WO2012158064A1 - Method for producing a coking additive by retarded coking of petroleum residues - Google Patents
Method for producing a coking additive by retarded coking of petroleum residues Download PDFInfo
- Publication number
- WO2012158064A1 WO2012158064A1 PCT/RU2012/000337 RU2012000337W WO2012158064A1 WO 2012158064 A1 WO2012158064 A1 WO 2012158064A1 RU 2012000337 W RU2012000337 W RU 2012000337W WO 2012158064 A1 WO2012158064 A1 WO 2012158064A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coking
- fed
- heated
- additive
- temperature
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B55/00—Coking mineral oils, bitumen, tar, and the like or mixtures thereof with solid carbonaceous material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B57/00—Other carbonising or coking processes; Features of destructive distillation processes in general
- C10B57/04—Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
- C10B57/045—Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition containing mineral oils, bitumen, tar or the like or mixtures thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B57/00—Other carbonising or coking processes; Features of destructive distillation processes in general
- C10B57/04—Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
- C10B57/06—Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition containing additives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G19/00—Refining hydrocarbon oils in the absence of hydrogen, by alkaline treatment
- C10G19/073—Refining hydrocarbon oils in the absence of hydrogen, by alkaline treatment with solid alkaline material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G55/00—Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process
- C10G55/02—Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only
- C10G55/04—Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only including at least one thermal cracking step
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G9/00—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G9/005—Coking (in order to produce liquid products mainly)
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/202—Heteroatoms content, i.e. S, N, O, P
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/02—Gasoline
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/04—Diesel oil
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/06—Gasoil
Definitions
- the invention relates to the field of oil refining, in particular, to the production of petroleum coke delayed coking with a volatile content of more than 15% and less than 25% for use as a coking additive in a coal coking charge.
- a known method of producing a coking additive by delayed coking of oil residues including the supply of raw materials to the coking chamber with a temperature of 450-470 ° C, coking it for 14-24 hours. with a recycling ratio of not more than 1.2 (RF Patent for the invention of JSTs 2400518, class C 10B 55/00, publ. 2010).
- the disadvantage of this method is as follows.
- a coking additive with a high sulfur content is formed, which subsequently enters metallurgical coke and, as a result, adversely affects the quality of cast iron (viscosity increases, filling of molds deteriorates), as well as the quality of steel obtained during redoxing cast iron (steel becomes a breaker).
- fluxes are added to the charge during the smelting of pig iron: calcium and magnesium oxides, which, interacting with sulfur contained in metallurgical coke, convert it to inorganic reaction form:
- Closest to the claimed object is a method of producing petroleum coke by delayed coking of oil residues, which consists in the fact that the feedstock is heated to a temperature of 300-350 ° C, fed to the evaporator for mixing with the recirculate and the formation of secondary raw materials, the secondary raw materials are heated in the reaction furnace to temperature 480-505 ° C and served in a coking chamber, where coke and vapor-liquid coking products are formed, fractionation of the latter in a distillation column with the formation of gas, gasoline, light and heavy g azoyle and bottoms of coking.
- RF Patent for the invention N ° 2209826, CL 10B 55/00, publ. 2003).
- the disadvantage of this method is to obtain the target product with a high sulfur content and a low content of volatile substances.
- the invention is directed to a coking additive with a low sulfur content and a high content of volatile substances. This is achieved by the fact that in the method for producing a coking additive by delayed coking of oil residues, which consists in the fact that After heating, the feedstock is fed to the evaporator for mixing with the recirculate and the formation of secondary raw materials, which are heated in the reaction furnace and fed to the coking chamber, where a coking additive and vapor-liquid coking products are formed, fractionation of the latter in the distillation column to form gas, gasoline, light and heavy gas oil and bottom residue of coking, according to the invention, the bottom residue is mixed with metal oxide and fed into the coking chamber at the same time as heated secondary s raw materials, while the feedstock is heated to a temperature of 250-390 ° C, and secondary raw materials are heated to a temperature of 450-480 ° C.
- the recirculation coefficient is not more than 1, 2. It is advisable to use calcium and / or magnesium oxides as metal oxides. 0 The preferred content of the metal oxide fed to mixing with the bottom residue is 0.5-1.5 of the sulfur content of the feedstock. 1 It is advisable to use heavy coking gas oil as a recirculate. 2 Known laboratory studies in stationary conditions, similar to the coking process in cubes, on the effect of alkaline additives on sulfurous coking raw materials. At the same time, most of the organic sulfur in the coking feedstock interacted with potassium hydroxide and converted it to water-soluble salt, which ensured a decrease in sulfur content. (N.S. Kazanskaya, M.E. Kazakov, E.V.
- the drawing shows the installation diagram illustrating the method. 5
- the proposed method is as follows. 6
- the source of sulfur (primary) raw materials is heated in a furnace 1 to a temperature of 250-390 ° C and served in the evaporator 2, which serves recycle - heavy coking gas oil from the distillation column 3.
- the feedstock (tar mixture of West Siberian and Arlan oil), having a density of 1.025 g / cm, Conradson coking capacity of 24% by weight, sulfur content of 3.21% was coked in a delayed coking unit as follows: 9
- the feedstock was heated in a tube furnace to temperature of 295 ° C, after which it was fed to the evaporator, where it was mixed with heavy coking gas oil as recycle in an amount of 20% for raw materials.
- the resulting secondary raw materials were heated in a furnace to a temperature of 460 ° C and fed into a coking chamber, where a coking additive and vapor-liquid coking products were formed.
- Coking was carried out analogously to example 1, with the only difference being that 0.93 of the sulfur content of the powdered calcium oxide feedstock in the form of lime (or 3% for coking feedstock) was added and mixed into the bottom residue. 2
- Example 3 (by the proposed method).
- Coking was carried out analogously to example 1, with the difference that magnesium oxide was used as an additive in an amount of 1.55 of the sulfur content in the feedstock (or 5% of the feedstock). 3 For comparison, coke was obtained by the prototype method. 4 Example 4 (prototype).
- the proposed method in comparison with the prototype provides a decrease in sulfur in the obtained coking additive to 1.53-2.84% (in the method according to the prototype, the sulfur content in the target product is 3.62%), however, the addition of calcium oxide is more 1.5 of the sulfur content in the feedstock increases the ash content of the coking additive. 7
- the introduction of a coking additive obtained by the proposed method with sulfur already partially bound to an inorganic form into the charge of coking will eliminate overloading the blast furnace for smelting cast iron and, accordingly, reducing the productivity of the target product (cast iron), as is the case with the introduction of flux directly in the smelting process cast iron.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Coke Industry (AREA)
Abstract
The invention relates to the field of petroleum processing, in particular to producing a coking additive in a carbon coking charge, and is directed towards reducing the content of sulphur in the end product. The method consists in that the initial stock is fed after heating into an evaporator for mixing with heavy gas oil as recycle and for forming a secondary stock, which is heated in a reaction furnace and fed into the coking chamber where a coking additive and vapour-liquid products are formed, and the latter are fractionated in a rectification column, forming gas, gasoline, light and heavy gas oils and bottoms. According to the invention, the bottoms are mixed with a metal oxide and fed into the coking chamber simultaneously with the heated secondary stock, wherein the initial stock is heated to a temperature of 250-390°С and the secondary stock to a temperature of 450-480°С, and the recycle coefficient is a maximum of 1.2. It is expedient to use calcium oxides and/or magnesium oxides as the metal oxides.
Description
Способ получения коксующей добавки A method of obtaining a coking additive
замедленным коксованием нефтяных остатков Изобретение относится к области нефтепереработки, в частности, к получению нефтяного кокса замедленным коксованием с содержанием летучих веществ более 15 % и менее 25 % для использования в качестве коксующей добавки в шихту коксования углей. Известен способ получения коксующей добавки замедленным коксованием нефтяных остатков, включающий подачу сырья в камеру коксования с температурой 450-470 °С, коксование его в течение 14-24 час. при коэффициенте рециркуляции не более 1,2 (Патент РФ на изобретение JSTs 2400518, кл. С 10В 55/00, опубл. 2010 г.). Недостаток этого способа заключается в следующем. При коксовании сернистых нефтяных остатков образуется коксующая добавка с высоким содержанием серы, которая в последующем попадает в металлургический кокс и, как следствие, отрицательно сказывается на качестве литейного чугуна (повышается вязкость, ухудшается заполнение форм), а также на качестве стали, полученной при переделке сернистых чугунов (сталь становится красноломкой). Для нейтрализации отрицательного воздействия органической серы, содержащейся в металлургическом коксе, используемом в доменном производстве в качестве топлива и восстановителя, в процессе выплавки чугуна в шихту добавляют флюсы: оксиды кальция и магния, которые, взаимодействуя с содержащейся в металлургическом коксе серой, переводят ее в неорганическую форму по реакции: delayed coking of oil residues The invention relates to the field of oil refining, in particular, to the production of petroleum coke delayed coking with a volatile content of more than 15% and less than 25% for use as a coking additive in a coal coking charge. A known method of producing a coking additive by delayed coking of oil residues, including the supply of raw materials to the coking chamber with a temperature of 450-470 ° C, coking it for 14-24 hours. with a recycling ratio of not more than 1.2 (RF Patent for the invention of JSTs 2400518, class C 10B 55/00, publ. 2010). The disadvantage of this method is as follows. During coking of sulfurous oil residues, a coking additive with a high sulfur content is formed, which subsequently enters metallurgical coke and, as a result, adversely affects the quality of cast iron (viscosity increases, filling of molds deteriorates), as well as the quality of steel obtained during redoxing cast iron (steel becomes a breaker). To neutralize the negative effects of organic sulfur contained in metallurgical coke, used as a fuel and a reducing agent, fluxes are added to the charge during the smelting of pig iron: calcium and magnesium oxides, which, interacting with sulfur contained in metallurgical coke, convert it to inorganic reaction form:
СаО + S + С— CaS I + CO† CaO + S + C— CaS I + CO †
шлак
и выводится в виде шлака. Причем, чем больше содержание серы в металлургическом коксе, тем большее количество флюса следует добавлять в шихту, так как процесс десульфурации целесообразно осуществлять при избытке в шлаке оксида кальция. А необходимость введения большого количества флюса при выплавке чугуна перегружает домну, снижая производительность по чугуну. Наиболее близким к заявляемому объекту является способ получения нефтяного кокса замедленным коксованием нефтяных остатков, заключающийся в том, что исходное сырьё нагревают до температуры 300-350 °С, подают в испаритель для смешивания с рециркулятом и образования вторичного сырья, нагревают вторичное сырье в реакционной печи до температуры 480-505 °С и подают в камеру коксования, где образуются кокс и парожидкостные продукты коксования, фракционирование последних в ректификационной колонне с образованием газа, бензина, лёгкого и тяжёлого газойлей и кубового остатка коксования. В качестве рециркулята используют кубовый остаток коксования (Патент РФ на изобретение N° 2209826, кл. С 10В 55/00, опубл. 2003 г.). Недостаток данного способа заключается в получении целевого продукта с высоким содержанием серы и низким содержанием летучих веществ. Изобретение направлено на получение коксующей добавки с низким содержанием серы и высоким содержанием летучих веществ. Это достигается тем, что в способе получения коксующей добавки замедленным коксованием нефтяных остатков, заключающемся в том, что
исходное сырьё после нагрева подают в испаритель для смешивания с рециркулятом и образования вторичного сырья, которое нагревают в реакционной печи и подают в камеру коксования, где образуются коксующая добавка и парожидкостные продукты коксования, фракционирование последних в ректификационной колонне с образованием газа, бензина, лёгкого и тяжёлого газойлей и кубового остатка коксования, согласно изобретению кубовый остаток смешивают с оксидом металлов и подают в камеру коксования одновременно с подачей в нее нагретого вторичного сырья, при этом исходное сырье нагревают до температуры 250-390 °С, а вторичное сырье - до температуры 450-480 °С. Коэффициент рециркуляции составляет не более 1 ,2. Целесообразно в качестве оксидов металлов использовать оксиды кальция и/или магния. 0 Предпочтительное содержание оксида металла, подаваемого на смешивание с кубовым остатком, составляет 0,5 - 1 ,5 от содержания серы в исходном сырье. 1 Целесообразно в качестве рециркулята использовать тяжелый газойль коксования. 2 Известны лабораторные исследования в стационарных условиях, аналогичных процессу коксования в кубах, по влиянию щелочных добавок на сернистое сырье коксования. При этом большая часть органической серы в исходном сырье коксования взаимодействовала с гидроокисью калия и переводила ее в растворимую в воде соль, что и обеспечивало снижение содержания серы. (Н.С Казанская, М.Е. Казаков, Е.В. Смидович,
E.P. Саркисянц «О свойствах нефтяных коксов, полученных в присутствии гидратов окиси калия». - Известия ВУЗов «Нефть и газ», 1974, N° 6, с. 55- 58). При этом вводилось значительное количество гидрооксида калия, что требовало последующей промывки полученного кокса водой для удаления избытка щелочи. 3 Подача оксида металла в кубовый остаток с последующим вводом полученной смеси непосредственно в камеру коксования одновременно с подачей в нее вторичного сырья, как это имеет место в заявляемом способе, обеспечит по сравнению с прототипом снижение содержания серы в получаемой коксующей добавке вследствие осуществления взаимодействия содержащейся в сырье серы с оксидом металла и образованием неорганической неактивной формы соединения серы. При этом добавление оксида металла менее 0,5 от содержания серы в исходном сырье, нецелесообразно из-за незначительного снижения содержания серы в коксующей добавке, а добавление оксида металла более 1,5 от содержания серы в исходном сырье, нецелесообразно из-за увеличения зольности в получаемой коксующей добавке. 4 На чертеже представлена схема установки, иллюстрирующая способ. 5 Предлагаемый способ осуществляют следующим образом. 6 Исходное сернистое (первичное) сырье нагревают в печи 1 до температуры 250-390 °С и подают в испаритель 2 , куда подают рециркулят - тяжелый газойль коксования из ректификационной колонны 3 . В результате смешивания первичного сырья с рециркулятом образуется вторичное сырье, которое нагревают в реакционной печи 4 до температуры 450-480 °С и подают в камеру коксования 5 , где образуется
коксующая добавка, а также парожидкостные продукты коксования, которые из верхней части камеры 5 по шлемовой трубе поступают в ректификационную колонну 3, где фракционируются с получением газа, бензина, легкого и тяжелого газойлей и кубового остатка. Кубовый остаток выводят из нижней части ректификационной колонны 3 и подают в смесительную емкость 6 , куда подают порошкообразный оксид металла, например, оксид кальция в контролируемом количестве: 0,5 - 1 ,5 от содержания серы в исходном сырье. Полученную смесь подают непосредственно в камеру коксования 5 одновременно с подачей в нее вторичного сырья, где образуется коксующая добавка и парожидкостные продукты коксования. 7 Способ иллюстрируется следующими примерами. 8 Пример 1 (по предлагаемому способу). slag and is displayed as slag. Moreover, the higher the sulfur content in metallurgical coke, the greater the amount of flux should be added to the mixture, since the desulfurization process is advisable to carry out with an excess of calcium oxide in the slag. And the need to introduce a large amount of flux during the smelting of cast iron overloads the blast furnace, reducing the productivity of cast iron. Closest to the claimed object is a method of producing petroleum coke by delayed coking of oil residues, which consists in the fact that the feedstock is heated to a temperature of 300-350 ° C, fed to the evaporator for mixing with the recirculate and the formation of secondary raw materials, the secondary raw materials are heated in the reaction furnace to temperature 480-505 ° C and served in a coking chamber, where coke and vapor-liquid coking products are formed, fractionation of the latter in a distillation column with the formation of gas, gasoline, light and heavy g azoyle and bottoms of coking. As the recirculate using the bottom residue of coking (RF Patent for the invention N ° 2209826, CL 10B 55/00, publ. 2003). The disadvantage of this method is to obtain the target product with a high sulfur content and a low content of volatile substances. The invention is directed to a coking additive with a low sulfur content and a high content of volatile substances. This is achieved by the fact that in the method for producing a coking additive by delayed coking of oil residues, which consists in the fact that After heating, the feedstock is fed to the evaporator for mixing with the recirculate and the formation of secondary raw materials, which are heated in the reaction furnace and fed to the coking chamber, where a coking additive and vapor-liquid coking products are formed, fractionation of the latter in the distillation column to form gas, gasoline, light and heavy gas oil and bottom residue of coking, according to the invention, the bottom residue is mixed with metal oxide and fed into the coking chamber at the same time as heated secondary s raw materials, while the feedstock is heated to a temperature of 250-390 ° C, and secondary raw materials are heated to a temperature of 450-480 ° C. The recirculation coefficient is not more than 1, 2. It is advisable to use calcium and / or magnesium oxides as metal oxides. 0 The preferred content of the metal oxide fed to mixing with the bottom residue is 0.5-1.5 of the sulfur content of the feedstock. 1 It is advisable to use heavy coking gas oil as a recirculate. 2 Known laboratory studies in stationary conditions, similar to the coking process in cubes, on the effect of alkaline additives on sulfurous coking raw materials. At the same time, most of the organic sulfur in the coking feedstock interacted with potassium hydroxide and converted it to water-soluble salt, which ensured a decrease in sulfur content. (N.S. Kazanskaya, M.E. Kazakov, E.V. Smidovich, EP Sargsyants "On the properties of petroleum coke obtained in the presence of potassium oxide hydrates." - Proceedings of the Universities "Oil and Gas", 1974, N ° 6, p. 55-58). In this case, a significant amount of potassium hydroxide was introduced, which required subsequent washing of the obtained coke with water to remove excess alkali. 3 The supply of metal oxide in the still bottom with the subsequent introduction of the resulting mixture directly into the coking chamber simultaneously with the supply of secondary raw materials to it, as is the case in the present method, will provide, in comparison with the prototype, a decrease in sulfur content in the resulting coking additive due to the interaction contained in the raw material sulfur with metal oxide and the formation of an inorganic inactive form of sulfur compounds. Moreover, the addition of metal oxide less than 0.5 of the sulfur content in the feedstock is impractical due to a slight decrease in the sulfur content of the coking additive, and the addition of metal oxide more than 1.5 of sulfur content in the feedstock is impractical due to the increase in ash content in the resulting coking additive. 4 The drawing shows the installation diagram illustrating the method. 5 The proposed method is as follows. 6 The source of sulfur (primary) raw materials is heated in a furnace 1 to a temperature of 250-390 ° C and served in the evaporator 2, which serves recycle - heavy coking gas oil from the distillation column 3. As a result of mixing the primary raw materials with the recycle, secondary raw materials are formed, which are heated in the reaction furnace 4 to a temperature of 450-480 ° C and fed into the coking chamber 5, where a coking additive, as well as vapor-liquid coking products, which from the upper part of the chamber 5 through a helmet tube enter a distillation column 3, where they are fractionated to produce gas, gasoline, light and heavy gas oils, and still bottoms. The bottom residue is removed from the bottom of the distillation column 3 and fed into the mixing tank 6, which serves powdered metal oxide, for example, calcium oxide in a controlled amount: 0.5 - 1, 5 of the sulfur content in the feedstock. The resulting mixture is fed directly to the coking chamber 5 simultaneously with the supply of secondary raw materials to it, where a coking additive and vapor-liquid coking products are formed. 7 The method is illustrated by the following examples. 8 Example 1 (by the proposed method).
Исходное сырье (гудрон смеси западно-сибирской и арланской нефти), имеющее плотность 1,025 г/см , коксуемость по Конрадсону 24 % масс, содержание серы 3,21 % подвергали коксованию на установке замедленного коксования следующим образом: 9 Исходное сырье нагрели в трубчатой печи до температуры 295 °С, после чего подали в испаритель, где оно смешивалось с тяжелым газойлем коксования в качестве рециркулята в количестве 20 % на сырье. Полученное вторичное сырье нагрели в печи до температуры 460 °С и подали в камеру коксования, где образовались коксующая добавка и парожидкостные продукты коксования. Последние по шлемовой трубе подали в нижнюю часть ректификационной камеры, где подвергались фракционированию с образованием газа, бензина, легкого и тяжелого
газойлей и кубового остатка, который был выведен из ректификационной колонны с температурой 390 °С в смесительную емкость, куда также был подан оксид кальция в виде извести в количестве 0,62 от содержания серы в исходном сырье, что составляет 2,0 % на сырье коксования. Полученная смесь подавалась в камеру коксования одновременно с подачей в нее вторичного сырья. 0 В результате коксования выход кокса составил 33,1 %, содержание серы в коксе 2,84 %. По сравнению с коксом, получаемым по способу- прототипу снижение содержания серы в коксе составило 0, 78 % абс. 1 Пример 2 ( по предлагаемому способу). The feedstock (tar mixture of West Siberian and Arlan oil), having a density of 1.025 g / cm, Conradson coking capacity of 24% by weight, sulfur content of 3.21% was coked in a delayed coking unit as follows: 9 The feedstock was heated in a tube furnace to temperature of 295 ° C, after which it was fed to the evaporator, where it was mixed with heavy coking gas oil as recycle in an amount of 20% for raw materials. The resulting secondary raw materials were heated in a furnace to a temperature of 460 ° C and fed into a coking chamber, where a coking additive and vapor-liquid coking products were formed. The latter were fed through the helmet pipe to the bottom of the distillation chamber, where they were fractionated to form gas, gasoline, light and heavy gas oil and bottoms, which was removed from the distillation column with a temperature of 390 ° C into the mixing tank, which was also fed calcium oxide in the form of lime in an amount of 0.62 of the sulfur content in the feedstock, which is 2.0% for coking feedstock . The resulting mixture was fed into the coking chamber simultaneously with the supply of secondary raw materials to it. 0 As a result of coking, the yield of coke was 33.1%, the sulfur content in coke was 2.84%. Compared with coke obtained by the prototype method, the decrease in sulfur content in coke amounted to 0, 78% abs. 1 Example 2 (by the proposed method).
Было проведено коксование аналогично примеру 1 , с той лишь разницей, что в кубовый остаток добавили и перемешали 0,93 от содержания серы в исходном сырье порошкообразного оксида кальция в виде извести (или 3 % на сырье коксования). 2 Пример 3 ( по предлагаемому способу). Coking was carried out analogously to example 1, with the only difference being that 0.93 of the sulfur content of the powdered calcium oxide feedstock in the form of lime (or 3% for coking feedstock) was added and mixed into the bottom residue. 2 Example 3 (by the proposed method).
Было проведено коксование аналогично примеру 1, с той разницей, что в качестве добавки использовали оксид магния в количестве 1,55 от содержания серы в исходном сырье (или 5 % на исходное сырье). 3 Для сравнения был получен кокс по способу-прототипу. 4 Пример 4 (по прототипу). Coking was carried out analogously to example 1, with the difference that magnesium oxide was used as an additive in an amount of 1.55 of the sulfur content in the feedstock (or 5% of the feedstock). 3 For comparison, coke was obtained by the prototype method. 4 Example 4 (prototype).
То же сырье, что и в примере 1 , нагрели в трубчатой печи до температуры 320 °С, после чего подали в испаритель, где оно смешивалось с тяжелым газойлем коксования в качестве рециркулята в количестве 20 % на сырье. Полученное вторичное сырье нагрели в печи до температуры 490 °С и
подали в камеру коксования, где образовались кокс и парожидкостные продукты коксования. Последние по шлемовой трубе подали в нижнюю часть ректификационной камеры, где подвергались фракционированию с образованием газа, бензина, легкого и тяжелого газойлей. 5 Материальный баланс коксования и показатели качества сырья и продуктов коксования по примерам 1 - 4 сведены в таблицу. The same raw materials as in example 1 were heated in a tube furnace to a temperature of 320 ° C, after which they were fed to an evaporator, where it was mixed with heavy coking gas oil as 20% recirculate to the raw material. The resulting secondary raw materials were heated in a furnace to a temperature of 490 ° C and fed into the coking chamber, where coke and vapor-liquid coking products were formed. The latter were fed through the helmet pipe to the lower part of the distillation chamber, where they were fractionated to form gas, gasoline, and light and heavy gas oils. 5 The material balance of coking and quality indicators of raw materials and coking products in examples 1 to 4 are summarized in table.
Содержание летучих веществ в Volatile matter in
коксующей добавке, % 16,8 16,1 15,5 10,1 coking additive,% 16.8 16.1 15.5 10.1
Содержание золы в коксующей Ash content in coking
добавке, % 2,80 3,80 6,50 0,74
6 Как видно из таблицы, предлагаемый способ по сравнению с прототипом обеспечивает снижение серы в получаемой коксующей добавке до 1,53-2,84 % (в способе по прототипу содержание серы в целевом продукте составляет 3,62 %), однако добавление оксида кальция более 1,5 от содержания серы в исходном сырье увеличивает зольность коксующей добавки. 7 При этом введение в шихту коксования полученной предлагаемым способом коксующей добавки с уже частично связанной в неорганическую форму серой исключит перегрузку домны по выплавке чугуна и, соответственно, снижение производительности по целевому продукту (чугуну), как это имеет место при введении флюса непосредственно в процессе выплавки чугуна.
% 2.80 3.80 6.50 0.74 6 As can be seen from the table, the proposed method in comparison with the prototype provides a decrease in sulfur in the obtained coking additive to 1.53-2.84% (in the method according to the prototype, the sulfur content in the target product is 3.62%), however, the addition of calcium oxide is more 1.5 of the sulfur content in the feedstock increases the ash content of the coking additive. 7 In this case, the introduction of a coking additive obtained by the proposed method with sulfur already partially bound to an inorganic form into the charge of coking will eliminate overloading the blast furnace for smelting cast iron and, accordingly, reducing the productivity of the target product (cast iron), as is the case with the introduction of flux directly in the smelting process cast iron.
Claims
Формула изобретения 1. Способ получения коксующей добавки замедленным коксованием нефтяных остатков, заключающийся в том, что исходное сырьё после нагрева подают в испаритель для смешивания с рециркулятом и образования вторичного сырья, которое нагревают в реакционной печи и подают в камеру коксования, где образуются коксующая добавка и парожидкостные продукты коксования, фракционирование последних в ректификационной колонне с образованием газа, бензина, лёгкого и тяжёлого газойлей и кубового остатка коксования, отличающийся тем, что кубовый остаток смешивают с оксидом металлов и подают в камеру коксования одновременно с подачей нагретого вторичного сырья, при этом исходное сырье нагревают до температуры 250-390 °С, вторичное - до температуры 450-480 °С, а коэффициент рециркуляции составляет не более 1,2. 2. Способ по п. 1 , отличающийся тем, что в качестве оксидов металлов используют оксиды кальция и/или магния. 3. Способ по п.п. 1 или 2, отличающийся тем, что содержание оксида металла, подаваемого на смешивание с кубовым остатком, предпочтительно составляет 0,5-1,5 от содержания серы в исходном сырье. 4. Способ по п. 1 , отличающийся тем, что в качестве рециркулята используют тяжелый газойль коксования.
The claims 1. A method of producing a coking additive by delayed coking of oil residues, which consists in the fact that the raw material after heating is fed to the evaporator for mixing with the recirculate and the formation of secondary raw materials, which are heated in the reaction furnace and fed into the coking chamber, where the coking additive is formed and vapor-liquid coking products, fractionation of the latter in a distillation column with the formation of gas, gasoline, light and heavy gas oil and bottoms coking residue, characterized in that the bottom residue is mixed with metal oxide and fed into the coking chamber simultaneously with the supply of heated secondary raw materials, while the feed is heated to a temperature of 250-390 ° C, the secondary to a temperature of 450-480 ° C, and the recirculation coefficient is not more than 1.2 . 2. The method according to p. 1, characterized in that as the metal oxides using oxides of calcium and / or magnesium. 3. The method according to p. 1 or 2, characterized in that the content of the metal oxide supplied for mixing with the bottom residue is preferably 0.5-1.5 of the sulfur content in the feedstock. 4. The method according to p. 1, characterized in that the recirculate use heavy coking gas oil.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2011120048 | 2011-05-19 | ||
RU2011120048/05A RU2469066C1 (en) | 2011-05-19 | 2011-05-19 | Method for obtaining coking additive by slow coking of oil residues |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012158064A1 true WO2012158064A1 (en) | 2012-11-22 |
Family
ID=47177173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/RU2012/000337 WO2012158064A1 (en) | 2011-05-19 | 2012-04-27 | Method for producing a coking additive by retarded coking of petroleum residues |
Country Status (3)
Country | Link |
---|---|
EA (1) | EA201200588A3 (en) |
RU (1) | RU2469066C1 (en) |
WO (1) | WO2012158064A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2933315A1 (en) * | 2014-04-14 | 2015-10-21 | Obshhestvo S Ogranichennoi Otvetstvennost'yu "Promintekh" | Production method for a modifying coking additive by delayed coking of residue oil |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2637965C1 (en) * | 2016-11-02 | 2017-12-08 | Общество С Ограниченной Ответственностью "Промышленные Инновационные Технологии Национальной Коксохимической Ассоциации" (Ооо "Проминтех Нка") | Oil coking additive |
RU2634019C1 (en) * | 2016-12-07 | 2017-10-23 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Башкирский государственный университет" | Method of delayed coking of oil residues |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4661240A (en) * | 1979-06-08 | 1987-04-28 | Alberta Research Council | Low sulfur coke using dispersed calcium |
RU2209826C1 (en) * | 2002-08-06 | 2003-08-10 | ГУП "Башгипронефтехим" | Petroleum coke production process |
RU2400518C1 (en) * | 2009-04-08 | 2010-09-27 | Общество с ограниченной ответственностью "РБА-Оптима"(ООО "РБА-Оптима") | Procedure for production of coking additive by retarded coking |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2566121C (en) * | 2004-05-14 | 2012-04-17 | Exxonmobil Research And Engineering Company | Delayed coking process for producing free-flowing coke using polymeric additives |
-
2011
- 2011-05-19 RU RU2011120048/05A patent/RU2469066C1/en active IP Right Revival
-
2012
- 2012-04-27 WO PCT/RU2012/000337 patent/WO2012158064A1/en active Application Filing
- 2012-05-12 EA EA201200588A patent/EA201200588A3/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4661240A (en) * | 1979-06-08 | 1987-04-28 | Alberta Research Council | Low sulfur coke using dispersed calcium |
RU2209826C1 (en) * | 2002-08-06 | 2003-08-10 | ГУП "Башгипронефтехим" | Petroleum coke production process |
RU2400518C1 (en) * | 2009-04-08 | 2010-09-27 | Общество с ограниченной ответственностью "РБА-Оптима"(ООО "РБА-Оптима") | Procedure for production of coking additive by retarded coking |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2933315A1 (en) * | 2014-04-14 | 2015-10-21 | Obshhestvo S Ogranichennoi Otvetstvennost'yu "Promintekh" | Production method for a modifying coking additive by delayed coking of residue oil |
Also Published As
Publication number | Publication date |
---|---|
RU2469066C1 (en) | 2012-12-10 |
EA201200588A3 (en) | 2013-02-28 |
EA201200588A2 (en) | 2012-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2013103446A (en) | METHOD FOR EXTRACTION OF METALS FROM ALUMINUM-CONTAINING AND TITAN-CONTAINING ORE AND RESIDUAL BREED | |
RU2495078C2 (en) | Method of producing modifying coking additive by delayed coking of oil residues (versions) | |
RU2006126091A (en) | METHOD FOR PRODUCING UNCLEANED PRODUCT | |
WO2012158064A1 (en) | Method for producing a coking additive by retarded coking of petroleum residues | |
CN109182733B (en) | Smelting process of magnesium-containing hazardous waste/solid waste | |
RU2400518C1 (en) | Procedure for production of coking additive by retarded coking | |
RU2410409C1 (en) | Method for obtaining oil coke by slow coking | |
WO2015038023A1 (en) | Method for producing a modified coking additive by means of delayed coking of petroleum residues (variants) | |
US2194574A (en) | Process for producing gasoline and gas | |
CN102892863B (en) | Method for producing a coking additive by delayed coking | |
EP3498805A1 (en) | Process for producing modified tar | |
RU2451056C1 (en) | Method of neutralising effect of sulphur when producing coke components | |
US2970956A (en) | Treating hydrocarbon oils | |
RU2495088C1 (en) | Procedure for processing of oil residues and oil sludge by delayed coking | |
EA201700186A1 (en) | METHOD OF OBTAINING COKE | |
JP2015203112A (en) | Production method (modification) of reforming coking additive by delayed coking of residue oil | |
RU2496852C1 (en) | Method for obtaining coking additive by delayed coking | |
RU2469068C1 (en) | Coke obtaining method | |
RU2613501C1 (en) | Charge for metallurgical coke production | |
EP3175003A1 (en) | Methods for utilizing olefin coke in a steel making process and products made therefrom | |
JP4912042B2 (en) | Coke production method | |
RU2496895C1 (en) | Method of waelz process of zinc cakes | |
RU2733610C1 (en) | Carbon-containing innovative product and method for production thereof | |
CN108410483A (en) | A kind of coking coal and preparation method thereof | |
RU2565715C1 (en) | Method of decelerated coking of oil residues |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12786691 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12786691 Country of ref document: EP Kind code of ref document: A1 |