WO2012159562A1 - 截短的人乳头瘤病毒33型l1蛋白 - Google Patents

截短的人乳头瘤病毒33型l1蛋白 Download PDF

Info

Publication number
WO2012159562A1
WO2012159562A1 PCT/CN2012/075865 CN2012075865W WO2012159562A1 WO 2012159562 A1 WO2012159562 A1 WO 2012159562A1 CN 2012075865 W CN2012075865 W CN 2012075865W WO 2012159562 A1 WO2012159562 A1 WO 2012159562A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
hpv33
virus
truncated
particle
Prior art date
Application number
PCT/CN2012/075865
Other languages
English (en)
French (fr)
Inventor
李少伟
孔祥林
魏旻希
潘晖榕
张军
夏宁邵
Original Assignee
厦门大学
厦门万泰沧海生物技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门大学, 厦门万泰沧海生物技术有限公司 filed Critical 厦门大学
Priority to BR112013030150A priority Critical patent/BR112013030150A2/pt
Priority to DK12788749.5T priority patent/DK2716653T3/en
Priority to US14/122,150 priority patent/US9249193B2/en
Priority to EP12788749.5A priority patent/EP2716653B1/en
Publication of WO2012159562A1 publication Critical patent/WO2012159562A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5258Virus-like particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55566Emulsions, e.g. Freund's adjuvant, MF59
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/20011Papillomaviridae
    • C12N2710/20022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/20011Papillomaviridae
    • C12N2710/20023Virus like particles [VLP]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/20011Papillomaviridae
    • C12N2710/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the invention relates to the field of molecular virology and immunology.
  • the present invention relates to a truncated human papillomavirus type 33 L1 protein, its coding sequence and preparation method, and virus-like particles comprising the same, which can be used for the prevention of HPV (especially HPV33) ) infections and diseases caused by infection with HPV (especially HPV33) such as cervical cancer.
  • the invention further relates to the use of the above proteins and virus-like particles for the preparation of a pharmaceutical composition or vaccine for the prevention of HPV (especially HPV33) infection and infection by HPV (especially HPV33) Diseases such as cervical cancer.
  • Human Papillomavirus belongs to the genus Papilomaviridae of the papillomavirus family and is a non-enveloped DNA virus.
  • the viral genome is a silent chain closed-loop DNA with a size of approximately 7.2 to 8 kb and eight open reading frames.
  • the viral genome can be divided into three regions according to its function: 1 early region (E), about 4.5 kb, encoding 6 non-structural proteins related to viral replication, transcription and transformation, including El, E2, E4 ⁇ E7;
  • LCR long regulatory region
  • the HPV virus particles are 45 to 55 nm in diameter, and the nucleocapsid is icosahedral. There are 72 shell particles consisting of L1 and L2.
  • HPV has more than 90 subtypes, which cause skin and mucous membrane lesions in the human population. According to its relationship with tumorigenesis, HPV can be divided into three groups: 1 low or no carcinogenic risk group, including HPV6, 11, 39, 41, 42, 43; The cancer risk group, including HPV 31, 33, 35, 51, 52; 3 highly carcinogenic risk groups, including HPV 16, 18, 58, 45.
  • HPV molecular epidemiological investigations confirmed that high-risk HPV infection is an important promoter of cervical cancer.
  • HPV DNA detection rates are as high as 80% or more.
  • Cervical cancer is a common female malignant tumor, and its incidence is second only to breast cancer, which is a serious threat to women's health. According to statistics, there are about 490,000 new cases worldwide each year, and about 270,000 people die from the disease (Boyle, P., and J. Ferlay. Ann Oncol 2005, 16:481-8). Of all cervical cancer cases, approximately 83% occur in developing countries, where cervical cancer can even account for 15% of female malignancies. In developed countries, this figure only accounts for 1.5%.
  • HPV33 has a high infection rate among women with cervical cancer worldwide and is one of the most susceptible HPV types.
  • HPV vaccines are Merck's Gardasil® and GSK's Cervarix®, which contain HPV6/11/16/18 and HPV16/18, respectively.
  • VLP but does not include HPV33 type VLPs that are generally prevalent among women in China and Asia.
  • HPV vaccines for women in developing countries such as China and Asia, especially for high-risk types such as HPV16, 18 and 33, are effective in preventing cervical cancer and improving the health of women (especially Chinese and Asian women). An effective way of doing things.
  • HPV L1 protein is the major capsid protein with a molecular weight of 55-60 kDa and is the main target protein of HPV vaccine.
  • the HPV L1 protein expressed in various expression systems can form a virus-Like Particle (VLP) similar in morphology to the native virus particle without the aid of the L2 protein.
  • the virus-like particle is an icosahedral stereo-symmetric structure composed of 72 pentamers of L1 protein. It retains the natural epitope of the viral particle, has strong immunogenicity, and induces neutralizing antibodies against the same type of HPV virus (Kirnbauer, R., F. Booy, et al. 1992 Proc Natl Acad Sci USA 89 (24) ): 12180-4).
  • the virus-like particles do not carry viral nucleic acid, have no potential carcinogenic risk, and have good safety. Therefore, VLP vaccine has become the main direction of HPV vaccine development.
  • VLP vaccines The key to the development of HPV VLP vaccines is the ability to efficiently and efficiently prepare VLP samples.
  • the more commonly used VLP expression systems can be divided into eukaryotic expression systems and prokaryotic expression systems.
  • eukaryotic expression systems include a poxvirus expression system, an insect baculovirus expression system, and a yeast expression system.
  • the HPV L1 protein expressed in the eukaryotic expression system has little natural conformational destruction and can spontaneously form VLPs. It is often necessary to perform a simple density gradient centrifugation to obtain purified VLPs, which provides great convenience for purification work.
  • Due to the low expression level of the eukaryotic expression system and the high cultivation cost it has brought great difficulties to large-scale industrial production.
  • the currently marketed HPV vaccine Gardasil® uses a Saccharomyces cerevisiae expression system with low expression and high production costs, so the price of the product is biased. High, affecting its wide application.
  • HPV L1 protein by the E. coli expression system in prokaryotic expression systems has been reported.
  • expression of HPV16 L1 protein by E. coli has been reported (Banks, L., G. Matlashewski, et al. (1987). J Gen Virol 68 (Pt 12): 3081-9).
  • HPV LI proteins expressed by E. coli lose their natural conformation and cannot produce protective antibodies against HPV.
  • HPB VLP Karlall, SR and JK Kulski (1995).
  • the present invention is based, at least in part, on the surprising discovery by the inventors that the use of an E. coli expression system enables the mass expression of a truncated HPV33 L1 protein that induces a neutralizing antibody against HPV33, which has a high yield and is purified.
  • the purity can be as high as 96% or higher, and the purified protein can be further treated to obtain virus-like particles which can induce protective antibodies against HPV33.
  • the invention relates to a truncated HPV33 L1 protein or variant thereof which has a N-terminal truncation of 9-19 amino acids, such as 9, 10, compared to the wild-type HPV33 L1 protein. 11, 12, 13, 14, 15, 16, 17, 18 and 19 acids.
  • the N-terminus of the truncated HPV33 L1 protein is truncated by 9, 11, 14, or 19 amino acids compared to the wild-type HPV33 L1 protein.
  • the truncated HPV33 L1 protein (hereinafter also simply referred to as a truncated protein) has SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6 or SEQ ID NO: The illustrated amino acid sequence.
  • the truncated protein has an amino acid sequence as shown in SEQ ID NO: 4.
  • the invention features a polynucleotide encoding a truncated protein of the invention, or a variant thereof, and a vector comprising the polynucleotide.
  • Vectors useful for insertion of a polynucleotide of interest include, but are not limited to, cloning vectors and expression vectors.
  • the vector is, for example, a plasmid, a cosmid, a phage, a cosmid, and the like.
  • the invention also relates to a host cell comprising the polynucleotide or vector described above.
  • host cells include, but are not limited to, prokaryotic cells such as E. coli cells, and eukaryotic cells such as yeast cells, insect cells, plant cells, and animal cells (e.g., mammalian cells, such as mouse cells, human cells, etc.).
  • the host cell of the invention may also be a cell line, such as a 293T cell.
  • the invention relates to an HPV33 virus-like particle, wherein the virus-like particle comprises or consists of a truncated protein of the invention or a variant thereof.
  • the HPV33 virus-like particle of the invention comprises a N-terminal truncation of 9-19 amino acids, such as 9 compared to the wild-type HPV33 L1 protein. , a truncated HPV33 L1 protein of 11, 11 or 19 amino acids, or consists of or formed from the protein. In a particularly preferred embodiment, the HPV33 virus-like particle of the invention comprises or consists of or is formed of a truncated HPV33 L1 protein having the sequence set forth in SEQ ID NO: 4, 5, 6 or 7.
  • the invention also relates to a composition
  • a composition comprising the above-described truncated protein or variant thereof, or the above polynucleotide or vector or host cell or HPV33 virus-like particle.
  • the composition comprises a truncated protein of the invention or a variant thereof.
  • the composition comprises HPV33 virus-like particles of the invention.
  • the present invention is also a pharmaceutical composition or vaccine comprising the HP V33 virus-like particle of the present invention, optionally further comprising a pharmaceutically acceptable carrier and/or excipient.
  • the pharmaceutical composition or vaccine of the present invention can be used for preventing HPV (especially HPV33) infection or diseases caused by HPV (especially HPV33) infection such as cervical cancer and the like.
  • the HPV33 virus-like particle is present in an amount effective to prevent HPV infection or cervical cancer.
  • the pharmaceutical composition or vaccine of the present invention further comprises at least one virus-like particle selected from the group consisting of: HPV6 L1 protein virus-like particle, HPV11 L1 protein virus-like particle, HPV16 L1 protein virus-like particle , HPV18 L1 protein virus-like particles, HPV31 L1 protein virus-like particles, HPV45 L1 protein virus-like particles, HPV52 L1 protein virus-like particles, HPV58 L1 protein virus-like particles; preferably, these virus-like particles are each independently for preventing cervical cancer Or an effective amount of the corresponding HPV subtype infection is present.
  • compositions or vaccines of the invention may be administered by methods well known in the art such as, but not limited to, administration by oral or injection.
  • a particularly preferred mode of administration is injection.
  • the pharmaceutical composition or vaccine of the invention is single The dosage form is administered.
  • the amount of HPV33 virus-like particles contained per unit dose is from 5 g to 80 g, preferably from 20 g to 40 g.
  • the present invention relates to a method for obtaining a truncated protein of the present invention, which comprises expressing a truncated protein of the present invention using an E. coli expression system, and then purifying the cleavage supernatant containing the truncated protein.
  • the method of obtaining a truncated protein of the invention comprises a) expressing said truncated protein in E. coli,
  • Escherichia coli expressing the truncated protein is disrupted in a solution having a salt concentration of 100 mM to 600 mM, and the supernatant is separated.
  • c) reduce the salt concentration of the supernatant obtained in b) to 100 mM or less with water or a low salt solution, as low as 0, and collect the precipitate.
  • the invention also relates to a method of obtaining a HPV L1 protein, such as a truncated protein of the invention, comprising
  • the present invention also relates to a method of obtaining HPV33 virus-like particles of the present invention, Is it obtained in the truncated protein of the present invention? On, including the steps:
  • the invention further relates to a method of preparing a vaccine comprising mixing a HPV33 virus-like particle of the invention with a pharmaceutically acceptable carrier and/or excipient, optionally further mixing one or more selected from the group consisting of HPV6, 11 , 16, 18, 31, 45, 52 and 58 HPV-type virus-like particles.
  • the obtained vaccine can be used to prevent HPV (especially HPV33) infection or diseases caused by HPV (especially HPV33) infection such as cervical cancer and the like.
  • the present invention relates to a method of preventing HPV infection or a disease caused by HPV infection comprising administering a prophylactically effective amount of a HPV33 virus-like particle or pharmaceutical composition or vaccine according to the present invention to a subject .
  • the HPV infection is an HPV33 infection.
  • the disease caused by HPV infection includes, but is not limited to, cervical cancer.
  • the subject is a mammal, such as a human.
  • the invention relates to the use of a truncated protein or HPV33 virus-like particle according to the invention for the preparation of a pharmaceutical composition or vaccine for the prevention of HPV infection or a disease caused by HPV infection .
  • the HPV infection is an HPV33 infection.
  • the disease caused by HPV infection includes, but is not limited to, cervical cancer. Description and explanation of related terms in the present invention
  • the expression "protein having a N-terminally truncated acid” means that the first-X of the N-terminus of the protein is replaced with a methylthio acid residue encoded by a start codon (for initiation of protein translation).
  • a protein obtained by amino acid residues for example, the HPV33 L1 protein with N-terminally truncated 9 amino acids means that the methionine residue encoded by the initiation codon replaces the 1st - 9th amino acid residue at the N-terminus of the wild-type HPV33 L1 protein. The protein obtained.
  • the term "variant” refers to a protein which is linked to the amino acid sequence of a truncated HPV33 L1 protein of the invention (such as the protein of SEQ ID NO: 4, 5, 6 or 7). Having one or more (eg, 1-10 or 1-5 or 1-3) different amino acids or having at least 60%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity, and it retains the necessary properties of the truncated protein.
  • essential property herein may be one or more of the following characteristics: ability to induce a neutralizing antibody against HPV33; capable of soluble expression in Escherichia coli; high yield can be obtained by the expression purification method of the present invention Purify the protein.
  • identity is a measure of the similarity of a nucleotide sequence or an amino acid sequence. The sequences are usually arranged to obtain the greatest match. "Identity” itself has a well-known meaning in the art and can be disclosed Algorithm (for example
  • E. coli expression system refers to an expression system consisting of E. coli (strain) and a vector, wherein E. coli (strain) is derived from commercially available strains such as, but not limited to: ER2566, BL21 ( DE3), B834 (DE3), BLR (DE3)schreib
  • vector refers to a nucleic acid delivery vehicle into which a polynucleotide can be inserted. When the vector enables expression of a protein encoded by the inserted polynucleotide, the vector is referred to as expression.
  • Vectors can be introduced into a host cell by transformation, transduction or transfection, such that the genetic material elements they carry are expressed in the host cell.
  • Vectors are well known to those skilled in the art, including but not limited to: plasmids; phage; Plasmids and so on.
  • the term "truncated HPV33 L1 protein” refers to a protein obtained by removing one or more amino acids at the N-terminus and/or C-terminus of the wild-type HPV33 L1 protein, wherein examples of the wild-type HPV33 L1 protein include However, it is not limited to the full-length L1 protein such as P06416.1, ACV84008.1, ACV84011.1, ACV84012.1 or ACL12333.1 in the NCBI database.
  • truncated HPV33 L1 protein gene fragment refers to a gene fragment that, at the 5' or 3' end, is liberated from the wild-type HPV33 L1 protein gene (cDNA), encoding one or more amino acids.
  • Nucleotides, wherein the full-length sequence of the wild-type HPV33 L1 protein gene is, for example but not limited to, the following sequences in the NCBI database: GO479013.1, GQ479014.1, M12732.1, GQ479012.1, GQ479015.1, GQ479016.1, EU918766 .1 , GQ479017.1 , GQ479018.1 or GQ479019.1, etc.
  • the term "pharmaceutically acceptable carrier and/or excipient” means a carrier and/or excipient which is pharmacologically and/or physiologically compatible with the subject and the active ingredient, which is in the art It is well known (see, for example, Remington's Pharmaceutical Sciences. Edited by Gennaro AR, 19th ed. Pennsylvania: Mack Publishing Company, 1995) and includes, but is not limited to, pH adjusters, surfactants, adjuvants, ionic strength enhancers.
  • pH adjusting agents include, but are not limited to, phosphate buffers; surfactants include, but are not limited to, cationic, anionic or nonionic surfactants such as Tween-80; adjuvants include, but are not limited to, aluminum Adjuvants (eg, aluminum hydroxide), Freund's adjuvant (eg, complete Freund's adjuvant); ionic strength enhancers include, but are not limited to, sodium chloride.
  • adjuvants include, but are not limited to, aluminum Adjuvants (eg, aluminum hydroxide), Freund's adjuvant (eg, complete Freund's adjuvant); ionic strength enhancers include, but are not limited to, sodium chloride.
  • an effective amount means an amount effective to achieve the intended purpose.
  • an effective amount for preventing a disease e.g., HPV infection
  • chromatography includes, but is not limited to: ion exchange chromatography (eg cation exchange chromatography), hydrophobic interaction chromatography, adsorption chromatography (eg hydroxyapatite chromatography), gel filtration (gel discharge) Resistance) chromatography, affinity chromatography.
  • the truncated HPV33 L1 protein of the present invention is preferably obtained by the following steps: Escherichia coli expressing the truncated HPV33 L1 protein is disrupted in a buffer having a salt concentration of 100 - 600 mM, preferably 200 - 500 mM, The solution is centrifuged to obtain a supernatant; the salt concentration of the resulting supernatant is lowered to a salt concentration of 100 mM - OmM with water or a solution having a low salt concentration (usually lower than the salt concentration for the crushing), whereby the truncated HPV33 L1 protein is on Precipitating in the clear solution; re-dissolving the precipitate in a solution containing a reducing agent and a salt concentration of 150 - 2500 mM, preferably 200 mM or more, thereby separating a solution containing the truncated HPV33 L1 protein, wherein the protein has a purity of at least 50
  • Buffers useful in the methods of the invention are well known in the art and include, but are not limited to, Tris buffer, phosphate buffer, HEPES buffer, MOPS buffer, and the like.
  • disruption of host cells can be accomplished by a variety of methods well known to those skilled in the art including, but not limited to, homogenizer disruption, homogenizer disruption, sonication, milling, high pressure extrusion, lysozyme treatment, and the like. .
  • Salts useful in the process of the invention include, but are not limited to, acid salts, basic salts, neutral salts such as alkali metal salts, alkaline earth metal salts, ammonium salts, hydrochloride salts, sulfate salts, A bicarbonate, a phosphate or a hydrogen phosphate, in particular one or more of NaCl, KC1, NH 4 C1, (NH 4 ) 2 S0 4 .
  • a particularly preferred salt is NaCl.
  • Reducing agents useful in the methods of the invention include, but are not limited to, DTT, 2-mercaptoethanol, in amounts including, but not limited to, 10 mM to 100 mM.
  • the HPV33 virus-like particle according to the present invention can be obtained by the following steps: further separating the truncated HPV33 L1 protein having a purity of at least 50% as described above by, for example, color transfer chromatography to obtain a purified truncated protein solution; removing the solution
  • the reducing agent gives the HPV33 virus-like particles.
  • the manner in which the reducing agent is removed is known in the art and includes, but is not limited to, dialysis, ultrafiltration or chromatography.
  • HPV virus-like particles can be divided into eukaryotic expression systems and prokaryotic expression systems.
  • HPV L1 protein expressed in the eukaryotic expression system has little natural conformational destruction and can spontaneously form VLPs, and it is often necessary to carry out a simple purification process to obtain VLPs with the correct conformation.
  • current eukaryotic expression systems such as baculovirus expression systems and yeast expression systems have the disadvantages of low expression levels and high cultivation costs, which have brought great difficulties to large-scale industrial production.
  • the E. coli expression system has the advantages of low culture cost and large expression amount.
  • HPV L1 proteins expressed in E. coli tend to lose the correct native conformation and are expressed in the form of inclusion bodies in the pellet. The renaturation of proteins expressed in inclusion bodies is still a worldwide problem. Reconciliation difficulties and inefficiencies make it difficult to obtain VLPs with correct conformation from inclusion bodies in large-scale production and can only be limited to small-scale laboratory studies.
  • HPV L1 can also be solublely expressed in E. coli in the correct conformation, its expression level is low. And purified from E. coli lysate containing a wide variety of soluble proteins
  • the HPV LI protein is also quite difficult, often requiring the use of fusion expression and affinity chromatography, which often requires expensive enzymes, and therefore, industrial production cannot be achieved.
  • the N-terminally truncated HPV33 L1 protein provided by the present invention and the preparation method thereof effectively solve the above problems.
  • the present invention uses an E. coli expression system to express the N-terminally truncated HPV33 L1 protein, ensuring its high expression level.
  • the present invention selectively precipitates the truncated protein in the E. coli lysate supernatant by mild means, and then redissolves the truncated protein with a salt-containing buffer to thereby ensure the purity of the protein while maintaining the correct conformation of the truncated protein.
  • the obtained truncated protein solution can be further purified directly by chromatography such as ion exchange chromatography and hydrophobic exchange chromatography to obtain a high-purity protein of interest (for example, purity of 96%).
  • the obtained high-purity truncated protein can be assembled into a virus-like particle, and the virus-like particle can induce a high titer neutralizing antibody against HPV33 in vivo, has good immunogenicity, and is a good vaccine. Form, can be used to prevent HPV33 infection in humans.
  • the present invention has the following advantages:
  • the truncated protein of the present invention can realize a large amount of expression in an E.
  • the truncated protein of the present invention and the preparation method thereof can be applied to large-scale industrial production, and it is possible to produce a large-scale industrial production of cervical cancer vaccine.
  • Figure 1 shows the results of SDS polyacrylamide gel electrophoresis of the HPV33N9C-L1 protein obtained in the different steps of Example 2.
  • Lane M Protein molecular weight marker
  • Lane 1 Broken supernatant (ie, supernatant obtained after centrifugation)
  • Lane 2 Salt-free precipitated product (ie, precipitate obtained by centrifugation after centrifugation)
  • Lane 3 Heavy The supernatant after dissolution (i.e., the supernatant obtained by re-dissolving the salt-free precipitated product after centrifugation);
  • Lane 4 Precipitate after reconstitution (i.e., the precipitate obtained by centrifugation after re-dissolving the salt-free precipitated product).
  • the results showed that the purity of the HPV33N9C-L1 protein increased from about 10% to about 70% after the step of precipitation and reconstitution (see lanes 1 and 3).
  • Fig. 2 shows the results of SDS polyacrylamide gel electrophoresis of HPV33N9C-L1 obtained by HIC (hydrophobic interaction chromatography) purification in Example 3.
  • Lane M Protein molecular weight marker
  • Lane 1 Pre-purification sample with Butyl Sepharose 4 Fast Flow column
  • Lane 2 Butyl Sepharose 4 Fast Flow column breakthrough fraction
  • Lane 3 Butyl Sepharose 4 Fast Flow column 200 mmol/L NaCl Elution fraction ( ⁇ ).
  • the results showed that the purity of HPV33N9C-L1 protein was over 98% after purification by Butyl Sepharose 4 Fast Flow column (see lane 3).
  • a large number of virus-like particles with a radius of about 25 nm are visible in the field of view, and the particle size is consistent with the theoretical size and is consistent.
  • Figure 4 shows the HPV33N9C-L1 virus-like particle obtained in Example 4. Dynamic light scattering observations. The results showed that the HPV33N9C-L1 virus-like particle had a hydration molecular dynamic radius of 27.77 nm and a particle assembly percentage of 100%.
  • Figure 5 shows the neutralizing antibody titer of the serum at different stages after inoculation of mice with HPV33N9C-L1 virus-like particles in Example 5. 2 weeks after the first immunization, antibody titers increased rapidly; elapsed after the first booster immunization, neutralizing antibody titers that can achieve a high level of 105.
  • Figure 6 shows the neutralizing antibody titer of the serum at different stages after inoculation of rabbits with HPV33N9C-L1 virus-like particles in Example 5.
  • antibody titers increased rapidly; after the first vaccination, the neutralizing antibody titer that is able to achieve a higher level of 106.
  • Figure 7 shows the HPV33 L1 protein of the N-terminally truncated 11, 14 or 19 amino acids obtained in Example 6 - HPV33N11C-L1, HPV33N14C-L1, HPV33N19C-L1 (the columns are SEQ ID NO: 5.
  • Results of SDS polyacrylamide gel electrophoresis of SEQ ID NO: 6, SEQ ID NO: 7 Lane M, protein molecular weight marker; Lane 1, HPV33N11C-L1 protein, loading volume ⁇ ; Lane 2, HPV33N14C-L1 protein, loading volume ⁇ ; Lane 3, HPV33N19C-L1 protein, loading volume 10 ⁇ 1.
  • the results showed that the protein purity of the proteins HPV33N11C-L1, HPV33N14C-L1 and HPV33N19C-L1 obtained in Example 6 was over 98%.
  • Fig. 8 shows the results of transmission electron microscopic observation (50,000 times, 0.2 um) of the HPV33N11C-L1 virus-like particles described in Example 6. The results showed that a large number of virus-like particles with a radius of about 25 nm were visible in the field of view, and the particle size was consistent with the theoretical size and was consistent.
  • Figure 9 shows the results of transmission electron microscopic observation (50,000 times, 0.2 um) of the HPV33N14C-L1 virus-like particles described in Example 6. The results show that a large number of virus-like particles with a radius of about 25 nm are visible in the field of view. Symbol, and are consistent.
  • Fig. 10 shows the results of transmission electron microscopic observation (50,000 times, 0.2 um) of the HPV33N19C-L1 virus-like particles described in Example 6. The results showed that a large number of virus-like particles with a radius of about 25 nm were visible in the field of view, and the particle size was consistent with the theoretical size and was consistent.
  • Fig. 11 shows the results of dynamic light scattering observation of the HPV33N11C-L1 virus-like particle described in Example 6. The results showed that the hydration molecular dynamic radius of the HPV33N11C-L1 virus-like particle was about 28.34 nm, and the particle assembly percentage was 100%.
  • Fig. 12 shows the results of dynamic light scattering observation of the HPV33N14C-L1 virus-like particle described in Example 6. The results showed that the hydration molecular dynamics radius of HPV33N14C-L1 virus-like particles was about 26.03 nm, and the particle assembly percentage was 100%.
  • Fig. 13 shows the results of dynamic light scattering observation of the HPV33N19C-L1 virus-like particle described in Example 6. The results showed that the hydration molecular dynamic radius of HPV33N19C-L1 virus-like particles was about 27.11 nm, and the particle assembly percentage was 100%.
  • HPV33S 5,-CAT ATG TCC GTG TGG CGG CCT AG-3' (SEQ ID NO: 12) is a forward primer
  • HPV33 R 5,-GTC GAC TTA TTT TTT AAC CTT TTT GC-3' (SEQ ID NO: 13) is a reverse primer
  • PCR reaction was carried out in a PCR instrument (Biometra, T3) under the following conditions to prepare a full-length HPV33 L1 gene. Fragment.
  • HPV33-positive multiple samples a size-specific 1.5 kb product was amplified and three HPV33 L1 gene sequences (SEQ ID ⁇ : 1, 2 and 3) were obtained by sequencing.
  • SEQ ID NO: 1 is exemplarily used as a template for preparing a DNA fragment encoding the truncated protein of the present invention. Construction of a non-fusion expression vector for truncated HPV33 L1 gene
  • HPV33 L1 full-length gene fragment (SEQ ID NO: 1) obtained in the previous step was used as a template, and HPV33N9F: 5'-CATATs ACA gTg TAC CTg CCT CCT-3' (SEQ ID NO: 14) was used as a forward primer (its primer) Introducing the restriction endonuclease Ndel site CAT ATG at the 5' end, ATG is the initiation codon in the E.
  • HPV33R S'-GTC GAC TTA TTT TTT AAC CTT TTT GC-3' (SEQ ID NO: 13) as a reverse primer (the 5' end introduced a restriction endonuclease Sflfl site) in a PCR thermocycler
  • the PCR reaction was carried out in (Biometra T3) under the following conditions.
  • a size-specific DNA fragment of about 1.5 kb was amplified.
  • the PCR product was ligated to a commercially available pMD18-T vector (manufactured by TAKARA Co., Ltd.), and transformed into Escherichia coli; the plasmid was extracted and identified by NdellSaH digestion to obtain a positive clone pMD 18-T- inserted into the truncated HPV33 L1 gene.
  • the nucleotide sequence of the inserted fragment of the pMD18-T-HPV33N9C-L1 plasmid was determined as shown in SEQ ID NO: 8, which encodes an amino acid sequence such as SEQ. ID NO: 4 is shown.
  • the protein corresponding to this sequence was N-terminally truncated with 9 amino acids and the C-terminal untruncated HPV33 L1 protein, which was named HPV33N9C-L1.
  • the pMD18-T-HPV33N9C-L1 plasmid described above was digested with ⁇ to obtain a HPV33N9C-L1 gene fragment.
  • the fragment was ligated with the non-fusion expression vector pTO-T7 (Luo Wenxin et al., J. Bioengineering, 2000, 16:53-57) digested with iVi ⁇ IA ⁇ n, and transferred into ER2566 bacteria; plasmid, NdellSall enzyme
  • the positive expression clone pTO-T7-HPV33N9C-L1 inserted into the fragment of interest was identified.
  • the TO ⁇ pTO-T7-HPV33N9C-Ll plasmid (0.15 mg/ml) was transformed into 40 ⁇ of the competent Escherichia coli ER2566 (purchased from New England Biolabs) prepared by the calcium chloride method, and coated on the kana containing Solid LB medium (final concentration 25mg/mL, the same below) solid LB medium (LB medium composition: 10g / L peptone, 5g / L yeast powder, 10g / L sodium chloride, the same below), and static at 37 ° C Incubate for 10-12 hours until the single colony is clearly distinguishable. Pick a single colony into a tube containing 4 mL of liquid LB medium (containing kanamycin) at 37. Incubate at 220 rpm for 10 hours, and take 1 mL of the bacterial solution and store at -70 °C.
  • the Escherichia coli carrying the recombinant plasmid pTO-T7-HPV33N9C-L1 was taken out in C, and inoculated into 50 ml of LB liquid medium containing kanamycin at 200 rpm, 37.
  • the culture was carried out for about 8 hours at C; then, it was transferred to 10 bottles of 500 ml of kanamycin-containing LB medium (5 ml of the bacterial solution per bottle), and cultured at 200 rpm, 37 ° C overnight, as a seed liquid.
  • Feed preparation 30% peptone and yeast bone mixture (20 g peptone, 10 g yeast bone dissolved to 100 ml), 50% glucose (50 g dissolved to 100 ml), 121. C Sterilize for 20 min.
  • Feeding 50% glucose and 30% peptone and yeast bone mixture were mixed at a solute mass ratio of 2:1.
  • the flow acceleration is as follows: first hour: 5%; second hour: 10%; third hour:
  • the cells were resuspended in a ratio of 10 mL of lysate (20 mM Tris buffer, pH 7.2, 300 mM NaCl) to lg cells.
  • the cells were disrupted 5 times with a pressure of 600 bar using an APV homogenizer (An Invensys Group product).
  • the bacterial cell disrupted solution was centrifuged at 13500 rpm (30000 g) for 15 min, and the supernatant (i.e., the supernatant of the bacteria) was taken.
  • the supernatant was detected by 10% SDS-polyacrylamide gel electrophoresis, at which time the purity of HPV33N9C-L1 in the supernatant was approximately 10% (see Figure 1, lane 1).
  • the supernatant was dialyzed using a CENTRASETTE 5 tangential flow device (PALL product) with a molecular weight cut-off of 30 kDa, a dialysate of 10 mM phosphate buffer pH 6.0, a dialysis volume of three times the supernatant volume, and an operating pressure of 0.5 psi, flow rate 500 mL/min, tangential flow rate 200 mL/min.
  • PALL product CENTRASETTE 5 tangential flow device
  • the precipitate was harvested by centrifugation at 9,500 rpm (12000 g) for 20 min using a Beckman J25 high speed centrifuge (i.e., salt-free precipitated product).
  • the pellet was resuspended in 1/10 supernatant volume of 20 mM calcium buffer pH 8.0, 20 mM DTT, 300 mM NaCl, stirred for 30 min, then centrifuged at 13500 rpm (30000 g) for 20 min using a Beckman J25 high speed centrifuge, and the supernatant was harvested and harvested.
  • Precipitation ie, precipitation after reconstitution).
  • the supernatant was diluted to 3 volumes with 20 mM phosphate buffer pH 8.0, 20 mM DTT to give a final NaCl concentration of 0.1 M, then 0.22 ⁇ m
  • the pore size filter was filtered and the obtained sample (i.e., the supernatant after reconstitution) was used for cation exchange chromatography purification (as described in Example 3).
  • Take 150 ⁇ filtered sample add 0 ⁇ L ⁇ 6 ⁇ Loading Buffer (12% (w/v) SDS, 0.6% (w/v) bromopan blue, 0.3M Tris-HCl pH 6.8, 60% (v/v) glycerol, 5% ( ⁇ / ⁇ ) ⁇ -mercaptoethanol), mix and mix at 80.
  • AKTA explorer 100 preparative liquid phase color transfer system manufactured by GE Healthcare (formerly Amershan Pharmacia).
  • Chromatography medium SP Sepharose 4 Fast Flow (GE Healthcare). Column volume: 5.5cmx20cm
  • Buffer 20 mM calcination buffer ⁇ 8 ⁇ 0, 20 mM DTT
  • the sample was a solution of HPV33N9C-L1 protein having a purity of about 70%, which was filtered through a 0.22 ⁇ m pore size filter obtained in Example 2.
  • the elution procedure was: 400 mM NaCl eluted the heteroprotein, 800 mM NaCl eluted the target protein, and 800 mM NaCl eluted fractions were collected.
  • Buffer 20 mM calcin buffer pH 8.0, 20 mM DTT
  • the sample was: 800 mM NaCl eluted fraction obtained in the previous step, and the NaCl concentration was diluted to 0.5M.
  • the elution procedure was as follows: 500 mM NaCl was used to elute the heteroprotein, and 100 mM NaCl was used to elute the target protein, and the eluted fraction at a concentration of 100 mM NaCl was collected.
  • AKTA explorer 100 preparative liquid phase color transfer system manufactured by GE Healthcare (formerly Amershan Pharmacia).
  • Buffer 20 mM silicic acid buffer pH 8.0, 20 mM DTT.
  • the sample is: The lOOOOmM NaCl elution fraction obtained in the previous step.
  • the elution procedure was as follows: lOOOmM NaCl eluted the heteroprotein, the target protein was eluted with 200 mM NaCl, and the eluted fraction at a concentration of 200 mM NaCl was collected. Take an elution fraction of 150 ⁇ at a concentration of 200 mM NaCl, add 30 L of 6X Loading Buffer, and mix at 80. C water bath lOmin; then ⁇ was electrophoresed in a 10% SDS-polyacrylamide gel at 120 V for 120 min; then the electrophoresis bands were visualized by Coomassie blue staining. The electrophoresis results are shown in Figure 2. The results showed that the purity of the HPV33N9C-L1 protein was greater than 98% after the above purification step.
  • Example 4 Assembly of HPV33N9C-L1 virus-like particles
  • the instrument system was a CENTRASETTE 5 tangential flow system produced by PALL; the molecular weight cut-off of the membrane package was 30 kDa; and the sample was HPV33N9C-L1 with a purity greater than 98% obtained in Example 3.
  • Refolding of the sample Fully exchange the sample buffer with renaturation buffer (50 mM PB (sodium phosphate buffer) pH 6.0, 2 mM CaCl 2 , 2 mM MgCl 2 , 0.5 M NaCl, 0.003% Tween-80) The volume is more than 10 times the original volume of the sample.
  • the tangential flow device was operated at a pressure of 0.5 psi and a tangential flow rate of 10 mL/min. After the renaturation buffer was exchanged, exchange was carried out with storage buffer (20 mM PB (sodium phosphate buffer) pH 6.5, 0.5 M NaCl), and the exchange volume was 4 times or more the sample volume.
  • the tangential flow device was operated at a pressure of 0.5 psi and a tangential flow rate of 25 mL/min. After the exchange was completed, the sample was sterile-filtered using a PALL 0.20 ⁇ filter to obtain HPV33N9C-L1 virus-like particles, which were stored at 4 e C for use.
  • Example 5 Morphological detection of HPV33N9C-L1 VLP and determination of its immunogenicity
  • the instrument used was a 100 kV transmission electron microscope manufactured by JEOL, and the magnification was 100,000 times.
  • the HPV33N9C-L1 virus-like particles obtained in Example 4 were negatively stained with 2% phosphotungstic acid pH 7.0, and fixed on a carbon-coated copper mesh for observation. Electron microscopy As shown in Fig. 3, it can be seen that a large number of virus-like particles having a radius of about 25 nm are uniform in size and appear in a hollow form.
  • the instrument used was a DynaPro MS/X dynamic light scattering instrument (including temperature controller) manufactured by Protein Solutions of the United States, and the algorithm used was the Regulation algorithm.
  • the sample was the HPV33N9C-L1 virus-like particle obtained in Example 4.
  • the sample was filtered through a 0.22 ⁇ m filter and measured. The measurement results are shown in Figure 4. The results show that the hydration molecular dynamics radius of HPV33N9C-L1 VLP is 27.77 nm.
  • HPV is difficult to culture in vitro, and HPV hosts are highly specific, difficult to propagate on hosts other than humans, and lack suitable animal models, in order to quickly assess the immunoprotection of HPV vaccines, effective in vitro development is required. Neutralize the experimental model.
  • HPV pseudovirus is built as follows:
  • Plasmid p33Llh (pAAV vector carrying the nucleotide sequence encoding HPV33 L1 protein (NCBI database, P06416.1)
  • plasmid p33L2h carrier encoding HPV33 L2 protein (NCBI database, P06418.1) was purified by CsCl density gradient centrifugation.
  • Nucleotide sequence of pAAV vector and green fluorescent protein gene
  • the plasmid pN31-EGFP pN31-EGFP and the above pAAV vectors were all given by Professor John T. Schiller of NIH). Methods for purifying plasmids using CsCl density gradient centrifugation are well known in the art, see Molecular Cloning: Third Edition.
  • 293FT cells (Invitrogen) grown in 10 cm cell culture were co-transfected with calcium phosphate transfection method using purified p33Llh, p33L2h, and pN31-EGFP 40 g each.
  • Calcium phosphate transfection methods are well known in the art, see Molecular Cloning: Third Edition.
  • HEPES solution 1 M Hepes per 50 mL of deionized water containing 125 ⁇ L ⁇ i 4 .C stored at pH 7.3
  • 1 mL of 0.5 mol/L CaCl 2 Mix the solution, mix well, then add 2mL 2xHeBS solution (0.28M NaCl (16.36g), 0.05M HEPES (11.9g), 1.5mM Na 2 HP0 4 (0.213g), dissolved in 1000mL deionized water.
  • the infection rate is the percentage of the number of cells in the positive zone of the test cell sample minus the number of uninfected control cell samples in the positive zone.
  • Infection inhibition rate (1 - infection rate of wells added to serum / infection rate of wells not added to serum) ⁇ %.
  • Antibody neutralization titers are defined as: Maximum dilution multiples that achieve infection inhibition rates above 50%. Antibodies that achieve 50% inhibition of infection after 50-fold dilution are considered to have neutralizing ability.
  • mice were used to evaluate the immunoprotective properties of the HPV33 VLP of the present invention.
  • the immunized animals were 8 SPF BALB/c mice aged 4-5 weeks.
  • HPV33N9C-L1 virus-like particles were prepared according to the methods described in Examples 1-4.
  • the granules were diluted to 0.1 mg/ml and then an equal volume of complete Freund's adjuvant (for primary immunization) or an equal volume of incomplete Freund's adjuvant (for booster immunization) was added and mixed well.
  • the immunization schedule was: primary immunization at 0 weeks; enhanced at 2, 4 and 6 weeks.
  • the mode of immunization is intramuscular injection.
  • the initial immunization dose is lO g/only, and the booster dose is lO g/only.
  • the immunized animals were 4 female rabbits of 6 to 8 weeks old (purchased from the Guangxi Provincial Center for Disease Control and Prevention).
  • the HPV33N9C-L1 virus-like particles prepared in Examples 1-4 were diluted to 1.0 mg/ml, and then an equal volume of complete Freund's adjuvant (for primary immunization) or an equal volume of incomplete Freund's adjuvant was added. For boosting immunity), mix evenly.
  • the immunization schedule was: initial immunization at 0 weeks; enhanced at 4, 8 and 12 weeks.
  • the mode of immunization was intramuscular injection.
  • the initial immunization dose was 1.0 mg/mouse
  • the booster immunization dose was 1.0 mg/mouse.
  • HPV33 virus-like particle obtained by the method of the present invention has good immunogenicity and can induce a high titer neutralizing antibody in an animal, thereby being useful as a vaccine for preventing HPV infection.
  • Example 6 Preparation and morphological observation of HPV33N11C-L1, HPV33N14C-L1, HPV33N19C-L1 protein and virus-like particles
  • HPV33 L1 protein with N-terminally truncated 11, 14 or 19 acid groups according to the methods described in Examples 1-3 (the acid sequences are respectively SEQ ID NO: 5, 6, 7; nucleosides are SEQ ID NO: 9, 10, 11), respectively.
  • the purity of these proteins is above 98% (see Figure 7).
  • HPV33N11C-L1, HPV33N14C-L1, HPV33N19C-L1 proteins were assembled into virus-like particles according to the method of Example 4.
  • HPV33N11C-L1, HPV33N14C-L1, and HPV33N19C-L1 virus-like particles were observed by transmission electron microscopy and dynamic light scattering according to the method described in Example 5. The results are shown in Figure 8-13.
  • Figures 8, 9 and 10 show that these truncated proteins form virus-like particles with a radius of about 25 nm, and the particle size is consistent with the theoretical size and uniform.
  • Figures 11, 12 and 13 show that the hydration molecular dynamics of these virus-like particles are around 27 nm and the particle assembly percentage is 100%.
  • HPV33N11C-L1, HPV33N14C-L1, HPV33N19C-L1 virus-like particles obtained by the present invention also have good immunogenicity and can induce high titer in animals. And antibodies, which can be used as a vaccine against HPV infection. While the invention has been described in detail, the embodiments of the invention . The full scope of the invention is indicated by the appended claims and any equivalents thereof.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Virology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明提供了一种截短的人乳头瘤病毒33型L1蛋白,其编码序列和制备方法,以及其组成的病毒样颗粒,含该病毒样颗粒的疫苗和在预防HPV感染及相关疾病中的应用。

Description

截短的人乳头瘤病毒 33型 L1 蛋白 技术领域
本发明涉及分子病毒学和免疫学领域。 具体地, 本发明涉及 一种截短的人乳头瘤病毒 33型 L1蛋白,其编码序列和制备方法, 以及包含其的病毒样颗粒, 所述蛋白和病毒样颗粒可用于预防 HPV (特别是 HPV33 )感染及由 HPV (特别是 HPV33 )感染所 导致的疾病例如宫颈癌等。 本发明还涉及上述蛋白和病毒样颗粒 用于制备药物组合物或疫苗的用途, 所述药物组合物或疫苗用于 预防 HPV (特别是 HPV33 )感染及由 HPV (特别是 HPV33 )感 染所导致的疾病例如宫颈癌等。 背景技术
人乳头瘤病毒 (Human Papillomavirus, HPV)属于乳头瘤病 毒科 (Papillomaviridae)乳头瘤病毒属, 为无包膜 DNA病毒。 该 病毒基因组为默链闭环 DNA, 大小约为 7.2 ~ 8kb,具有 8个开放 阅读框。 该病毒基因组按功能的不同可以分为三个区域: ①早期 区(E), 约 4.5kb, 编码 El、 E2、 E4 ~ E7共 6个与病毒复制, 转 录及转化有关的非结构蛋白; ②晚期区 (L), 约 2.5kb, 编码主要 衣壳蛋白 L1和次要衣壳蛋白 L2; ③长调控区(LCR), 位于 L区 末端与 E区起始端之间, 长约 800 ~ 900bp, 不编码任何蛋白, 含 DNA复制和表达调控元件。 HPV病毒颗粒直径为 45 ~ 55nm, 核 衣壳呈 20面体对称, 有 72个壳微粒, 由 L1及 L2组成。
目前已知的 HPV约有 90多种亚型,在人群中主要引起皮肤, 粘膜的疣状病变。 根据其与肿瘤发生的关系, HPV可分为 3组: ①低或无致癌风险组, 包括 HPV6、 11、 39、 41、 42、 43; ②中 度致癌风险组, 包括 HPV31、 33、 35、 51、 52; ③高度致癌风险 组, 包括 HPV16、 18、 58、 45。
HPV分子流行病学调查证实, 高危型 HPV感染是宫颈癌发 生的重要启动因子。 在所有宫颈癌标本中, HPV DNA检出率高 达 80 %以上。 宫颈癌是一种常见的女性恶性肿瘤, 其发病率仅次 于乳腺癌, 是严重威胁女性健康的杀手。 据统计, 每年世界范围 内约有 490,000例的新发病例,约有 270,000人死于该疾病( Boyle, P., and J. Ferlay. Ann Oncol 2005 , 16:481-8 ) 。 在所有宫颈癌 病例中, 发生于发展中国家的占了约 83 %, 在这些国家中, 宫颈 癌甚至能够占到女性恶性肿瘤的 15 %。 而在发达国家, 这个数字 仅占到 1.5 %。 在撒哈拉以南地区, 中南亚, 拉丁美洲, 东亚均为 宫颈癌的高发区。 我国也属于宫颈癌高发区。 在陕西略阳县, 已 婚妇女中宫颈癌的发病率高达 1026/100000。
有关世界范围内宫颈癌标本中 HPV 型别分布的荟萃分析发 现, 宫颈癌中最常见的 HPV型别依次是 16、 18、 45、 31、 33、 58、 52、 35、 59、 56、 6、 51、 68、 39、 82、 73、 66和 70 (按照 降序 列, Clifford GM, Smith JS, Plummer M, et al. Br J Cancer, 2003, 88(1): 63-73 ) 。 近期一项对中国妇女感染 HPV 型别的调查结果表明,在宫颈癌患者中 HPV33的感染率为 3.6%, 在 HPV16 ( 58.7% )、 HPV18 ( 11.0% )、 HPV58 ( 7.2% )之后, 位于第 4 位 (Y P Bao , N Li , J S Smith and Y L Qiao. International Journal of STD & AIDS , 2008, 19:106-111)。 这 说明 HPV33 在世界范围内的妇女宫颈癌患者中的感染率较高, 是普遍易感染的 HPV型别之一。
目前已上市的 HPV疫苗为 Merck的 Gardasil®及 GSK的 Cervarix®, 上述两种疫苗分别含有 HPV6/11/16/18及 HPV16/18 VLP, 但均不包含在中国及亚洲妇女中普遍易感的 HPV33 型别 VLP。
因此,针对中国以及亚洲等发展中国家妇女安全有效的 HPV 疫苗, 特别是针对 HPV16, 18及 33等高危型别的疫苗, 是有效 预防宫颈癌, 改善广大妇女(特别是我国及亚洲妇女)健康状况 的有效途径。
HPV L1蛋白为主要衣壳蛋白, 分子量为 55-60kDa, 是 HPV 疫苗主要靶蛋白。在多种表达系统中表达的 HPV L1蛋白无需 L2 蛋白辅助即可形成在形态结构上与天然病毒颗粒相似的病毒样颗 粒( Virus-Like Particle, VLP )。 该病毒样颗粒为二十面体立体 对称结构, 由 72个 L1蛋白的五聚体组成。 其保留了病毒颗粒的 天然表位, 具有较强的免疫原性, 可诱导针对同型 HPV 病毒的 中和抗体 (Kirnbauer, R., F. Booy, et al. 1992 Proc Natl Acad Sci U S A 89(24): 12180-4)。 并且, 病毒样颗粒不带有病毒核酸, 无 潜在致癌危险, 具有良好的安全性。 因此, VLP疫苗已成为 HPV 疫苗发展的主要方向。
HPV VLP疫苗研制的关键是能够大量高效制备 VLP样品。 目前较为常用的 VLP表达系统可以分为真核表达系统及原核表 达系统。
常用的真核表达系统有痘病毒表达系统、 昆虫杆状病毒表达 系统、 酵母表达系统。 在真核表达系统中所表达的 HPV L1蛋白 天然构象破坏少, 能自发形成 VLP, 往往只需进行简单的密度梯 度离心即可得到纯化的 VLP, 为纯化工作提供极大的便利。 但是 由于真核表达系统的表达量低, 培养成本高, 给大规模工业化生 产带来了极大困难。 目前已上市的 HPV疫苗 Gardasil®采用了酿 酒酵母表达系统, 其表达量低, 生产成本高, 因此该产品价位偏 高, 影响其广泛应用。
在原核表达系统中利用大肠杆菌表达系统表达 HPV L1蛋白 已有报道。例如已报道利用大肠杆菌表达 HPV16 L1蛋白( Banks, L., G. Matlashewski, et al. (1987). J Gen Virol 68 (Pt 12): 3081-9 )。 但是大肠杆菌表达的 HPV LI蛋白大多失去其天然构象, 不能产 生针对 HPV 的保护抗体。 或者尽管上述蛋白通过包含体纯化, 复性等步骤也可得到 HPV VLP ( Kelsall, S. R. and J. K. Kulski (1995). J Virol Methods 53(1): 75-90 ),但是在复性过程中蛋白损 失量大,得率低, 因此, 难以在大规模生产上应用。 虽然 HPV L1 蛋白也可以在大肠杆菌中以正确构象可溶性地表达, 溶解于菌体 的裂解上清中, 但是其表达量较低, 而且上清中杂蛋白种类多且 量大, 要从中纯化出目的蛋白难度相当大。 虽然也有文献报道通 过 GST融合表达的方式可以增加上清中 L1蛋白的表达量, 而且 有助目的蛋白的纯化(Li, Μ·, T. P. Cripe, et al. (1997). J Virol 71(4): 2988-95 ) , 但融合蛋白的切割往往需要价格昂贵的酶, 依 然无法应用于大规模生产。
因此,本领域仍然需要能够低成本获得且能够诱导针对 HPV 的保护性抗体的 HPV L1蛋白及由其组成的病毒样颗粒, 从而使 大规模工业化生产宫颈癌疫苗成为可能。 发明内容
本发明至少部分基于发明人的出人意料的发现: 利用大肠杆 菌表达系统能大量表达可以诱导针对 HPV33 的中和抗体的截短 的 HPV33 L1蛋白, 该截短的 HPV33 L1蛋白具有高产率, 且经 纯化后纯度可达到 96 %或更高, 并且纯化后的所述蛋白经进一步 处理可得到可诱导针对 HPV33的保护性抗体的病毒样颗粒。 因此,在一个方面,本发明涉及一种截短的 HPV33 L1蛋白或 其变体, 其与野生型 HPV33 L1蛋白相比, N端截短了 9-19个氛基 酸, 例如 9、 10、 11、 12、 13、 14、 15、 16、 17、 18和 19个 ^酸。
在一个优选的实施方案中, 与野生型 HPV33 L1蛋白相比,该 截短的 HPV33 L1蛋白的 N端截短了 9个、 11个、 14个或 19个氛基 酸。
在另一个优选的实施方案中,该截短的 HPV33 L1蛋白(以下 也简称为截短蛋白)具有 SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6或 SEQ ID NO: 7所示的氛基酸序列。 在另一个优选的 实施方案中, 该截短蛋白具有如 SEQ ID NO: 4所示的氛基酸序 列。
在另一个方面, 本发明涉及编码本发明的截短蛋白或其变体 的多核苷酸以及含有该多核苷酸的载体。
可用于插入目的多核苷酸的载体是本领域公知的, 包括但不 限于克隆载体和表达载体。在一个实施方案中,载体是例如质粒, 粘粒, 噬菌体, 柯斯质粒等等。
在另一个方面, 本发明还涉及包含上述多核苷酸或载体的宿 主细胞。 此类宿主细胞包括但不限于, 原核细胞例如大肠杆菌细 胞, 以及真核细胞例如酵母细胞, 昆虫细胞, 植物细胞和动物细 胞(如哺乳动物细胞, 例如小鼠细胞、 人细胞等) 。 本发明的宿 主细胞还可以是细胞系, 例如 293T细胞。
在另一个方面, 本发明涉及一种 HPV33病毒样颗粒, 其中该 病毒样颗粒含有本发明的截短蛋白或其变体, 或者由本发明的截 短蛋白或其变体组成或形成。
在一个优选的实施方案中, 本发明的 HPV33病毒样颗粒包含 与野生型 HPV33 L1蛋白相比, N端截短了 9-19个氛基酸, 例如 9 个、 11个、 14个或 19个氛基酸的截短的 HPV33 L1蛋白, 或由所述 蛋白组成或形成。 在一个特别优选的实施方案中, 本发明的 HPV33病毒样颗粒包含具有 SEQ ID NO: 4, 5, 6或 7所示序列的 截短的 HPV33 L1蛋白, 或由所述蛋白组成或形成。
在另一个方面, 本发明还涉及包含上述截短蛋白或其变体, 或上述多核苷酸或载体或宿主细胞或 HPV33病毒样颗粒的组合 物。 在一个优选的实施方案中, 所述组合物包含本发明的截短蛋 白或其变体。 在另一个优选的实施方案中, 所述组合物包含本发 明的 HPV33病毒样颗粒。
在另一个方面, 本发明还涉及一种药物组合物或疫苗, 其包 含本发明的 HP V33病毒样颗粒, 任选地还包含药学可接受的载体 和 /或赋形剂。本发明的药物组合物或疫苗可以用于预防 HPV (特 别是 HPV33 )感染或由 HPV (特别是 HPV33 )感染所导致的疾病 例如宫颈癌等。
在一个优选的实施方案中, 所述 HPV33病毒样颗粒以预防 HPV感染或宫颈癌有效量存在。 在另一个优选的实施方案中, 本 发明的药物组合物或疫苗还包含至少一种选自下列的病毒样颗粒: HPV6 L1蛋白病毒样颗粒, HPV11 L1蛋白病毒样颗粒, HPV16 L1 蛋白病毒样颗粒, HPV18 L1蛋白病毒样颗粒, HPV31 L1蛋白病 毒样颗粒, HPV45 L1蛋白病毒样颗粒, HPV52 L1蛋白病毒样颗 粒, HPV58 L1蛋白病毒样颗粒; 优选地, 这些病毒样颗粒各自独 立地以预防宫颈癌或者相应 HPV亚型感染有效量存在。
本发明的药物组合物或疫苗可通过本领域公知的方法进行施 用, 例如但不限于通过口服或者注射进行施用。 在本发明中, 特 别优选的施用方式是注射。
在一个优选的实施方案中, 本发明的药物组合物或疫苗以单 位剂量形式进行施用。 例如但不意欲限定本发明, 每单位剂量中 包含的 HPV33病毒样颗粒的量为 5 g - 80 g, 优选 20 g - 40 g。 在另一个方面, 本发明涉及一种获得本发明的截短蛋白的方 法, 其包括利用大肠杆菌表达系统表达本发明的截短蛋白, 然后 将含有该截短蛋白的裂解上清进行纯化处理。
在一个优选实施方案中, 获得本发明的截短蛋白的方法包括 a)在大肠杆菌中表达所述截短蛋白,
b)将表达所述截短蛋白 的 大肠杆菌在盐浓度为 100mM-600mM的溶液中破碎, 分离得到上清液,
c)用水或低盐溶液将 b )获得的上清液的盐浓度降至 lOOmM 或以下, 最低至 0, 并收集沉淀,
d)将 c )获得的沉淀在 150mM - 2500mM盐溶液中重新溶解, 同时加入还原剂, 分离得到溶液, 该溶液中含纯度至少 50 %的截 短的 HPV33 L1蛋白。
更一般性地, 本发明还涉及一种获得 HPV L1蛋白例如本发 明的截短蛋白的方法, 其包括
a)在大肠杆菌中表达编码 HPV L1蛋白的 HPV L1基因, b)将表达 HPV L1 蛋白 的 大肠杆菌在盐浓度为 100mM-600mM的溶液中破碎, 分离得到上清液,
c)用水或低盐溶液将 b )获得的上清液的盐浓度降至 lOOmM 或以下, 最低至 0, 收集沉淀,
d)将 c )获得的沉淀在 150mM - 2500mM盐溶液中重新溶解, 同时加入还原剂, 分离得到溶液, 该溶液中含纯度至少 50 %的 HPV L1蛋白。
本发明还涉及一种获得本发明的 HPV33病毒样颗粒的方法, 其在获得本发明的截短蛋白的^?上, 包括步骤:
e)将纯度至少 50 %的上述截短的 HPV33 L1蛋白进一步通过 色谱层析纯化,
f)将步骤 e)中得到的截短蛋白去除还原剂。
本发明还涉及一种制备疫苗的方法, 其包括将本发明的 HPV33 病毒样颗粒与药学可接受的载体和 /或赋形剂混合, 任选 地还混合一种或多种选自 HPV6, 11, 16, 18, 31 , 45, 52和 58 的 HPV型别的病毒样颗粒。 如上所论述的, 所获得的疫苗可以 用于预防 HPV(特别是 HPV33 )感染或由 HPV(特别是 HPV33 ) 感染所导致的疾病例如宫颈癌等。 在另一个方面, 本发明涉及一种预防 HPV感染或由 HPV感染 所导致的疾病的方法, 其包括将预防有效量的根据本发明的 HPV33病毒样颗粒或药物组合物或疫苗施用给受试者。 在一个优 选的实施方案中, 所述 HPV感染是 HPV33感染。 在另一个优选的 实施方案中, 所述由 HPV感染所导致的疾病包括但不限于, 宫颈 癌。 在另一个优选的实施方案中, 所述受试者是哺乳动物, 例如 人。
在另一个方面, 还涉及根据本发明的截短蛋白或 HPV33病毒 样颗粒在制备药物组合物或疫苗中的用途, 所述药物组合物或疫 苗用于预防 HPV感染或由 HPV感染所导致的疾病。 在一个优选的 实施方案中, 所述 HPV感染是 HPV33感染。 在另一个优选的实施 方案中, 所述由 HPV感染所导致的疾病包括但不限于, 宫颈癌。 本发明中相关术语的说明及解释
在本发明中, 除非另有说明, 否则本文中使用的科学和技术 名词具有本领域技术人员所通常理解的含义。 并且, 本文中所用 的细胞培养、 分子遗传学、 核酸化学、 免疫学实验室操作步骤均 为相应领域内广泛使用的常规步骤。 同时, 为了更好地理解本发 明, 下面提供相关术语的定义和解释。
根据本发明,表述" N端截短了 个 ^酸的蛋白质"是指, 用 起始密码子 (用于起始蛋白质翻译)编码的甲硫氛酸残基置换蛋 白质 N末端的第 1 - X位氨基酸残基所获得的蛋白质。 例如 N端截 短了 9个氛基酸的 HPV33 L1蛋白是指, 用起始密码子编码的甲硫 氨酸残基置换野生型 HPV33 L1蛋白 N末端的第 1 - 9位氛基酸残 基所获得的蛋白质。
根据本发明, 术语"变体"是指这样的蛋白, 其 列与 本发明的截短的 HPV33 L1蛋白(如 SEQ ID NO: 4, 5, 6或 7所示 的蛋白)的氛基酸序列具有一个或多个(例如 1-10个或 1-5个或 1-3 个)氛基酸不同或者具有至少 60%, 80%, 85%, 90%, 95%, 96%, 97% , 98%, 或 99%的同一性, 并且其保留了所述截短蛋 白的必要特性。 此处术语"必要特性"可以是如下特性中的一个或 者多个: 能够诱导针对 HPV33的中和抗体; 能够在大肠杆菌中可 溶性地表达; 利用本发明所涉及的表达纯化方法能够获得高产率 的纯化蛋白。 术语"同一性,,是对核苷酸序列或氛基酸序列的相似 性的量度。 通常将序列排列起来, 以获得最大限度的匹配。 "同一 性"本身具有本领域公知的意义并且可用公开的算法 (例如
BLAST )来计算。
根据本发明,术语"大肠杆菌表达系统"是指由大肠杆菌 (菌株) 与载体组成的表达系统, 其中大肠杆菌 (菌株)来源于市场上可 得到的菌株,例如但不限于: ER2566, BL21(DE3), B834(DE3), BLR(DE3)„ 根据本发明, 术语"载体(vector ) ,,是指, 可将多核苷酸插 入其中的一种核酸运载工具。 当载体能使插入的多核苷酸所编码 的蛋白获得表达时, 载体称为表达载体。 载体可以通过转化, 转 导或者转染导入宿主细胞, 使其携带的遗传物质元件在宿主细胞 中获得表达。 载体是本领域技术人员公知的, 包括但不限于: 质 粒; 噬菌体; 柯斯质粒等等。
根据本发明, 术语"截短的 HPV33 L1 蛋白"是指在野生型 HPV33 L1蛋白的 N端和 /或 C端去掉一个或者多个氛基酸后的蛋 白质, 其中野生型 HPV33 L1蛋白的例子包括但不限于 NCBI数 据库中 P06416.1, ACV84008.1, ACV84011.1 , ACV84012.1 或 ACL12333.1等全长 L1蛋白。
术语"截短的 HPV33 L1蛋白基因片段 "是指这样的基因片段, 其与野生型 HPV33 L1蛋白基因 (cDNA )相比, 在 5'端或 3'端 去掉编码一个或多个氛基酸的核苷酸, 其中野生型 HPV33 L1蛋 白基因的全长序列例如但不限于 NCBI 数据库中如下序列: GO479013.1 , GQ479014.1 , M12732.1 , GQ479012.1 , GQ479015.1 , GQ479016.1 , EU918766.1 , GQ479017.1 , GQ479018.1 或 GQ479019.1等。
根据本发明, 术语"药学可接受的载体和 /或赋形剂 "是指在药 理学和 /或生理学上与受试者和活性成分相容的载体和 /或赋形剂, 其是本领域公知的 (参见例如 Remington's Pharmaceutical Sciences. Edited by Gennaro AR, 19th ed. Pennsylvania: Mack Publishing Company, 1995 ) , 并且包括但不限于: pH调节剂, 表面活性剂, 佐剂, 离子强度增强剂。 例如, pH调节剂包括但 不限于磷酸盐緩冲液; 表面活性剂包括但不限于阳离子, 阴离子 或者非离子型表面活性剂, 例如 Tween-80; 佐剂包括但不限于铝 佐剂 (例如氢氧化铝) , 弗氏佐剂 (例如完全弗氏佐剂) ; 离子 强度增强剂包括但不限于氯化钠。
根据本发明,术语"有效量 "是指能够有效实现预期目的的量。 例如, 预防疾病(例如 HPV感染)有效量是指, 能够有效预防, 阻止, 或延迟疾病 (例如 HPV感染) 的发生的量。 测定这样的 有效量在本领域技术人员的能力范围之内。
根据本发明, 术语"色谱层析"包括但不限于: 离子交换色谱 (例如阳离子交换色谱) 、 疏水相互作用色谱、 吸附层析法(例 如羟基磷灰石色谱 )、凝胶过滤(凝胶排阻 )层析、亲和层析法。
根据本发明, 本发明的截短的 HPV33 L1蛋白优选通过如下 步骤获得: 将表达截短的 HPV33 L1蛋白的大肠杆菌在盐浓度为 100 - 600mM, 优选 200 - 500mM的緩冲液中进行破碎, 离心破 碎溶液, 得到上清液; 用水或低盐浓度(通常低于破碎用的盐浓 度) 的溶液降低所得上清液的盐浓度至盐浓度 lOOmM - OmM, 从而截短的 HPV33 L1蛋白在上清液中沉淀; 将沉淀在含还原剂 及盐浓度为 150 - 2500mM,优选 200mM以上的溶液中重新溶解, 从而分离得到含截短的 HPV33 L1蛋白的溶液, 其中所述蛋白的 纯度为至少 50 %, 优选至少 70 %, 更优选至少 80 %。
可用于本发明的方法中的緩冲液是本领域公知的, 包括但不 限于, Tris緩冲液, 磷酸盐緩冲液, HEPES緩冲液, MOPS緩 冲液等等。
根据本发明, 宿主细胞的破碎可通过本领域技术人员熟知的 各种方法来实现, 包括但不限于匀浆器破碎、 均质机破碎、 超声 波处理、 研磨、 高压挤压、 溶菌酶处理等等。
可用于本发明的方法中的盐包括但不限于酸式盐, 碱式盐, 中性盐, 例如碱金属盐、 碱土金属盐、 铵盐、 盐酸盐、 硫酸盐、 碳酸氢盐、 磷酸盐或磷酸氢盐, 特别是 NaCl、 KC1、 NH4C1、 (NH4)2S04中的一种或几种。 特别优选的盐是 NaCl。 可用于本发 明的方法中的还原剂包括但不限于 DTT, 2 -巯基乙醇, 其用量 包括但不限于 10mM-100mM。
根据本发明的 HPV33 病毒样颗粒可通过如下步骤获得: 将 上述纯度至少 50 %的截短的 HPV33 L1蛋白通过例如色傳层析进 行进一步分离, 得到经纯化的截短蛋白溶液; 去除该溶液中的还 原剂, 得到所述 HPV33 病毒样颗粒。 去除还原剂的方式是本领 域已知的, 包括但不限于, 透析, 超滤或者层析等。 发明的有益效果
目前用于制备 HPV 病毒样颗粒的表达系统可以分为真核表 达系统和原核表达系统。
在真核表达系统中表达的 HPV L1蛋白天然构象破坏少, 能 自发形成 VLP, 往往只需进行简单的纯化过程即可获得具有正确 构象的 VLP。但目前真核表达系统例如杆状病毒表达系统和酵母 表达系统存在表达量低, 培养成本高等缺陷, 给大规模工业化生 产带来了极大困难。
在原核表达系统中, 大肠杆菌表达系统具有培养成本低, 表 达量大的优点。 然而, 在大肠杆菌中表达的 HPV L1蛋白往往失 去正确的天然构象, 以包含体形式表达于沉淀中。 目前对表达于 包含体中的蛋白进行复性依然是一个世界性难题。 复性困难和效 率低下使得从包含体中获得有正确构象的 VLP 难以在大规模生 产中实施, 只能局限于小规模的实验室研究中。 虽然 HPV L1也 可以以正确构象可溶性地表达于大肠杆菌中,但是其表达量低下。 并且, 从包含种类繁多的可溶性蛋白的大肠杆菌裂解上清中纯化 出 HPV LI蛋白也相当困难, 往往需要借助融合表达及亲和层析 等手段, 而这些手段又往往需要昂贵的酶, 因此, 仍然无法实现 工业化生产。
本发明提供的 N端截短的 HPV33 L1蛋白和其制备方法有效 地解决了上述问题。 首先, 本发明使用大肠杆菌表达系统来表达 N端截短的 HPV33 L1蛋白, 确保了其高表达量。 其次, 本发明 采用温和的手段选择性沉淀大肠杆菌裂解上清中的截短蛋白, 然 后采用含盐緩冲液重新溶解截短蛋白, 从而在保持截短蛋白的正 确构象的前提下使蛋白纯度有了显著提高, 并且获得的截短蛋白 溶液可以直接通过色谱层析例如离子交换层析及疏水交换层析进 行进一步纯化, 获得高纯度的目的蛋白 (例如纯度达到 96% ) 。 进一步, 所获得的高纯度截短蛋白可以组装为病毒样颗粒, 并且 该病毒样颗粒可以在体内诱导高滴度的针对 HPV33的中和抗体, 具有良好的免疫原性, 是一种良好的疫苗形式, 可用于预防 HPV33对人体的感染。 由此可见, 本发明具有以下优点: 本发明 的截短蛋白在保留全长 HPV33 L1蛋白的抗原性及颗粒组装能力 的同时, 可在大肠杆菌表达系统中实现大量表达; 本发明所采用 的制备方法无需使用昂贵的酶, 成本低廉; 截短蛋白在纯化过程 中构象没有经过剧烈的变性复性过程, 损失小, 产率高; 截短蛋 白所形成的病毒样颗粒能够诱导高滴度的针对 HPV 的保护性抗 体, 可用于生产疫苗。 因此, 本发明的截短蛋白和其制备方法可 应用于大规模工业化生产, 并且使大规模工业化生产宫颈癌疫苗 成为可能。 下面将结合附图和实施例对本发明的实施方案进行详细描述, 但是本领域技术人员将理解, 下列附图和实施例仅用于说明本发 明, 而不是对本发明的范围的限定。 根据附图和优选实施方案的 下列详细描述, 本发明的各种目的和有利方面对于本领域技术人 员来说将变得显然。 附图说明
图 1显示了在实施例 2的不同步骤中获得的 HPV33N9C-L1 蛋白的 SDS聚丙烯酰胺凝胶电泳的结果。泳道 M:蛋白分子量标 记; 泳道 1: 破菌上清(即, 破碎菌体后离心获得的上清) ; 泳 道 2: 无盐沉淀产物(即, 透析后离心获得的沉淀); 泳道 3: 重 溶后上清(即, 将无盐沉淀产物重新溶解后离心获得的上清) ; 泳道 4: 重溶后沉淀(即, 将无盐沉淀产物重新溶解后离心获得 的沉淀) 。 结果显示, HPV33N9C-L1 蛋白在通过沉淀, 重溶的 步骤之后, 纯度从之前的约 10 %提高到了约 70 % (参见泳道 1 和 3 ) 。
图 2显示了实施例 3中经 HIC (疏水相互作用色谱 ) 纯化获 得的 HPV33N9C-L1的 SDS聚丙烯酰胺凝胶电泳的结果。泳道 M: 蛋白分子量标记; 泳道 1: 用 Butyl Sepharose 4 Fast Flow柱进行 纯化前的样品;泳道 2: Butyl Sepharose 4 Fast Flow柱穿透级分; 泳道 3: Butyl Sepharose 4 Fast Flow柱 200mmol/L NaCl洗脱级 分( ΙΟμΙ )。 结果显示, 经过 Butyl Sepharose 4 Fast Flow柱纯化 后, HPV33N9C-L1蛋白纯度达到 98 %以上 (参见泳道 3 ) 。
图 3显示了实施例 4中所得的 HPV33N9C-L1病毒样颗粒的 透射电镜观察(放大 50,000倍, Bar=0.2 m ) 结果。 视野中可见 大量半径为 25nm左右的病毒样颗粒,颗粒大小与理论大小相符, 且均 一致。
图 4显示了实施例 4中所得的 HPV33N9C-L1病毒样颗粒的 动态光散射观测结果。 结果显示, HPV33N9C-L1 病毒样颗粒的 水化分子动力学半径为 27.77nm, 颗粒组装百分比为 100%。
图 5显示了实施例 5中用 HPV33N9C-L1病毒样颗粒接种小 鼠后不同阶段血清的中和抗体滴度。 在初次免疫 2周后, 中和抗 体滴度即有明显上升; 在经过一次加强免疫后, 中和抗体的滴度 即能达到 105的较高水平。
图 6显示了实施例 5中用 HPV33N9C-L1病毒样颗粒接种兔 子后不同阶段血清的中和抗体滴度。 在初次免疫 1个月后, 中和 抗体滴度即有明显上升; 在经过一次加强免疫后, 中和抗体的滴 度即能达到 106的较高水平。
图 7显示了实施例 6得到的 N端截短了 11个, 14个或 19个 氨基酸的 HPV33 L1蛋白— HPV33N11C-L1 , HPV33N14C-L1 , HPV33N19C-L1 (其 ^^列分别是 SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7 )的 SDS聚丙烯酰胺凝胶电泳的结果。 泳道 M, 蛋白分子量标记; 泳道 1, HPV33N11C-L1蛋白, 上样体积 为 ΙΟμΙ; 泳道 2, HPV33N14C-L1蛋白, 上样体积为 ΙΟμΙ; 泳道 3, HPV33N19C-L1蛋白, 上样体积为 10μ1。 结果显示, 实施例 6得到的蛋白 HPV33N11C-L1 , HPV33N14C-L1 , HPV33N19C-L1 的蛋白纯度均达到了 98 %以上。
图 8显示了实施例 6中所述的 HPV33N11C-L1病毒样颗粒的 透射电镜观察( 50,000 倍, 0.2um ) 结果。 结果显示, 视野中可 见大量半径为 25nm左右的病毒样颗粒, 颗粒大小与理论大小相 符, 且均 一致。
图 9显示了实施例 6中所述的 HPV33N14C-L1病毒样颗粒的 透射电镜观察( 50,000 倍, 0.2um ) 结果。 结果显示, 视野中可 见大量半径为 25nm左右的病毒样颗粒, 颗粒大小与理论大小相 符, 且均 一致。
图 10显示了实施例 6中所述的 HPV33N19C-L1病毒样颗粒 的透射电镜观察( 50,000 倍, 0.2um ) 结果。 结果显示, 视野中 可见大量半径为 25nm左右的病毒样颗粒, 颗粒大小与理论大小 相符, 且均 一致。
图 11显示了实施例 6中所述的 HPV33N11C-L1病毒样颗粒 的动态光散射观测结果。 结果显示, HPV33N11C-L1病毒样颗粒 的水化分子动力学半径为 28.34nm左右,颗粒组装百分比为 100%。
图 12显示了实施例 6中所述的 HPV33N14C-L1病毒样颗粒 的动态光散射观测结果。 结果显示, HPV33N14C-L1病毒样颗粒 的水化分子动力学半径为 26.03nm左右,颗粒组装百分比为 100%。
图 13显示了实施例 6中所述的 HPV33N19C-L1病毒样颗粒 的动态光散射观测结果。 结果显示, HPV33N19C-L1病毒样颗粒 的水化分子动力学半径为 27.11nm左右,颗粒组装百分比为 100%。 具体实施方式
现参照下列意在举例说明本发明 (而非限定本发明) 的实施 例来描述本发明。
除非特别指明, 本发明中所使用的分子生物学实验方法和免 疫检测法, 基本上参照 J. Sambrook等人, 分子克隆: 实验室手 册, 第 2版, 冷泉港实验室出版社, 1989, 以及 F. M. Ausubel 等人, 精编分子生物学实验指南, 第 3版, John Wiley & Sons, Inc., 1995 中所述的方法进行; 限制性内切酶的使用依照产品制 造商推荐的条件。 本领域技术人员知晓, 实施例以举例方式描述 本发明, 且不意欲限制本发明所要求保护的范围。 实施例 1. 具有 SEQ ID NO: 4所示序列的截短的 HPV33 LI 蛋白的表达
HPV33 L1全长基因片段的制备
以从福建省厦门市子宫颈癌病人阴道分泌物中提取的 DNA 为模板, HPV33S: 5,-CAT ATG TCC GTG TGG CGG CCT AG-3' (SEQ ID NO:12)为正向引物, HPV33 R: 5,-GTC GAC TTA TTT TTT AAC CTT TTT GC-3' (SEQ ID NO:13)为反向引物, 在 PCR仪(Biometra, T3 ) 中按照如下条件进行 PCR反应, 制备 HPV33 L1全长基因片段。
Figure imgf000018_0001
在 HPV33阳性的多份标本中,扩增得到大小特异的 1.5kb左 右的产物,经测序获得 3条 HPV33 L1基因序列( SEQ ID ΝΟ:1 , 2和 3 )。 在本实施例中, 示例性地将 SEQ ID NO: 1作为模板, 用于制备编码本发明的截短蛋白的 DNA片段。 截短的 HPV33 L1基因的非融合表达载体的构建
以前一个步骤获得的 HPV33 L1全长基因片段( SEQ ID NO: 1 )为模板, 以 HPV33N9F: 5'-CATATs ACA gTg TAC CTg CCT CCT-3' ( SEQ ID NO: 14 )为正向引物(其 5'端引入限制性内切 酶 Ndel位点 CAT ATG, ATG为大肠杆菌系统中的起始密码子); 以 HPV33R: S'-GTC GAC TTA TTT TTT AAC CTT TTT GC-3' ( SEQ ID NO: 13 )为反向引物 (其 5'端引入限制性内切酶 Sflfl 位点) , 在 PCR热循环仪 ( Biometra T3 ) 中按照如下条件进行 PCR反应。
Figure imgf000019_0001
扩增得到 1.5kb左右的大小特异的 DNA片段。 将该 PCR产 物与商售的 pMD 18-T载体(TAKARA公司生产)连接, 转入大 肠杆菌;提取质粒,经 NdellSaH酶切鉴定,得到插入截短的 HPV33 L1基因的阳性克隆 pMD 18-T-HPV33N9C-Ll e
利用 M13(+)/(-)引物,测得 pMD 18-T-HPV33N9C-L1质粒中 插入的目的片段的核苷酸序列如 SEQ ID NO: 8所示, 其编码的 氛基酸序列如 SEQ ID NO: 4所示。 该序列对应的蛋白质为 N端 被截短 9个氛基酸、 C端未被截短的 HPV33 L1蛋白, 将其命名 为 HPV33N9C-L1。
将上述的 pMD 18-T-HPV33N9C-L1质粒进行 Λ^^ΙΛ^η酶切, 获得 HPV33N9C-L1基因片段。再将该片段与经 iVi^IA^n酶切的 非融合表达载体 pTO-T7 (罗文新等, 生物工程学报, 2000, 16:53-57 )相连接, 转入 ER2566细菌; 提取质粒, NdellSall 酶切 鉴 定得 到 插 入 目 的 片 段 的 阳 性表 达克 隆 pTO-T7-HPV33N9C-Ll。 取 Ιμί的 pTO-T7-HPV33N9C-Ll质粒( 0.15mg/ml )转化 40μί以氯化钙法制备的感受态大肠杆菌 ER2566 (购自新英格兰 生物实验室公司) , 将其涂布于含卡那霉素 (终浓度 25mg/mL, 下同) 的固体 LB培养基(LB培养基成分: 10g/L蛋白胨, 5g/L 酵母粉, 10g/L氯化钠, 下同) , 并 37°C静置培养 10-12小时至 单菌落清晰可辨。 挑取单菌落至含 4mL液体 LB培养基(含卡那 霉素) 的试管, 在 37。C 220转 /分钟下振荡培养 10小时, 从中取 lmL菌液于 -70°C保存。
HPV33N9C-L1蛋白的大量表达
从 -70。C中取出携带重组质粒 pTO-T7-HPV33N9C-Ll的大肠 杆菌菌液, 接种入 50ml含卡那霉素的 LB 液体培养基中, 在 200rpm, 37。C下培养大约 8小时; 然后转接入 10瓶 500ml含卡 那霉素的 LB培养基中 (每瓶接入 5ml菌液), 在 200rpm, 37°C 下培养过夜, 作为种子液。
采用上海保兴生物公司生产的 50L发酵罐进行大规模培养。 校正发酵罐 PH电极, 将 30L LB培养基装入发酵罐, 原位 121°C 灭菌 30min; 校正溶氧电极, 以灭菌后未通气前为零点, 以发酵 时通气后未接种前初始搅拌速度 lOOrpm时为 100%。
补料准备:配制 30%的蛋白胨和酵母骨混合物(20g蛋白胨、 10g酵母骨溶至 100ml ) , 50%的葡萄糖 (50g溶至 100ml), 121。C 灭菌 20min。
次曰将 10瓶种子液共 5L接入发酵罐中,设定温度 37。C, pH 值 7.0, 手动调节搅拌速度及通气量, 维持溶氧在 40%以上。
流加补料:将 50%的葡萄糖和 30%的蛋白胨和酵母骨混合物 按溶质质量比 2: 1的比例混合。 流加速度如下:第一小时: 5%;第二小时: 10%;第三小时:
20%; 第四小时: 40%; 第五小时及以后 60% (以 25mL/min为 100% ) 。
当细菌浓度达到 006。。为 10左右时,将培养温度降至 25。C, 加入 4g IPTG诱导培养 4小时。 终浓度为大约 60 ( OD600 ) , 下 罐, 离心收集菌体。 获得表达了 HPV33N9C-L1蛋白的菌体, 重 大约 2.5kg。 实施例 2. 纯度约 70 %的 HPV33N9C-L1蛋白的获得
按 lg菌体对应 10mL裂解液 (20mM Tris緩冲液, pH7.2, 300mM NaCl)的比例重悬菌体。 采用 APV 均质机 (An Invensys Group产品)以 600bar压力破碎菌体 5次。以 13500rpm (30000g) 离心菌体破碎液 15min, 留取上清(即, 破菌上清) 。 通过 10 % SDS-聚丙烯酰胺凝胶电泳检测上清, 此时上清中 HPV33N9C-L1 的纯度约为 10% (参见图 1, 泳道 1 ) 。
采用 CENTRASETTE 5切向流装置( PALL产品)对上清进 行透析, 所用膜包截留分子量为 30kDa, 透析液为 10mM磷酸盐 緩冲液 pH6.0, 透析体积为三倍上清体积,运行压力为 0.5psi, 流 速为 500mL/min, 切向流速为 200mL/min。
充分透析后, 使用 Beckman J25 高速离心机以 9500rpm (12000g)离心 20min, 收获沉淀(即, 无盐沉淀产物) 。 用 1/10 上清体积的 20mM磚酸盐緩冲液 pH8.0, 20mM DTT, 300mM NaCl重悬沉淀, 搅拌 30min, 然后使用 Beckman J25高速离心 机以 13500rpm (30000g)离心 20min,并收获上清和沉淀(即, 重 溶后沉淀)。 使用 20mM磷酸盐緩冲液 pH8.0, 20mM DTT稀释 该上清至 3倍体积, 以使 NaCl终浓度为 0.1M, 然后使用 0.22μπι 孔径滤膜进行过滤, 所获得的样品 (即, 重溶后上清)用于进行 阳离子交换色谱纯化(如实施例 3所述)。取 150μ 过滤后样品, 加入 0μL· 6Χ Loading Buffer ( 12% (w/v) SDS, 0.6% (w/v)溴盼 蓝, 0.3M Tris-HCl pH 6.8, 60%(v/v) 甘油, 5%(ν/ν) β -巯基乙 醇), 混匀并于 80。C 7j浴 lOmin; 然后取 ΙΟμΙ^于 10 % SDS-聚丙 烯酰胺凝胶中以 120V电压电泳 120min; 然后以考马斯亮兰染色 显示电泳条带。 电泳结果见图 1。 结果显示, HPV33N9C-L1蛋白 在经过沉淀、 重溶的步骤之后, 得到了纯化和富集, 其纯度从之 前的约 10 %提高到了约 70 % (见图 1, 泳道 1和 3 ) 。 实施例 3: HPV33N9C-L1的色谱纯化
HPV33N9C-L1的阳离子交换色谘纯化
仪器系统: GE Healthcare公司 (原 Amershan Pharmacia 公司)生产的 AKTA explorer 100型制备型液相色傳系统。
层析介质: SP Sepharose 4 Fast Flow( GE Healthcare公司)。 柱体积: 5.5cmx20cm„
緩冲液: 20mM磚酸盐緩冲液 ρΗ8·0, 20mM DTT
20mM磚酸盐緩冲液 pH8.0, 20mM DTT, 2M NaCl„ 流速: 25mL/min
检测器波长: 280nm。
样品为实施例 2中获得的经 0.22μπι孔径滤膜过滤的、 纯度 约为 70 %的 HPV33N9C-L1蛋白溶液。
洗脱程序为: 400mM NaCl洗脱杂蛋白, 800mM NaCl洗脱 目的蛋白, 收集 800mM NaCl洗脱级分。
HPV33N9C-L1的 CHT II (羟基磷灰石色谱) 纯化 仪器系统: GE Healthcare公司 (原 Amershan Pharmacia 公司)生产的 AKTA explorer 100型制备型液相色傳系统。
层析介质: CHT- II (购自 Bio - RAD)
柱体积: 5.5cmx20cm
緩冲液: 20mM磚酸盐緩冲液 pH8.0, 20mM DTT
20mM磚酸盐緩冲液 pH8.0, 20mM DTT, 2M NaCl„ 流速: 20m;L/min。
检测器波长: 280nm。
样品为: 前一步碌获得的 800mM NaCl洗脱级分, 将 NaCl 浓度稀释至 0.5M。
洗脱程序为: 500mM NaCl洗脱杂蛋白, lOOOmM NaCl洗脱 目的蛋白, 收集 lOOOmM NaCl浓度时的洗脱级分。
HPV33N9C-L1的 HIC (疏水相互作用色谘) 纯化
仪器系统: GE Healthcare公司 (原 Amershan Pharmacia 公司)生产的 AKTA explorer 100型制备型液相色傳系统。
层析介质: Butyl Sepharose 4 Fast Flow ( GE Healthcare公 司) 。
柱体积: 5.5cmx20cm
緩冲液: 20mM磚酸緩冲液 pH8.0, 20mM DTT。
20mM磚酸緩冲液 ρΗ8·0, 20mM DTT, 2M NaCl„ 流速: 20m;L/min。
检测器波长: 280nm。
样品为: 前一步骤获得的 lOOOmM NaCl洗脱级分。
洗脱程序为: lOOOmM NaCl洗脱杂蛋白, 200mM NaCl洗脱 目的蛋白, 收集 200mM NaCl浓度时的洗脱级分。 取 200mM NaCl浓度时的洗脱级分 150μί, 加入 30 L 6X Loading Buffer, 混匀并于 80。C水浴 lOmin; 然后取 ΙΟμΙ于 10 % SDS-聚丙烯酰胺凝胶中以 120V电压电泳 120min; 然后以考马斯 亮兰染色显示电泳条带。 电泳结果见图 2。 结果显示, 经过上述 纯化步碌后, HPV33N9C-L1蛋白的纯度大于 98 %。 实施例 4: HPV33N9C-L1病毒样颗粒的组装
仪器系统为 PALL生产的 CENTRASETTE 5切向流系统; 膜包截留分子量为 30kDa; 样品为实施例 3所得的纯度大于 98 % 的 HPV33N9C-L1。
样品的复性: 以复性緩冲液(50mM PB (磷酸钠緩冲液) pH 6.0, 2mM CaCl2, 2mM MgCl2, 0.5M NaCl, 0.003% Tween-80 ) 充分交换样品緩冲液, 交换体积为样品原始体积的 10倍以上。切 向流装置的运行压力为 0.5psi, 切向流速度为 10mL/min。在复性 緩冲液交换完后, 用储存緩冲液(20mM PB (磷酸钠緩冲液) pH 6.5, 0.5M NaCl )进行交换, 交换体积为样品体积 4倍以上。 切 向流装置的运行压力为 0.5psi, 切向流速度为 25mL/min。 交换完 毕后,使用 PALL 0.20μπι滤器无菌过滤样品,得到 HPV33N9C-L1 病毒样颗粒, 将其置于 4eC保存备用。 实施例 5: HPV33N9C-L1 VLP的形态学检测及其免疫原性 的测定
HPV33N9C-L1病毒样颗粒的透射电镜观察
使用的仪器为日本电子公司生产的 100kV透射电镜,放大倍 数为 100,000倍。 将实施例 4所得 HPV33N9C-L1病毒样颗粒用 2%磷钨酸 pH7.0负染, 固定于喷炭的铜网上, 进行观察。 电镜结 果见图 3, 其中可见大量半径为 25nm左右的病毒样颗粒, 大小 均匀, 呈现为空心形态。
HPV33N9C-L1病毒样颗粒动态光散射观察
使用的仪器为美国 Protein Solutions 公司生产的 DynaPro MS/X型动态光散射仪 (含温度控制器),使用的算法为 Regulation 算法。 样品为实施例 4所得 HPV33N9C-L1病毒样颗粒。 样品经 0.22μπι 滤膜过滤后进行测量。 测量结果见图 4。 结果显示, HPV33N9C-L1 VLP的水化分子动力学半径为 27.77nm。
HPV33假病毒中和细胞模型的建立
由于 HPV难以在体外进行培养, 而且 HPV宿主特异性强, 难以在人以外的宿主上繁殖, 缺乏合适的动物模型, 因此, 为了 能对 HPV 疫苗的免疫保护性进行快速评估, 需要建立有效的体 外中和实验模型。
假病毒 ( pseudovirions )体外感染模型:利用 HPV VLP可非 特异性包装核酸的特性,通过在细胞内表达 HPV的 L1和 L2蛋白, 通过包裹细胞内的游离体病毒 DNA或外源导入的报告质粒, 组 成 HPV 假病毒 (Yeager, M. D, Aste-Amezaga, M.et al (2000) Virology (278) 570 - 7)。 具体方法包括重组病毒表达系统法及多 质粒共转染方法。 本实施例示例性采用多质粒共转染方法。
HPV假病毒的构建方法如下:
用 CsCl密度梯度离心方法分别纯化质粒 p33Llh (携带编码 HPV33 L1蛋白(NCBI数据库, P06416.1)的核苷酸序列的 pAAV 载体)、 质粒 p33L2h (携带编码 HPV33 L2蛋白(NCBI数据库, P06418.1)的核苷酸序列的 pAAV载体)及带有绿色荧光蛋白基因 的质粒 pN31-EGFP ( pN31-EGFP和上述的 pAAV载体均由 NIH 的 John T.Schiller教授馈赠) 。 利用 CsCl密度梯度离心来纯化 质粒的方法是本领域公知的, 参见《分子克隆: 第三版》 。
使用磷酸钙转染法, 用纯化后的 p33Llh、 p33L2h、 pN31-EGFP各 40 g共转染培育于 10cm细胞培养孤中的 293FT 细胞( Invitrogen )。 磷酸钙转染法是本领域公知的, 参见《分子 克隆: 第三版》 。 简言之, 将 p33Llh、 p33L2h、 pN31-EGFP各 40 g加入 lmL的 HEPES溶液(每 50mL去离子水含有 pH = 7.3 的 1M Hepes 125μL· i 4。C储存)和 lmL的 0.5mol/L CaCl2溶液的 混合溶液中,混匀,然后逐滴加入 2mL 2xHeBS溶液( 0.28M NaCl (16.36g) , 0.05M HEPES (11.9g), 1.5mM Na2HP04 (0.213g) , 溶 解于 lOOOmL去离子水, pH = 6.96, -70。C储存)中, 室温下静置 lmin; 然后将混合液加入培养有 293FT细胞的 10cm细胞培养亚 中, 培养 6hr; 然后弃去原培养液, 加入 10mL新鲜的完全培养 液(Invitrogen公司 ) 。 转染 48hr后, 弃去培养基, 用 PBS清 洗细胞 2次; 然后将细胞刮下收集细胞, 进行细胞计数, 并且每 108个细胞用 lmL裂解液(0.25% Brij58, 9.5mM MgCl2 )重悬。 裂解后, 以 5000g离心 10min, 收集上清, 加入 5M NaCl (终浓 度为 850mM ),从而获得假病毒液,将其分装为小份后置于 -20。C 保存。 抗体中和滴度的测定
将 293FT细胞( Invitrogen )#于 96孔细胞培养板中( 1.5xl04/ 孔) 。 5hr后如下进行中和实验: 将待测的血清样品 (含待测抗 体)分别用 10 % DMEM进行连续倍比稀释, 然后取 50μ 各个经 稀幹的样品分别与 50μί稀幹于 10 % DMEM中的如上制备的假病 毒液混合 ( moi=0.1 ) ; 在 4。C下孵育 lh后, 将混合物分别加入 预铺有 293FT细胞的 96孔细胞培养板中, 并在 37。C培养 72h; 然后先通过荧光观察确定各样品大概的抗体滴度, 再用流式细胞 仪 ( EPICS XL, 美国 Beckman Coulter公司)检测各孔细胞的感 染率, 计算血清的准确抗体滴度。 感染率为待测细胞样品在阳性 区中的细胞数量百分率减去未感染的对照细胞样品在阳性区中的 数量百分率。
感染抑制率 = ( 1 -加入血清的孔的感染率 /未加入血清的孔 的感染率) χΐοο%。
抗体中和滴度的定义为: 达到高于 50 %感染抑制率的最大稀 释倍数。 经 50倍稀释后仍能达到 50 %以上感染抑制率的抗体被 视为具有中和能力。
HPV33 VLP用于免疫动物的免疫保护性的评价
使用小鼠来评价本发明的 HPV33 VLP的免疫保护性。 免疫 用动物为 4-5周龄 SPF级 BALB/c小鼠 8只。 根据实施例 1 - 4 所述方法制备 HPV33N9C-L1 病毒样颗粒。 将该颗粒稀幹至 O.lmg/ml, 然后加入等体积的完全弗氏佐剂 (用于初次免疫)或 等体积的不完全弗氏佐剂 (用于加强免疫) , 混合均匀。 免疫程 序为: 0周时初次免疫; 2, 4和 6周时加强。 免疫方式为肌肉注 射, 初次免疫剂量为 lO g/只, 加强免疫剂量为 lO g/只。
初次免疫后, 每 2周抽取外周静脉血, 分离血清。 然后根据 上述方法检测小鼠血清中针对 HPV33假病毒颗粒的中和抗体滴 度。 检测结果如图 5所示。 结果表明, 根据实施例 1-4所述方法 获得的 HPV33N9C-L1病毒样颗粒具有良好的免疫原性, 可在小 鼠体内诱导高滴度的针对 HPV33的中和抗体,可用作预防 HPV33 感染的有效疫苗。 除了使用弗氏佐剂外, 该疫苗也可使用本领域 公知的其他佐剂, 例如氢氧化铝或磷酸铝佐剂。 还使用兔子来评价本发明的 HPV33 VLP的免疫保护性。 免 疫用动物为 6 ~ 8周龄普通级雌性兔 4只(购自广西省疾病预防与 控制中心) 。 将实施例 1-4所制备的 HPV33N9C-L1病毒样颗粒 稀释至 1.0mg/ml, 然后加入等体积的完全弗氏佐剂 (用于初次免 疫)或等体积的不完全弗氏佐剂 (用于加强免疫) , 混合均匀。 免疫程序为: 0周时初次免疫; 4, 8和 12周时加强。 免疫方式为 肌肉注射, 初次免疫剂量为 l.Omg/只, 加强免疫剂量为 l.Omg/ 只。
初次免疫后, 每 2周抽取外周静脉血, 分离血清。 然后根据 上述方法检测兔子血清中针对 HPV33假病毒颗粒的中和抗体滴 度。 检测结果如图 6所示。 结果表明, 根据实施例 1-4所述方法 获得的 HPV33N9C-L1病毒样颗粒具有良好的免疫原性, 可在兔 子体内诱导高滴度的针对 HPV33的中和抗体,可用作预防 HPV33 感染的有效疫苗。 除了使用弗氏佐剂外, 该疫苗也可使用本领域 公知的其他佐剂, 例如氢氧化铝或磷酸铝佐剂。
以上结果表明, 通过本发明的方法获得的 HPV33 病毒样颗 粒具有良好的免疫原性, 可在动物体内诱导高滴度的中和抗体, 从而可用作预防 HPV感染的疫苗。 实 施 例 6 : HPV33N11C-L1 , HPV33N14C-L1 , HPV33N19C-L1蛋白和病毒样颗粒的制备以及形态学观察
依据实施例 1 - 3描述的方法, 制备和纯化 N端截短了 11 个, 14个或 19个 ^酸的 HPV33 L1蛋白 (其 ^酸序列分别为 SEQ ID NO:5, 6, 7; 核苷 ^^列分别为 SEQ ID NO: 9, 10, 11 ) 。 这些蛋白质的纯度都达到 98 %以上(见图 7 ) 。
依据实施例 4 的方法, 将经纯化的 HPV33N11C-L1, HPV33N14C-L1 , HPV33N19C-L1蛋白组装成病毒样颗粒。
依据实施例 5 描述的方法, 对 HPV33N11C-L1, HPV33N14C-L1 , HPV33N19C-L1病毒样颗粒进行透射电镜观察 和动态光散射观察。 结果示于图 8-13。 图 8, 9和 10显示, 这些 截短蛋白可形成半径为 25nm左右的病毒样颗粒, 颗粒大小与理 论大小相符, 且均匀一致。 图 11, 12和 13显示, 这些病毒样颗 粒的水化分子动力学半径在 27nm左右,颗粒组装百分比为 100%。
另外, 通过使用实施例 5描述的方法可证实, 本发明所获得 的 HPV33N11C-L1 , HPV33N14C-L1 , HPV33N19C-L1病毒样颗 粒同样具有良好的免疫原性, 可在动物体内诱导高滴度的中和抗 体, 从而可用作预防 HPV感染的疫苗。 尽管本发明的具体实施方式已经得到详细的描述, 但本领域 技术人员将理解: 根据已经公开的所有教导, 可以对细节进行各 种修改和变动, 并且这些改变均在本发明的保护范围之内。 本发 明的全部范围由所附权利要求及其任何等同物给出。

Claims

1. 一种截短的 HPV33 L1蛋白或其变体, 其与野生型 HPV33 L1蛋白相比, N端截短了 9-19个氛基酸, 例如 9、 10、 11、 12、 13、 14、 15、 16、 17、 18和 19个 ^酸;
优选地,与野生型 HPV33 L1蛋白相比,该截短的 HPV33 L1 蛋白 N端截短了 9个、 11个、 14个或 19个氛基酸;
优选地,该截短的 HPV33 L1蛋白具有 SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6或 SEQ ID NO: 7所示的 ^^列, 更优选地具有 SEQ ID NO: 4所示的氛基酸序列。
2. 一种分离的核酸, 其编码权利要求 1的截短的 HPV33 L1 蛋白或其变体。
3. 包含权利要求 2的分离的核酸的载体。
4. 包含权利要求 2的分离的核酸和 /或权利要求 3的载体的宿 主细胞。
5. 一种 HPV33病毒样颗粒,其含有权利要求 1的截短蛋白或 其变体, 或者由权利要求 1的截短蛋白或其变体组成。
6. 一种组合物, 其包含权利要求 1的截短的 HPV33 L1蛋白 或其变体, 或权利要求 2的分离的核酸, 或权利要求 3的载体, 或权利要求 4的宿主细胞,或权利要求 5的 HPV33病毒样颗粒。
7. 一种药物组合物或疫苗,其包含权利要求 5的 HPV33病毒 样颗粒, 任选地还包含药学可接受的载体和 /或赋形剂,
优选地, 所述 HPV33病毒样颗粒以预防 HPV感染或宫颈癌 有效量存在;
优选地, 所述药物组合物或疫苗还包含至少一种选自下列的 病毒样颗粒: HPV6 L1蛋白病毒样颗粒, HPV11 L1蛋白病毒样 颗粒, HPV16 L1蛋白病毒样颗粒, HPV18 L1蛋白病毒样颗粒, HPV31 L1蛋白病毒样颗粒, HPV45 L1蛋白病毒样颗粒, HPV52 L1蛋白病毒样颗粒和 HPV58 L1蛋白病毒样颗粒。
8. 获得截短的 HPV33 L1蛋白的方法, 其包括利用大肠杆菌 表达系统表达权利要求 1的截短的 HPV33 L1蛋白, 然后将含有 该蛋白的裂解上清进行纯化处理,
优选地, 所述方法包括步骤:
a)在大肠杆菌中表达所述截短蛋白,
b)将表达所述截短蛋白 的 大肠杆菌在盐浓度为 100mM-600mM的溶液中破碎, 分离得到上清液,
c)用水或低盐溶液将 b )获得的上清液的盐浓度降至 lOOmM 或以下, 最低至 0, 并收集沉淀,
d)将 c )获得的沉淀在 150mM - 2500mM盐溶液中重新溶解, 同时加入还原剂, 分离得到溶液, 该溶液中含纯度至少 50 %的截 短的 HPV33 L1蛋白。
9. 制备权利要求 5的 HPV33病毒样颗粒的方法,其包括步骤: a)将根据权利要求 8的方法获得的截短的 HPV33 L1蛋白通 过色谱层析进行纯化, b)将步骤 a)中得到的截短蛋白去除还原剂。
10. 一种制备疫苗的方法,其包括将权利要求 5的 HPV33病毒 样颗粒或通过权利要求 9的方法获得的 HPV33病毒样颗粒与药 学可接受的载体和 /或赋形剂混合,任选地还混合一种或多种选自 HPV6, 11, 16, 18, 31 , 45, 52和 58的 HPV型别的病毒样颗 粒。
11. 一种预防 HPV感染或由 HPV感染所导致的疾病的方法, 其包括将预防有效量的权利要求 5的 HPV33病毒样颗粒, 或通 过权利要求 9的方法获得的 HPV33病毒样颗粒, 或权利要求 7 的药物组合物或疫苗,或通过权利要求 10的方法获得的疫苗施用 给受试者,
优选地, 所述 HPV感染是 HPV33感染;
优选地, 所述由 HPV感染所导致的疾病是宫颈癌。
12. 权利要求 1的截短的 HPV33 L1蛋白或其变体, 或权利要 求 5的 HPV33病毒样颗粒, 或通过权利要求 8的方法获得的截 短的 HPV33 L1蛋白, 或通过权利要求 9的方法获得的 HPV33 病毒样颗粒在制备药物组合物或疫苗中的用途, 所述药物组合物 或疫苗用于预防 HPV感染或由 HPV感染所导致的疾病,
优选地, 所述 HPV感染是 HPV33感染;
优选地, 所述由 HPV感染所导致的疾病是宫颈癌。
PCT/CN2012/075865 2011-05-25 2012-05-22 截短的人乳头瘤病毒33型l1蛋白 WO2012159562A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112013030150A BR112013030150A2 (pt) 2011-05-25 2012-05-22 proteína l1 hpv33 truncada ou variante da mesma, ácido nucléico isolado, vetor, célula hospedeira, partícula do tipo viral hpv33, composição, composição farmacêutica ou vacina, método para obter uma proteína l1 hpv33 truncada, método para preparar a partícula do tipo viral hpv33, método para preparar uma vacina, método para prevenir a infecção hpv ou uma doença causada pela infecção de hpv e uso da proteína l1 hpv33 truncada ou variante da mesma
DK12788749.5T DK2716653T3 (en) 2011-05-25 2012-05-22 TRUNCATED L1 PROTEIN OF HUMANT PAPILLOMAVIRUS TYPE 33
US14/122,150 US9249193B2 (en) 2011-05-25 2012-05-22 Truncated L1 protein of human papillomavirus type 33
EP12788749.5A EP2716653B1 (en) 2011-05-25 2012-05-22 Truncated human papillomavirus type 33 protein l1

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110136560.6A CN102229660B (zh) 2011-05-25 2011-05-25 截短的人乳头瘤病毒33型l1蛋白
CN201110136560.6 2011-05-25

Publications (1)

Publication Number Publication Date
WO2012159562A1 true WO2012159562A1 (zh) 2012-11-29

Family

ID=44842273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/075865 WO2012159562A1 (zh) 2011-05-25 2012-05-22 截短的人乳头瘤病毒33型l1蛋白

Country Status (6)

Country Link
US (1) US9249193B2 (zh)
EP (1) EP2716653B1 (zh)
CN (1) CN102229660B (zh)
BR (1) BR112013030150A2 (zh)
DK (1) DK2716653T3 (zh)
WO (1) WO2012159562A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102229660B (zh) * 2011-05-25 2015-04-22 厦门大学 截短的人乳头瘤病毒33型l1蛋白
CN103936840B (zh) * 2013-01-18 2019-04-09 北京康乐卫士生物技术股份有限公司 重组的人乳头瘤病毒33型l1蛋白及其用途
CN104211782B (zh) * 2013-06-04 2017-11-17 厦门大学 截短的人乳头瘤病毒45型l1蛋白
CN106399329B (zh) * 2015-08-12 2021-06-11 北京康乐卫士生物技术股份有限公司 33型重组人乳头瘤病毒病毒样颗粒及其制备方法
WO2017092710A1 (zh) * 2015-12-04 2017-06-08 厦门大学 一种人乳头瘤病毒58型l1蛋白的突变体
CN106831959B (zh) * 2015-12-04 2019-11-05 厦门大学 一种人乳头瘤病毒33型l1蛋白的突变体
BR112018011331A2 (pt) * 2015-12-04 2019-04-30 Xiamen Innovax Biotech Co., Ltd. mutante de proteìna l1 de papillomavirus humano tipo 11
GB2548617B (en) * 2016-03-24 2019-10-23 Dyson Technology Ltd Attachment for a handheld appliance
WO2020112720A1 (en) * 2018-11-28 2020-06-04 The General Hospital Corporation T cell-directed anti-cancer vaccines against commensal viruses
WO2021013079A1 (zh) * 2019-07-19 2021-01-28 神州细胞工程有限公司 嵌合的人乳头瘤病毒56型l1蛋白
CN115960178B (zh) * 2022-12-28 2023-09-08 北京康乐卫士生物技术股份有限公司 人乳头瘤病毒hpv59 l1蛋白的表达和类病毒样颗粒及其制备方法
CN116041444B (zh) * 2022-12-28 2023-10-10 北京康乐卫士生物技术股份有限公司 人乳头瘤病毒hpv39 l1蛋白的表达和类病毒样颗粒及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1478790A (zh) * 2002-08-30 2004-03-03 马润林 乳头瘤病毒衣壳蛋白的原核制备和应用
CN101293918A (zh) * 2007-04-29 2008-10-29 北京万泰生物药业股份有限公司 截短的人乳头瘤病毒16型l1蛋白
CN101343314A (zh) * 2007-05-29 2009-01-14 厦门大学 截短的人乳头瘤病毒11型l1蛋白
CN101343315A (zh) * 2007-05-29 2009-01-14 厦门大学 截短的人乳头瘤病毒6型l1蛋白
CN101570571A (zh) * 2007-04-29 2009-11-04 北京万泰生物药业股份有限公司 截短的人乳头瘤病毒18型l1蛋白
CN102229660A (zh) * 2011-05-25 2011-11-02 厦门大学 截短的人乳头瘤病毒33型l1蛋白

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3779175D1 (de) * 1986-03-21 1992-06-25 Pasteur Institut Bestimmte, von einem papillomavirus-genom abgeleitete dns-sequenzen, deren anwendungen fuer in vitro-diagnostische zwecke und die herstellung von antigenzusammensetzungen.
WO2000054730A2 (en) * 1999-03-18 2000-09-21 The President & Fellows Of Harvard College Compositions preparations and uses of human papillomavirus l1 protein
AU2005222776A1 (en) * 2003-12-31 2005-09-29 Genimmune N.V. Inducing cellular immune responses to human papillomavirus using peptide and nucleic acid compositions
US7709010B2 (en) 2007-03-09 2010-05-04 Merck Sharp & Dohme Corp. Papillomavirus vaccine compositions
CN101518647A (zh) * 2008-02-29 2009-09-02 江阴艾托金生物技术有限公司 人乳头瘤病毒预防性疫苗、构建方法及应用
JP6022159B2 (ja) 2008-07-31 2016-11-09 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム 抗hpvワクチン

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1478790A (zh) * 2002-08-30 2004-03-03 马润林 乳头瘤病毒衣壳蛋白的原核制备和应用
CN101293918A (zh) * 2007-04-29 2008-10-29 北京万泰生物药业股份有限公司 截短的人乳头瘤病毒16型l1蛋白
CN101570571A (zh) * 2007-04-29 2009-11-04 北京万泰生物药业股份有限公司 截短的人乳头瘤病毒18型l1蛋白
CN101343314A (zh) * 2007-05-29 2009-01-14 厦门大学 截短的人乳头瘤病毒11型l1蛋白
CN101343315A (zh) * 2007-05-29 2009-01-14 厦门大学 截短的人乳头瘤病毒6型l1蛋白
CN102229660A (zh) * 2011-05-25 2011-11-02 厦门大学 截短的人乳头瘤病毒33型l1蛋白

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
"Remington's Pharmaceutical Sciences", 1995, PENNSYLVANIA: MACK PUBLISHING COMPANY
"The Molecular Cloning Experiment Guide"
BANKS, L.; G. MATLASHEWSKI ET AL., J GEN VIROL, vol. 68, 1987, pages 3081 - 9
BOYLE, P.; J. FERLAY, ANN ONCOL, vol. 16, 2005, pages 481 - 8
CLIFFORD GM; SMITH JS; PLUMMER M ET AL., BR J CANCER, vol. 88, no. 1, 2003, pages 63 - 73
DATABASE EMBL 1 January 1988 (1988-01-01), XP055144120, retrieved from N N N N accession no. 06416 *
F. M. AUSUBEL ET AL.: "Short Protocols in Molecular Biology", 1995, JOHN WILEY & SONS, INC.
KELSALL, S. R.; J. K. KULSKI, J VIROL METHODS, vol. 53, no. 1, 1995, pages 75 - 90
KIRNBAUER, R.; F. BOOY ET AL., PROC NATL ACAD SCI USA, vol. 89, no. 24, 1992, pages 12180 - 4
LI, M.; T. P. CRIPE ET AL., J VIROL, vol. 71, no. 4, 1997, pages 2988 - 95
LUO WENXIN ET AL., CHINESE JOURNAL OF BIOTECHNOLOGY, vol. 16, 2000, pages 53 - 57
SAMBROOK J ET AL.: "Molecular Cloning: A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
See also references of EP2716653A4 *
Y P BAO; N LI; J S SMITH; Y L QIAO., INTERNATIONAL JOURNAL OF STD & AIDS, vol. 19, 2008, pages 106 - 111
YEAGER, M. D; ASTE-AMEZAGA, M. ET AL., VIROLOGY, 2000, pages 570 - 7

Also Published As

Publication number Publication date
CN102229660A (zh) 2011-11-02
US9249193B2 (en) 2016-02-02
BR112013030150A2 (pt) 2016-11-29
EP2716653B1 (en) 2017-04-19
CN102229660B (zh) 2015-04-22
EP2716653A1 (en) 2014-04-09
DK2716653T3 (en) 2017-07-17
US20140147460A1 (en) 2014-05-29
EP2716653A4 (en) 2015-01-21

Similar Documents

Publication Publication Date Title
WO2012159562A1 (zh) 截短的人乳头瘤病毒33型l1蛋白
DK2154147T3 (en) Truncated L1 protein of human papillomavirus 16
US10537629B2 (en) Truncated L1 protein of human papillomavirus type 11
EP2589604B1 (en) Truncated l1 protein of human papillomavirus type 52
US9745351B2 (en) Truncated L1 protein of human papillomavirus type 6
US9738691B2 (en) Truncated L1 protein of human papillomavirus type 58
DK2147926T3 (en) Truncated human papillomavirus type 18 L1 protein

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12788749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012788749

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012788749

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013030150

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 14122150

Country of ref document: US

ENP Entry into the national phase

Ref document number: 112013030150

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131125