WO2012159421A1 - 一种铌酸锂调制器导频信号相位补偿装置及方法 - Google Patents

一种铌酸锂调制器导频信号相位补偿装置及方法 Download PDF

Info

Publication number
WO2012159421A1
WO2012159421A1 PCT/CN2011/082167 CN2011082167W WO2012159421A1 WO 2012159421 A1 WO2012159421 A1 WO 2012159421A1 CN 2011082167 W CN2011082167 W CN 2011082167W WO 2012159421 A1 WO2012159421 A1 WO 2012159421A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium niobate
niobate modulator
phase compensation
signal
pilot signal
Prior art date
Application number
PCT/CN2011/082167
Other languages
English (en)
French (fr)
Inventor
吕书生
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012159421A1 publication Critical patent/WO2012159421A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2096Arrangements for directly or externally modulating an optical carrier

Definitions

  • the invention relates to a lithium niobate modulator control technology in a digital optical fiber transmission system technology, and in particular to a lithium niobate modulator pilot signal phase compensation apparatus and method. Background technique
  • optical phase modulation method can use different phases of the light wave to represent different data signals, so the symbol speed is greatly reduced compared with the conventional optical amplitude modulation method, and the spectral efficiency is significantly improved.
  • optical phase modulation has superior dispersion tolerance and polarization mode dispersion tolerance performance compared to amplitude modulation, and is more suitable for large-capacity, long-distance optical transmission systems.
  • phase modulation is typically required with a lithium niobate modulator. Since the lithium niobate modulator has its own material characteristics, its transmission characteristics, or the bias point changes with temperature and stress, it is necessary to use control technology to make the bias point of the lithium niobate modulator relatively stable.
  • the commonly used bias point control method for lithium niobate modulator is: adding a pilot signal to the lithium niobate modulator, then sampling the backlight detection signal and filtering through the band pass filter, and filtering the obtained signal and the initial pilot signal. Phase discrimination is performed, and when the detected signal and the initial pilot signal are in phase, the lithium niobate modulator is locked to the normal bias point.
  • lithium niobate modulator bias point DC voltage control terminals and high frequency signal input terminals share electrodes inside the modulator, as shown in Figure 1.
  • CFO.IUF, 40 ⁇ R, ⁇ 60 ⁇ , 800Q ⁇ R 2 ⁇ 1200, 5 ⁇ is the control voltage of the DC voltage control terminal of the lithium niobate modulator bias point
  • VRF is the voltage of the high frequency signal input terminal.
  • the so-called DC voltage refers to a DC voltage.
  • the lithium-ion modulator bias point is controlled, and a pilot signal needs to be added to the DC voltage control terminal of the lithium niobate modulator bias point.
  • the frequency of the pilot signal is generally about 500 Hz.
  • the phase shift caused by the internal circuit of the lithium niobate modulator is at most - 21 °, which is mainly caused by the dispersion of the internal resistance network of the lithium niobate modulator. Affects the accuracy of the bias point control of the lithium niobate modulator.
  • a pilot signal phase compensation device for a lithium niobate modulator comprising: a phase compensation unit for compensating for a phase offset generated by an internal circuit network of a lithium niobate modulator bias point.
  • phase compensation unit is located at an output end of the pilot signal added at the voltage control end of the lithium niobate modulator bias point, and is further used for phase generated by the pilot signal in the internal circuit network of the lithium niobate modulator Offset for forward compensation.
  • the device further comprises: a control unit, a digital analog conversion unit and a driving unit;
  • the control unit is configured to control digital-to-analog conversion of the digital-to-analog conversion unit
  • the digital-to-analog conversion unit is configured to generate a pilot signal and a signal for adjusting a bias voltage control voltage of the lithium niobate modulator;
  • the driving unit is configured to: after the phase compensation unit performs phase compensation on the pilot signal generated by the digital-to-analog conversion unit, the signal output by the phase compensation unit, and the adjustment generated by the digital-to-analog conversion unit
  • the signal of the lithium niobate modulator bias point control voltage is calculated and amplified, and the signal obtained by the operation and amplification is input to the bias voltage control terminal of the lithium niobate modulator.
  • the phase compensation unit is specifically implemented by a RC circuit, and the input phase is passed through the capacitor
  • the pilot signal of the bit compensation unit performs delay processing to phase compensate the pilot signal.
  • the driving unit is specifically implemented by using an adding circuit, and the signal output by the phase compensating unit and the signal for adjusting the bias point control voltage of the lithium niobate modulator are operated and amplified by the operational amplifier, and the signal obtained by the operation and amplification is calculated. Enter the lithium niobate modulator bias point voltage control terminal.
  • a method for phase compensation of a pilot signal of a lithium niobate modulator comprising: the phase compensation unit compensating for a phase offset generated by an internal circuit network of a bias point of a lithium niobate modulator.
  • the method further includes: a phase offset generated by the phase compensation unit on the internal circuit network of the lithium niobate modulator Performing forward compensation, the driving unit calculates and amplifies the signal output by the phase compensation unit and the signal for adjusting the bias point control voltage of the lithium niobate modulator, and inputs the calculated and amplified signal into the lithium niobate modulation.
  • the bias point voltage control terminal After the pilot signal is generated and the signal for adjusting the bias point control voltage of the lithium niobate modulator is generated, the method further includes: a phase offset generated by the phase compensation unit on the internal circuit network of the lithium niobate modulator Performing forward compensation, the driving unit calculates and amplifies the signal output by the phase compensation unit and the signal for adjusting the bias point control voltage of the lithium niobate modulator, and inputs the calculated and amplified signal into the lithium niobate modulation.
  • the bias point voltage control terminal After the pilot signal is generated and the signal for
  • the forward compensation of the pilot signal by the phase compensation unit specifically includes: using a RC circuit, delaying processing the pilot signal of the input phase compensation unit by using a capacitor, and performing the delay signal on the pilot signal Phase compensation.
  • the phase compensation unit of the present invention compensates for the phase offset generated by the internal circuit network of the lithium niobate modulator bias point.
  • the phase shift caused by the dispersion of the internal resistance network of the lithium niobate modulator affects the accuracy of the bias point control, and the phase shift generated by the internal circuit network of the lithium niobate modulator bias point can be adopted by the present invention. Compensation is performed, and the bias point is stabilized by the compensation control, so that the bias point of the lithium niobate modulator can be accurately controlled.
  • FIG. 1 is an internal circuit diagram of a prior art common electrode inside a modulator; a DC voltage control terminal and a high frequency signal input terminal of a prior art lithium niobate modulator;
  • FIG. 2 is a schematic structural diagram of a functional unit of an embodiment of a device according to the present invention.
  • 3 is a schematic diagram showing the circuit structure of an example of a phase compensation unit of the apparatus of the present invention
  • 4 is a schematic diagram showing the circuit structure of an example of a driving unit of the apparatus of the present invention.
  • phase compensation unit compensates for the phase offset generated by the internal circuit network of the lithium niobate modulator bias point.
  • a pilot signal phase compensation device for a lithium niobate modulator mainly comprises the following contents:
  • the device comprises a phase compensation unit for compensating for a phase offset generated by an internal circuit network of a lithium niobate modulator bias point, thereby The lithium niobate modulator bias point is accurately controlled to improve the performance of the lithium niobate modulator output signal.
  • phase compensation unit is specifically a phase compensation unit added to the output end of the pilot signal after the pilot signal is added to the DC voltage control terminal of the lithium niobate modulator bias point, and the pilot signal is modulated in lithium niobate.
  • the phase offset generated by the internal circuit network is forward compensated.
  • the device further includes: a control unit, a digital to analog conversion unit, and a driving unit.
  • the control unit is configured to control digital-to-analog conversion of the digital-to-analog conversion unit.
  • a digital-to-analog conversion unit is configured to convert the control unit write data from a digital quantity to an analog quantity, the digital-to-analog conversion unit is configured to generate a pilot signal, and generate a DC control voltage for adjusting a bias point of the lithium niobate modulator signal.
  • a phase compensation unit is added after the pilot signal to compensate for the phase offset generated by the internal circuit network of the lithium niobate modulator bias point.
  • the driving unit is used for calculating and amplifying the output signal of the phase compensation unit and the signal for adjusting the bias voltage DC control voltage of the lithium niobate modulator, and then inputting the obtained signal to the DC voltage control terminal of the lithium niobate modulator bias point , that is, enter the V Bias end of Figure 1.
  • the phase compensating apparatus of the present invention generates a forward compensation network by driving a forward compensation network at a driving end of a lithium niobate modulator bias point DC control voltage, thereby generating a pilot signal in an internal circuit network of a lithium niobate modulator.
  • the phase offset is compensated.
  • the bias point is stabilized by the compensation control, so that the lithium niobate modulator bias point can be accurately controlled.
  • FIG. 2 it is a schematic structural diagram of a functional unit of a phase compensation device according to the present invention.
  • the device comprises: a control unit, a digital to analog conversion unit, a phase compensation unit and a drive unit.
  • the control unit is used to control the digital-to-analog conversion of the digital-to-analog conversion unit, and is implemented by using a prior art, such as a microcontroller (MCU) or a programmable logic (FPGA).
  • the digital-to-analog conversion unit is implemented by using an existing digital-to-analog conversion technology for converting data written by the control unit into a digital quantity, and the digital-to-analog conversion unit includes two digital-to-analog converters, and the digital-to-analog converter 1 To generate the pilot signal V DAC1 , the digital-to-analog converter 2 is used to adjust the lithium niobate modulator bias point DC control voltage V Bias .
  • the control unit and two digital-to-analog converters can be communicated in this embodiment using a Serial Peripheral Interface (SPI).
  • SPI Serial Peripheral Interface
  • the control unit can write data to the two digital-to-analog converters via the SPI.
  • the phase compensation unit is applied to the pilot signal V DAC1 generated by the digital-to-analog converter 1 for compensating for the phase shift generated by the internal circuit network of the lithium niobate modulator bias point.
  • the phase is compensated by the RC network, and the output signal V DITHE R of the phase compensation unit is connected to the driving unit.
  • the RC network is the resistor-capacitor network.
  • the phase compensation by the RC network is: phase shift through the RC network, and the phase shift caused by the inside of the modulator is opposite, just complementary, so that there is no overall phase shift or There is only a small overall phase shift.
  • the driving unit is used for calculating and amplifying the output signal V DITHER of the phase compensating unit and the output signal V Bias of the DC control voltage of the lithium niobate modulator bias point, and realizing a simple adding circuit using the existing operational amplifier, the operational amplifier
  • the output signal V OUT is input to the DC voltage control terminal of the lithium niobate modulator bias point, that is, the V Bias terminal of FIG.
  • Example 1 As shown in Figure 3, the circuit structure of the phase compensation unit is schematic, the phase compensation unit is implemented by a RC circuit, and the pilot signal V DAC1 of the input phase compensation unit is passed through the capacitor. A delay is applied to compensate the phase of V DAC1 ii. Since the RC circuit is easier to implement, the implementation cost is reduced and the cost is low.
  • Example 2 As shown in FIG. 4, a circuit structure diagram of an example of a driving unit is implemented by an adding circuit, an output signal V DIT HER of the phase compensating unit by the operational amplifier, and a bias point DC control voltage of the lithium niobate modulator are adjusted. After the operation and amplification of the output signal V Bias , the obtained signal V OTT output from the operational amplifier is re-inputted to the DC voltage control terminal of the lithium niobate modulator bias point, that is, the V Bias terminal of FIG. 1 .
  • a method for phase compensation of a pilot signal of a lithium niobate modulator comprising: the phase compensation unit compensating for a phase offset generated by an internal circuit network of a bias point of a lithium niobate modulator.
  • the method further includes: a phase offset generated by the phase compensation unit on the internal circuit network of the lithium niobate modulator The forward compensation is performed, and the driving unit calculates and amplifies the signal output by the phase compensation unit and the signal for adjusting the bias point control voltage of the lithium niobate modulator, and inputs the calculated and amplified signal into the lithium niobate. Modulator bias point voltage control terminal.
  • phase compensation unit performing forward compensation on the pilot signal specifically includes: using a RC circuit, delaying processing the pilot signal of the input phase compensation unit by using a capacitor, and using the pilot signal Perform phase compensation.

Abstract

提供一种铌酸锂调制器导频信号相位补偿装置,该装置包括相位补偿单元,用于对铌酸锂调制器偏置点内部电路网络产生的相位偏移进行补偿。还提供一种铌酸锂调制器导频信号相位补偿方法,相位补偿单元对铌酸锂调制器偏置点内部电路网络产生的相位偏移进行补偿。采用本发明的装置及方法,能对铌酸锂调制器偏置点进行准确地控制。

Description

一种铌酸锂调制器导频信号相位补偿装置及方法 技术领域
本发明涉及数字光纤传输系统技术中的铌酸锂调制器控制技术, 尤其 涉及一种铌酸锂调制器导频信号相位补偿装置及方法。 背景技术
近几年来, 随着光传输系统速度的提高和容量的增大, 传统的光幅度 调制方法越来越不能满足密集波分复用系统的要求, 光相位调制方法越来 越受到业界的重视。 光相位调制方法可以用光波的多个不同相位来代表不 同的数据信号, 因此其码元速度相对传统光幅度调制方法大大降低, 频谱 效率得到了显著的提高。 此外, 光相位调制相比幅度调制还具有更加优越 的色散容限和偏振模色散容限性能, 更加适用于大容量、 长距离的光传输 系统。
在光相位调制系统中, 通常需要采用铌酸锂调制器进行相位调制。 而 铌酸锂调制器由于其自身材料的特性、 其传输特性、 或者说偏置点会随温 度和应力发生变化, 因此必须采用控制技术使铌酸锂调制器的偏置点相对 稳定。 目前常用的铌酸锂调制器偏置点控制方法是: 在铌酸锂调制器上外 加导频信号, 然后采样背光检测信号并通过带通滤波器滤波, 将滤波得到 的信号和初始导频信号进行鉴相, 当检测的信号和初始导频信号同相时, 铌酸锂调制器便锁定到了正常的偏置点上。
目前,一些铌酸锂调制器偏置点 DC电压控制端和高频信号输入端在调 制器内部共用电极, 如图 1 所示。 其中, CFO.IUF , 40Ω≤R,≤ 60Ω , 800Q≤R2≤1200 , 5^为铌酸锂调制器偏置点 DC电压控制端的控制电压, VRF为高频信号输入端的电压。 其中, 所谓 DC电压指直流电压。 为了对铌 酸锂调制器偏置点进行控制,需要在铌酸锂调制器偏置点 DC电压控制端加 入导频信号,导频信号的频率一般为 500Hz左右。 当导频信号为 500Hz时, 铌酸锂调制器内部电路网络引起的相位偏移最大为 - 21° , 这主要是由于铌 酸锂调制器内部电阻网络的离散性引起的, 该相位偏移会影响铌酸锂调制 器偏置点控制的准确性。 发明内容
有鉴于此, 本发明的主要目的在于提供一种铌酸锂调制器导频信号相 位补偿装置及方法, 能对铌酸锂调制器偏置点进行准确地控制。
为解决上述技术问题, 本发明的技术方案是这样实现的:
一种铌酸锂调制器导频信号相位补偿装置, 该装置包括: 相位补偿单 元, 用于对铌酸锂调制器偏置点内部电路网络产生的相位偏移进行补偿。
其中, 所述相位补偿单元位于在铌酸锂调制器偏置点电压控制端加入 的导频信号的输出端, 进一步用于对所述导频信号在铌酸锂调制器内部电 路网络产生的相位偏移进行前向补偿。
其中, 该装置还包括: 控制单元、 数字模拟转换单元和驱动单元; 其 中,
所述控制单元, 用于控制数字模拟转换单元的数模转换;
所述数字模拟转换单元, 用于生成导频信号和调节铌酸锂调制器偏置 点控制电压的信号;
所述驱动单元, 用于在所述相位补偿单元对所述数字模拟转换单元生 成的所述导频信号进行相位补偿后, 对相位补偿单元输出的信号、 和数字 模拟转换单元生成的所述调节铌酸锂调制器偏置点控制电压的信号进行运 算和放大, 并将运算和放大后得到的信号输入铌酸锂调制器偏置点电压控 制端。
其中, 所述相位补偿单元具体采用阻容电路实现, 通过电容对输入相 位补偿单元的所述导频信号进行延时处理, 对所述导频信号进行相位补偿。 其中, 所述驱动单元具体采用加法电路实现, 通过运算放大器对相位 补偿单元输出的信号和调节铌酸锂调制器偏置点控制电压的信号进行运算 和放大, 并将运算和放大后得到的信号输入铌酸锂调制器偏置点电压控制 端。
一种铌酸锂调制器导频信号相位补偿方法, 该方法包括: 相位补偿单 元对铌酸锂调制器偏置点内部电路网络产生的相位偏移进行补偿。
其中, 生成导频信号和调节铌酸锂调制器偏置点控制电压的信号后, 该方法还包括: 相位补偿单元对所述导频信号在铌酸锂调制器内部电路网 络产生的相位偏移进行前向补偿, 驱动单元对相位补偿单元输出的信号、 和所述调节铌酸锂调制器偏置点控制电压的信号进行运算和放大, 并将运 算和放大后得到的信号输入铌酸锂调制器偏置点电压控制端。
其中, 所述相位补偿单元对所述导频信号进行前向补偿具体包括: 采 用阻容电路, 通过电容对输入相位补偿单元的所述导频信号进行延时处理, 对所述导频信号进行相位补偿。
本发明的相位补偿单元对铌酸锂调制器偏置点内部电路网络产生的相 位偏移进行补偿。 铌酸锂调制器内部电阻网络的离散性引起的相位偏移, 会影响到偏置点控制的准确性, 而采用本发明能对铌酸锂调制器偏置点内 部电路网络产生的相位偏移进行补偿, 通过补偿控制使偏置点趋于稳定, 因此, 能对铌酸锂调制器偏置点进行准确地控制。 附图说明
图 1为现有技术铌酸锂调制器偏置点 DC电压控制端和高频信号输入端 在调制器内部共用电极的内部电路图;
图 2为本发明装置实施例的功能单元组成结构示意图;
图 3为本发明装置的相位补偿单元一实例的电路结构示意图; 图 4为本发明装置的驱动单元一实例的电路结构示意图。 具体实施方式
本发明的基本思想是: 相位补偿单元对铌酸锂调制器偏置点内部电路 网络产生的相位偏移进行补偿。
一种铌酸锂调制器导频信号相位补偿装置, 主要包括以下内容: 该装置包括相位补偿单元, 用于对铌酸锂调制器偏置点内部电路网络 产生的相位偏移进行补偿, 从而使铌酸锂调制器偏置点得到准确地控制, 能提高铌酸锂调制器输出信号的性能。
进一步的,相位补偿单元具体为在铌酸锂调制器偏置点 DC电压控制端 加入导频信号后, 在导频信号的输出端所增加的相位补偿单元, 对导频信 号在铌酸锂调制器内部电路网络产生的相位偏移进行前向补偿。
进一步的, 该装置还包括: 控制单元、 数字模拟转换单元和驱动单元。 其中, 控制单元用于控制数字模拟转换单元的数模转换。 数字模拟转换单 元用于将控制单元写入数据由数字量转换成模拟量, 该数字模拟转换单元 用于产生导频信号,以及产生用来调节铌酸锂调制器偏置点的 DC控制电压 的信号。 相位补偿单元加在导频信号之后, 用于对铌酸锂调制器偏置点内 部电路网络产生的相位偏移进行补偿。 驱动单元用于对相位补偿单元的输 出信号和调节铌酸锂调制器偏置点 DC控制电压的信号进行运算和放大,之 后将得到的信号输入到铌酸锂调制器偏置点 DC 电压控制端, 即输入图 1 的 VBias端。
综上所述, 本发明的相位补偿装置, 通过在铌酸锂调制器偏置点 DC 控制电压的驱动端增加前向补偿网络, 从而对导频信号在铌酸锂调制器内 部电路网络产生的相位偏移进行补偿。 通过补偿控制使偏置点趋于稳定, 因此, 能对铌酸锂调制器偏置点进行准确地控制。
下面结合附图对技术方案的实施作进一步的详细描述。 装置实施例: 如图 2所示为本发明相位补偿装置的功能单元组成结构 示意图。
该装置包括: 控制单元, 数字模拟转换单元, 相位补偿单元和驱动单 元。
其中, 控制单元, 用于控制数字模拟转换单元的数模转换, 采用现有 技术实现, 如可以采用微控制器(MCU )或者可编程逻辑器(FPGA )来实 现。 数字模拟转换单元, 采用现有数模转换技术实现, 用于将控制单元写 入的数据由数字量转换成模拟量, 该数字模拟转换单元包括两个数字模拟 转换器, 数字模拟转换器 1用于产生导频信号 VDAC1, 数字模拟转换器 2用 来调节铌酸锂调制器偏置点 DC控制电压 VBias。 控制单元和两个数字模拟 转换器, 在本实施例可以采用串行外围设备接口 (SPI, Serial Peripheral Interface )进行通讯, 控制单元可以通过 SPI向两个数字模拟转换器写入数 据。
相位补偿单元加在数字模拟转换器 1产生的导频信号 VDAC1之后,用于 对铌酸锂调制器偏置点内部电路网络产生的相位偏移进行补偿。 本实施例 采用 RC网络对相位进行补偿, 相位补偿单元的输出信号 VDITHER连接到驱 动单元。 其中, RC网络就是电阻电容网络, 用 RC网络对相位进行补偿即 为: 通过 RC网络进行相位偏移, 和调制器内部引起的相位偏移方向相反, 正好互补, 从而使得没有整体相位偏移或仅有很小的整体相位偏移。
驱动单元用于对相位补偿单元的输出信号 VDITHER和调节铌酸锂调制器 偏置点 DC控制电压的输出信号 VBias进行运算和放大, 采用现有的运算放 大器实现简单的加法电路, 运算放大器的输出信号 VOUT输入到铌酸锂调制 器偏置点 DC电压控制端, 即图 1的 VBias端。
实例一: 如图 3 所示, 为相位补偿单元的电路结构示意图, 相位补偿 单元采用阻容电路实现, 通过电容对输入相位补偿单元的导频信号 VDAC1 起延时作用, 以对 VDAC1 ii行相位补偿。 由于阻容电路较容易实现, 因此, 降低了实现成本, 成本低廉。
实例二: 如图 4所示, 为驱动单元一实例的电路结构示意图, 采用加 法电路实现, 通过运算放大器对相位补偿单元的输出信号 VDITHER和调节铌 酸锂调制器偏置点 DC控制电压的输出信号 VBias进行运算和放大后, 将获 得的、 从运算放大器输出的信号 VOTT重新输入到铌酸锂调制器偏置点 DC 电压控制端, 即图 1的 VBias端。
一种铌酸锂调制器导频信号相位补偿方法, 该方法包括: 相位补偿单 元对铌酸锂调制器偏置点内部电路网络产生的相位偏移进行补偿。
进一步的, 生成导频信号和调节铌酸锂调制器偏置点控制电压的信号 后, 该方法还包括: 相位补偿单元对所述导频信号在铌酸锂调制器内部电 路网络产生的相位偏移进行前向补偿, 驱动单元对相位补偿单元输出的信 号、 和所述调节铌酸锂调制器偏置点控制电压的信号进行运算和放大, 并 将运算和放大后得到的信号输入铌酸锂调制器偏置点电压控制端。
进一步的, 所述相位补偿单元对所述导频信号进行前向补偿具体包括: 采用阻容电路, 通过电容对输入相位补偿单元的所述导频信号进行延时处 理, 对所述导频信号进行相位补偿。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种铌酸锂调制器导频信号相位补偿装置, 其特征在于, 该装置包 括: 相位补偿单元, 用于对铌酸锂调制器偏置点内部电路网络产生的相位 偏移进行补偿。
2、 根据权利要求 1所述的装置, 其特征在于, 所述相位补偿单元位于 在铌酸锂调制器偏置点电压控制端加入的导频信号的输出端, 进一步用于 对所述导频信号在铌酸锂调制器内部电路网络产生的相位偏移进行前向补 偿。
3、 根据权利要求 1或 2所述的装置, 其特征在于, 该装置还包括: 控 制单元、 数字模拟转换单元和驱动单元; 其中,
所述控制单元, 用于控制数字模拟转换单元的数模转换;
所述数字模拟转换单元, 用于生成导频信号和调节铌酸锂调制器偏置 点控制电压的信号;
所述驱动单元, 用于在所述相位补偿单元对所述数字模拟转换单元生 成的所述导频信号进行相位补偿后, 对相位补偿单元输出的信号、 和数字 模拟转换单元生成的所述调节铌酸锂调制器偏置点控制电压的信号进行运 算和放大, 并将运算和放大后得到的信号输入铌酸锂调制器偏置点电压控 制端。
4、 根据权利要求 1或 2所述的装置, 其特征在于, 所述相位补偿单元 具体采用阻容电路实现, 通过电容对输入相位补偿单元的所述导频信号进 行延时处理, 对所述导频信号进行相位补偿。
5、 根据权利要求 3所述的装置, 其特征在于, 所述驱动单元具体采用 加法电路实现, 通过运算放大器对相位补偿单元输出的信号和调节铌酸锂 调制器偏置点控制电压的信号进行运算和放大, 并将运算和放大后得到的 信号输入铌酸锂调制器偏置点电压控制端。
6、 一种铌酸锂调制器导频信号相位补偿方法, 其特征在于, 该方法包 括: 相位补偿单元对铌酸锂调制器偏置点内部电路网络产生的相位偏移进 行补偿。
7、 根据权利要求 6所述的方法, 其特征在于, 生成导频信号和调节铌 酸锂调制器偏置点控制电压的信号后, 该方法还包括: 相位补偿单元对所 述导频信号在铌酸锂调制器内部电路网络产生的相位偏移进行前向补偿, 驱动单元对相位补偿单元输出的信号、 和所述调节铌酸锂调制器偏置点控 制电压的信号进行运算和放大, 并将运算和放大后得到的信号输入铌酸锂 调制器偏置点电压控制端。
8、 根据权利要求 6或 7所述的方法, 其特征在于, 所述相位补偿单元 对所述导频信号进行前向补偿具体包括: 采用阻容电路, 通过电容对输入 相位补偿单元的所述导频信号进行延时处理, 对所述导频信号进行相位补 偿。
PCT/CN2011/082167 2011-05-24 2011-11-14 一种铌酸锂调制器导频信号相位补偿装置及方法 WO2012159421A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110135219.9A CN102393574B (zh) 2011-05-24 2011-05-24 一种铌酸锂调制器导频信号相位补偿装置及方法
CN201110135219.9 2011-05-24

Publications (1)

Publication Number Publication Date
WO2012159421A1 true WO2012159421A1 (zh) 2012-11-29

Family

ID=45860925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082167 WO2012159421A1 (zh) 2011-05-24 2011-11-14 一种铌酸锂调制器导频信号相位补偿装置及方法

Country Status (2)

Country Link
CN (1) CN102393574B (zh)
WO (1) WO2012159421A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1462848A2 (en) * 2003-03-27 2004-09-29 Fujitsu Limited Control apparatus and control method for optical modulator
CN101800598A (zh) * 2010-02-08 2010-08-11 北京信息科技大学 新的mz外调制器平衡检测偏置控制方法
CN101846814A (zh) * 2010-03-25 2010-09-29 中兴通讯股份有限公司 调制器的偏置点确定方法和装置
CN101969340A (zh) * 2010-11-03 2011-02-09 武汉邮电科学研究院 一种抑制马赫曾德调制器偏置点漂移的自适应补偿方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5321543A (en) * 1992-10-20 1994-06-14 General Instrument Corporation Apparatus and method for linearizing an external optical modulator
JP2003518641A (ja) * 1999-12-24 2003-06-10 コーニング オーティーアイ インコーポレイテッド アナログ変調の方法及びこの方法を用いる光エミッタ
KR100381014B1 (ko) * 2000-11-01 2003-04-26 한국전자통신연구원 선형 광 변조기를 이용하여 진폭 잡음을 억제시킨 광 세기변조 장치 및 그 방법
US7706696B2 (en) * 2006-05-19 2010-04-27 Alcatel-Lucent Usa Inc. Pilot tone bias control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1462848A2 (en) * 2003-03-27 2004-09-29 Fujitsu Limited Control apparatus and control method for optical modulator
CN101800598A (zh) * 2010-02-08 2010-08-11 北京信息科技大学 新的mz外调制器平衡检测偏置控制方法
CN101846814A (zh) * 2010-03-25 2010-09-29 中兴通讯股份有限公司 调制器的偏置点确定方法和装置
CN101969340A (zh) * 2010-11-03 2011-02-09 武汉邮电科学研究院 一种抑制马赫曾德调制器偏置点漂移的自适应补偿方法

Also Published As

Publication number Publication date
CN102393574B (zh) 2015-07-22
CN102393574A (zh) 2012-03-28

Similar Documents

Publication Publication Date Title
JP3765967B2 (ja) 光送信装置およびこれに用いる光変調器のバイアス電圧制御方法
CN104702113B (zh) 基于频率跟踪的无线输电系统zvs软开关实现装置及方法
CN106209252B (zh) 级联mzm任意点自动偏压控制方法
US20170019183A1 (en) Frequency domain multiplex optical transmission
EP2317672B1 (en) Adjusting device of delay time and method thereof
WO2011116578A1 (zh) 调制器的偏置点确定方法和装置
WO2013174255A1 (zh) 应用于mz调制器的工作点控制装置及方法
WO2010130158A1 (zh) 相干接收机反馈控制方法、装置及系统
CN106646932B (zh) 一种马赫曾德尔强度调制器的直流偏置工作点控制回路
CN110989750B (zh) 应用于光模块中的驱动器控制电路
CN103138760A (zh) 一种超低输入端直流失调的放大器和a/d转换器
WO2007131401A1 (fr) Dispositif et procédé de détection de dispersion, et système de transmission de signaux optiques
WO2012159421A1 (zh) 一种铌酸锂调制器导频信号相位补偿装置及方法
WO2009010007A1 (fr) Procédé, appareil et modulateur optique pour ajustement de phase
CN110855370A (zh) 一种基于stm32处理器的mz调制器阵列偏压控制系统
JP2001027746A (ja) 光送信装置および光・電気回路
CN114063323A (zh) 一种电光调制器最佳偏置点自动控制方法
WO2011066744A1 (zh) 一种偏置控制滤波器及外调制器偏置控制滤波装置
JP5100339B2 (ja) 電力増幅器
JP5353428B2 (ja) 光変調器
CN112019173A (zh) 一种隔离放大器
CN101276067A (zh) 铌酸锂调制器的动态控制方法和装置
JP2908090B2 (ja) 音響光学フィルタ制御方法および装置
CN1568029A (zh) 包络消除与恢复数字功放的同步误差测量方法及装置
CN114002864B (zh) 抑制导频杂散的电光调制器驱动装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11866116

Country of ref document: EP

Kind code of ref document: A1