°未満になる容量性結合線路である。
 図1の例では、先端開放スタブ5aがインターデジタル型に交差されることで容量性結合線路が構成されている。
The harmonic processing circuit 3a is connected to the input side of the transistor 1 by a wire 2a, and has a resonance state in which the pass coefficient is 0 at the second harmonic frequency 2fo (predetermined harmonic frequency) of the operating frequency of the transistor 1. A second harmonic processing circuit designed to be generated.
The distributed constant line 4a of the harmonic processing circuit 3a is a line whose electrical length is less than 90 ° at the second harmonic frequency 2fo of the operating frequency of the transistor 1.
The open-ended stub 5a of the harmonic processing circuit 3a is a capacitive coupling line having an electrical length of less than 90 ° at a second harmonic frequency 2fo of the operating frequency of the transistor 1.
In the example of FIG. 1, the capacitively coupled line is configured by crossing the open-end stub 5a in an interdigital manner.
 高調波処理回路3bはワイヤ2bによってトランジスタ1の出力側と接続されており、トランジスタ1の動作周波数の2倍波周波数2foで、その通過係数が0になる共振状態が発生するように設計されている2倍波処理回路である。
 高調波処理回路3bの分布定数線路4bはトランジスタ1の動作周波数の2倍波周波数2foで電気長が90°未満になる線路である。
 高調波処理回路3bの先端開放スタブ5bはトランジスタ1の動作周波数の2倍波周波数2foで電気長が90°未満になる容量性結合線路である。
 図1の例では、先端開放スタブ5bがインターデジタル型に交差されることで容量性結合線路が構成されている。
The harmonic processing circuit 3b is connected to the output side of the transistor 1 by a wire 2b, and is designed to generate a resonance state in which the pass coefficient is 0 at the second harmonic frequency 2fo of the operating frequency of the transistor 1. This is a second harmonic processing circuit.
The distributed constant line 4b of the harmonic processing circuit 3b is a line whose electrical length is less than 90 ° at the second harmonic frequency 2fo of the operating frequency of the transistor 1.
The open-ended stub 5b of the harmonic processing circuit 3b is a capacitive coupling line having an electrical length of less than 90 ° at the second harmonic frequency 2fo of the operating frequency of the transistor 1.
In the example of FIG. 1, the capacitively coupled line is configured by crossing the open-end stub 5b in an interdigital manner.
 次に動作について説明する。
 高調波処理回路3a,3bは、トランジスタ1の動作周波数の2倍波周波数2foで、その通過係数が0になる共振状態が発生するように設計されている2倍波処理回路である。
 ここで、図2は高調波処理回路3a,3bの近似的な等価回路を示す説明図である。
 以下、図2を参照しながら、高調波処理回路3a,3bの共振条件を説明する。
Next, the operation will be described.
The harmonic processing circuits 3a and 3b are second harmonic processing circuits designed to generate a resonance state in which the pass coefficient is 0 at the second harmonic frequency 2fo of the operating frequency of the transistor 1.
Here, FIG. 2 is an explanatory diagram showing an approximate equivalent circuit of the harmonic processing circuits 3a and 3b.
Hereinafter, the resonance conditions of the harmonic processing circuits 3a and 3b will be described with reference to FIG.
 図2において、高調波処理回路3a,3bは、特性インピーダンスがZで、電気長がθの分布定数線路と、サセプタンスBの容量性結合線路から構成されている。
 トランジスタ1の動作周波数の2倍波周波数2foで、その通過係数が0になる条件は、下記の式(1)のようになる。
     Z・Bsinθ=1             (1)
In FIG. 2, the harmonic processing circuits 3a and 3b are composed of a distributed constant line having a characteristic impedance Z and an electrical length θ and a capacitive coupling line having a susceptance B.
The condition that the pass coefficient becomes 0 at the second harmonic frequency 2fo of the operating frequency of the transistor 1 is expressed by the following equation (1).
Z · Bsinθ = 1 (1)
 高調波処理回路3a,3bの一方の端子(図中、左側の端子)から、高調波処理回路3a,3bを見たときのインピーダンスZLは、他方の端子(図中、右側の端子)に接続される負荷に依らず、下記の式(2)が回路理論により導出される。
     ZL=-jZ/tan(θ/2)       (2)
 したがって、容量性結合線路のサセプタンスBを適切な正値に設定して、共振周波数(2倍波周波数)で90°未満の電気長θを設定することで、ZL<0の容量性インピーダンスを呈する2倍波処理回路が得られる。
The impedance ZL when the harmonic processing circuits 3a and 3b are viewed from one terminal (the left terminal in the figure) of the harmonic processing circuits 3a and 3b is connected to the other terminal (the right terminal in the figure). Regardless of the load applied, the following equation (2) is derived by circuit theory.
ZL = −jZ / tan (θ / 2) (2)
Therefore, by setting the susceptance B of the capacitive coupling line to an appropriate positive value and setting an electrical length θ of less than 90 ° at the resonance frequency (second harmonic frequency), a capacitive impedance of ZL <0 is exhibited. A second harmonic processing circuit is obtained.
 なお、容量性結合線路は、その電気長θが90°未満のときにB>0となるため、上記の2倍波処理回路は、いずれも電気長90°未満の線路から構成される。
 そのため、図4に示す従来の高効率能動回路と比べて回路の小型化を図ることが可能となる。
 この実施の形態1では、トランジスタ1がワイヤ2a,2bを介して適切な長さの分布定数線路4a,4bと接続されており、その分布定数線路4a,4bによってインピーダンスZLを所望の値に設定することができる。例えば、F級動作増幅器を実現する場合には、2倍波の出力側インピーダンスが0の電気的な短絡状態とすることができる。
 なお、図1の高効率能動回路の外側には(高調波処理回路3aの左側、高調波処理回路3bの右側)、基本波インピーダンスを適切な値に設定するための基本波整合回路が適宜接続される。
Since the capacitive coupling line has B> 0 when the electrical length θ is less than 90 °, each of the above-described second harmonic processing circuits is composed of a line having an electrical length of less than 90 °.
Therefore, the circuit can be reduced in size as compared with the conventional high-efficiency active circuit shown in FIG.
In the first embodiment, the transistor 1 is connected to the distributed constant lines 4a and 4b having appropriate lengths via the wires 2a and 2b, and the impedance ZL is set to a desired value by the distributed constant lines 4a and 4b. can do. For example, in the case of realizing a class F operational amplifier, an electrical short-circuit state in which the output impedance of the second harmonic wave is 0 can be achieved.
In addition, a fundamental wave matching circuit for setting the fundamental impedance to an appropriate value is appropriately connected to the outside of the high-efficiency active circuit of FIG. 1 (left side of the harmonic processing circuit 3a, right side of the harmonic processing circuit 3b). Is done.
 以上で明らかなように、この実施の形態1によれば、トランジスタ1の動作効率を高める高調波処理回路3a,3bが、トランジスタ1の動作周波数の2倍波周波数2foで電気長が90°未満の分布定数線路4a,4bと、その2倍波周波数2foで電気長が90°未満の先端開放スタブ5a,5bがインターデジタル型に交差されている容量性結合線路とが並列に接続されることで構成されているので、回路寸法の大型化を招くことなく、トランジスタ1の動作効率を高めることができる効果を奏する。 As is apparent from the above, according to the first embodiment, the harmonic processing circuits 3a and 3b that increase the operation efficiency of the transistor 1 have the electric frequency of less than 90 ° at the second harmonic frequency 2fo of the operation frequency of the transistor 1. The distributed constant lines 4a and 4b are connected in parallel to the capacitively coupled lines in which the open-ended stubs 5a and 5b having an electric length of less than 90 ° at the second harmonic frequency 2fo are crossed in an interdigital manner. Therefore, the operation efficiency of the transistor 1 can be improved without increasing the circuit size.
 なお、この実施の形態1では、高調波処理回路3a,3bの容量性結合線路が、2倍波周波数2foで電気長が90°未満の先端開放スタブ5a,5bから構成されているものを示したが、2倍波周波数2foで電気長が90°未満の先端短絡スタブから高調波処理回路3a,3bの容量性結合線路が構成されていてもよく、同様の効果を奏することができる。 In the first embodiment, the capacitive coupling lines of the harmonic processing circuits 3a and 3b are configured by the open-ended stubs 5a and 5b having a second harmonic frequency of 2fo and an electrical length of less than 90 °. However, the capacitive coupling lines of the harmonic processing circuits 3a and 3b may be configured from the tip short-circuited stub having the second harmonic frequency 2fo and the electrical length of less than 90 °, and the same effect can be obtained.
 また、この実施の形態1では、トランジスタ1の入力側に高調波処理回路3aを接続し、トランジスタ1の出力側に高調波処理回路3bに接続しているものを示したが、トランジスタ1の動作効率は、主に出力側の基本波及び高調波のインピーダンスに依存しているため、少なくともトランジスタ1の出力側に高調波処理回路3bに接続していれば、トランジスタ1の入力側には、必ずしも高調波処理回路3aを接続していなくてもよい。
 ただし、トランジスタ1の動作効率は、トランジスタ1の入力側の高調波インピーダンスにも、ある程度依存していることが知られているため、入力側の高調波インピーダンスも併せて適切な値に設定することで、トランジスタ1の動作効率を更に向上させることができる。
In the first embodiment, the harmonic processing circuit 3a is connected to the input side of the transistor 1 and the harmonic processing circuit 3b is connected to the output side of the transistor 1, but the operation of the transistor 1 is shown. The efficiency mainly depends on the impedance of the fundamental wave and the harmonics on the output side. Therefore, if at least the output side of the transistor 1 is connected to the harmonic processing circuit 3b, the efficiency is not necessarily on the input side of the transistor 1. The harmonic processing circuit 3a may not be connected.
However, since it is known that the operating efficiency of the transistor 1 also depends to some extent on the harmonic impedance on the input side of the transistor 1, the harmonic impedance on the input side should also be set to an appropriate value. Thus, the operation efficiency of the transistor 1 can be further improved.
実施の形態2.
 上記実施の形態1では、高調波処理回路3a,3bが、トランジスタ1の動作周波数の2倍波周波数2foで共振状態になる2倍波処理回路であるものを示したが、図3に示すように、トランジスタ1の動作周波数の3倍波以上の各次高調波周波数nfo(n=3,4,5・・・)で共振状態になるn倍波処理回路6a,6bが、2倍波処理回路である高調波処理回路3a,3bと従続接続されていてもよい。
Embodiment 2. FIG.
In the first embodiment, the harmonic processing circuits 3a and 3b are shown as a second harmonic processing circuit that is in a resonance state at the second harmonic frequency 2fo of the operating frequency of the transistor 1, but as shown in FIG. In addition, n-th harmonic processing circuits 6a and 6b that are in a resonance state at respective harmonic frequencies nfo (n = 3, 4, 5,. It may be connected to the harmonic processing circuits 3a and 3b which are circuits.
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, any combination of the embodiments, any modification of any component in each embodiment, or omission of any component in each embodiment is possible. .
 この発明に係る高効率能動回路は、2倍波周波数で電気長がλ/4になる先端開放スタブと、3倍波周波数で電気長がλ/4になる先端開放スタブを備え、解放寸法の大型化を招くことなく、能動素子の動作効率を高めることができるので、トランジスタなどの能動素子の動作効率を高める高調波処理回路が付加されている高効率能動回路に適用することができる。 The high-efficiency active circuit according to the present invention includes an open-ended stub having an electrical length of λ / 4 at a second harmonic frequency and an open-ended stub having an electrical length of λ / 4 at a third harmonic frequency. Since the operating efficiency of the active element can be increased without causing an increase in size, the present invention can be applied to a high-efficiency active circuit to which a harmonic processing circuit that increases the operating efficiency of an active element such as a transistor is added.
 1 トランジスタ(能動素子)、2a,2b ワイヤ、3a,3b 高調波処理回路、4a,4b 分布定数線路、5a,5b 先端開放スタブ(容量性結合線路)、6a,6b n倍波処理回路、100 分布定数線路、101,102 先端開放スタブ、103a,103b 接続端子。 1 transistor (active element), 2a, 2b wire, 3a, 3b harmonic processing circuit, 4a, 4b distributed constant line, 5a, 5b open-ended stub (capacitive coupling line), 6a, 6b n harmonic processing circuit, 100 Distributed constant line, 101, 102, open end stub, 103a, 103b connection terminal.

Claims (8)

  1.  能動素子の動作効率を高める高調波処理回路が上記能動素子の出力側に接続されている高効率能動回路において、
     上記高調波処理回路は、所定の高調波周波数で電気長が90°未満の分布定数線路と、上記高調波周波数で電気長が90°未満の容量性結合線路とが並列に接続されることで構成されていることを特徴とする高効率能動回路。
    In a high-efficiency active circuit in which a harmonic processing circuit that increases the operating efficiency of the active element is connected to the output side of the active element,
    The harmonic processing circuit is configured such that a distributed constant line having an electrical length of less than 90 ° at a predetermined harmonic frequency and a capacitive coupling line having an electrical length of less than 90 ° at the harmonic frequency are connected in parallel. A high-efficiency active circuit characterized by being configured.
  2.  能動素子の動作効率を高める高調波処理回路が上記能動素子の出力側及び入力側に接続されている高効率能動回路において、
     上記高調波処理回路は、所定の高調波周波数で電気長が90°未満の分布定数線路と、上記高調波周波数で電気長が90°未満の容量性結合線路とが並列に接続されることで構成されていることを特徴とする高効率能動回路。
    In a high-efficiency active circuit in which a harmonic processing circuit that increases the operating efficiency of the active element is connected to the output side and the input side of the active element,
    The harmonic processing circuit is configured such that a distributed constant line having an electrical length of less than 90 ° at a predetermined harmonic frequency and a capacitive coupling line having an electrical length of less than 90 ° at the harmonic frequency are connected in parallel. A high-efficiency active circuit characterized by being configured.
  3.  容量性結合線路は、所定の高調波周波数で電気長が90°未満の先端開放スタブ又は先端短絡スタブがインターデジタル型に交差されることで構成されていることを特徴とする請求項1記載の高効率能動回路。 The capacitively coupled line is configured by crossing an open end stub or a short end stub having an electrical length of less than 90 ° at a predetermined harmonic frequency in an interdigital manner. High efficiency active circuit.
  4.  容量性結合線路は、所定の高調波周波数で電気長が90°未満の先端開放スタブ又は先端短絡スタブがインターデジタル型に交差されることで構成されていることを特徴とする請求項2記載の高効率能動回路。 3. The capacitive coupling line is configured by crossing an open end stub or a short end stub having an electrical length of less than 90 ° at a predetermined harmonic frequency in an interdigital manner. High efficiency active circuit.
  5.  高調波処理回路は、能動素子の動作周波数の2倍波周波数で共振状態になる2倍波処理回路であることを特徴とする請求項1記載の高効率能動回路。 2. The high-efficiency active circuit according to claim 1, wherein the harmonic processing circuit is a second harmonic processing circuit that is in a resonance state at a second harmonic frequency of the operating frequency of the active element.
  6.  高調波処理回路は、能動素子の動作周波数の2倍波周波数で共振状態になる2倍波処理回路であることを特徴とする請求項2記載の高効率能動回路。 3. The high-efficiency active circuit according to claim 2, wherein the harmonic processing circuit is a second harmonic processing circuit that is in a resonance state at a second harmonic frequency of the operating frequency of the active element.
  7.  能動素子の動作周波数の3倍波以上の各次高調波周波数で共振状態になるn倍波処理回路が、2倍波処理回路と従続接続されていることを特徴とする請求項5記載の高効率能動回路。 6. The n-th harmonic processing circuit that is in a resonance state at each harmonic frequency equal to or higher than the third harmonic of the operating frequency of the active element is connected to the second-harmonic processing circuit in a continuation manner. High efficiency active circuit.
  8.  能動素子の動作周波数の3倍波以上の各次高調波周波数で共振状態になるn倍波処理回路が、2倍波処理回路と従続接続されていることを特徴とする請求項6記載の高効率能動回路。 7. The n-th harmonic processing circuit that is in a resonance state at each harmonic frequency equal to or higher than the third harmonic of the operating frequency of the active element is connected to the second-harmonic processing circuit in a continuous manner. High efficiency active circuit.
PCT/JP2012/003341 2011-05-25 2012-05-22 High-efficiency active circuit WO2012160810A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013516209A JP5543024B2 (en) 2011-05-25 2012-05-22 High efficiency active circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-117045 2011-05-25
JP2011117045 2011-05-25

Publications (1)

Publication Number Publication Date
WO2012160810A1 true WO2012160810A1 (en) 2012-11-29

Family

ID=47216901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003341 WO2012160810A1 (en) 2011-05-25 2012-05-22 High-efficiency active circuit

Country Status (2)

Country Link
JP (1) JP5543024B2 (en)
WO (1) WO2012160810A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015220542A (en) * 2014-05-15 2015-12-07 三菱電機株式会社 amplifier

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0583017A (en) * 1991-09-24 1993-04-02 Mitsubishi Electric Corp Microwave integrated circuit device
JPH09266421A (en) * 1996-03-28 1997-10-07 Kokusai Electric Co Ltd High frequency power amplifier
JP2001345606A (en) * 2000-06-06 2001-12-14 Mitsubishi Electric Corp Mmic amplifier
JP2003078102A (en) * 2001-09-06 2003-03-14 Mitsubishi Electric Corp Flip-chip amplifier

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03250807A (en) * 1990-02-27 1991-11-08 Mitsubishi Electric Corp Power synthesis type multi-stage amplifier
JPH03277005A (en) * 1990-03-27 1991-12-09 Nippon Telegr & Teleph Corp <Ntt> High frequency amplifier
JP2000077957A (en) * 1998-09-01 2000-03-14 Mitsubishi Electric Corp High output amplifier
JP2009232076A (en) * 2008-03-21 2009-10-08 Mitsubishi Electric Corp High-frequency power amplifier
JP2009268004A (en) * 2008-04-30 2009-11-12 Murata Mfg Co Ltd Impedance conversion circuit, high-frequency circuit, and impedance conversion characteristic adjusting method for impedance conversion circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0583017A (en) * 1991-09-24 1993-04-02 Mitsubishi Electric Corp Microwave integrated circuit device
JPH09266421A (en) * 1996-03-28 1997-10-07 Kokusai Electric Co Ltd High frequency power amplifier
JP2001345606A (en) * 2000-06-06 2001-12-14 Mitsubishi Electric Corp Mmic amplifier
JP2003078102A (en) * 2001-09-06 2003-03-14 Mitsubishi Electric Corp Flip-chip amplifier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015220542A (en) * 2014-05-15 2015-12-07 三菱電機株式会社 amplifier

Also Published As

Publication number Publication date
JP5543024B2 (en) 2014-07-09
JPWO2012160810A1 (en) 2014-07-31

Similar Documents

Publication Publication Date Title
US7777571B2 (en) High frequency power amplifier
WO2012160755A1 (en) High-frequency amplifier circuit
JPH11251849A (en) High frequency power amplifier
JP4948683B2 (en) High frequency amplifier circuit
JP5543024B2 (en) High efficiency active circuit
JP4925096B2 (en) High frequency amplifier
JP6067976B2 (en) Microwave terminator
JPH04298105A (en) Semiconductor amplifier
CN110168931B (en) Power amplifier
JP6678827B2 (en) High frequency amplifier
JP2006253877A (en) High-frequency filter
JP6333155B2 (en) High frequency switch
JP2012134823A (en) High frequency amplifier and matching circuit
JP5419812B2 (en) High-frequency multistage active circuit
KR101601829B1 (en) Semiconductor package for high power transistor
JP4506094B2 (en) Voltage controlled oscillator
JP2001257546A (en) High frequency power amplifier
JP2005223502A (en) Bias circuit for microwave device
JP2012248931A (en) Harmonic suppression circuit
JP2015002365A (en) Harmonic suppression circuit
JP2017005534A (en) High frequency power amplifier
JP2015220542A (en) amplifier
JP2005210580A (en) High frequency power amplifier
JP2013219484A (en) High-frequency semiconductor amplifier
JP2014220751A (en) Harmonic processing circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789716

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013516209

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12789716

Country of ref document: EP

Kind code of ref document: A1