WO2012160780A1 - Tire pressure detection device - Google Patents

Tire pressure detection device Download PDF

Info

Publication number
WO2012160780A1
WO2012160780A1 PCT/JP2012/003202 JP2012003202W WO2012160780A1 WO 2012160780 A1 WO2012160780 A1 WO 2012160780A1 JP 2012003202 W JP2012003202 W JP 2012003202W WO 2012160780 A1 WO2012160780 A1 WO 2012160780A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
alarm threshold
alarm
tire pressure
transmitter
Prior art date
Application number
PCT/JP2012/003202
Other languages
French (fr)
Japanese (ja)
Inventor
朋宏 久野
渡部 宣哉
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201280024094.5A priority Critical patent/CN103547464B/en
Publication of WO2012160780A1 publication Critical patent/WO2012160780A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • B60C23/0447Wheel or tyre mounted circuits
    • B60C23/0455Transmission control of wireless signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • B60C23/0447Wheel or tyre mounted circuits
    • B60C23/0455Transmission control of wireless signals
    • B60C23/0462Structure of transmission protocol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0474Measurement control, e.g. setting measurement rate or calibrating of sensors; Further processing of measured values, e.g. filtering, compensating or slope monitoring

Definitions

  • the present disclosure directly attaches a transmitter equipped with a pressure sensor to a wheel to which a tire is attached, transmits a detection result of the pressure sensor from the transmitter, and receives it by a receiver attached to the vehicle body side.
  • the present invention relates to a direct tire pressure detecting device for detecting tire pressure.
  • a direct type tire pressure detecting device is known.
  • a transmitter equipped with a sensing unit such as a pressure sensor is directly attached to a wheel to which a tire is attached.
  • an antenna and a receiver are provided on the vehicle body side. When the detection result in the sensing unit is transmitted from the transmitter, the detection result is received by the receiver via the antenna, and the tire pressure is detected. Is done.
  • the periodic transmission frequency is increased (for example, Patent Document 1). As described above, by increasing the transmission frequency of the regular transmission, the receiver side can be accurately informed that the tire air pressure has suddenly decreased.
  • the transmission rate of regular transmission can be increased because the tire air pressure decrease gradient is greater than or equal to a predetermined threshold value, but in the case of slow pressure reduction, the tire air pressure decrease gradient is less than the predetermined threshold value.
  • the transmission frequency of regular transmission does not increase. For this reason, it is difficult to immediately detect a decrease in tire air pressure during slow pressure reduction.
  • the tire pressure is determined based on information transmitted from the transmitter to the receiver. It will be. For this reason, if the transmission cycle of the regular transmission is shortened so that the tire pressure can be measured more finely, the number of transmissions per unit time increases, leading to a reduction in battery life.
  • power consumption is particularly large during data transmission, and increasing the number of transmissions per unit time is disadvantageous from the viewpoint of battery life. In particular, if the transmission frequency is increased as in the case of sudden depressurization at all times, the battery life will be further reduced.
  • the transmitter monitors the tire air pressure acquired by the sensing unit, and transmits abnormality information when the tire air pressure decreases, thereby notifying the reception unit and receiving unit.
  • the tire pressure detecting device is configured to output a warning information indicating a tire pressure drop alarm from a tire pressure alarm by a warning indicator, and the transmitter has a predetermined sampling cycle.
  • the tire pressure of the wheel to which the transmitter is attached is acquired every time, and the tire pressure decreases and the alarm condition is determined by the alarm condition determination means for determining whether the acquired tire pressure decreases and the alarm condition is satisfied. If it is determined that the condition is satisfied, the apparatus has an abnormality information transmitting means for transmitting abnormality information to the receiving means.
  • the tire pressure is monitored by each transmitter, and when the tire pressure decreases, abnormality information is transmitted to the receiving means on the vehicle body side. Therefore, it is possible to monitor the tire air pressure at a shorter cycle compared to the conventional case.
  • the tire air pressure decreases, it is immediately notified to the receiving means whether it is suddenly decompressed or slowly decompressed, and is communicated to the driver via the alarm indicator. be able to. Therefore, even when the tire pressure is gradually reduced, it is possible to issue a warning in a shorter time from the occurrence of an abnormality.
  • FIG. 1 is a diagram illustrating an overall configuration of a tire pressure detection device according to a first embodiment of the present disclosure.
  • FIG. 2A is a block diagram illustrating a schematic configuration of a transmitter attached to each wheel
  • FIG. 2B is a block diagram illustrating a schematic configuration of an RF receiver, a control device, and an antenna driver provided in the vehicle body. is there.
  • FIGS. 3A and 3B are flowcharts showing processing performed by the microcomputer of the control device provided in the vehicle body.
  • FIGS. 4A and 4B are flowcharts showing processing performed by the microcomputer of the transmitter provided in each wheel.
  • FIG. 5A is a timing chart showing abnormality determination of tire air pressure as a comparative example
  • FIG. 5B is a timing chart showing abnormality determination of the present embodiment.
  • FIG. 6 is a flowchart illustrating details of threshold value checking processing executed by each transmitter of the tire pressure detection device according to the second embodiment of the present disclosure.
  • FIG. 7 is a flowchart illustrating details of threshold value checking processing executed by each transmitter of the tire pressure detection device according to the third embodiment of the present disclosure.
  • FIG. 8 is a flowchart illustrating details of threshold value checking processing executed by each transmitter of the tire pressure detection device according to the fourth embodiment of the present disclosure.
  • FIG. 9 is a flowchart illustrating details of threshold value checking processing executed by each transmitter of the tire pressure detection device according to the fifth embodiment of the present disclosure.
  • FIG. 10 is a timing chart showing the operation when the threshold value is confirmed.
  • FIG. 11 is a timing chart showing an operation at the time of threshold value confirmation of the tire pressure detecting device according to another embodiment.
  • FIG. 1 is a diagram illustrating an overall configuration of a tire air pressure detection device according to a first embodiment of the present disclosure. The up-down direction of the paper surface in FIG. With reference to this figure, the tire pressure detecting device in the present embodiment will be described.
  • the tire air pressure detecting device is attached to the vehicle 1, and includes a transmitter 2 (2a to 2d), an RF receiver 3, a control device 4, an antenna driver 5, an antenna 51, and an alarm display 6. It is configured with.
  • the transmitters 2a to 2d are attached to the wheels 7a to 7d in the vehicle 1.
  • the transmitters 2a to 2d detect the air pressure of the tires attached to the wheels 7a to 7d every predetermined sampling period, and also transmit data on the tire air pressure indicating the detection result at the predetermined periodic transmission period and abnormality in the frame. And RF transmission.
  • the RF receiver 3 and the control device 4 are attached to the vehicle body 8 side of the vehicle 1 and receive the RF frames transmitted from the transmitters 2a to 2d, and based on the detection signals stored therein.
  • the tire air pressure is detected by performing various processes and calculations.
  • These RF receiver 3 and control device 4 correspond to receiving means.
  • FIG. 2A shows a schematic configuration of the transmitter 2 (2a to 2d) attached to the wheels 7a to 7d
  • FIG. 2B shows the RF receiver 3 and the control device 4 provided on the vehicle body 8 side. 2 shows a schematic configuration of the antenna driver 5.
  • the transmitter 2 (2a to 2d) includes a sensing unit 21, a microcomputer 22, an antenna 23, and a battery 24, and is based on power supply from the battery 24. Each part is driven.
  • the sensing unit 21 includes a diaphragm type pressure sensor 21a and a temperature sensor 21b, for example, and outputs a detection signal corresponding to the tire pressure and a detection signal corresponding to the temperature.
  • the microcomputer 22 is a general one having a CPU, ROM, RAM, I / O, and the like, and is a well-known one having a control unit (first control unit), a transmission unit, and the like. A predetermined process is executed in accordance with the stored program.
  • individual ID information including identification information unique to the transmitter for identifying each of the transmitters 2a to 2d and identification information unique to the vehicle for identifying the host vehicle is stored.
  • the microcomputer 22 receives alarm threshold information including an alarm threshold and an alarm change threshold through the antenna 23, and stores the alarm threshold information. Further, the microcomputer 22 receives a detection signal relating to the tire air pressure from the sensing unit 21 every predetermined sampling period, and detects the tire air pressure of the wheels 7a to 7d to which the transmitter 2 is attached by processing the signal. . A decrease in tire air pressure is detected based on the tire air pressure detected at each sampling period and alarm threshold information. Specifically, the tire air pressure is compared with an alarm threshold, and when the tire air pressure falls below the alarm threshold, it is determined that the tire air pressure decreases, or the tire air pressure change gradient is compared with the alarm change threshold. If it becomes above, it will determine with the rapid pressure reduction of a tire pressure.
  • abnormal information indicating that the tire air pressure is abnormal is stored in the frame together with ID information of each transmitter 2a to 2d, and this is received by RF radio waves. Transmit to the machine 3 side. Further, the microcomputer 22 performs periodic transmission for transmitting data related to the tire pressure detected at each sampling cycle to the RF receiver 3 at a predetermined transmission cycle at normal times when no abnormality in the tire pressure is detected. .
  • the transmission cycle of this regular transmission is set longer than the sampling cycle, and the tire pressure data transmitted is, for example, the tire pressure detected at the sampling cycle closest to the transmission cycle.
  • the transmitters 2a to 2d configured as described above are attached to, for example, air injection valves in the wheels of the wheels 7a to 7d, and are arranged so that the sensing unit 21 is exposed inside the tire. As a result, the corresponding tire pressure is detected, and as described above, the frame is transmitted at the predetermined transmission timing through the antenna 23 provided in each of the transmitters 2a to 2d, so that the RF receiver 3 side can be transmitted. Data related to tire pressure is transmitted.
  • the RF receiver 3 is configured to include a receiving antenna 31 and a receiving circuit 32.
  • the receiving antenna 31 is for receiving frames sent from the transmitters 2a to 2d.
  • the receiving antenna 31 is fixed to the vehicle body 8 and receives frames transmitted from the transmitters 2a to 2d of the wheels 7a to 7d.
  • the receiving antenna 31 is disposed, for example, on the pillar and ceiling (in the roof) of the vehicle 1.
  • the reception circuit 32 functions as an input unit that receives transmission frames from the transmitters 2 a to 2 d received by the reception antenna 31 and sends the frames to the control device 4.
  • the control device 4 corresponds to a second control unit, and is constituted by a known microcomputer 41 having a CPU, ROM, RAM, I / O and the like, and performs tire air pressure detection processing according to a program stored in the ROM or the like. Do. Specifically, the control device 4 detects the tire air pressure of the wheels 7a to 7d based on the ID information of the transmitters 2a to 2d stored in the frame and the data related to the tire air pressure. If the received frame includes abnormality information indicating that the tire air pressure is abnormal, the alarm information is transmitted to the alarm indicator 6.
  • the control device 4 and the alarm indicator 6 may be directly connected by wiring or may be connected through a communication line such as an in-vehicle LAN.
  • control device 4 stores alarm threshold information used to determine a decrease in tire air pressure in each of the transmitters 2a to 2d in a memory (storage element) such as a ROM, RAM, or EEPROM provided in the CPU. It is.
  • the control device 4 also performs an operation of reading out the alarm threshold information and transmitting it to the transmitters 2a to 2d through the antenna driver 5.
  • the alarm threshold value information the alarm threshold value to be compared with the tire pressure as described above and the alarm change threshold value to be compared with the change gradient of the tire pressure are stored in the memory.
  • the control device 4 detects a decrease in tire air pressure mainly based on abnormality information stored in transmission frames from the transmitters 2a to 2d.
  • a decrease in tire air pressure may also be detected by the control device 4 on the basis of data relating to tire air pressure stored in a transmission frame that has been transmitted regularly.
  • the antenna driver 5 includes an antenna 51 (51a to 51d) and a driver circuit 52.
  • the antennas 51a to 51d are installed in the vicinity of the wheels 7a to 7d, and transmit alarm threshold information to the transmitters 2a to 2d as, for example, LF radio waves.
  • the driver circuit 52 functions as an output unit that transmits LF radio waves indicating alarm threshold information from the antennas 51a to 51d to the transmitters 2a to 2d.
  • the alarm indicator 6 functions as an alarm unit. As shown in FIG. 1, the alarm indicator 6 is arranged in a place where the driver can visually recognize, for example, an alarm lamp installed in an instrument panel in the vehicle 1, a navigation system And a multi-display in a meter. For example, when a signal indicating that the tire air pressure has decreased is sent from the control device 4, the alarm display device 6 displays a message to that effect to warn the driver that the tire air pressure has decreased.
  • FIGS. 3A and 3B are flowcharts showing processing performed by the microcomputer 41 of the control device 4 provided on the vehicle body 8 side.
  • 4 (a) and 4 (b) are flowcharts showing processing performed by the microcomputer 22 of the transmitters 2a to 2d provided in the wheels 7a to 7d.
  • processing executed by the control device 4 and the transmitters 2a to 2d will be described with reference to these drawings.
  • the control device 4 executes alarm threshold information transmission processing shown in FIG.
  • the alarm threshold information stored in the memory of the microcomputer 41 is read.
  • the alarm threshold information includes information related to an alarm threshold that is compared with the absolute value of the detected tire air pressure, and an alarm change threshold that is compared with a change per unit time of the tire air pressure.
  • the alarm threshold and the alarm change threshold a value set directly as a numerical value may be used, or a value calculated from a recommended pressure may be used.
  • the alarm threshold value and the alarm change threshold value are exemplified as the alarm threshold information, but only one of them, for example, only the alarm threshold value may be used.
  • step 110 the alarm threshold information read out in step 100 is output. That is, a frame in which a threshold setting command is stored together with alarm threshold information is transmitted to the antenna driver 5, and each of the transmitters 2a to 2d transmits the frame from each of the antennas 51a to 51d.
  • the microcomputer 22 of the transmitters 2a to 2d receives alarm threshold value or alarm change threshold data included in the alarm threshold information based on the instruction of the threshold setting command. Is read out and stored, and a signal indicating completion of threshold data setting is output.
  • step 120 a signal indicating completion of the threshold data setting is received, and when it is received, it is confirmed that the transmitter 2a to 2d is normally set, and the alarm threshold information transmission processing is completed.
  • a signal indicating completion of threshold data setting is not received, the processing of steps 100 and 110 is repeated again and retries are performed, so that the alarm threshold and the alarm change threshold are surely set in each of the transmitters 2a to 2d. Can be set.
  • the signal indicating the completion of the threshold data setting is received in step 120, but this processing is performed in order to more reliably set the alarm threshold value and the alarm change threshold value in each of the transmitters 2a to 2d. It can be done as needed.
  • the processing of steps 100 and 110 is repeated by retrying, if there is no valid reply even after a certain number of retries, it is considered that the radio wave is difficult to reach or the transmitters 2a to 2d are defective. It is preferable to provide a timeout.
  • the retry may be performed only for the transmitters 2a to 2d that have not received the signal indicating the completion of the threshold data setting.
  • abnormality information reception process shown in FIG. 3B is performed as a flow different from the alarm threshold information transmission process shown in FIG. This process may be performed after the alarm threshold information transmission process in FIG. 3A is completed, but may be performed independently of the alarm threshold information transmission process.
  • step 200 it is determined whether or not abnormality information has been received.
  • the abnormality information is the tire pressure when the tire pressure detected by the transmitters 2a to 2d is less than or equal to the alarm threshold, or when the change gradient of the tire pressure is greater than or equal to the alarm change threshold.
  • This information is transmitted when an abnormality occurs.
  • it is determined whether or not this abnormality information has been received.
  • it waits until it receives abnormality information, and when abnormality information is received, it progresses to step 210 and transmits alarm information to the alarm indicator 6.
  • the warning indicator 6 warns the driver of a decrease in tire air pressure by displaying that the tire air pressure has decreased based on the received alarm information.
  • the microcomputer 22 performs the alarm threshold value setting process shown in FIG. 4 (a) for each predetermined control period based on the power supply from the battery 24, and for each predetermined sampling period.
  • the tire pressure monitoring process shown in FIG. 4 (a) is the same as the tire pressure monitoring process shown in FIG. 4 (a) for each predetermined control period based on the power supply from the battery 24, and for each predetermined sampling period.
  • step 300 it is determined whether or not a threshold setting command has been received.
  • the frame storing the threshold setting command together with the alarm threshold information is transmitted at step 110 in FIG. 3A on the control device 4 side, the frame is received by each of the receivers 2a to 2d.
  • the microcomputer 22 of each of the receivers 2a to 2d receives the frame in which the threshold setting command is stored, it determines that the threshold setting command has been received in this step.
  • step 320 the alarm threshold value information is stored in a memory such as a ROM, RAM, or EEPROM provided in the CPU, a signal indicating completion of threshold data setting is transmitted, and the process ends.
  • a storage element such as an EEPROM as storage in a memory or the like, it is preferable to store it in a different memory area every time in consideration of the rewrite life.
  • step 400 it is determined whether an alarm condition is satisfied. Specifically, the pressure and temperature are detected by the pressure sensor 21a and the temperature sensor 21b provided in the sensing unit 21 for each predetermined sampling period, and each of the transmitters 2a to 2d is based on the detection result. The tire pressure of the wheels 7a to 7d to which is attached is calculated. When the tire pressure falls below the warning threshold, or when the tire pressure change gradient, for example, the difference between the tire pressures of the current sampling period and the previous sampling period becomes equal to or higher than the warning change threshold, It is said that
  • the system waits until the alarm condition is satisfied, and when the alarm condition is satisfied, the process proceeds to step 410 to transmit abnormal information indicating that the tire air pressure has decreased by RF radio waves.
  • this abnormality information is received by the receiver 3, it is transmitted to the control device 4, so that it is determined at step 200 in FIG. Will be displayed.
  • the transmitters 2a to 2d themselves detect that the tire air pressure of the wheels 7a to 7d to which they are attached has decreased, and when the tire air pressure has decreased, this is indicated. Is transmitted to the control device 4 on the vehicle body 8 side. For this reason, not only in the case of sudden depressurization but also in the case of slow depressurization, when the tire air pressure decreases, it can be immediately transmitted to the control device 4.
  • the periodic transmission flow is not shown, but periodic transmission is also performed.
  • the periodic transmission cycle is set to be equal to or more than a plurality of sampling cycles.
  • Information on the tire air pressure calculated every predetermined sampling period is transmitted from each of the transmitters 2a to 2d for each periodical transmission period.
  • each transmitter 2a to 2d can detect a decrease in tire air pressure by itself, so that compared with a case where a decrease in tire air pressure is determined by a receiver on the vehicle body as in the past, The period of periodic transmission can be increased.
  • FIG. 5 (a) is a timing chart showing an abnormality determination when the tire pressure is slowly reduced as a comparative example
  • FIG. 5 (b) is a timing chart showing the abnormality determination of the present embodiment.
  • the abnormality determination is performed by the vehicle-side control device, and information on the tire pressure can be transmitted to the vehicle-side receiver only for each periodic transmission cycle. Even if a pressure abnormality occurs in the middle of a periodic transmission cycle, the abnormality is not transmitted until the next periodic transmission cycle comes.
  • the tire pressure is monitored by each transmitter 2a to 2d and is transmitted to the control device 4 when an abnormality occurs as in this embodiment, the sampling cycle can be shortened, and a pressure abnormality occurs. Sometimes it can be immediately communicated to the control device 4.
  • the tire pressure is monitored by each of the transmitters 2a to 2d, and abnormality information is transmitted to the control device 4 on the vehicle body 8 side when the tire pressure decreases. ing. Since each of the transmitters 2a to 2d monitors the tire pressure at a sampling cycle shorter than the regular transmission cycle, the tire pressure can be monitored at a cycle shorter than that of the comparative example. Further, since the tire pressure is monitored at a short sampling period, when the tire pressure decreases, it is possible to promptly notify the controller 4 whether the pressure is reduced or suddenly, and to the driver via the alarm display device 6. Therefore, even when the tire pressure is gradually reduced, it is possible to issue a warning in a shorter time from the occurrence of an abnormality.
  • the tire pressure can be monitored by the transmitters 2a to 2d, it is not necessary to monitor the tire pressure finely by the control device 4 on the vehicle body 8 side. For this reason, the period of periodic transmission can be lengthened, power consumption for periodic transmission can be reduced, and a decrease in battery life can also be suppressed.
  • the tire air pressure detection device is configured to be able to make a request for confirmation of alarm threshold information to the transmitters 2a to 2d with respect to the first embodiment, and is otherwise the same as the first embodiment. Therefore, the difference from the first embodiment will be mainly described.
  • the alarm threshold value and the alarm change threshold data included in the alarm threshold information are stored by outputting a signal indicating the completion of the threshold data setting, but in the present embodiment, the stored data It is possible to determine whether or not is correct regular data.
  • the control device 4 outputs a threshold value confirmation request to the antenna driver 5 when it is desired to determine whether or not the data stored in each of the transmitters 2a to 2d is correct regular data.
  • a threshold value confirmation request is issued when an ignition switch (not shown) is turned on, or when a predetermined period has elapsed since the previous threshold value confirmation request was issued.
  • the driver circuit 52 of the antenna driver 5 causes the antennas 51a to 51d to output LF radio waves including a threshold value confirmation request and threshold value confirmation data, and causes each of the transmitters 2a to 2d to receive it. Then, each of the transmitters 2a to 2d receives the LF radio wave including the threshold value confirmation request, and executes the flowchart shown in FIG.
  • each of the transmitters 2a to 2d executes the threshold value confirmation process shown in FIG. 6 for each predetermined control cycle. Then, in the request trigger reception determination shown in step 500, the process waits until receiving the LF radio wave corresponding to the request trigger. If it is determined in step 500 that the reception is received, the reception intensity of the LF radio wave (request trigger) is determined. , And the processing after step 510 is executed.
  • step 510 stored alarm threshold value information reading processing is performed.
  • data relating to an alarm threshold value stored in a memory storage element
  • a memory storage element
  • the data relating to the alarm threshold means the current alarm threshold information sent from the vehicle body side through the antenna driver 5 and stored therein, but alarm threshold information stored in advance as mirror data (hereinafter simply referred to as mirror data). If there is, the mirror data is also included.
  • step 520 it is determined whether or not the data regarding the alarm threshold value read in step 510 is regular data.
  • the threshold value confirmation data included in the received LF radio wave is collated with the alarm threshold value information read in step 510, and it is determined whether or not they match.
  • the alarm threshold information read in step 510 may be collated with the mirror data to determine whether or not they match.
  • step 520 when the alarm threshold information stored in each transmitter 2 is lost, it is determined that the data is not regular data.
  • step 520 If an affirmative determination is made in step 520, the routine proceeds to step 530, where normal transmission data is set (stored) in the same frame as the data related to tire pressure or in another frame. Similarly, if a negative determination is made in step 520, the process proceeds to step 540, and the abnormal time transmission data is set (stored) in the same frame as the data related to the tire pressure or in another frame. For example, normal transmission data or abnormal transmission data is set using one bit or several bits allocated to indicate whether the transmission frame is normal or abnormal.
  • step 550 in order to avoid interference due to the coincidence of the transmission timings of the transmitters 2a to 2d, normal transmission data or abnormal transmission data is provided with a delay according to the reception intensity of the LF radio wave.
  • RF transmission is performed for the frame in which is set.
  • the RF receiver 3 receives a frame in which normal transmission data or abnormal transmission data is set, and the alarm threshold information stored in each of the transmitters 2a to 2d is regular data in the control device 4. It is possible to determine whether or not.
  • the control device 4 executes a process of storing alarm threshold information again for at least the transmitters 2a to 2d for which the regular data is not stored (FIG. 4 ( a)).
  • a process of storing alarm threshold information again for at least the transmitters 2a to 2d for which the regular data is not stored (FIG. 4 ( a)).
  • the state can also be transmitted to the driver through the alarm indicator 6 or the like.
  • the threshold confirmation data in the LF radio wave is collated with the alarm threshold information read in step 510.
  • legitimate data is obtained by extracting and collating an error correction code (ECC) or frame check code (FCC) character from the read alarm threshold information and performing a parity check. It may be determined whether or not. If mirror data is included, the current alarm threshold information may be self-repaired using the mirror data. In that case, when the transmission data at the time of abnormality is set, data indicating that self-repair is performed can be set at the same time.
  • ECC error correction code
  • FCC frame check code
  • alarm threshold information for resetting may not be sent to the transmitters 2a to 2d that transmitted the frame. . In that case, the RF transmission of the frame in which the abnormal-time transmission data is set may be repeated until alarm threshold information for resetting is sent.
  • the currently set alarm threshold information may be set in the frame in addition to normal transmission data or abnormal transmission data. In that case, it is possible to determine whether the currently set alarm threshold information is normal or abnormal on the control device 4 side. For example, ECC and FCC characters are extracted from the alarm threshold information and collated, parity check is performed to determine whether the data is legitimate data, mirror data is provided, collated with mirror data, and collated It can be determined whether or not the data.
  • alarm threshold information similar to that in the second embodiment is checked at the timing of periodic transmission of data related to tire pressure. Other than this timing, it is the same as in the second embodiment.
  • Each of the transmitters 2a to 2d executes the flowchart shown in FIG. 7 for each predetermined control cycle, and in the air pressure transmission timing determination shown in step 600, it is determined that it is the timing of periodic transmission of data related to tire air pressure. Then, the processing after step 610 is executed.
  • steps 610 to 640 processing similar to that in steps 510 to 540 of FIG. 6 described in the second embodiment is executed.
  • step 620 since threshold confirmation data has not been received, for example, the alarm threshold information read in step 610 is compared with mirror data to determine whether or not they match.
  • the frame for setting normal transmission data or abnormal transmission data may be a separate frame from the frame for storing data related to tire air pressure. A frame is preferable. In this way, frame transmissions performed thereafter can be combined into one, and the battery life can be improved along with the reduction in power consumption.
  • step 650 a frame in which normal transmission data or abnormal transmission data is set is RF-transmitted.
  • the RF receiver 3 receives a frame in which normal transmission data or abnormal transmission data is set, and the alarm threshold information stored in each of the transmitters 2a to 2d is regular data in the control device 4. It becomes possible to determine whether or not.
  • the alarm threshold information may be confirmed by each of the transmitters 2a to 2d at the timing of periodic transmission of data related to tire pressure. Thereby, the effect similar to 2nd Embodiment can be acquired. And by sending the determination result of whether or not the alarm threshold information is regular data together with the periodic transmission, it is not necessary to perform RF transmission only for sending the determination result, so that the power consumption can be reduced and the electrical life can be improved. Can be planned.
  • alarm threshold information similar to that in the third embodiment is checked every predetermined control period regardless of the timing of periodic transmission of data related to tire pressure.
  • the second embodiment is almost the same as the second embodiment, and only the parts different from the third embodiment will be described.
  • the transmitters 2a to 2d execute the flowchart shown in FIG. 8 for each predetermined control cycle, and execute the processes of steps 700 to 730 for each predetermined control cycle.
  • steps 700 and 710 processing similar to that in steps 610 and 620 of FIG. 6 described in the third embodiment is executed.
  • step 710 processing similar to that in steps 610 and 620 of FIG. 6 described in the third embodiment is executed.
  • step 710 the process proceeds to step 720 and the same process as at step 640 is executed.
  • an affirmative determination is made, the process is terminated as it is. If the current alarm threshold information is regular data, you may send a frame with the normal transmission data set, but if it is normal, you do not need to respond to anything. Also good. In this way, battery life can be improved by reducing power consumption.
  • step 720 the transmission data at the time of abnormality is set (stored) in the same frame as the data related to the tire pressure or in another frame. Then, the process proceeds to step 730, where the frame in which the abnormal time transmission data is set is RF-transmitted and a threshold data retransmission request is transmitted. For the threshold data retransmission request at this time, if the command is stored in the frame in which the abnormal transmission data is set, both the abnormal transmission data and the threshold data retransmission request data are transmitted in one frame transmission. Can be done.
  • the same effect as that of the third embodiment can be obtained even if the transmitters 2a to 2d are checked for the alarm threshold information every predetermined control period.
  • the frame in which the abnormal transmission data is set is RF-transmitted and a threshold data retransmission request is transmitted.
  • the regular data is not stored based on the abnormal transmission data, and at least the regular data is not stored in the transmitters 2a to 2d from the control device 4.
  • a process for storing the alarm threshold information again may be executed on the object.
  • a threshold data retransmission request may be issued when no regular data is stored from the transmitters 2a to 2d.
  • the control device 4 is caused to execute a threshold value confirmation request process when it is time to confirm the alarm threshold value information for determining whether or not the alarm threshold value information is regular data.
  • the threshold value confirmation request process is executed at a predetermined cycle or at a timing such as after a predetermined time has elapsed since the alarm threshold value information was transmitted to each of the transmitters 2a to 2d.
  • LF radio waves indicating read commands are output from the antennas 51a to 51d through the driver circuit 52 of the antenna driver 5. To do.
  • Each of the transmitters 2a to 2d executes the flowchart shown in FIG. 9 for each predetermined control cycle.
  • step 810 is performed. The subsequent processing is executed.
  • each of the transmitters 2a to 2d performs a stored alarm threshold value information reading process, similarly to step 510 of FIG. 6 described in the second embodiment.
  • the alarm threshold information is encoded (for example, data length reduction or redundancy is added) as necessary, or ECC or FCC character or parity check data is extracted from the read alarm threshold information.
  • the raw value of the alarm threshold information may be used as it is without encoding. That is, any data regarding alarm threshold information may be used regardless of the alarm threshold information of the raw value and the alarm threshold information that has been encoded.
  • step 820 a transmission frame is created by arranging the generated data obtained by performing the raw value or encoding of the alarm threshold information on the RF transmission data together with the ID information unique to the transmitter.
  • step 830 to perform data transmission at the RF transmission timing. For example, in order to avoid interference due to coincidence of transmission timings of the transmitters 2a to 2d, a frame in which RF transmission data is set is RF-transmitted with a delay corresponding to the reception intensity of the LF radio wave.
  • the operation shown in the timing chart of FIG. 10 is performed. That is, when an LF radio wave indicating a threshold value confirmation request is output in turn from each antenna 51a to 51d, an alarm is given each time from the transmitter 2a to 2d attached to the wheels 7a to 7d corresponding to each antenna 51a to 51d. Threshold information is returned. At this time, a threshold value confirmation request is issued in order from each antenna 51a to 51d, and when the threshold value confirmation request LF radio wave is received, alarm threshold value information is returned from each transmitter 2a to 2d. The alarm threshold information is returned at a different timing from 2d. Therefore, interference due to the coincidence of transmission timings of the transmitters 2a to 2d does not occur.
  • one antenna is arranged near the front of the vehicle while being arranged at different distances from the front wheels 7a and 7b, and the other antenna 51 is arranged near the vehicle rear and from both the rear wheels 7c and 7d. It is set to be arranged at different distances.
  • one antenna 51 outputs LF radio waves to the transmitters 2a and 2b of both front wheels 7a and 7b, and the other antenna 51 outputs to the transmitters 2c and 2d of both rear wheels 7c and 7d. What is necessary is just to output LF radio waves.
  • the LF radio wave indicating a threshold confirmation request is output to the transmitters 2a and 2b of both front wheels 7a and 7b
  • the distance from the antenna 51 to both front wheels 7a and 7b is different.
  • the reception intensity of the LF radio wave becomes a different value.
  • the alarm threshold information can be returned from the transmitters 2a and 2b at different timings in order by performing RF transmission with a delay corresponding to the reception intensity.
  • the LF radio wave indicating the threshold value confirmation request is output to the transmitters 2c and 2d of the rear wheels 7c and 7d
  • the distance from the antenna 51 to the rear wheels 7c and 7d is different.
  • the reception strengths of the LF radio waves at 2c and 2d are different values.
  • alarm threshold information can be returned at different timings in order from the transmitters 2c and 2d by performing RF transmission with a delay corresponding to the reception intensity. Therefore, interference due to the coincidence of transmission timings of the transmitters 2a to 2d does not occur.
  • the alarm threshold information such as the alarm threshold value and the alarm change threshold value of each wheel 7a to 7d may be the same for both front wheels 7a, 7b and both rear wheels 7c, 7d, or different. Also good.
  • the alarm threshold information of the wheels 7a to 7d can be transmitted to the wheels 7a to 7d simultaneously or at different timings.
  • the alarm threshold information may be transmitted to the front wheels 7a, 7b and the rear wheels 7c, 7d in order, or the alarm threshold information may be transmitted simultaneously.
  • the alarm threshold information is normally stored in each of the transmitters 2a to 2d, a signal indicating the completion of threshold data setting is returned, but if there is no response, a fixed number of retries are performed. preferable.
  • the retry may be performed only for the transmitters 2a to 2d that have not received the signal indicating the completion of the threshold data setting.
  • the alarm threshold information can be transmitted to the wheels 7a to 7d simultaneously or at different timings.
  • the alarm threshold information may be transmitted to the front wheels 7a, 7b and the rear wheels 7c, 7d in order, or the alarm threshold information may be transmitted simultaneously.
  • the alarm threshold information for the front wheels is transmitted from the antenna 51 corresponding to both front wheels 7a and 7b
  • the alarm threshold information for the rear wheels is transmitted from the antenna 51 corresponding to both rear wheels 7c and 7d.
  • the wheel position detection has been completed in the case of the tire pressure detecting device having the wheel position detecting function for identifying which of the wheels 7a to 7d each transmitter 2a to 2d is attached to. If so, the ID information of the target transmitter may be added to the alarm threshold information. In this way, even if both the LF radio waves transmitted from the two antennas 51 are received by the transmitters 2a to 2d, the target LF radio wave can be specified. On the contrary, if the wheel position detection is not completed, an operation for executing the wheel position detection and completing it is performed before the alarm threshold information is transmitted to the transmitters 2a to 2d. The alarm threshold information may be transmitted to the transmitters 2a to 2d after waiting for the result.
  • the transmitters 2a and 2b for both front wheels 7a and 7b and the transmitters 2c and 2d for both rear wheels 7c and 7d are used. Different alarm threshold information may be transmitted. However, when there is one antenna 51, this is performed as follows.
  • each transmitter 2a to 2d is made to measure the reception intensity, and when the antenna 51 transmits the alarm threshold information of both front wheels 7a and 7b and the alarm threshold information of both rear wheels 7c and 7d, different signal strengths are transmitted. Try to transmit by radio wave.
  • a minimum reception intensity that permits reception of alarm threshold information is set.
  • the antenna 51 is disposed so as to be close to either the front wheels 7a, 7b or the rear wheels 7c, 7d. In this way, the transmitter 2 closer to the antenna 51 out of the front wheels 7a and 7b and the rear wheels 7c and 7d receives the different alarm threshold information, and the side with the stronger reception intensity has its own alarm threshold. It can be determined that it is information. Further, in the transmitter 2 far from the antenna 51 out of both the front wheels 7a and 7b and the both rear wheels 7c and 7d, the alarm threshold information included in the radio wave exceeding the minimum reception intensity is determined as the own alarm threshold information. can do.
  • LF radio waves are used for transmission of alarm threshold information
  • RF radio waves are used for transmission of abnormal information indicating a decrease in tire air pressure. It can be arbitrarily selected.
  • the case where only one RF receiver 3 is provided has been described.
  • a plurality of transmitters 2a to 2d may be provided.
  • the number corresponding to all the transmitters 2a to 2d of all the wheels 7a to 7d may be provided, or the number corresponding to the transmitters 2a and 2b of both front wheels 7a and 7b and the rear wheels 7c, Two of the transmitters corresponding to the transmitters 2c and 2d of 7d may be used.
  • only a plurality of antennas 31 in the RF receiver 3 may be provided.
  • the condition for reducing the tire air pressure is shown as the alarm condition.
  • the alarm condition can be set not only for the tire air pressure decrease but also for the tire air pressure increase and the temperature increase. For example, an alarm may be issued when the tire air pressure increases above a specified value, or when the temperature inside the tire is above a specified value.
  • the alarm conditions can be set to different conditions independently for each of the wheels 7a to 7d. Of course, it is possible to set different conditions for the front and rear wheels. In that case, in order to avoid radio waves transmitted to the transmitters 2a to 2d from interfering with each other, each transmitter 2a to 2d is attached with alarm ID information unique to each transmitter 2a to 2d. It may be possible to determine whether or not has received its own alarm threshold information.
  • step 400 corresponds to an alarm condition determining unit
  • the part that executes the process shown in step 210 corresponds to an abnormality information transmitting unit.

Abstract

A tire pressure detection device, wherein transmitters (2a-2d) attached to wheels (7a-7d), respectively, monitor tire pressure and transmit abnormality information to a control unit (4) on the vehicle body (8) side when the tire pressure has dropped. The transmitters (2a-2d) each monitor the tire pressure with a sampling period shorter than a regular transmission period. Consequently, compared to when the tire pressure abnormality is determined by receivers on the vehicle body side, the tire pressure can be monitored with a shorter period. Moreover, since the tire pressure is monitored with the shorter sampling period, when the tire pressure has dropped, both rapidly and slowly, the pressure drop can be immediately transmitted to the control unit (4), and transmitted to a driver via a warning display (6). Therefore, even when the tire pressure has slowly dropped, a warning can be given in a shorter time after the occurrence of abnormality.

Description

タイヤ空気圧検出装置Tire pressure detector 関連出願の相互参照Cross-reference of related applications
 本開示は、2011年5月20日に出願された日本出願番号2011-113345号と、2012年4月26日に出願された日本出願番号2012-101024号に基づくもので、ここにその記載内容を援用する。 The present disclosure is based on Japanese application number 2011-113345 filed on May 20, 2011 and Japanese application number 2012-101024 filed on April 26, 2012. Is used.
 本開示は、タイヤが取り付けられた車輪に圧力センサが備えられた送信機を直接取り付け、その圧力センサの検出結果を送信機から送信し、車体側に取り付けられた受信機によって受信することで、タイヤ空気圧の検出を行うダイレクト式のタイヤ空気圧検出装置に関するものである。 The present disclosure directly attaches a transmitter equipped with a pressure sensor to a wheel to which a tire is attached, transmits a detection result of the pressure sensor from the transmitter, and receives it by a receiver attached to the vehicle body side. The present invention relates to a direct tire pressure detecting device for detecting tire pressure.
 従来より、ダイレクト式のタイヤ空気圧検出装置が知られている。このタイプのタイヤ空気圧検出装置では、タイヤが取り付けられた車輪内に、圧力センサ等のセンシング部が備えられた送信機が直接取り付けられている。また、車体側には、アンテナおよび受信機が備えられており、センシング部での検出結果が送信機から送信されると、アンテナを介して受信機にその検出結果が受信され、タイヤ空気圧の検出が行われる。 Conventionally, a direct type tire pressure detecting device is known. In this type of tire pressure detecting device, a transmitter equipped with a sensing unit such as a pressure sensor is directly attached to a wheel to which a tire is attached. In addition, an antenna and a receiver are provided on the vehicle body side. When the detection result in the sensing unit is transmitted from the transmitter, the detection result is received by the receiver via the antenna, and the tire pressure is detected. Is done.
 また、従来のタイヤ空気圧検出装置として、送信機より所定の送信周期でタイヤ空気圧の検出結果を受信機側に送信するという定期送信を行い、送信機にてタイヤ空気圧の急減圧が検出されると、定期送信の頻度を上げて送信するようにしているものもある(例えば、特許文献1)。このように定期送信の送信頻度を上げることで、受信機側にタイヤ空気圧が急減圧したことが的確に伝えられるようにしている。 In addition, as a conventional tire pressure detecting device, when a transmitter transmits a tire pressure detection result at a predetermined transmission cycle to the receiver side at a predetermined transmission cycle, and the transmitter detects a sudden decrease in tire pressure. In some cases, the periodic transmission frequency is increased (for example, Patent Document 1). As described above, by increasing the transmission frequency of the regular transmission, the receiver side can be accurately informed that the tire air pressure has suddenly decreased.
 しかしながら、従来のようにタイヤ空気圧が急減圧した際に定期送信の頻度を上げるようにする場合、タイヤ空気圧の急減圧には対応できるが緩減圧に対応するのは困難である。すなわち、急減圧に関しては、タイヤ空気圧の減少勾配が所定の閾値以上になるため定期送信の送信頻度を上げられるが、緩減圧の場合には、タイヤ空気圧の減少勾配が所定の閾値未満となるため定期送信の送信頻度は上がらない。このため、緩減圧時にタイヤ空気圧の低下を即時に検出することが困難であった。 However, when the frequency of periodic transmission is increased when the tire pressure suddenly decreases as in the conventional case, it is possible to cope with the rapid decrease in tire pressure, but it is difficult to cope with the slow decrease. That is, with regard to sudden pressure reduction, the transmission rate of regular transmission can be increased because the tire air pressure decrease gradient is greater than or equal to a predetermined threshold value, but in the case of slow pressure reduction, the tire air pressure decrease gradient is less than the predetermined threshold value. The transmission frequency of regular transmission does not increase. For this reason, it is difficult to immediately detect a decrease in tire air pressure during slow pressure reduction.
 また、従来のタイヤ空気圧検出装置の場合、送信機側で定期送信の送信頻度を上げて送信するなどの対策を行っているものの、受信機が送信機の伝える情報に基づいてタイヤ空気圧を判定することになる。このため、より細かなタイヤ空気圧測定が行えるように、定期送信の送信周期を短くしようとすると、単位時間当たり送信回数が多くなって電池寿命短縮に繋がる。送信機側では、特にデータ送信の際の電力消費量が大きく、単位時間当たりの送信回数が多くなることは電池寿命の観点からは不利となる。特に、常時急減圧時のように送信頻度を多くすると、なおさら電池寿命の低下に繋がることになる。 Further, in the case of a conventional tire pressure detecting device, although measures such as increasing the transmission frequency of periodic transmission are performed on the transmitter side, the tire pressure is determined based on information transmitted from the transmitter to the receiver. It will be. For this reason, if the transmission cycle of the regular transmission is shortened so that the tire pressure can be measured more finely, the number of transmissions per unit time increases, leading to a reduction in battery life. On the transmitter side, power consumption is particularly large during data transmission, and increasing the number of transmissions per unit time is disadvantageous from the viewpoint of battery life. In particular, if the transmission frequency is increased as in the case of sudden depressurization at all times, the battery life will be further reduced.
特開平11-334328号公報Japanese Patent Laid-Open No. 11-334328
 本開示は上記点に鑑みて、タイヤ空気圧が急減圧した場合に加え緩減圧した場合にも、異常発生からより短時間に警報が行えるタイヤ空気圧検出装置を提供することを目的とする。 In view of the above points, it is an object of the present disclosure to provide a tire air pressure detection device that can provide a warning in a shorter time from occurrence of an abnormality even when the tire air pressure is suddenly reduced and gradually reduced.
 本開示の一態様によれば、送信機にて、センシング部が取得したタイヤ空気圧を監視し、タイヤ空気圧が低下したときには異常情報を送信することで、その旨を受信手段に伝えると共に、受信手段からタイヤ空気圧の低下の警報を指示する警報情報を出力することで、警報表示機にてタイヤ空気圧の低下の警報を行うようにしたタイヤ空気圧検出装置であって、送信機は、所定のサンプリング周期毎に当該送信機が取り付けられた車輪のタイヤ空気圧を取得すると共に、取得したタイヤ空気圧が低下して警報条件を満たすか否かを判定する警報条件判定手段にてタイヤ空気圧が低下して警報条件を満たしたと判定されると、受信手段に対して異常情報を送信する異常情報送信手段を有していることを特徴としている。 According to one aspect of the present disclosure, the transmitter monitors the tire air pressure acquired by the sensing unit, and transmits abnormality information when the tire air pressure decreases, thereby notifying the reception unit and receiving unit. The tire pressure detecting device is configured to output a warning information indicating a tire pressure drop alarm from a tire pressure alarm by a warning indicator, and the transmitter has a predetermined sampling cycle. The tire pressure of the wheel to which the transmitter is attached is acquired every time, and the tire pressure decreases and the alarm condition is determined by the alarm condition determination means for determining whether the acquired tire pressure decreases and the alarm condition is satisfied. If it is determined that the condition is satisfied, the apparatus has an abnormality information transmitting means for transmitting abnormality information to the receiving means.
 このように、各送信機でタイヤ空気圧を監視し、タイヤ空気圧が低下したときに異常情報を車体側の受信手段に伝えるようにしている。このため、従来と比較してより短い周期でタイヤ空気圧の監視を行うことができ、タイヤ空気圧が低下したときには急減圧でも緩減圧でも早急に受信手段に伝え、警報表示機を介してドライバに伝えることができる。したがって、タイヤ空気圧が緩減圧した場合にも、異常発生からより短時間に警報を行うことが可能となる。 In this way, the tire pressure is monitored by each transmitter, and when the tire pressure decreases, abnormality information is transmitted to the receiving means on the vehicle body side. Therefore, it is possible to monitor the tire air pressure at a shorter cycle compared to the conventional case. When the tire air pressure decreases, it is immediately notified to the receiving means whether it is suddenly decompressed or slowly decompressed, and is communicated to the driver via the alarm indicator. be able to. Therefore, even when the tire pressure is gradually reduced, it is possible to issue a warning in a shorter time from the occurrence of an abnormality.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。図面において、
図1は本開示の第1実施形態にかかるタイヤ空気圧検出装置の全体構成を示す図である。 図2(a)は各車輪に取り付けられる送信機の概略構成を示すブロック図であり、図2(b)は車体に備えられるRF受信機や制御装置およびアンテナドライバの概略構成を示すブロック図である。 図3(a)、(b)は車体に備えられた制御装置のマイクロコンピュータが行う処理を示したフローチャートである。 図4(a)、(b)は各車輪に備えられた送信機のマイクロコンピュータが行う処理を示したフローチャートである。 図5(a)は比較例としてのタイヤ空気圧の異常判定を示したタイミングチャートであり、図5(b)は本実施形態の異常判定を示したタイミングチャートである。 図6は本開示の第2実施形態にかかるタイヤ空気圧検出装置の各送信機が実行する閾値確認処理の詳細を示したフローチャートである。 図7は本開示の第3実施形態にかかるタイヤ空気圧検出装置の各送信機が実行する閾値確認処理の詳細を示したフローチャートである。 図8は本開示の第4実施形態にかかるタイヤ空気圧検出装置の各送信機が実行する閾値確認処理の詳細を示したフローチャートである。 図9は本開示の第5実施形態にかかるタイヤ空気圧検出装置の各送信機が実行する閾値確認処理の詳細を示したフローチャートである。 図10は閾値確認時の動作を示したタイミングチャートである。 図11は他の実施形態にかかるタイヤ空気圧検出装置の閾値確認時の動作を示したタイミングチャートである。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. In the drawing
FIG. 1 is a diagram illustrating an overall configuration of a tire pressure detection device according to a first embodiment of the present disclosure. FIG. 2A is a block diagram illustrating a schematic configuration of a transmitter attached to each wheel, and FIG. 2B is a block diagram illustrating a schematic configuration of an RF receiver, a control device, and an antenna driver provided in the vehicle body. is there. FIGS. 3A and 3B are flowcharts showing processing performed by the microcomputer of the control device provided in the vehicle body. FIGS. 4A and 4B are flowcharts showing processing performed by the microcomputer of the transmitter provided in each wheel. FIG. 5A is a timing chart showing abnormality determination of tire air pressure as a comparative example, and FIG. 5B is a timing chart showing abnormality determination of the present embodiment. FIG. 6 is a flowchart illustrating details of threshold value checking processing executed by each transmitter of the tire pressure detection device according to the second embodiment of the present disclosure. FIG. 7 is a flowchart illustrating details of threshold value checking processing executed by each transmitter of the tire pressure detection device according to the third embodiment of the present disclosure. FIG. 8 is a flowchart illustrating details of threshold value checking processing executed by each transmitter of the tire pressure detection device according to the fourth embodiment of the present disclosure. FIG. 9 is a flowchart illustrating details of threshold value checking processing executed by each transmitter of the tire pressure detection device according to the fifth embodiment of the present disclosure. FIG. 10 is a timing chart showing the operation when the threshold value is confirmed. FIG. 11 is a timing chart showing an operation at the time of threshold value confirmation of the tire pressure detecting device according to another embodiment.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other will be described with the same reference numerals.
 (第1実施形態)
 本開示の第1実施形態について図を参照して説明する。図1は、本開示の第1実施形態にかかるタイヤ空気圧検出装置の全体構成を示す図である。図1の紙面上下方向が車両1の前後方向に一致する。この図を参照して、本実施形態におけるタイヤ空気圧検出装置について説明する。
(First embodiment)
A first embodiment of the present disclosure will be described with reference to the drawings. FIG. 1 is a diagram illustrating an overall configuration of a tire air pressure detection device according to a first embodiment of the present disclosure. The up-down direction of the paper surface in FIG. With reference to this figure, the tire pressure detecting device in the present embodiment will be described.
 図1に示すように、タイヤ空気圧検出装置は、車両1に取り付けられるもので、送信機2(2a~2d)、RF受信機3、制御装置4、アンテナドライバ5やアンテナ51および警報表示機6を備えて構成されている。 As shown in FIG. 1, the tire air pressure detecting device is attached to the vehicle 1, and includes a transmitter 2 (2a to 2d), an RF receiver 3, a control device 4, an antenna driver 5, an antenna 51, and an alarm display 6. It is configured with.
 図1に示すように、送信機2a~2dは、車両1における各車輪7a~7dに取り付けられる。送信機2a~2dは、所定のサンプリング周期毎に車輪7a~7dに取り付けられたタイヤの空気圧を検出すると共に、所定の定期送信周期および異常検出時にその検出結果を示すタイヤ空気圧に関するデータをフレーム内に格納してRF送信する。また、RF受信機3や制御装置4は、車両1における車体8側に取り付けられるもので、送信機2a~2dから送信されたフレームをRF受信すると共に、その中に格納された検出信号に基づいて各種処理や演算等を行うことでタイヤ空気圧検出を行うものである。これらRF受信機3や制御装置4は受信手段に相当する。図2(a)に、各車輪7a~7d側に取り付けられる送信機2(2a~2d)の概略構成を示し、図2(b)に車体8側に備えられるRF受信機3や制御装置4およびアンテナドライバ5の概略構成を示す。 As shown in FIG. 1, the transmitters 2a to 2d are attached to the wheels 7a to 7d in the vehicle 1. The transmitters 2a to 2d detect the air pressure of the tires attached to the wheels 7a to 7d every predetermined sampling period, and also transmit data on the tire air pressure indicating the detection result at the predetermined periodic transmission period and abnormality in the frame. And RF transmission. Further, the RF receiver 3 and the control device 4 are attached to the vehicle body 8 side of the vehicle 1 and receive the RF frames transmitted from the transmitters 2a to 2d, and based on the detection signals stored therein. The tire air pressure is detected by performing various processes and calculations. These RF receiver 3 and control device 4 correspond to receiving means. FIG. 2A shows a schematic configuration of the transmitter 2 (2a to 2d) attached to the wheels 7a to 7d, and FIG. 2B shows the RF receiver 3 and the control device 4 provided on the vehicle body 8 side. 2 shows a schematic configuration of the antenna driver 5.
 図2(a)に示すように、送信機2(2a~2d)は、センシング部21、マイクロコンピュータ22、アンテナ23および電池24を備えた構成となっており、電池24からの電力供給に基づいて各部が駆動される。 As shown in FIG. 2A, the transmitter 2 (2a to 2d) includes a sensing unit 21, a microcomputer 22, an antenna 23, and a battery 24, and is based on power supply from the battery 24. Each part is driven.
 センシング部21は、例えばダイアフラム式の圧力センサ21aや温度センサ21bを備えた構成とされ、タイヤ空気圧に応じた検出信号や温度に応じた検出信号を出力する。 The sensing unit 21 includes a diaphragm type pressure sensor 21a and a temperature sensor 21b, for example, and outputs a detection signal corresponding to the tire pressure and a detection signal corresponding to the temperature.
 マイクロコンピュータ22は、CPU、ROM、RAM、I/Oなどを備えた一般的なものであり、制御部(第1制御部)や送信部などを備えた周知のもので、制御部内のメモリに記憶されたプログラムに従って、所定の処理を実行する。制御部内のメモリには、各送信機2a~2dを特定するための送信機固有の識別情報と自車両を特定するための車両固有の識別情報とを含む個別のID情報が格納されている。 The microcomputer 22 is a general one having a CPU, ROM, RAM, I / O, and the like, and is a well-known one having a control unit (first control unit), a transmission unit, and the like. A predetermined process is executed in accordance with the stored program. In the memory in the control unit, individual ID information including identification information unique to the transmitter for identifying each of the transmitters 2a to 2d and identification information unique to the vehicle for identifying the host vehicle is stored.
 マイクロコンピュータ22は、アンテナ23を通じて警報閾値と警報変化閾値を含む警報閾値情報を受信し、この警報閾値情報を記憶する。また、マイクロコンピュータ22は、所定のサンプリング周期毎にセンシング部21からのタイヤ空気圧に関する検出信号を受け取り、それを信号処理することで送信機2が取り付けられた車輪7a~7dのタイヤ空気圧を検出する。このサンプリング周期毎に検出したタイヤ空気圧と警報閾値情報とに基づいて、タイヤ空気圧の低下を検出する。具体的には、タイヤ空気圧を警報閾値と比較し、タイヤ空気圧が警報閾値以下になるとタイヤ空気圧の低下と判定したり、タイヤ空気圧の変化勾配を警報変化閾値と比較し、タイヤ空気圧が警報変化閾値以上になるとタイヤ空気圧の急減圧と判定する。そして、タイヤ空気圧の低下や急減圧が検出されると、タイヤ空気圧に異常があることを示す異常情報を各送信機2a~2dのID情報と共にフレームに格納し、それをRF電波にてRF受信機3側に送信する。また、マイクロコンピュータ22は、タイヤ空気圧の異常が検出されていない通常時には、サンプリング周期毎検出されるタイヤ空気圧に関するデータを所定の送信周期毎にRF受信機3側に送信する定期送信を行っている。この定期送信の送信周期は、サンプリング周期よりも長く設定されており、送信されるタイヤ空気圧に関するデータとしては、例えば送信周期に最も近いサンプリング周期に検出されたタイヤ空気圧とされる。 The microcomputer 22 receives alarm threshold information including an alarm threshold and an alarm change threshold through the antenna 23, and stores the alarm threshold information. Further, the microcomputer 22 receives a detection signal relating to the tire air pressure from the sensing unit 21 every predetermined sampling period, and detects the tire air pressure of the wheels 7a to 7d to which the transmitter 2 is attached by processing the signal. . A decrease in tire air pressure is detected based on the tire air pressure detected at each sampling period and alarm threshold information. Specifically, the tire air pressure is compared with an alarm threshold, and when the tire air pressure falls below the alarm threshold, it is determined that the tire air pressure decreases, or the tire air pressure change gradient is compared with the alarm change threshold. If it becomes above, it will determine with the rapid pressure reduction of a tire pressure. When a decrease in tire air pressure or sudden pressure reduction is detected, abnormal information indicating that the tire air pressure is abnormal is stored in the frame together with ID information of each transmitter 2a to 2d, and this is received by RF radio waves. Transmit to the machine 3 side. Further, the microcomputer 22 performs periodic transmission for transmitting data related to the tire pressure detected at each sampling cycle to the RF receiver 3 at a predetermined transmission cycle at normal times when no abnormality in the tire pressure is detected. . The transmission cycle of this regular transmission is set longer than the sampling cycle, and the tire pressure data transmitted is, for example, the tire pressure detected at the sampling cycle closest to the transmission cycle.
 このように構成される送信機2a~2dは、例えば、各車輪7a~7dのホイールにおけるエア注入バルブに取り付けられ、センシング部21がタイヤの内側に露出するように配置される。これにより、該当するタイヤ空気圧を検出し、上記したように、各送信機2a~2dに備えられたアンテナ23を通じて、所定の送信タイミングの際にフレームを送信することで、RF受信機3側にタイヤ空気圧に関するデータを送信するようになっている。 The transmitters 2a to 2d configured as described above are attached to, for example, air injection valves in the wheels of the wheels 7a to 7d, and are arranged so that the sensing unit 21 is exposed inside the tire. As a result, the corresponding tire pressure is detected, and as described above, the frame is transmitted at the predetermined transmission timing through the antenna 23 provided in each of the transmitters 2a to 2d, so that the RF receiver 3 side can be transmitted. Data related to tire pressure is transmitted.
 また、図2(b)に示すように、RF受信機3は、受信アンテナ31および受信回路32を備えた構成とされる。受信アンテナ31は、各送信機2a~2dから送られてくるフレームを受信するためのものである。受信アンテナ31は、車体8に固定されており、各車輪7a~7dそれぞれの送信機2a~2dから送信されたフレームを受信する。受信アンテナ31は、例えば車両1のピラーおよび天井(ルーフ内)に配置される。受信回路32は、受信アンテナ31によって受信された各送信機2a~2dからの送信フレームを入力し、そのフレームを制御装置4に送る入力部としての機能を果たす。 Further, as shown in FIG. 2 (b), the RF receiver 3 is configured to include a receiving antenna 31 and a receiving circuit 32. The receiving antenna 31 is for receiving frames sent from the transmitters 2a to 2d. The receiving antenna 31 is fixed to the vehicle body 8 and receives frames transmitted from the transmitters 2a to 2d of the wheels 7a to 7d. The receiving antenna 31 is disposed, for example, on the pillar and ceiling (in the roof) of the vehicle 1. The reception circuit 32 functions as an input unit that receives transmission frames from the transmitters 2 a to 2 d received by the reception antenna 31 and sends the frames to the control device 4.
 制御装置4は、第2制御部に相当するもので、CPU、ROM、RAM、I/Oなどを備えた周知のマイクロコンピュータ41によって構成され、ROMなどに記憶されたプログラムに従ってタイヤ空気圧検出処理を行う。具体的には、制御装置4は、フレームに格納された各送信機2a~2dのID情報およびタイヤ空気圧に関するデータに基づいて、各車輪7a~7dのタイヤ空気圧検出を行う。そして、受信したフレームがタイヤ空気圧に異常があることを示す異常情報が含まれていれば、警報情報を警報表示機6に伝える。制御装置4と警報表示機6は直接的に配線で接続されていても良いし、車内LAN等の通信回線を通じて接続されていても良い。 The control device 4 corresponds to a second control unit, and is constituted by a known microcomputer 41 having a CPU, ROM, RAM, I / O and the like, and performs tire air pressure detection processing according to a program stored in the ROM or the like. Do. Specifically, the control device 4 detects the tire air pressure of the wheels 7a to 7d based on the ID information of the transmitters 2a to 2d stored in the frame and the data related to the tire air pressure. If the received frame includes abnormality information indicating that the tire air pressure is abnormal, the alarm information is transmitted to the alarm indicator 6. The control device 4 and the alarm indicator 6 may be directly connected by wiring or may be connected through a communication line such as an in-vehicle LAN.
 また、制御装置4は、各送信機2a~2dでタイヤ空気圧の低下の判定に用いる警報閾値情報をCPU内に備えられたROM、RAMまたはEEPROM等のメモリ(記憶素子)内に格納(記憶)してある。制御装置4は、この警報閾値情報を読み出し、アンテナドライバ5を通じて各送信機2a~2dに伝える動作も行っている。警報閾値情報としては、上記したようなタイヤ空気圧と比較される警報閾値や、タイヤ空気圧の変化勾配と比較される警報変化閾値をメモリ内に格納してある。 Further, the control device 4 stores alarm threshold information used to determine a decrease in tire air pressure in each of the transmitters 2a to 2d in a memory (storage element) such as a ROM, RAM, or EEPROM provided in the CPU. It is. The control device 4 also performs an operation of reading out the alarm threshold information and transmitting it to the transmitters 2a to 2d through the antenna driver 5. As the alarm threshold value information, the alarm threshold value to be compared with the tire pressure as described above and the alarm change threshold value to be compared with the change gradient of the tire pressure are stored in the memory.
 なお、本実施形態では、制御装置4は、主に送信機2a~2dからの送信フレームに格納された異常情報に基づいてタイヤ空気圧の低下を検出するようにしている。しかしながら、定期送信されてきた送信フレームに格納されたタイヤ空気圧に関するデータに基づいて、制御装置4でもタイヤ空気圧の低下が検出されるようにしても良い。 In the present embodiment, the control device 4 detects a decrease in tire air pressure mainly based on abnormality information stored in transmission frames from the transmitters 2a to 2d. However, a decrease in tire air pressure may also be detected by the control device 4 on the basis of data relating to tire air pressure stored in a transmission frame that has been transmitted regularly.
 アンテナドライバ5は、アンテナ51(51a~51d)とドライバ回路52とを備えた構成とされている。アンテナ51a~51dは、各車輪7a~7dの近傍に設置され、各送信機2a~2dに対して警報閾値情報を例えばLF電波として送信する。ドライバ回路52は、各アンテナ51a~51dから各送信機2a~2dへの警報閾値情報を示すLF電波の送信を行う出力部としての機能を果たす。 The antenna driver 5 includes an antenna 51 (51a to 51d) and a driver circuit 52. The antennas 51a to 51d are installed in the vicinity of the wheels 7a to 7d, and transmit alarm threshold information to the transmitters 2a to 2d as, for example, LF radio waves. The driver circuit 52 functions as an output unit that transmits LF radio waves indicating alarm threshold information from the antennas 51a to 51d to the transmitters 2a to 2d.
 警報表示機6は、警報部として機能するものであり、図1に示されるように、ドライバが視認可能な場所に配置され、例えば車両1におけるインストルメントパネル内に設置される警報ランプ、ナビゲーションシステムのディスプレイやメータ内のマルチディスプレイ等によって構成される。この警報表示機6は、例えば制御装置4からタイヤ空気圧が低下した旨を示す信号が送られてくると、その旨の表示を行うことでドライバにタイヤ空気圧の低下を警報する。 The alarm indicator 6 functions as an alarm unit. As shown in FIG. 1, the alarm indicator 6 is arranged in a place where the driver can visually recognize, for example, an alarm lamp installed in an instrument panel in the vehicle 1, a navigation system And a multi-display in a meter. For example, when a signal indicating that the tire air pressure has decreased is sent from the control device 4, the alarm display device 6 displays a message to that effect to warn the driver that the tire air pressure has decreased.
 次に、上記のように構成されたタイヤ空気圧検出装置によるタイヤ空気圧検出処理について説明する。図3(a)、(b)は、車体8側に備えられた制御装置4のマイクロコンピュータ41が行う処理を示したフローチャートである。また、図4(a)、(b)は、各車輪7a~7dに備えられた送信機2a~2dのマイクロコンピュータ22が行う処理を示したフローチャートである。以下、これらの図を参照して、制御装置4と各送信機2a~2dで実行される処理について説明する。 Next, tire pressure detection processing by the tire pressure detection device configured as described above will be described. FIGS. 3A and 3B are flowcharts showing processing performed by the microcomputer 41 of the control device 4 provided on the vehicle body 8 side. 4 (a) and 4 (b) are flowcharts showing processing performed by the microcomputer 22 of the transmitters 2a to 2d provided in the wheels 7a to 7d. Hereinafter, processing executed by the control device 4 and the transmitters 2a to 2d will be described with reference to these drawings.
 まず、制御装置4は、図示しないイグニッションスイッチがオンされると、図3(a)に示す警報閾値情報送信処理を実行する。ステップ100では、マイクロコンピュータ41のメモリに格納された警報閾値情報を読み出す。警報閾値情報としては、検出されるタイヤ空気圧の絶対値と比較される警報閾値に関する情報と、タイヤ空気圧の単位時間当たりの変化と比較される警報変化閾値がある。警報閾値や警報変化閾値については、直接数値として設定されている値を用いても良いし、推奨圧から算出された値を用いても良い。なお、ここでは警報閾値情報として警報閾値と警報変化閾値を例に挙げたが、いずれか一方のみ、例えば警報閾値のみであっても構わない。 First, when an ignition switch (not shown) is turned on, the control device 4 executes alarm threshold information transmission processing shown in FIG. In step 100, the alarm threshold information stored in the memory of the microcomputer 41 is read. The alarm threshold information includes information related to an alarm threshold that is compared with the absolute value of the detected tire air pressure, and an alarm change threshold that is compared with a change per unit time of the tire air pressure. As for the alarm threshold and the alarm change threshold, a value set directly as a numerical value may be used, or a value calculated from a recommended pressure may be used. Here, the alarm threshold value and the alarm change threshold value are exemplified as the alarm threshold information, but only one of them, for example, only the alarm threshold value may be used.
 次に、ステップ110では、ステップ100で読み出した警報閾値情報の出力処理を行う。すなわち、アンテナドライバ5に対して警報閾値情報と共に閾値設定コマンドを格納したフレームを伝え、各アンテナ51a~51dより各送信機2a~2dにそのフレームを送信させる。これにより、各送信機2a~2dでそのフレームが受信されると、送信機2a~2dのマイクロコンピュータ22が閾値設定コマンドの指示に基づいて警報閾値情報に含まれる警報閾値や警報変化閾値のデータを読み出して記憶し、閾値データ設定完了を示す信号が出力される。このため、ステップ120では、その閾値データ設定完了を示す信号を受け取り、受け取ると送信機2a~2d側で正常設定されたことが確認されたとして、警報閾値情報送信処理を完了する。ここで閾値データ設定完了を示す信号を受け取らなかった場合には、再度、ステップ100、110の処理を繰り返し行ってリトライすることで、確実に各送信機2a~2dで警報閾値や警報変化閾値が設定されるようにすることができる。 Next, in step 110, the alarm threshold information read out in step 100 is output. That is, a frame in which a threshold setting command is stored together with alarm threshold information is transmitted to the antenna driver 5, and each of the transmitters 2a to 2d transmits the frame from each of the antennas 51a to 51d. Thus, when the frames are received by the transmitters 2a to 2d, the microcomputer 22 of the transmitters 2a to 2d receives alarm threshold value or alarm change threshold data included in the alarm threshold information based on the instruction of the threshold setting command. Is read out and stored, and a signal indicating completion of threshold data setting is output. For this reason, in step 120, a signal indicating completion of the threshold data setting is received, and when it is received, it is confirmed that the transmitter 2a to 2d is normally set, and the alarm threshold information transmission processing is completed. Here, when a signal indicating completion of threshold data setting is not received, the processing of steps 100 and 110 is repeated again and retries are performed, so that the alarm threshold and the alarm change threshold are surely set in each of the transmitters 2a to 2d. Can be set.
 なお、ここではステップ120で閾値データ設定完了を示す信号の受信を行うようにしたが、この処理はより確実に各送信機2a~2dで警報閾値や警報変化閾値が設定されるようにするためのものであり、必要に応じて行えば良い。また、リトライによってステップ100、110の処理を繰り返す場合には、一定回数のリトライを行っても有効な返信がなければ、電波が届き難い状況もしくは送信機2a~2dの不良などと考えられるため、タイムアウトを設けるようにするのが好ましい。リトライを行う場合、送信機2a~2dのうち閾値データ設定完了を示す信号を受信していないものに対してのみリトライを行うようにしても良い。 Here, the signal indicating the completion of the threshold data setting is received in step 120, but this processing is performed in order to more reliably set the alarm threshold value and the alarm change threshold value in each of the transmitters 2a to 2d. It can be done as needed. In addition, when the processing of steps 100 and 110 is repeated by retrying, if there is no valid reply even after a certain number of retries, it is considered that the radio wave is difficult to reach or the transmitters 2a to 2d are defective. It is preferable to provide a timeout. When performing the retry, the retry may be performed only for the transmitters 2a to 2d that have not received the signal indicating the completion of the threshold data setting.
 また、図3(a)に示す警報閾値情報送信処理とは別フローとして、図3(b)に示す異常情報受信処理を行っている。この処理は、図3(a)の警報閾値情報送信処理が終了してから行われるようにすればよいが、警報閾値情報送信処理と無関係に行っても構わない。 Further, the abnormality information reception process shown in FIG. 3B is performed as a flow different from the alarm threshold information transmission process shown in FIG. This process may be performed after the alarm threshold information transmission process in FIG. 3A is completed, but may be performed independently of the alarm threshold information transmission process.
 まず、ステップ200では異常情報受信の有無を判定する。異常情報とは、後述するように、送信機2a~2dで検出されたタイヤ空気圧が警報閾値以下になった場合、もしくは、タイヤ空気圧の変化勾配が警報変化閾値以上になった場合に、タイヤ空気圧に異常が発生したとして送信される情報である。本ステップでは、この異常情報を受け取ったか否かを判定している。ここで、異常情報を受信するまで待機し、異常情報を受信すると、ステップ210に進んで警報情報を警報表示機6に送信する。これにより、警報表示機6は、受信した警報情報に基づいて、タイヤ空気圧が低下した旨の表示を行うことにより、ドライバにタイヤ空気圧の低下を警報する。 First, in step 200, it is determined whether or not abnormality information has been received. As will be described later, the abnormality information is the tire pressure when the tire pressure detected by the transmitters 2a to 2d is less than or equal to the alarm threshold, or when the change gradient of the tire pressure is greater than or equal to the alarm change threshold. This information is transmitted when an abnormality occurs. In this step, it is determined whether or not this abnormality information has been received. Here, it waits until it receives abnormality information, and when abnormality information is received, it progresses to step 210 and transmits alarm information to the alarm indicator 6. Thereby, the warning indicator 6 warns the driver of a decrease in tire air pressure by displaying that the tire air pressure has decreased based on the received alarm information.
 一方、各送信機2a~2dでは、マイクロコンピュータ22が電池24からの電力供給に基づいて、所定の制御周期毎に図4(a)に示す警報閾値設定処理を行うと共に、所定のサンプリング周期毎に図4(b)に示すタイヤ空気圧監視処理を行っている。 On the other hand, in each of the transmitters 2a to 2d, the microcomputer 22 performs the alarm threshold value setting process shown in FIG. 4 (a) for each predetermined control period based on the power supply from the battery 24, and for each predetermined sampling period. The tire pressure monitoring process shown in FIG.
 図4(a)に示す警報閾値設定処理では、まず、ステップ300において閾値設定コマンドの受信の有無について判定する。上記したように、制御装置4側において、図3(a)のステップ110で警報閾値情報と共に閾値設定コマンドを格納したフレームが送信されると、そのフレームが各受信機2a~2dで受信される。各受信機2a~2dのマイクロコンピュータ22は、この閾値設定コマンドが格納されたフレームを受信すると、本ステップで閾値設定コマンドの受信有りと判定する。 In the alarm threshold setting process shown in FIG. 4A, first, in step 300, it is determined whether or not a threshold setting command has been received. As described above, when the frame storing the threshold setting command together with the alarm threshold information is transmitted at step 110 in FIG. 3A on the control device 4 side, the frame is received by each of the receivers 2a to 2d. . When the microcomputer 22 of each of the receivers 2a to 2d receives the frame in which the threshold setting command is stored, it determines that the threshold setting command has been received in this step.
 ここで閾値設定コマンドの受信が有るまで待機し、閾値設定コマンドの受信有りと判定されると、ステップ310に進んで受信したフレームに格納されている警報閾値情報を読み込む。そして、ステップ320で警報閾値情報をCPU内に備えられたROM、RAMまたはEEPROM等のメモリ等に記憶し、閾値データ設定完了を示す信号を送信したのち、処理を終了する。このとき、メモリ等への記憶として、EEPROM等の記憶素子に警報閾値情報を記憶する場合、書換え寿命を考慮して、毎回異なるメモリ領域に記憶するようにすると好ましい。 Here, it waits until the threshold setting command is received. If it is determined that the threshold setting command has been received, the process proceeds to step 310 to read the alarm threshold information stored in the received frame. In step 320, the alarm threshold value information is stored in a memory such as a ROM, RAM, or EEPROM provided in the CPU, a signal indicating completion of threshold data setting is transmitted, and the process ends. At this time, when alarm threshold value information is stored in a storage element such as an EEPROM as storage in a memory or the like, it is preferable to store it in a different memory area every time in consideration of the rewrite life.
 また、図4(b)に示すタイヤ空気圧監視処理では、警報閾値設定処理で記憶した警報閾値情報に基づいてタイヤ空気圧を監視し、タイヤ空気圧の低下を検出する。まず、ステップ400において、警報条件を満たしているか否かを判定する。具体的には、所定のサンプリング周期毎にセンシング部21に備えられた圧力センサ21aや温度センサ21bにて圧力や温度を検出し、その検出結果に基づいて各送信機2a~2dは、自分自身が取り付けられた車輪7a~7dのタイヤ空気圧を演算する。そして、このタイヤ空気圧が警報閾値以下になった場合、もしくはタイヤ空気圧の変化勾配、例えば今回のサンプリング周期と前回のサンプリング周期それぞれのタイヤ空気圧の差が警報変化閾値以上になった場合に、警報条件を満たしたとしている。 Further, in the tire pressure monitoring process shown in FIG. 4B, the tire pressure is monitored based on the alarm threshold information stored in the alarm threshold setting process, and a decrease in the tire pressure is detected. First, in step 400, it is determined whether an alarm condition is satisfied. Specifically, the pressure and temperature are detected by the pressure sensor 21a and the temperature sensor 21b provided in the sensing unit 21 for each predetermined sampling period, and each of the transmitters 2a to 2d is based on the detection result. The tire pressure of the wheels 7a to 7d to which is attached is calculated. When the tire pressure falls below the warning threshold, or when the tire pressure change gradient, for example, the difference between the tire pressures of the current sampling period and the previous sampling period becomes equal to or higher than the warning change threshold, It is said that
 ここで警報条件を満たすまで待機し、警報条件を満たすとステップ410に進んでタイヤ空気圧が低下したことを示す異常情報をRF電波にて送信する。この異常情報が受信機3で受信されると、それが制御装置4に伝えられることで、上記した図3(b)のステップ200で異常情報受信有りと判定され、警報表示機6による警報情報の表示が行われることになる。 Here, the system waits until the alarm condition is satisfied, and when the alarm condition is satisfied, the process proceeds to step 410 to transmit abnormal information indicating that the tire air pressure has decreased by RF radio waves. When this abnormality information is received by the receiver 3, it is transmitted to the control device 4, so that it is determined at step 200 in FIG. Will be displayed.
 このように、各送信機2a~2dは、自分自身が取り付けられた車輪7a~7dのタイヤ空気圧が低下していることを自分自身で検出し、タイヤ空気圧が低下している場合に、その旨を示す異常情報を車体8側の制御装置4に伝えるようにしている。このため、急減圧の場合に限らず緩減圧の場合にも、タイヤ空気圧が低下したときに、即座にそれを制御装置4に伝えることが可能となる。 Thus, the transmitters 2a to 2d themselves detect that the tire air pressure of the wheels 7a to 7d to which they are attached has decreased, and when the tire air pressure has decreased, this is indicated. Is transmitted to the control device 4 on the vehicle body 8 side. For this reason, not only in the case of sudden depressurization but also in the case of slow depressurization, when the tire air pressure decreases, it can be immediately transmitted to the control device 4.
 なお、図4(b)中には、定期送信のフローについて図示しないしていないが、定期送信も行っている。定期送信の周期は、サンプリング周期複数周期分以上に設定される。そして、所定のサンプリング周期毎に演算されたタイヤ空気圧に関する情報を定期送信の周期毎に、各送信機2a~2dから送信するようにしている。このとき、上記したように各送信機2a~2dが自分自身でタイヤ空気圧の低下を検出できることから、従来のように車体側の受信機でタイヤ空気圧の低下を判定している場合と比べて、定期送信の周期を長くすることができる。つまり、従来のように車体側の受信機でタイヤ空気圧の低下を判定する場合には、定期送信の周期を短くして短時間毎にタイヤ空気圧を監視しないと、タイヤ空気圧が急減圧した場合に対処できない。これに対して、本実施形態のように、送信機2a~2d側でタイヤ空気圧の低下を検出できるようにし、サンプリング周期を短くすることで、タイヤ空気圧の急減圧にも即座にタイヤ空気圧が低下したことを示す異常情報を送信することができ、かつ、基本的にはサンプリングを行っているだけでデータ送信は行っていないため消費電力も少なくできる。このため、タイヤ空気圧が緩減圧した場合にも、異常発生からより短時間に警報が行え、かつ、電池寿命の低下を抑制することが可能となる。 In FIG. 4B, the periodic transmission flow is not shown, but periodic transmission is also performed. The periodic transmission cycle is set to be equal to or more than a plurality of sampling cycles. Information on the tire air pressure calculated every predetermined sampling period is transmitted from each of the transmitters 2a to 2d for each periodical transmission period. At this time, as described above, each transmitter 2a to 2d can detect a decrease in tire air pressure by itself, so that compared with a case where a decrease in tire air pressure is determined by a receiver on the vehicle body as in the past, The period of periodic transmission can be increased. In other words, when determining the decrease in tire pressure with the receiver on the vehicle body as in the past, if the tire pressure is suddenly reduced unless the periodic transmission cycle is shortened and the tire pressure is monitored every short time I can't deal with it. On the other hand, as in this embodiment, it is possible to detect a decrease in tire air pressure on the transmitters 2a to 2d side, and by shortening the sampling cycle, the tire air pressure immediately decreases even when the tire air pressure is suddenly reduced. It is possible to transmit the abnormal information indicating that it has been performed, and it is possible to reduce power consumption because data transmission is basically performed only by sampling. For this reason, even when the tire pressure is slowly reduced, an alarm can be issued in a shorter time from the occurrence of an abnormality, and a reduction in battery life can be suppressed.
 図5(a)は、比較例としてのタイヤ空気圧の緩減圧時の異常判定を示したタイミングチャートであり、図5(b)は本実施形態の異常判定を示したタイミングチャートである。図5(a)に示す比較例では、車体側の制御装置で異常判定が行われるものであって、定期送信の周期毎にしかタイヤ空気圧に関する情報が車体側の受信機に伝えられないため、定期送信の周期の途中で圧力異常が発生しても、次の定期送信の周期が来るまで異常が伝えられない。これに対して、本実施形態のように、各送信機2a~2dでタイヤ空気圧を監視し、異常発生時に制御装置4にそれを伝える形態とすれば、サンプリング周期も短くできるし、圧力異常発生時に即座にそれを制御装置4に伝えることが可能となる。 FIG. 5 (a) is a timing chart showing an abnormality determination when the tire pressure is slowly reduced as a comparative example, and FIG. 5 (b) is a timing chart showing the abnormality determination of the present embodiment. In the comparative example shown in FIG. 5 (a), the abnormality determination is performed by the vehicle-side control device, and information on the tire pressure can be transmitted to the vehicle-side receiver only for each periodic transmission cycle. Even if a pressure abnormality occurs in the middle of a periodic transmission cycle, the abnormality is not transmitted until the next periodic transmission cycle comes. On the other hand, when the tire pressure is monitored by each transmitter 2a to 2d and is transmitted to the control device 4 when an abnormality occurs as in this embodiment, the sampling cycle can be shortened, and a pressure abnormality occurs. Sometimes it can be immediately communicated to the control device 4.
 以上説明したように、本実施形態のタイヤ空気圧検出装置では、各送信機2a~2dでタイヤ空気圧を監視し、タイヤ空気圧が低下したときに異常情報を車体8側の制御装置4に伝えるようにしている。そして、各送信機2a~2dでは定期送信周期よりも短いサンプリング周期でタイヤ空気圧を監視するようにしているため、比較例より短い周期でタイヤ空気圧の監視を行うことができる。また、短いサンプリング周期でタイヤ空気圧を監視しているため、タイヤ空気圧が低下したときには急減圧でも緩減圧でも早急に制御装置4に伝え、警報表示機6を介してドライバに伝えることができる。したがって、タイヤ空気圧が緩減圧した場合にも、異常発生からより短時間に警報を行うことが可能となる。 As described above, in the tire pressure detecting device of the present embodiment, the tire pressure is monitored by each of the transmitters 2a to 2d, and abnormality information is transmitted to the control device 4 on the vehicle body 8 side when the tire pressure decreases. ing. Since each of the transmitters 2a to 2d monitors the tire pressure at a sampling cycle shorter than the regular transmission cycle, the tire pressure can be monitored at a cycle shorter than that of the comparative example. Further, since the tire pressure is monitored at a short sampling period, when the tire pressure decreases, it is possible to promptly notify the controller 4 whether the pressure is reduced or suddenly, and to the driver via the alarm display device 6. Therefore, even when the tire pressure is gradually reduced, it is possible to issue a warning in a shorter time from the occurrence of an abnormality.
 また、送信機2a~2dでタイヤ空気圧を監視できるため、車体8側の制御装置4で細かくタイヤ空気圧を監視する必要が無くなる。このため、定期送信の周期を長くすることができ、定期送信のための消費電力を低減することが可能となり、電池寿命の低下を抑制することも可能となる。 Further, since the tire pressure can be monitored by the transmitters 2a to 2d, it is not necessary to monitor the tire pressure finely by the control device 4 on the vehicle body 8 side. For this reason, the period of periodic transmission can be lengthened, power consumption for periodic transmission can be reduced, and a decrease in battery life can also be suppressed.
 (第2実施形態)
 本開示の第2実施形態について説明する。本実施形態のタイヤ空気圧検出装置は、第1実施形態に対して、各送信機2a~2dへの警報閾値情報の確認要求が行えるようにしたものであり、その他に関しては第1実施形態と同様であるため、第1実施形態と異なる部分について主に説明する。
(Second Embodiment)
A second embodiment of the present disclosure will be described. The tire air pressure detection device according to the present embodiment is configured to be able to make a request for confirmation of alarm threshold information to the transmitters 2a to 2d with respect to the first embodiment, and is otherwise the same as the first embodiment. Therefore, the difference from the first embodiment will be mainly described.
 上記第1実施形態では、閾値データ設定完了を示す信号を出力することで警報閾値情報に含まれる警報閾値や警報変化閾値のデータを記憶したことを示したが、本実施形態では、記憶したデータが正しい正規データであるか否かを判別できるようにしている。 In the first embodiment, it is shown that the alarm threshold value and the alarm change threshold data included in the alarm threshold information are stored by outputting a signal indicating the completion of the threshold data setting, but in the present embodiment, the stored data It is possible to determine whether or not is correct regular data.
 具体的には、制御装置4は、各送信機2a~2dに対して記憶したデータが正しい正規データであるか否かを判別させたいときに、閾値確認要求をアンテナドライバ5に出力する。例えば、図示しないイグニッションスイッチをオンしたタイミングや、前回閾値確認要求を出してから所定周期経過したときなどに、閾値確認要求を出す。これに基づき、アンテナドライバ5のドライバ回路52は、閾値確認要求や閾値確認データを含むLF電波を各アンテナ51a~51dから出力させ、それを各送信機2a~2dに受信させる。そして、各送信機2a~2dは、閾値確認要求を含むLF電波を受信すると、図6に示したフローチャートを実行する。 Specifically, the control device 4 outputs a threshold value confirmation request to the antenna driver 5 when it is desired to determine whether or not the data stored in each of the transmitters 2a to 2d is correct regular data. For example, a threshold value confirmation request is issued when an ignition switch (not shown) is turned on, or when a predetermined period has elapsed since the previous threshold value confirmation request was issued. Based on this, the driver circuit 52 of the antenna driver 5 causes the antennas 51a to 51d to output LF radio waves including a threshold value confirmation request and threshold value confirmation data, and causes each of the transmitters 2a to 2d to receive it. Then, each of the transmitters 2a to 2d receives the LF radio wave including the threshold value confirmation request, and executes the flowchart shown in FIG.
 すなわち、各送信機2a~2dは図6に示す閾値確認処理を所定の制御周期毎に実行している。そして、ステップ500に示される要求トリガ受信判定において、要求トリガに相当するLF電波を受信するまで待機しており、ステップ500で受信したと判定されると、そのLF電波(要求トリガ)の受信強度を測定すると共にステップ510以降の処理を実行する。 That is, each of the transmitters 2a to 2d executes the threshold value confirmation process shown in FIG. 6 for each predetermined control cycle. Then, in the request trigger reception determination shown in step 500, the process waits until receiving the LF radio wave corresponding to the request trigger. If it is determined in step 500 that the reception is received, the reception intensity of the LF radio wave (request trigger) is determined. , And the processing after step 510 is executed.
 ステップ510では、格納された警報閾値情報読み出し処理を行う。この処理では、マイクロコンピュータ22のCPU内に備えられたROM、RAMまたはEEPROM等のメモリ(記憶素子)に格納された警報閾値に関するデータの読み出しを行う。警報閾値に関するデータとは、アンテナドライバ5を通じて車体側から送られて記憶した現在の警報閾値情報を意味しているが、予めミラーデータとして記憶してある警報閾値情報(以下、単にミラーデータという)がある場合には、そのミラーデータも含まれる。 In step 510, stored alarm threshold value information reading processing is performed. In this process, data relating to an alarm threshold value stored in a memory (storage element) such as a ROM, a RAM, or an EEPROM provided in the CPU of the microcomputer 22 is read out. The data relating to the alarm threshold means the current alarm threshold information sent from the vehicle body side through the antenna driver 5 and stored therein, but alarm threshold information stored in advance as mirror data (hereinafter simply referred to as mirror data). If there is, the mirror data is also included.
 続いて、ステップ520に進み、ステップ510で読み出した警報閾値に関するデータが正規データであるか否かを判定する。例えば、受信したLF電波内に含まれる閾値確認データとステップ510で読み出した警報閾値情報とを照合し、これらが一致しているか否かを判定する。また、ステップ510で読み出した警報閾値情報とミラーデータとを照合し、これらが一致しているか否かを判定するようにしても良い。 Subsequently, the process proceeds to step 520, and it is determined whether or not the data regarding the alarm threshold value read in step 510 is regular data. For example, the threshold value confirmation data included in the received LF radio wave is collated with the alarm threshold value information read in step 510, and it is determined whether or not they match. Also, the alarm threshold information read in step 510 may be collated with the mirror data to determine whether or not they match.
 なお、ステップ520において、各送信機2で記憶された警報閾値情報が消失している場合には、正規データではないと判別する。 In step 520, when the alarm threshold information stored in each transmitter 2 is lost, it is determined that the data is not regular data.
 このステップ520で肯定判定されればステップ530に進んで正常時送信データをタイヤ空気圧に関するデータと同じフレームもしくは別のフレームにセット(格納)する。同様に、ステップ520で否定判定されればステップ540に進んで異常時送信データをタイヤ空気圧に関するデータと同じフレームもしくは別のフレームにセット(格納)する。例えば、送信フレーム中に正常か異常かを示すべく割り当てられた1ビットまた数ビットを用いて、正常時送信データもしくは異常時送信データをセットする。 If an affirmative determination is made in step 520, the routine proceeds to step 530, where normal transmission data is set (stored) in the same frame as the data related to tire pressure or in another frame. Similarly, if a negative determination is made in step 520, the process proceeds to step 540, and the abnormal time transmission data is set (stored) in the same frame as the data related to the tire pressure or in another frame. For example, normal transmission data or abnormal transmission data is set using one bit or several bits allocated to indicate whether the transmission frame is normal or abnormal.
 そして、ステップ550に進み、各送信機2a~2dの送信タイミングが一致することによる混信を避けるために、LF電波の受信強度に応じた遅延を持たせて、正常時送信データもしくは異常時送信データをセットしたフレームをRF送信する。これにより、RF受信機3にて、正常時送信データもしくは異常時送信データをセットしたフレームが受信され、制御装置4にて、各送信機2a~2dが記憶した警報閾値情報が正規データであるか否かを判別することが可能となる。 Then, the process proceeds to step 550, and in order to avoid interference due to the coincidence of the transmission timings of the transmitters 2a to 2d, normal transmission data or abnormal transmission data is provided with a delay according to the reception intensity of the LF radio wave. RF transmission is performed for the frame in which is set. Thereby, the RF receiver 3 receives a frame in which normal transmission data or abnormal transmission data is set, and the alarm threshold information stored in each of the transmitters 2a to 2d is regular data in the control device 4. It is possible to determine whether or not.
 このように、各送信機2にて記憶された警報閾値情報が正規データであるか否かを判別することが可能となる。そして、正規データが記憶されていなければ、制御装置4より送信機2a~2dのうち少なくとも正規データが記憶されていないものに対して、再び警報閾値情報を記憶させる処理を実行する(図4(a)参照)。これにより、異常時に警報閾値情報を再設定することが可能となり、正規データに基づいて、正しくタイヤ空気圧の低下を検出することが可能となる。また、異常時には、その状態を警報表示機6などを通じてドライバに伝えることもできる。 Thus, it is possible to determine whether or not the alarm threshold information stored in each transmitter 2 is regular data. If the regular data is not stored, the control device 4 executes a process of storing alarm threshold information again for at least the transmitters 2a to 2d for which the regular data is not stored (FIG. 4 ( a)). As a result, it is possible to reset the alarm threshold information at the time of abnormality, and it is possible to correctly detect a decrease in tire air pressure based on the regular data. In the case of an abnormality, the state can also be transmitted to the driver through the alarm indicator 6 or the like.
 なお、上記では、LF電波内の閾値確認データとステップ510で読み出した警報閾値情報とを照合した。これに代えて、もしくは、これに加えて、読み出した警報閾値情報からエラーコレクションコード(ECC)やフレームチェックコード(FCC)のキャラクタを抽出して照合したり、パリティーチェックを行うようにして正規データであるか否かを判定しても良い。また、ミラーデータを有している場合には、そのミラーデータを用いて現在の警報閾値情報を自己修復するようにしても良い。その場合、異常時送信データをセットするときに、同時に自己修復を行ったことを示すデータもセットするようにすることができる。 In the above, the threshold confirmation data in the LF radio wave is collated with the alarm threshold information read in step 510. Instead of this, or in addition to this, legitimate data is obtained by extracting and collating an error correction code (ECC) or frame check code (FCC) character from the read alarm threshold information and performing a parity check. It may be determined whether or not. If mirror data is included, the current alarm threshold information may be self-repaired using the mirror data. In that case, when the transmission data at the time of abnormality is set, data indicating that self-repair is performed can be set at the same time.
 また、上記ステップ550で異常時送信データをセットしたフレームをRF送信した後に、そのフレームを送信した送信機2a~2dに対して再設定のための警報閾値情報が送られてこないこともあり得る。その場合には、再設定のための警報閾値情報が送られてくるまで、異常時送信データをセットしたフレームのRF送信を繰り返し行うようにしても良い。 Further, after RF transmission is performed on the frame in which the abnormal transmission data is set in step 550, alarm threshold information for resetting may not be sent to the transmitters 2a to 2d that transmitted the frame. . In that case, the RF transmission of the frame in which the abnormal-time transmission data is set may be repeated until alarm threshold information for resetting is sent.
 また、RF送信を行うフレームのビット数に余裕がある場合には、正常時送信データもしくは異常時送信データに加えて、現在設定されている警報閾値情報についてもフレーム中にセットしても良い。その場合、現在設定されている警報閾値情報について、制御装置4側で正常であるか異常であるかを判定することもできる。例えば、警報閾値情報からECCやFCCのキャラクタを抽出して照合したり、パリティーチェックを行うようにして正規データであるか否かを判定したり、ミラーデータを備え、ミラーデータと照合して正規データであるか否かを判定したりすることができる。 In addition, when there is a margin in the number of bits of the frame for RF transmission, the currently set alarm threshold information may be set in the frame in addition to normal transmission data or abnormal transmission data. In that case, it is possible to determine whether the currently set alarm threshold information is normal or abnormal on the control device 4 side. For example, ECC and FCC characters are extracted from the alarm threshold information and collated, parity check is performed to determine whether the data is legitimate data, mirror data is provided, collated with mirror data, and collated It can be determined whether or not the data.
 (第3実施形態)
 本開示の第3実施形態について説明する。本実施形態も、各送信機2a~2dに警報閾値情報の確認を行わせるようにしたものであり、その他に関しては第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
(Third embodiment)
A third embodiment of the present disclosure will be described. In this embodiment, the transmitters 2a to 2d are made to check alarm threshold value information, and the others are the same as those in the first embodiment, so only the parts different from the first embodiment will be described. To do.
 本実施形態では、タイヤ空気圧に関するデータの定期送信のタイミングに第2実施形態と同様の警報閾値情報のチェックを行う。このタイミング以外については、第2実施形態と同様である。 In this embodiment, alarm threshold information similar to that in the second embodiment is checked at the timing of periodic transmission of data related to tire pressure. Other than this timing, it is the same as in the second embodiment.
 各送信機2a~2dは、所定の制御周期毎に図7に示したフローチャートを実行しており、ステップ600に示される空気圧送信タイミング判定において、タイヤ空気圧に関するデータの定期送信のタイミングであると判定されると、ステップ610以降の処理を実行する。 Each of the transmitters 2a to 2d executes the flowchart shown in FIG. 7 for each predetermined control cycle, and in the air pressure transmission timing determination shown in step 600, it is determined that it is the timing of periodic transmission of data related to tire air pressure. Then, the processing after step 610 is executed.
 具体的には、ステップ610~640では、第2実施形態で説明した図6のステップ510~540と同様の処理を実行する。ただし、ステップ620では、閾値確認データを受信していないため、例えばステップ610で読み出した警報閾値情報とミラーデータとを照合し、これらが一致しているか否かを判定している。また、正常時送信データもしくは異常時送信データをセットするフレームについては、タイヤ空気圧に関するデータを格納するフレームと別フレームであっても良いが、定期送信のタイミングであることから、これらのフレームを同じフレームにすると好ましい。このようにすれば、この後行われるフレーム送信を1つにまとめることができ、消費電力低減に伴う電池寿命の向上を図ることができる。 Specifically, in steps 610 to 640, processing similar to that in steps 510 to 540 of FIG. 6 described in the second embodiment is executed. However, in step 620, since threshold confirmation data has not been received, for example, the alarm threshold information read in step 610 is compared with mirror data to determine whether or not they match. Also, the frame for setting normal transmission data or abnormal transmission data may be a separate frame from the frame for storing data related to tire air pressure. A frame is preferable. In this way, frame transmissions performed thereafter can be combined into one, and the battery life can be improved along with the reduction in power consumption.
 この後、ステップ650に進み、正常時送信データもしくは異常時送信データをセットしたフレームをRF送信する。これにより、RF受信機3にて、正常時送信データもしくは異常時送信データをセットしたフレームが受信され、制御装置4に、各送信機2a~2dが記憶した警報閾値情報が正規データであるか否かを判別することが可能となる。 Thereafter, the process proceeds to step 650, and a frame in which normal transmission data or abnormal transmission data is set is RF-transmitted. Thereby, the RF receiver 3 receives a frame in which normal transmission data or abnormal transmission data is set, and the alarm threshold information stored in each of the transmitters 2a to 2d is regular data in the control device 4. It becomes possible to determine whether or not.
 このように、タイヤ空気圧に関するデータの定期送信のタイミングのときに、各送信機2a~2dに警報閾値情報の確認を行わせるようにしても良い。これにより、第2実施形態と同様の効果を得ることができる。そして、定期送信と共に警報閾値情報が正規データであるか否かの判定結果を送ることで、その判定結果を送るためのみのRF送信が必要なくなるため、消費電力低減が図れ、電気寿命の向上を図ることができる。 As described above, the alarm threshold information may be confirmed by each of the transmitters 2a to 2d at the timing of periodic transmission of data related to tire pressure. Thereby, the effect similar to 2nd Embodiment can be acquired. And by sending the determination result of whether or not the alarm threshold information is regular data together with the periodic transmission, it is not necessary to perform RF transmission only for sending the determination result, so that the power consumption can be reduced and the electrical life can be improved. Can be planned.
 (第4実施形態)
 本開示の第4実施形態について説明する。本実施形態も、各送信機2a~2dに警報閾値情報の確認を行わせるようにしたものであり、その他に関しては第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
(Fourth embodiment)
A fourth embodiment of the present disclosure will be described. In this embodiment, the transmitters 2a to 2d are configured to check alarm threshold value information. The other aspects are the same as those in the first embodiment, and therefore only the parts different from the first embodiment will be described. To do.
 本実施形態では、タイヤ空気圧に関するデータの定期送信のタイミングにかかわらず、所定の制御周期毎に第3実施形態と同様の警報閾値情報のチェックを行う。このタイミング以外については、ほぼ第2実施形態と同様であるため、第3実施形態と異なる部分についてのみ説明する。 In this embodiment, alarm threshold information similar to that in the third embodiment is checked every predetermined control period regardless of the timing of periodic transmission of data related to tire pressure. Other than this timing, the second embodiment is almost the same as the second embodiment, and only the parts different from the third embodiment will be described.
 各送信機2a~2dは、所定の制御周期毎に図8に示したフローチャートを実行しており、所定の制御周期毎にステップ700~730の処理を実行する。ステップ700、710では、第3実施形態で説明した図6のステップ610、620と同様の処理を実行する。そして、ステップ710で否定判定されたときにはステップ720に進んでステップ640と同様の処理を実行するが、肯定判定されたときにはそのまま処理を終了する。現在の警報閾値情報が正規データであった場合に正常時送信データをセットしたフレームを送信しても良いが、正常であれば何も応答しなくても良いことから、そのまま処理を終了しても良い。このようにすれば、消費電力低減による電池寿命向上を図ることができる。 The transmitters 2a to 2d execute the flowchart shown in FIG. 8 for each predetermined control cycle, and execute the processes of steps 700 to 730 for each predetermined control cycle. In steps 700 and 710, processing similar to that in steps 610 and 620 of FIG. 6 described in the third embodiment is executed. When a negative determination is made at step 710, the process proceeds to step 720 and the same process as at step 640 is executed. When an affirmative determination is made, the process is terminated as it is. If the current alarm threshold information is regular data, you may send a frame with the normal transmission data set, but if it is normal, you do not need to respond to anything. Also good. In this way, battery life can be improved by reducing power consumption.
 また、ステップ720で異常時送信データをタイヤ空気圧に関するデータと同じフレームもしくは別のフレームにセット(格納)する。そして、ステップ730に進んで異常時送信データをセットしたフレームをRF送信すると共に閾値データ再送要求を送信する。このときの閾値データ再送要求については、そのコマンドを異常時送信データをセットしたフレーム内に格納しておけば、1度のフレーム送信で異常時送信データと閾値データ再送要求のデータの両方の送信が行える。 In step 720, the transmission data at the time of abnormality is set (stored) in the same frame as the data related to the tire pressure or in another frame. Then, the process proceeds to step 730, where the frame in which the abnormal time transmission data is set is RF-transmitted and a threshold data retransmission request is transmitted. For the threshold data retransmission request at this time, if the command is stored in the frame in which the abnormal transmission data is set, both the abnormal transmission data and the threshold data retransmission request data are transmitted in one frame transmission. Can be done.
 このように、所定の制御周期毎に各送信機2a~2dに警報閾値情報のチェックを行わせるようにしても、第3実施形態と同様の効果を得ることができる。なお、本実施形態では、異常時送信データをセットしたフレームをRF送信すると共に閾値データ再送要求を送信するようにした。しかしながら、第2、第3実施形態と同様、異常時送信データに基づいて正規データが記憶されていないことを認識し、制御装置4より送信機2a~2dのうち少なくとも正規データが記憶されていないものに対して、再び警報閾値情報を記憶させる処理を実行するようにしても良い。勿論、第2、第3実施形態に対しても、本実施形態のように、送信機2a~2dから正規データが記憶されていなかったときに閾値データ再送要求が出されるようにしても良い。 As described above, the same effect as that of the third embodiment can be obtained even if the transmitters 2a to 2d are checked for the alarm threshold information every predetermined control period. In the present embodiment, the frame in which the abnormal transmission data is set is RF-transmitted and a threshold data retransmission request is transmitted. However, as in the second and third embodiments, it is recognized that the regular data is not stored based on the abnormal transmission data, and at least the regular data is not stored in the transmitters 2a to 2d from the control device 4. A process for storing the alarm threshold information again may be executed on the object. Of course, for the second and third embodiments, as in the present embodiment, a threshold data retransmission request may be issued when no regular data is stored from the transmitters 2a to 2d.
 (第5実施形態)
 本開示の第5実施形態について説明する。本実施形態では、警報閾値情報が正規データであるか否かの判定を送信機2a~2dで行うのではなく、送信機2a~2dから記憶している現在の警報閾値情報を制御装置4側に送信し、制御装置4側で判定させるようにする。
(Fifth embodiment)
A fifth embodiment of the present disclosure will be described. In the present embodiment, the determination as to whether or not the alarm threshold information is regular data is not performed by the transmitters 2a to 2d, but the current alarm threshold information stored from the transmitters 2a to 2d is used as the control device 4 side. So that the control device 4 can make a determination.
 本実施形態では、警報閾値情報が正規データであるか否かの判定を実行する警報閾値情報確認のタイミングになると、制御装置4に閾値確認要求処理を実行させる。例えば、所定周期毎もしくは各送信機2a~2dに対して警報閾値情報を送信してから所定時間経過後などのタイミングに閾値確認要求処理を実行させる。具体的には、そのタイミングに、各送信機2a~2dに対して警報閾値情報確認を行わせるために、アンテナドライバ5のドライバ回路52を通じて各アンテナ51a~51dより読み出しコマンドを示すLF電波を出力する。 In the present embodiment, the control device 4 is caused to execute a threshold value confirmation request process when it is time to confirm the alarm threshold value information for determining whether or not the alarm threshold value information is regular data. For example, the threshold value confirmation request process is executed at a predetermined cycle or at a timing such as after a predetermined time has elapsed since the alarm threshold value information was transmitted to each of the transmitters 2a to 2d. Specifically, in order to cause each transmitter 2a to 2d to check alarm threshold information at that timing, LF radio waves indicating read commands are output from the antennas 51a to 51d through the driver circuit 52 of the antenna driver 5. To do.
 各送信機2a~2dは、所定の制御周期毎に図9に示したフローチャートを実行しており、ステップ800に示される読み出しコマンド受信判定において、読み出しコマンドを受信したと判定されると、ステップ810以降の処理を実行する。 Each of the transmitters 2a to 2d executes the flowchart shown in FIG. 9 for each predetermined control cycle. When it is determined in the read command reception determination shown in step 800 that the read command is received, step 810 is performed. The subsequent processing is executed.
 ステップ810では、各送信機2a~2dは、第2実施形態で説明した図6のステップ510と同様、格納された警報閾値情報読み出し処理を行う。また、必要に応じて警報閾値情報を符号化(例えば、データ長短縮や冗長性付加)したり、読み出した警報閾値情報からECCやFCCのキャラクタもしくはパリティーチェック用のデータを抽出したりする。勿論、符号化などを行わずに警報閾値情報の生値をそのまま用いても良い。つまり、生値の警報閾値情報と符号化などを行った警報閾値情報とにかかわらず、警報閾値情報に関するデータであれば構わない。 In step 810, each of the transmitters 2a to 2d performs a stored alarm threshold value information reading process, similarly to step 510 of FIG. 6 described in the second embodiment. Further, the alarm threshold information is encoded (for example, data length reduction or redundancy is added) as necessary, or ECC or FCC character or parity check data is extracted from the read alarm threshold information. Of course, the raw value of the alarm threshold information may be used as it is without encoding. That is, any data regarding alarm threshold information may be used regardless of the alarm threshold information of the raw value and the alarm threshold information that has been encoded.
 そして、ステップ820に進み、警報閾値情報の生値もしくは符号化などを行った生成データを送信機固有のID情報などと共にRF送信データへ配列することで送信フレームを作成する。 Then, the process proceeds to step 820, and a transmission frame is created by arranging the generated data obtained by performing the raw value or encoding of the alarm threshold information on the RF transmission data together with the ID information unique to the transmitter.
 その後、ステップ830に進んでRF送信タイミングでデータ送信を行う。例えば、各送信機2a~2dの送信タイミングが一致することによる混信を避けるために、LF電波の受信強度に応じた遅延を持たせて、RF送信データをセットしたフレームをRF送信する。 Thereafter, the process proceeds to step 830 to perform data transmission at the RF transmission timing. For example, in order to avoid interference due to coincidence of transmission timings of the transmitters 2a to 2d, a frame in which RF transmission data is set is RF-transmitted with a delay corresponding to the reception intensity of the LF radio wave.
 例えば、図1に示したように、アンテナ51が各車輪7a~7dに対応した数備えられている場合には、図10に示すタイミングチャートのような動作を行う。すなわち、各アンテナ51a~51dより順番に閾値確認要求を示すLF電波を出力すると、各送信機2a~2dのうち各アンテナ51a~51dと対応する車輪7a~7dに取り付けられたものからその都度警報閾値情報が返信される。このとき、各アンテナ51a~51dから順番に閾値確認要求が出され、閾値確認要求のLF電波を受信すると各送信機2a~2dより警報閾値情報を返信するようにすれば、各送信機2a~2dから異なるタイミングで警報閾値情報の返信が行われることになる。したがって、各送信機2a~2dの送信タイミングが一致することによる混信が発生することはない。 For example, as shown in FIG. 1, when the number of antennas 51 corresponding to each of the wheels 7a to 7d is provided, the operation shown in the timing chart of FIG. 10 is performed. That is, when an LF radio wave indicating a threshold value confirmation request is output in turn from each antenna 51a to 51d, an alarm is given each time from the transmitter 2a to 2d attached to the wheels 7a to 7d corresponding to each antenna 51a to 51d. Threshold information is returned. At this time, a threshold value confirmation request is issued in order from each antenna 51a to 51d, and when the threshold value confirmation request LF radio wave is received, alarm threshold value information is returned from each transmitter 2a to 2d. The alarm threshold information is returned at a different timing from 2d. Therefore, interference due to the coincidence of transmission timings of the transmitters 2a to 2d does not occur.
 なお、警報閾値情報の返信があったときに、次のアンテナ51からのLF電波の送信を行うようにすればよいが、有効な返信が無いことも有り得る。その場合には、再度LF電波を送信してリトライすることもできる。その場合でも、一定回数のリトライを行っても有効な返信がなければ、電波が届き難い状況もしくは送信機2a~2dの不良などと考えられるため、タイムアウトを設けるようにするのが好ましい。 It should be noted that when the alarm threshold information is replied, it is only necessary to transmit the LF radio wave from the next antenna 51, but there may be no effective reply. In that case, it is possible to retry by transmitting the LF radio wave again. Even in such a case, if a valid reply is not received after a certain number of retries, it is considered that the radio wave is difficult to reach or the transmitters 2a to 2d are defective. Therefore, it is preferable to provide a timeout.
 このようにして生値もしくは符号化等を行った警報閾値情報が格納されたフレームが送信されると、それがRF受信機3で受信される。そして、制御装置4に送られることで、各送信機2a~2dが記憶した警報閾値情報が正規データであるか否かを判別することが可能となる。このように、各送信機2から警報閾値情報を送信させ、制御装置4側で警報閾値情報が正規データであるか否かを判別することも可能となる。 When a frame in which alarm threshold information subjected to raw values or encoding is stored in this way is transmitted, it is received by the RF receiver 3. Then, by being sent to the control device 4, it is possible to determine whether or not the alarm threshold information stored in each of the transmitters 2a to 2d is regular data. In this way, it is possible to transmit alarm threshold information from each transmitter 2 and determine whether or not the alarm threshold information is regular data on the control device 4 side.
 (他の実施形態)
 (1)上記実施形態では、各車輪7a~7dに対応して4つのアンテナ51a~51dを備え、各アンテナ51a~51dより各車輪7a~7dに取り付けられた送信機2a~2dに個々に警報閾値情報を格納したフレームが送信されるようにしている。しかしながら、これは単なる一例を示したに過ぎず、例えば、両前輪7a、7bの送信機2a、2bに対応したアンテナと両後輪7c、7dの送信機2c、2dに対応したアンテナの2つを備えるようにしても良いし、全車輪7a~7dの各送信機2a~2dすべてにフレーム送信が行える1つのアンテナとしても構わない。
(Other embodiments)
(1) In the above embodiment, four antennas 51a to 51d are provided corresponding to the wheels 7a to 7d, and alarms are individually given to the transmitters 2a to 2d attached to the wheels 7a to 7d from the antennas 51a to 51d. A frame storing threshold information is transmitted. However, this is merely an example. For example, there are two antennas corresponding to the transmitters 2a and 2b of both front wheels 7a and 7b and the antennas corresponding to the transmitters 2c and 2d of both rear wheels 7c and 7d. It is also possible to provide a single antenna that can transmit frames to all the transmitters 2a to 2d of all the wheels 7a to 7d.
 アンテナを2つとする場合、例えば一方のアンテナを車両フロント寄りに配置しつつ両前輪7a、7bから異なる距離に配置し、他方のアンテナ51を車両リア寄りに配置しつつ両後輪7c、7dから異なる距離に配置する形態とする。この場合、一方のアンテナ51にて両前輪7a、7bの送信機2a、2bに対してLF電波を出力し、他方のアンテナ51にて両後輪7c、7dの送信機2c、2dに対してLF電波を出力すれば良い。 When two antennas are used, for example, one antenna is arranged near the front of the vehicle while being arranged at different distances from the front wheels 7a and 7b, and the other antenna 51 is arranged near the vehicle rear and from both the rear wheels 7c and 7d. It is set to be arranged at different distances. In this case, one antenna 51 outputs LF radio waves to the transmitters 2a and 2b of both front wheels 7a and 7b, and the other antenna 51 outputs to the transmitters 2c and 2d of both rear wheels 7c and 7d. What is necessary is just to output LF radio waves.
 このような形態とされる場合でも、上記各実施形態と同様の動作を行うことができる。例えば、第5実施形態のように閾値確認要求を行う場合には、図11に示すタイミングチャートのような動作を行う。 Even in such a form, the same operation as in each of the above embodiments can be performed. For example, when a threshold value confirmation request is made as in the fifth embodiment, an operation like the timing chart shown in FIG. 11 is performed.
 すなわち、両前輪7a、7bの送信機2a、2bに対して閾値確認要求を示すLF電波を出力すると、アンテナ51から両前輪7a、7bまでの距離が異なることから、送信機2a、2bでのLF電波の受信強度が異なった値になる。このため、受信強度に応じた遅延を持たせてRF送信が行われるようにすることで、各送信機2a、2bから順番に異なるタイミングで警報閾値情報を返信させることができる。同様に、その後、両後輪7c、7dの送信機2c、2dに対して閾値確認要求を示すLF電波を出力すると、アンテナ51から両後輪7c、7dまでの距離が異なることから、送信機2c、2dでのLF電波の受信強度が異なった値になる。このため、受信強度に応じた遅延を持たせてRF送信が行われるようにすることで、各送信機2c、2dから順番に異なるタイミングで警報閾値情報を返信させることができる。したがって、各送信機2a~2dの送信タイミングが一致することによる混信が発生することはない。 That is, when the LF radio wave indicating a threshold confirmation request is output to the transmitters 2a and 2b of both front wheels 7a and 7b, the distance from the antenna 51 to both front wheels 7a and 7b is different. The reception intensity of the LF radio wave becomes a different value. For this reason, the alarm threshold information can be returned from the transmitters 2a and 2b at different timings in order by performing RF transmission with a delay corresponding to the reception intensity. Similarly, when the LF radio wave indicating the threshold value confirmation request is output to the transmitters 2c and 2d of the rear wheels 7c and 7d, the distance from the antenna 51 to the rear wheels 7c and 7d is different. The reception strengths of the LF radio waves at 2c and 2d are different values. For this reason, alarm threshold information can be returned at different timings in order from the transmitters 2c and 2d by performing RF transmission with a delay corresponding to the reception intensity. Therefore, interference due to the coincidence of transmission timings of the transmitters 2a to 2d does not occur.
 なお、アンテナ51を2つ用いる場合でも、警報閾値情報の返信があったときに、次のアンテナ51からのLF電波の送信を行うようにすればよいが、有効な返信が無いことも有り得る。その場合には、再度LF電波を送信してリトライすることもできる。その場合でも、一定回数のリトライを行っても有効な返信がなければ、電波が届き難い状況もしくは送信機2a~2dの不良などと考えられるため、タイムアウトを設けるようにするのが好ましい。 Even when two antennas 51 are used, it is only necessary to transmit the LF radio wave from the next antenna 51 when the alarm threshold information is replied, but there may be no effective reply. In that case, it is possible to retry by transmitting the LF radio wave again. Even in such a case, if a valid reply is not received after a certain number of retries, it is considered that the radio wave is difficult to reach or the transmitters 2a to 2d are defective. Therefore, it is preferable to provide a timeout.
 (2)また、各車輪7a~7dの警報閾値や警報変化閾値などの警報閾値情報について、両前輪7a、7bと両後輪7c、7dとで同じであっても良いし、異なるようにしても良い。 (2) Further, the alarm threshold information such as the alarm threshold value and the alarm change threshold value of each wheel 7a to 7d may be the same for both front wheels 7a, 7b and both rear wheels 7c, 7d, or different. Also good.
 各車輪7a~7dの警報閾値情報が同じ場合、アンテナ51が4つの場合には、各車輪7a~7dに対して同時にもしくはそれぞれ異なるタイミングで警報閾値情報を送信することができる。また、アンテナ51が2つの場合には、両前輪7a、7bと両後輪7c、7dに対して順番に警報閾値情報を送信しても良いし、同時に警報閾値情報を送信しても良い。この場合にも、各送信機2a~2dで警報閾値情報が正常に記憶されると閾値データ設定完了を示す信号が返信されてくるが、その返信がなければ一定回数のリトライを行うようにすると好ましい。リトライを行う場合、送信機2a~2dのうち閾値データ設定完了を示す信号を受信していないものに対してのみリトライを行うようにしても良い。 When the alarm threshold information of the wheels 7a to 7d is the same, and there are four antennas 51, the alarm threshold information can be transmitted to the wheels 7a to 7d simultaneously or at different timings. When there are two antennas 51, the alarm threshold information may be transmitted to the front wheels 7a, 7b and the rear wheels 7c, 7d in order, or the alarm threshold information may be transmitted simultaneously. Also in this case, when the alarm threshold information is normally stored in each of the transmitters 2a to 2d, a signal indicating the completion of threshold data setting is returned, but if there is no response, a fixed number of retries are performed. preferable. When performing the retry, the retry may be performed only for the transmitters 2a to 2d that have not received the signal indicating the completion of the threshold data setting.
 また、両前輪7a、7bと両後輪7c、7dとで異なるようにする場合も同様のことが言える。すなわち、アンテナ51が4つの場合には、各車輪7a~7dに対して同時にもしくはそれぞれ異なるタイミングで警報閾値情報を送信することができる。また、アンテナ51が2つの場合には、両前輪7a、7bと両後輪7c、7dに対して順番に警報閾値情報を送信しても良いし、同時に警報閾値情報を送信しても良い。ただし、これらの場合、両前輪7a、7bと対応するアンテナ51から前輪用の警報閾値情報を送信し、両後輪7c、7dと対応するアンテナ51から後輪用の警報閾値情報を送信する。このとき、各送信機2a~2dが各車輪7a~7dのいずれに取り付けられたものであるかを特定する車輪位置検出機能を備えたタイヤ空気圧検出装置である場合において、車輪位置検出が完了済みであれば、警報閾値情報に対象とする送信機のID情報を付加しても良い。このようにすれば、仮に各送信機2a~2dで2つのアンテナ51から送信されたLF電波が両方共受信されたとしても、対象とするLF電波を特定することが可能となる。逆に、車輪位置検出が完了前であれば、各送信機2a~2dに対して警報閾値情報を送信する前に、車輪位置検出を実行して完了させるようにする動作を行うようにしておき、その結果を待ってから各送信機2a~2dへの警報閾値情報の送信を行うようにしても良い。 The same applies to the case where the front wheels 7a and 7b are different from the rear wheels 7c and 7d. That is, when there are four antennas 51, the alarm threshold information can be transmitted to the wheels 7a to 7d simultaneously or at different timings. When there are two antennas 51, the alarm threshold information may be transmitted to the front wheels 7a, 7b and the rear wheels 7c, 7d in order, or the alarm threshold information may be transmitted simultaneously. However, in these cases, the alarm threshold information for the front wheels is transmitted from the antenna 51 corresponding to both front wheels 7a and 7b, and the alarm threshold information for the rear wheels is transmitted from the antenna 51 corresponding to both rear wheels 7c and 7d. At this time, the wheel position detection has been completed in the case of the tire pressure detecting device having the wheel position detecting function for identifying which of the wheels 7a to 7d each transmitter 2a to 2d is attached to. If so, the ID information of the target transmitter may be added to the alarm threshold information. In this way, even if both the LF radio waves transmitted from the two antennas 51 are received by the transmitters 2a to 2d, the target LF radio wave can be specified. On the contrary, if the wheel position detection is not completed, an operation for executing the wheel position detection and completing it is performed before the alarm threshold information is transmitted to the transmitters 2a to 2d. The alarm threshold information may be transmitted to the transmitters 2a to 2d after waiting for the result.
 なお、警報閾値情報を伝えるアンテナ51が4つもしくは2つの場合は、上記したように、両前輪7a、7bの送信機2a、2bと両後輪7c、7dの送信機2c、2dとに対してそれぞれ異なる警報閾値情報を送信すれば良い。しかしながら、アンテナ51が1つの場合には、次のようにして行うことになる。 When there are four or two antennas 51 for transmitting alarm threshold information, as described above, the transmitters 2a and 2b for both front wheels 7a and 7b and the transmitters 2c and 2d for both rear wheels 7c and 7d are used. Different alarm threshold information may be transmitted. However, when there is one antenna 51, this is performed as follows.
 すなわち、各送信機2a~2dに受信強度を測定させるようにし、アンテナ51からは両前輪7a、7bの警報閾値情報と両後輪7c、7dの警報閾値情報を送信する際に異なる信号強度の電波で送信するようにする。また、各送信機2a~2dでは、警報閾値情報の受信を許可する最低受信強度を設定しておく。そして、アンテナ51を両前輪7a、7bか両後輪7c、7dのいずれか一方に近づけるように配置する。このようにすることで、両前輪7a、7bと両後輪7c、7dのうちアンテナ51から近いほうの送信機2では異なる警報閾値情報を受信した時に受信強度の強い方側が自分自身の警報閾値情報であると判定することができる。また、両前輪7a、7bと両後輪7c、7dのうちアンテナ51から遠い方の送信機2では最低受信強度を超える電波に含まれた警報閾値情報を自分自身の警報閾値情報であると判定することができる。 That is, each transmitter 2a to 2d is made to measure the reception intensity, and when the antenna 51 transmits the alarm threshold information of both front wheels 7a and 7b and the alarm threshold information of both rear wheels 7c and 7d, different signal strengths are transmitted. Try to transmit by radio wave. In each of the transmitters 2a to 2d, a minimum reception intensity that permits reception of alarm threshold information is set. The antenna 51 is disposed so as to be close to either the front wheels 7a, 7b or the rear wheels 7c, 7d. In this way, the transmitter 2 closer to the antenna 51 out of the front wheels 7a and 7b and the rear wheels 7c and 7d receives the different alarm threshold information, and the side with the stronger reception intensity has its own alarm threshold. It can be determined that it is information. Further, in the transmitter 2 far from the antenna 51 out of both the front wheels 7a and 7b and the both rear wheels 7c and 7d, the alarm threshold information included in the radio wave exceeding the minimum reception intensity is determined as the own alarm threshold information. can do.
 (3)上記実施形態では、警報閾値情報の送信についてはLF電波を使用し、タイヤ空気圧の低下を示す異常情報の送信についてはRF電波を使用するようにしているが、どのような電波を用いるかについては任意に選択可能である。 (3) In the above embodiment, LF radio waves are used for transmission of alarm threshold information, and RF radio waves are used for transmission of abnormal information indicating a decrease in tire air pressure. It can be arbitrarily selected.
 (4)上記実施形態では、RF受信機3を1つのみ設ける場合について説明したが、各送信機2a~2dに対応して複数備えられていても良い。この場合も、全車輪7a~7dの各送信機2a~2dすべてに対応した数備えられていても良いし、両前輪7a、7bの送信機2a、2bに対応したものと両後輪7c、7dの送信機2c、2dに対応したものの2つであっても良い。また、RF受信機3のうちのアンテナ31のみを複数個にしても良い。 (4) In the above embodiment, the case where only one RF receiver 3 is provided has been described. However, a plurality of transmitters 2a to 2d may be provided. Also in this case, the number corresponding to all the transmitters 2a to 2d of all the wheels 7a to 7d may be provided, or the number corresponding to the transmitters 2a and 2b of both front wheels 7a and 7b and the rear wheels 7c, Two of the transmitters corresponding to the transmitters 2c and 2d of 7d may be used. Further, only a plurality of antennas 31 in the RF receiver 3 may be provided.
 (5)上記実施形態では、警報条件として、タイヤ空気圧の低下の条件を示したが、タイヤ空気圧の低下のみでなく、タイヤ空気圧の増加や温度の上昇についても警報条件とすることができる。例えば、タイヤ空気圧が規定値以上に増加した場合や、タイヤ内の温度が規定値以上のときに警報を行うようにしても良い。 (5) In the above embodiment, the condition for reducing the tire air pressure is shown as the alarm condition. However, the alarm condition can be set not only for the tire air pressure decrease but also for the tire air pressure increase and the temperature increase. For example, an alarm may be issued when the tire air pressure increases above a specified value, or when the temperature inside the tire is above a specified value.
 また、警報条件については、各車輪7a~7dそれぞれ独立して異なる条件に設定することも可能である。勿論、前後輪それぞれで異なる条件に設定することも可能である。その場合、各送信機2a~2dに対して送信される電波が混信することを避けるべく、各送信機2a~2dの固有のID情報を警報閾値情報と共に付すことで、各送信機2a~2dが自分自身の警報閾値情報を受信したか否かについて判定できるようにすると良い。 Also, the alarm conditions can be set to different conditions independently for each of the wheels 7a to 7d. Of course, it is possible to set different conditions for the front and rear wheels. In that case, in order to avoid radio waves transmitted to the transmitters 2a to 2d from interfering with each other, each transmitter 2a to 2d is attached with alarm ID information unique to each transmitter 2a to 2d. It may be possible to determine whether or not has received its own alarm threshold information.
 (6)なお、各図中に示したステップは、各種処理を実行する手段に対応するものである。具体的には、ステップ400に示す処理を実行する部分が警報条件判定手段に相当し、ステップ210に示す処理を実行する部分が異常情報送信手段に相当する。 (6) Note that the steps shown in each figure correspond to means for executing various processes. Specifically, the part that executes the process shown in step 400 corresponds to an alarm condition determining unit, and the part that executes the process shown in step 210 corresponds to an abnormality information transmitting unit.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (8)

  1.  タイヤを備えた複数個の車輪(7a~7d)それぞれに取り付けられ、取り付けられた車輪(7a~7d)におけるタイヤ空気圧を取得するセンシング部(21)を有すると共に、前記センシング部(21)が取得したタイヤ空気圧が低下していることを示す異常情報を送信する送信機(2)と、
     車体(8)側に備えられ、前記異常情報を受信すると、前記タイヤ空気圧の低下の警報を指示する警報情報を出力する受信手段(3、4)と、
     前記受信手段(3、4)からの前記警報情報に基づいて、タイヤ空気圧の低下の警報を行う警報表示機(6)と、を有してなるタイヤ空気圧検出装置において、
     前記送信機(2)は、所定のサンプリング周期毎に当該送信機(2)が取り付けられた車輪(7a~7d)のタイヤ空気圧を取得すると共に、取得したタイヤ空気圧が低下して警報条件を満たすか否かを判定する警報条件判定手段(400)と、前記警報条件判定手段(400)にてタイヤ空気圧が低下して警報条件を満たしたと判定されると、前記受信手段(3、4)に対して異常情報を送信する異常情報送信手段(410)と、を有していることを特徴とするタイヤ空気圧検出装置。
    Each of the plurality of wheels (7a to 7d) equipped with tires is attached to each of the wheels (7a to 7d), and has a sensing unit (21) for acquiring tire air pressure at the attached wheels (7a to 7d). A transmitter (2) for transmitting abnormal information indicating that the tire pressure is reduced;
    Receiving means (3, 4) provided on the vehicle body (8) side and outputting alarm information instructing an alarm of a decrease in tire air pressure when receiving the abnormality information;
    In a tire pressure detecting device comprising: an alarm indicator (6) that gives a warning of a decrease in tire air pressure based on the alarm information from the receiving means (3, 4),
    The transmitter (2) acquires the tire air pressure of the wheels (7a to 7d) to which the transmitter (2) is attached at every predetermined sampling period, and the acquired tire air pressure decreases to satisfy the alarm condition. If it is determined by the alarm condition determination means (400) that determines whether or not the tire pressure is reduced and the alarm condition is satisfied by the alarm condition determination means (400), the reception means (3, 4) And a tire pressure detecting device characterized by having an abnormality information transmitting means (410) for transmitting the abnormality information.
  2.  前記送信機(2)は、定期送信周期毎に前記センシング部(21)で取得した前記タイヤ空気圧に関する情報を送信しており、前記定期送信周期が前記サンプリング周期複数周期分以上とされていることを特徴とする請求項1に記載のタイヤ空気圧検出装置。 The transmitter (2) transmits information on the tire air pressure acquired by the sensing unit (21) for each periodic transmission cycle, and the periodic transmission cycle is set to be equal to or more than a plurality of sampling cycles. The tire air pressure detecting device according to claim 1.
  3.  前記受信手段(3、4)は、前記警報条件として用いる警報閾値情報を記憶しており、
     前記受信手段(3、4)から前記警報閾値情報を受け取り、アンテナ(51)を通じて前記複数個の車輪(7a~7d)それぞれに取り付けられた前記送信機(2)に送信するアンテナドライバ(5)を備え、
     前記送信機(2)は、前記アンテナ(51)から送信された前記警報閾値情報を受信すると共に当該警報閾値情報を読み出して記憶し、前記警報条件として用いることを特徴とする請求項1または2に記載のタイヤ空気圧検出装置。
    The receiving means (3, 4) stores alarm threshold information used as the alarm condition,
    An antenna driver (5) that receives the alarm threshold information from the receiving means (3, 4) and transmits the information to the transmitter (2) attached to each of the plurality of wheels (7a to 7d) through an antenna (51). With
    The transmitter (2) receives the alarm threshold information transmitted from the antenna (51), reads out and stores the alarm threshold information, and uses the alarm threshold information as the alarm condition. The tire pressure detecting device according to 1.
  4.  前記送信機(2)は、
     記憶した前記警報閾値情報を読み出す読出手段(510、610、700)と、
     前記読出手段(510、610、700)にて読み出された前記警報閾値情報が正規データであるか否かを判定する判定手段(520、620、710)と、
     前記判定手段(520、620、710)による判定結果を示すデータをセットして前記受信手段(3、4)に送信する送信手段(530~550、630~650、720~730)とを有していることを特徴とする請求項3に記載のタイヤ空気圧検出装置。
    The transmitter (2)
    Reading means (510, 610, 700) for reading the stored alarm threshold value information;
    Determining means (520, 620, 710) for determining whether or not the alarm threshold information read by the reading means (510, 610, 700) is regular data;
    Transmission means (530 to 550, 630 to 650, 720 to 730) for setting data indicating the determination result by the determination means (520, 620, 710) and transmitting the data to the reception means (3, 4) The tire pressure detecting device according to claim 3, wherein
  5.  前記受信手段(3、4)は、前記送信機(2)に対して前記警報閾値情報が正規データであるか否かの判定を行わせる際に要求トリガを出力し、
     前記送信機(2)は、前記要求トリガを受信したことを判定する要求トリガ受信手段(500)を有し、該要求トリガ受信手段(500)にて前記要求トリガを受信したと判定されると、前記読出手段(510)による前記警報閾値情報の読し出しを行ったのち、前記判定手段(520)にて読み出された前記警報閾値情報が正規データであるか否かを判定することを特徴とする請求項4に記載のタイヤ空気圧検出装置。
    The receiving means (3, 4) outputs a request trigger when causing the transmitter (2) to determine whether the alarm threshold information is regular data,
    The transmitter (2) has request trigger receiving means (500) for determining that the request trigger has been received, and when the request trigger receiving means (500) determines that the request trigger has been received. After reading the alarm threshold information by the reading means (510), it is determined whether or not the alarm threshold information read by the determination means (520) is regular data. The tire pressure detecting device according to claim 4, wherein
  6.  前記送信機(2)は、所定の定期送信毎にタイヤ空気圧の検出結果を送信する定期送信を行っており、該定期送信のタイミングに、前記読出手段(610)による前記警報閾値情報の読し出しを行ったのち、前記判定手段(620)にて読み出された前記警報閾値情報が正規データであるか否かを判定することを特徴とする請求項4に記載のタイヤ空気圧検出装置。 The transmitter (2) performs periodic transmission for transmitting a tire air pressure detection result at every predetermined periodic transmission, and the reading means (610) reads the alarm threshold information at the periodic transmission timing. 5. The tire pressure detecting device according to claim 4, wherein after determining the tire pressure, it is determined whether or not the alarm threshold information read by the determining means (620) is regular data.
  7.  前記送信機(2)は、所定の制御周期毎に、前記読出手段(700)による前記警報閾値情報の読し出しを行ったのち、前記判定手段(710)にて読み出された前記警報閾値情報が正規データであるか否かを判定することを特徴とする請求項4に記載のタイヤ空気圧検出装置。 The transmitter (2) reads the alarm threshold information by the reading means (700) at every predetermined control period, and then reads the alarm threshold value read by the determination means (710). The tire pressure detecting device according to claim 4, wherein it is determined whether or not the information is regular data.
  8.  前記送信機(2)は、
     記憶した前記警報閾値情報を読み出す読出手段(810)と、
     前記読出手段(810)にて読み出された前記警報閾値情報に関するデータをセットして前記受信手段(3、4)に送信する送信手段(830)とを有し、
     前記受信手段(3、4)は、前記送信機(2)が送信した前記警報閾値情報に関するデータを受信し、前記警報閾値情報が正規データであるか否かを判定することを特徴とする請求項3に記載のタイヤ空気圧検出装置。
    The transmitter (2)
    Reading means (810) for reading the stored alarm threshold information;
    Transmission means (830) for setting data relating to the alarm threshold information read by the reading means (810) and transmitting the data to the receiving means (3, 4);
    The said receiving means (3, 4) receives the data regarding the said alarm threshold value information which the said transmitter (2) transmitted, and determines whether the said alarm threshold information is regular data. Item 4. The tire pressure detection device according to Item 3.
PCT/JP2012/003202 2011-05-20 2012-05-16 Tire pressure detection device WO2012160780A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280024094.5A CN103547464B (en) 2011-05-20 2012-05-16 Tire pneumatic pressure detector

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011113345 2011-05-20
JP2011-113345 2011-05-20
JP2012101024A JP2013006588A (en) 2011-05-20 2012-04-26 Tire pressure detection device
JP2012-101024 2012-04-26

Publications (1)

Publication Number Publication Date
WO2012160780A1 true WO2012160780A1 (en) 2012-11-29

Family

ID=47216873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003202 WO2012160780A1 (en) 2011-05-20 2012-05-16 Tire pressure detection device

Country Status (3)

Country Link
JP (1) JP2013006588A (en)
CN (1) CN103547464B (en)
WO (1) WO2012160780A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2557620A (en) * 2016-12-12 2018-06-27 Wheely Safe Ltd Tyre pressure monitoring system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6331679B2 (en) * 2013-07-31 2018-05-30 株式会社デンソー Tire pressure detector
JP2015189460A (en) * 2014-03-31 2015-11-02 太平洋工業株式会社 Air pressure detection device and tire state monitor device
CN106166926A (en) * 2016-08-19 2016-11-30 青岛双星轮胎工业有限公司 A kind of high-capacity tyre intelligence system for detecting tire pressure
CN106143008B (en) * 2016-08-19 2018-02-02 青岛双星轮胎工业有限公司 Tire monitor rescue mode
JP6547714B2 (en) 2016-09-06 2019-07-24 株式会社デンソー Tire pressure monitoring system
JP7115205B2 (en) * 2018-10-10 2022-08-09 株式会社デンソー tire pressure monitoring system
CN113733822A (en) * 2019-03-11 2021-12-03 上海泰好汽车电子销售有限公司 Threshold value setting system based on tire pressure sensor
JP7332861B2 (en) * 2019-06-03 2023-08-24 横浜ゴム株式会社 Tire failure prediction system, tire failure prediction method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11334328A (en) * 1998-05-29 1999-12-07 Pacific Ind Co Ltd Tire inflation pressure warning system
JP2006007905A (en) * 2004-06-24 2006-01-12 Denso Corp Tire state detecting device for vehicle
JP2006031680A (en) * 2004-06-16 2006-02-02 Bridgestone Corp Tire management system
JP2007182111A (en) * 2006-01-05 2007-07-19 Paramount Shokai:Kk Tire internal pressure monitoring system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005309958A (en) * 2004-04-23 2005-11-04 Denso Corp Tire state monitoring system of vehicle and detector used for the system
AU2005254356B2 (en) * 2004-06-16 2008-08-07 Bridgestone Corporation Tire management system
JP4325496B2 (en) * 2004-06-28 2009-09-02 富士電機システムズ株式会社 Tire pressure monitoring device
JP2006224799A (en) * 2005-02-17 2006-08-31 Bridgestone Corp Tire control system
JP5359233B2 (en) * 2008-12-08 2013-12-04 横浜ゴム株式会社 Tire condition monitoring method and monitoring system
JP5246077B2 (en) * 2009-07-09 2013-07-24 日産自動車株式会社 Tire pressure detecting device, tire pressure monitoring system, and tire pressure transmitting method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11334328A (en) * 1998-05-29 1999-12-07 Pacific Ind Co Ltd Tire inflation pressure warning system
JP2006031680A (en) * 2004-06-16 2006-02-02 Bridgestone Corp Tire management system
JP2006007905A (en) * 2004-06-24 2006-01-12 Denso Corp Tire state detecting device for vehicle
JP2007182111A (en) * 2006-01-05 2007-07-19 Paramount Shokai:Kk Tire internal pressure monitoring system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2557620A (en) * 2016-12-12 2018-06-27 Wheely Safe Ltd Tyre pressure monitoring system

Also Published As

Publication number Publication date
CN103547464B (en) 2016-01-13
JP2013006588A (en) 2013-01-10
CN103547464A (en) 2014-01-29

Similar Documents

Publication Publication Date Title
WO2012160780A1 (en) Tire pressure detection device
KR100921269B1 (en) Wheel position detecting device and tire air pressure detecting device using the same
EP2741928B1 (en) Tire pressure monitoring apparatus and method
EP2741929B1 (en) Protocol arrangement in a tire pressure monitoring system
JP4858034B2 (en) Wheel position detecting device and tire air pressure detecting device having the same
CN101391563B (en) Tire inflation pressure detecting apparatus
EP2741927B1 (en) Apparatus and method for activating a localization process for a tire pressure monitor
JP6331679B2 (en) Tire pressure detector
KR100940412B1 (en) Apparatus for detecting positions of wheels and apparatus for detecting inflation pressure of tires of vehicle
JP6318835B2 (en) Tire pressure detector
JP4760640B2 (en) Wheel position detecting device and tire air pressure detecting device having the same
JP4810894B2 (en) Vehicle body side communication device for receiving tire pressure information, tire pressure transmitter for detecting and transmitting tire pressure of own wheel, and tire pressure monitoring system
EP2562011A1 (en) Tire pressure monitoring redundant communication method and system
EP2562010A1 (en) Tire pressure monitoring redundant communication method and system
JP5629659B2 (en) Valve ID registration system
JP4175307B2 (en) Tire pressure detector
JP2012252462A (en) Wheel position detection device and tire pressure detection device provided with the same
JP4816344B2 (en) Wheel position detection device, manufacturing method thereof, and tire air pressure detection device including wheel position detection device
JP5772285B2 (en) Self-vehicle signal discriminating device and tire air pressure detecting device having the same
JP5459625B2 (en) Tire information detection device
KR101618452B1 (en) Tire pressure monitoring system
JP2012224230A (en) Tire position determination system
KR101379606B1 (en) Tire pressure detection apparatus
EP3896914B1 (en) Transmitter
JP7124416B2 (en) Sensor ID registration system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12789288

Country of ref document: EP

Kind code of ref document: A1