WO2012157681A1 - Process for manufacturing group of detergent granules - Google Patents

Process for manufacturing group of detergent granules Download PDF

Info

Publication number
WO2012157681A1
WO2012157681A1 PCT/JP2012/062536 JP2012062536W WO2012157681A1 WO 2012157681 A1 WO2012157681 A1 WO 2012157681A1 JP 2012062536 W JP2012062536 W JP 2012062536W WO 2012157681 A1 WO2012157681 A1 WO 2012157681A1
Authority
WO
WIPO (PCT)
Prior art keywords
detergent
anionic surfactant
foam
surfactant composition
mass
Prior art date
Application number
PCT/JP2012/062536
Other languages
French (fr)
Japanese (ja)
Inventor
中山 高志
浩章 割田
今泉 義信
将寛 山口
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to CN201280023908.3A priority Critical patent/CN103547665B/en
Publication of WO2012157681A1 publication Critical patent/WO2012157681A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/146Sulfuric acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/0082Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
    • C11D11/0088Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads the liquefied ingredients being sprayed or adsorbed onto solid particles

Definitions

  • the present invention relates to a method for producing a detergent particle group using a container rotating mixer, a foam of an anionic surfactant composition, and a multi-fluid nozzle.
  • high bulk density detergents greater than 690 g / L
  • medium bulk density detergents 400 to 690 g / L
  • low bulk density detergents 250 g / L to 400 g. / L
  • liquid detergents for example, high bulk density detergents are often used in Japan, but there are also many demands for medium and low bulk density detergents in Asia, Oceania and Europe.
  • Patent Document 1 discloses a method of continuously producing a detergent composition using a surfactant paste and a dried detergent material in a high speed mixer / medium speed mixer / dryer.
  • Patent Document 2 discloses a method for continuously producing a detergent composition while recirculating fine particles of a surfactant paste and a dried detergent raw material with a high speed mixer / medium speed mixer / conditioning device.
  • Patent Document 1 it is difficult to adjust the particle size in the manufacturing method of Patent Document 1, and the manufacturing method of Patent Document 2 uses a manufacturing method in which fine particles are recirculated in order to adjust the particle size, which is a manufacturing method with low productivity. . Therefore, there is a demand for a production method that can easily obtain a detergent particle group having a required particle size with a high yield. Furthermore, all of these patent documents provide a method for increasing the bulk density of detergent particles, and are not suitable as a method for producing a group of medium and low bulk density detergent particles.
  • Patent Document 3 discloses a method for producing surfactant granules by introducing a foam of a surfactant into a mixer as a production method for reducing or not using spray drying.
  • Patent Document 3 is insufficient as a production method for obtaining detergent particles in good yield.
  • the present invention is a method for producing detergent particles having a step of granulating a powder raw material for detergent using a container rotating mixer,
  • the present invention relates to a method for producing a detergent particle group in which a foam of an anionic surfactant composition is sprayed into the container rotary mixer using a multi-fluid nozzle to granulate the detergent powder raw material. .
  • the present invention relates to providing a method for producing a medium / low bulk density detergent particle group containing an anionic surfactant with high yield without using spray drying.
  • a detergent particle group having a medium to low bulk density can be obtained with good yield.
  • the medium and low bulk density detergent particles obtained in this way also have the effect of exhibiting high solubility.
  • One of the features of the present invention is that the powder raw material for detergent is granulated using a rotating container mixer.
  • the granulation method using such a mixer is a non-consolidated granulation method.
  • the anionic surfactant composition added to such a mixer does not progress in granulation unless the adhesiveness when it comes into contact with the powder is strong, the adhesiveness develops when it comes into contact with the powder. There is a need.
  • a multi-fluid nozzle such as a two-fluid nozzle
  • a foam of an anionic surfactant composition that develops an adhesive property when it comes into contact with the powder
  • it is supplied into the container rotary mixer.
  • uniform granulation can be achieved while suppressing the formation of coarse particles.
  • the foam of such an anionic surfactant composition is made into fine droplets in advance using a multi-fluid nozzle so that the anionic surfactant composition can be obtained even in a container-rotating mixer. It is considered that high dispersion of the foam can be achieved and a large liquid mass forming coarse particles is not generated. Therefore, detergent particles can be produced in a high yield by adding a foam of an anionic surfactant composition that exhibits adhesiveness when it comes into contact with the powder into a rotating container mixer using a multi-fluid nozzle. can do.
  • one of the features of the present invention is that the foam of the anionic surfactant composition is sprayed using a multi-fluid nozzle.
  • the anionic surfactant composition When the anionic surfactant composition is made into a foam, it not only exhibits adhesiveness when in contact with the powder, but also reduces the specific gravity. When such a foam is sprayed using a multi-fluid nozzle, fine droplets having a reduced specific gravity are generated and the number thereof is increased. As a result, the volume of the anionic surfactant composition per detergent particle increases in the granulation with the detergent powder raw material, and the anionic surfactant composition is a foam. Since the specific gravity is reduced, the density per detergent particle is reduced as compared with the case where the anionic surfactant composition is not made into a foam, so that a detergent particle group having a medium to low bulk density can be obtained. it can.
  • a combination of a container rotating type mixer and a multi-fluid nozzle is adopted, and further, a foam of an anionic surfactant composition is used.
  • An effect of obtaining a detergent particle group having a medium to low bulk density with high yield is obtained.
  • the foam of the anionic surfactant composition is stirred using the multi-fluid nozzle while stirring the powder raw material for the detergent using a container rotating mixer. If it is the aspect sprayed on this powder raw material for detergents, it will not specifically limit.
  • the aspect as an example of the manufacturing method of this invention is demonstrated in detail.
  • the detergent particles are particles containing a surfactant and a builder, and the detergent particle group means an aggregate thereof.
  • the detergent composition contains detergent particles and is optionally added separately from the detergent particles (for example, builder granules, fluorescent dyes, enzymes, fragrances, antifoams, bleaches, bleach activators) Etc.).
  • water-soluble means that the solubility in water at 25 ° C. is 0.5 g / 100 g or more, and water-insoluble means that the solubility in water at 25 ° C. is less than 0.5 g / 100 g. Means.
  • the detergent particle group of the present invention comprises (1) a powder raw material for detergent and (2) a foamed anionic surfactant composition.
  • the detergent particle group of the present invention may further contain (3) other powder components and / or (4) other liquid components.
  • Powder raw material for detergent includes a water-soluble solid alkali inorganic substance and / or a water-soluble inorganic salt.
  • the water-soluble solid alkali-inorganic substance is an alkali inorganic substance that is solid at room temperature (20 ° C.), and the water-soluble solid alkali-inorganic substance is not particularly defined. Examples thereof include sodium carbonate, sodium hydrogen carbonate, potassium carbonate, sodium silicate and the like. Among them, sodium carbonate is preferable as an alkaline agent that exhibits a suitable pH buffer region in the washing liquid. These water-soluble solid alkali inorganic materials may be used alone or in combination of two or more.
  • sodium carbonate either light soda ash (light ash) or heavy soda ash (dense ash) can be used.
  • the average particle diameter of the water-soluble solid alkali inorganic substance is not particularly limited, but when the surfactant is highly blended, it may be pulverized to 1 to 50 ⁇ m from the viewpoint of improving the yield.
  • the average particle size of the water-soluble solid alkali inorganic substance is calculated on a volume basis, and is measured using, for example, a laser diffraction particle size distribution analyzer: LA-920 (manufactured by Horiba, Ltd.). Value.
  • the water-soluble inorganic salt is preferably used as a powder raw material for detergents in order to increase the ionic strength of the washing liquid and improve the effects of cleaning sebum dirt.
  • the water-soluble inorganic salt for example, sodium sulfate, sodium chloride, sodium sulfite and potassium sulfate having a high degree of ionic dissociation are preferable. From the viewpoint of improving the dissolution rate, the combined use of magnesium sulfate is also effective.
  • the average particle size of the water-soluble inorganic salt is not particularly limited, but when an anionic surfactant is highly blended, it may be pulverized to 1 to 50 ⁇ m from the viewpoint of improving the yield of the detergent particles. .
  • the average particle diameter of the water-soluble inorganic salt is calculated on a volume basis. For example, it is a value measured using a laser diffraction particle size distribution analyzer: LA-920 (manufactured by Horiba, Ltd.). is there.
  • the powder raw material for detergent among the water-soluble solid alkali inorganic substance and the water-soluble inorganic salt, the exemplified raw materials may be used alone, or two or more kinds may be mixed and used.
  • the powder raw material for detergent is preferably sodium carbonate and / or sodium sulfate, and more preferably light ash.
  • the content of the powder raw material for the detergent preferably the content of the water-soluble solid alkali inorganic substance and the water-soluble inorganic salt is preferably 10% by mass or more, and 20% by mass or more from the viewpoint of improving detergency. Is more preferable. Moreover, 80 mass% or less is preferable from a viewpoint of the reduction of the bulk density of a detergent particle group. From these viewpoints, the content of the powder raw material for the detergent in the detergent particle group, preferably the content of the water-soluble solid alkali inorganic substance and the water-soluble inorganic salt is preferably 10 to 80% by mass, and 20 to 80% by mass. % Is more preferable.
  • Anionic surfactant composition As the anionic surfactant composition used in the present invention, a viewpoint of obtaining detergent particles having a sharp particle size distribution Therefore, a surfactant paste is preferable, and a surfactant paste containing the following components a) and b) is more preferable.
  • a) One or more anionic surfactants selected from the group consisting of salts of linear alkylbenzene sulfonic acids, salts of alkyl sulfates and salts of polyoxyethylene alkyl sulfates. b) 25 to 70 parts by weight of water with respect to 100 parts by weight of component a) above.
  • the alkyl group preferably has 10 to 18 carbon atoms, more preferably 12 to 16 carbon atoms.
  • the salt include Na salt, K salt, ammonium salt, and amine salt.
  • the salt of the alkyl sulfate an alkyl group or an alkenyl group having 10 to 18 carbon atoms, more preferably 12 to 16 carbon atoms in the carbon chain is preferable.
  • the salt include Na salt, K salt, ammonium salt, and amine salt.
  • the polyoxyethylene alkylsulfuric acid salt is preferably an alkyl or alkenyl group having 10 to 18 carbon atoms, more preferably 12 to 16 carbon atoms in the carbon chain. Further, the average added mole number of polyoxyethylene is preferably 0.1 to 3.0. Further, examples of the salt include Na salt, K salt, ammonium salt or amine salt. Among these, from the viewpoint of obtaining detergent particles having a sharp particle size distribution, alkyl sulfate salts are preferred.
  • the surfactant paste contains at least an anionic surfactant shown as the component a) and water shown as the component b).
  • the paste at 60 ° C. preferably has a viscosity of 100 Pa ⁇ s or less.
  • the viscosity of the surfactant paste varies greatly depending on its water content.
  • the surfactant paste can be prepared by neutralizing the acid precursor of component a) with an alkali compound. At this time, the water content of the alkali compound used is adjusted to have a desired moisture content. That is, it is preferable to prepare a surfactant paste having a desired viscosity.
  • the anionic surfactant contains 25 to 70 parts by mass of water with respect to 100 parts by mass of the anionic surfactant, it becomes a paste-like anionic surfactant having a reduced viscosity and is easy to handle.
  • the range of the amount of water in the surfactant paste is preferably 25 to 70 parts by weight, more preferably 30 to 65 parts by weight, and more preferably 35 to 65 parts by weight with respect to 100 parts by weight of component a) from the viewpoint of handling. More preferably, the water content in the surfactant paste is preferably 20 to 41% by mass, more preferably 23 to 39% by mass, and even more preferably 26 to 39% by mass from the viewpoint of handling.
  • the viscosity of the surfactant paste is preferably 10 Pa ⁇ s or less, more preferably 5 Pa ⁇ s or less, preferably from the viewpoint of handleability in production, preferably in the use temperature range of the surfactant paste.
  • it is 0.5 Pa ⁇ s or more, more preferably 1 Pa ⁇ s or more. From these viewpoints, it is preferably 0.5 to 10 Pa ⁇ s, and more preferably 1 to 5 Pa ⁇ s.
  • the use temperature range is preferably 20 to 70 ° C., more preferably 20 to 60 ° C., from the viewpoint of the stability of the surfactant paste.
  • the viscosity is determined by measuring at a shear rate of 50 [1 / s] with a coaxial double cylindrical rotational viscometer (manufactured by HAAKE, sensor: SV-DIN).
  • the method for preparing the surfactant paste is not particularly limited, and a known method can be used.
  • the acid precursors of the anionic surfactant those which are very unstable and easily decomposed are preferably prepared so that the decomposition can be suppressed.
  • the heat of neutralization is removed by a heat exchanger or the like, and the production may be performed while paying attention to the temperature control of the acid precursor and the surfactant paste.
  • the temperature range during production is preferably 30 to 60 ° C.
  • the storage temperature range after production is preferably 60 ° C. or less. Further, at the time of use, the temperature may be raised as necessary, and a surfactant paste may be used.
  • the obtained surfactant paste preferably has an excessive alkalinity from the viewpoint of suppressing decomposition.
  • the surfactant paste includes unreacted alcohol and unreacted polyoxyethylene alkyl ether at the time of producing the acid precursor, sodium sulfate as a by-product during the neutralization reaction, and a pH buffer that can be added during the neutralization reaction Further, a decolorizing agent or the like may be contained.
  • one or more of the component a) can be used alone as the surfactant, but the following surfactants can also be used in combination.
  • the following surfactant is preferably 1 to 70 parts by weight, more preferably 2 to 50 parts by weight, and still more preferably 3 to 30 parts per 100 parts by weight of component a). Part by mass.
  • surfactants include ⁇ -sulfo fatty acid ester salts and secondary alkane sulfonates.
  • a foam of the above anionic surfactant composition is used.
  • the foam is obtained by containing a gas medium (air, nitrogen, carbon dioxide, etc.) in the anionic surfactant composition.
  • a gas medium air, nitrogen, carbon dioxide, etc.
  • air air is preferable from the viewpoint of productivity.
  • Such a foam can be obtained, for example, by mixing a gas medium into an anionic surfactant composition. More specific methods for preparing the foam include a batch method and a continuous method. As a batch type, the anionic surfactant composition is put into a kneader generally used such as a batch kneader, and the gas medium is entrained by performing kneading for a predetermined time in the presence of the gas medium. It is a method of preparing.
  • the continuous method is a method of preparing a foam by mixing and dispersing a gas medium by continuously introducing a predetermined amount of the surfactant composition and the gas medium into a high-speed rotating part.
  • the continuous preparation method is preferred from the viewpoints of stability of physical properties such as specific gravity of the foam, ease of preparation method, and productivity.
  • the foaming machine which performs such a continuous preparation method there are MDF series (manufactured by Taihei Kiko Co., Ltd.), BM series (manufactured by Yana Gear Co., Ltd.) and the like.
  • the specific gravity of the foam can be controlled by the kneading time of the surfactant composition.
  • the specific gravity of the foam can be controlled by adjusting the flow rate of the gas medium with respect to the surfactant composition.
  • the range of the volume flow rate of the gas medium is preferably, for example, in the range of 0.2 to 10 times the volume flow rate of the surfactant composition.
  • the gas medium is preferably mixed into the anionic surfactant using a foaming machine.
  • the temperature of the anionic surfactant composition at the time of supplying to the foaming machine is preferably 20 to 70 ° C., more preferably 20 to 60 ° C., from the viewpoint of the stability of the surfactant paste.
  • the specific gravity of the resulting foam of the anionic surfactant composition is preferably 0.1 to 0.9, more preferably 0.1 to 0.9, from the viewpoint of obtaining a medium / low bulk density detergent particle group in good yield. 0.8, more preferably 0.1 to 0.7.
  • content of the anionic surfactant in the detergent particle group obtained by this invention it is 5 mass% in detergent particle group from a viewpoint of forming a granulated material with a cleaning power and the powder raw material for detergents.
  • the above is preferable, and 10 mass% or more is more preferable.
  • it is preferably 50% by mass or less, more preferably 40% by mass or less.
  • the content in the detergent particle group is preferably 5 to 50% by mass, 10 to 50% by mass is more preferable, and 10 to 40% by mass is even more preferable.
  • the foam of the anionic surfactant composition has the ability to form a granulated product by combining powder raw materials for detergent, and as described in the above paragraph,
  • One feature of the present application is that the anionic surfactant composition exhibits adhesiveness when it comes into contact with the powder raw material for detergent.
  • the foam of the anionic surfactant composition When the foam of the anionic surfactant composition is added to the detergent powder raw material, the moisture in the anionic surfactant composition is deprived by the hydration or dissolution of the detergent powder raw material. Or when the temperature of the detergent powder raw material is lower than the temperature of the anionic surfactant, the temperature of the foam of the anionic surfactant composition decreases to near or below its melting point. Thus, it is presumed that the anionic surfactant composition foam is solidified to develop adhesiveness.
  • the viscosity of the foam of the anionic surfactant composition when it comes into contact with the powder raw material for detergent is preferably 2 Pa ⁇ s or more, more preferably 3 Pa ⁇ s or more.
  • the viscosity of the foam at the time of contact was determined by the anionic surfactant under the condition of a shear rate of 50 [1 / s] using a coaxial double cylindrical rotational viscometer (manufactured by HAAKE, sensor: SV-DIN). What is necessary is just to adjust and measure the temperature and moisture value so that it may become the same as when the foam of a composition contacts the powder raw material for detergents.
  • Such substances include chelating agents (tripolyphosphates, orthophosphates, pyrophosphates, alkali metal aluminosilicates), powders of water-soluble polymers (carboxylic acid polymers, carboxymethylcellulose, soluble starch, saccharides, Polyethylene glycol), water-insoluble excipients (silicon dioxide, hydrated silicate compounds, clay compounds such as barlite, bentonite, etc.), particulate surfactants (fatty acids or salts thereof, linear alkylbenzene sulfonates, alkyls) Sulfate, etc.).
  • chelating agents tripolyphosphates, orthophosphates, pyrophosphates, alkali metal aluminosilicates
  • powders of water-soluble polymers carboxymethylcellulose, soluble starch, saccharides, Polyethylene glycol
  • water-insoluble excipients sicon dioxide, hydrated silicate compounds, clay compounds such as barlite, bentonite, etc.
  • the above substances may be added together with the powder raw material for the detergent before adding the foam of the anionic surfactant composition, or the foam of the anionic surfactant composition may be added. It may be added after.
  • an alkali metal aluminosilicate it can be used as a surface modifier to improve fluidity and storage stability, so after adding the foam of the anionic surfactant It is preferable to add.
  • liquid components may be added to produce detergent particles.
  • Other liquid components to be added can be appropriately selected according to the composition of the detergent particle group to be obtained.
  • the addition timing of the liquid component is not particularly limited.
  • the liquid component may be mixed in advance with the anionic surfactant composition, or before the foam of the anionic surfactant composition is added. Alternatively, it may be performed during or after that, but when a surface modifier is added, it is preferably before the addition of the surface modifier.
  • the liquid component When the liquid component is added after adding the foam of the anionic surfactant composition, the liquid component may be added using a container rotating mixer, or the detergent obtained by the production method of the present invention. After discharging the particle group from the container rotating mixer, the detergent particle group obtained in another mixer / granulator may be charged and the liquid component added thereto.
  • liquid component examples include any liquid component used in ordinary detergent compositions such as nonionic surfactants, fatty acids, and water-soluble polymers (such as carboxylic acid polymer, carboxymethyl cellulose, soluble starch, saccharide, and polyethylene glycol). It is done. As the liquid component, only one component may be used, or two or more components may be used in combination.
  • the liquid component may be added as a liquid at a temperature equal to or higher than its melting point, or may be added in the form of an aqueous solution or dispersion.
  • the amount of the net liquid component excluding the medium is preferably 15% by mass or less, and more preferably 10% by mass or less of the detergent particle group as the final product, from the viewpoint of suppressing aggregation of the detergent particle group.
  • the nonionic surfactant used as the liquid component is not particularly limited, but from the viewpoint of detergency, for example, a polyoxyalkylene alkyl obtained by adding 6 to 22 moles of alkylene oxide to an alcohol having 10 to 14 carbon atoms. Ether is preferred.
  • spraying can be performed with any nozzle, not depending on the multi-fluid nozzle described in the present invention.
  • a powder raw material for detergent is granulated by spraying a foam of an anionic surfactant composition into the mixer using a container rotating mixer. The process of carrying out. When the foam of the anionic surfactant composition is added, granulation is performed by spraying into the container rotary mixer using a multi-fluid nozzle.
  • the amount of foam of the anionic surfactant composition to be sprayed is preferably 20 to 100 parts by mass, more preferably 25 to 90 parts by mass with respect to 100 parts by mass of the powder raw material for detergent. 20 parts by mass or more is preferable from the viewpoint of detergency, and 100 parts by mass or less is preferable from the viewpoint of granulation yield and solubility.
  • Container rotation type mixer As the container rotation type mixer, a drum type mixer or a pan type mixer is preferable.
  • the drum-type mixer is not particularly limited as long as the drum-shaped cylinder rotates and performs processing.
  • the conical drum-type granulator In addition to the drum-type mixer that is horizontally or slightly inclined, the conical drum-type granulator is used. (Mixer), multi-stage conical drum granulator (mixer), etc. can also be used. These apparatuses can be used in both batch and continuous processes.
  • baffle plates baffles ( ) May be attached. This makes it possible to cause the particle group to perform an upward movement, and improves the powder mixing property and the solid-liquid mixing property.
  • the operating condition of the container rotation type mixer is not particularly limited as long as the components in the mixer can be stirred.
  • the operating condition is that the fluid number defined by the following formula is 0.005 to 1.0.
  • An operating condition of 0.01 to 0.6 is more preferable.
  • Fr V 2 / (R ⁇ g)
  • V Circumferential speed [m / s]
  • R Radius from the center of rotation to the circumference of the rotating object [m]
  • g Gravity acceleration [m / s 2 ]
  • one feature is that the foam of the anionic surfactant composition is supplied using a multi-fluid nozzle.
  • a multi-fluid nozzle is a nozzle that mixes and atomizes a liquid and atomizing gas (air, nitrogen, etc.) through an independent channel to the vicinity of the nozzle tip.
  • a four-fluid nozzle or the like can be used.
  • a two-fluid nozzle is preferable from the viewpoint of ease of operation and availability.
  • the foam of the anionic surfactant composition and the atomizing gas are preferably mixed and atomized.
  • the type of the mixing part of the foam of the anionic surfactant composition and the gas for atomization is either an internal mixing type that mixes inside the nozzle tip or an external mixing type that mixes outside the nozzle tip. Also good.
  • an internal mixed type two-fluid nozzle such as manufactured by Spraying Systems Japan Co., Ltd., manufactured by Kyoritsu Alloy Manufacturing Co., Ltd., or manufactured by Ikeuchi Co., Ltd., manufactured by Spraying Systems Japan Co., Ltd.
  • an external mixing type two-fluid nozzle manufactured by Kyoritsu Alloy Mfg. Co., Ltd. and Atmax Co., Ltd. an external mixing type four-fluid nozzle manufactured by Fujisaki Electric Co., Ltd., and the like.
  • the droplet diameter of the foam droplet of the anionic surfactant composition can be adjusted by changing the balance between the flow rate and the flow rate of the atomizing gas. That is, as the flow rate of the atomizing gas is increased with respect to the foam of the anionic surfactant composition having a certain flow rate, the droplet diameter becomes smaller. Furthermore, the droplet diameter becomes smaller as the flow rate of the foam of the anionic surfactant composition is decreased with respect to the atomizing gas at a certain flow rate. As the droplet diameter is smaller, that is, as the flow rate of the atomization gas is increased, the refined droplets can reduce coarse particles, that is, improve the yield.
  • the foam is subjected to a shearing force by the atomizing gas supplied to the multi-fluid nozzle, and the foam is likely to break up and the specific gravity of the foam is likely to increase. Therefore, it is preferable to adjust the flow rate of the atomizing gas supplied to the multi-fluid nozzle so that an increase in the specific gravity of the foam can be suppressed. That is, in the present invention, there is a suitable atomization gas flow rate in order to achieve both reduction of coarse particles and suppression of increase in the specific gravity of the foam.
  • the flow rate of a suitable atomizing gas varies depending on the type of multi-fluid nozzle to be used, but [volume flow rate of foam of an anionic surfactant composition (cm 3 / min)] / [flow rate of atomizing gas ( L / min)], it is preferably 0.5 to 30 cm 3 / L, more preferably 1 to 20 cm 3 / L from the viewpoint of obtaining a medium / low bulk density detergent particle group with good yield. is there.
  • the above range is suitable when using a two-fluid nozzle BN90 manufactured by Atmax Co., Ltd.
  • the droplet diameter of the foam of the anionic surfactant composition after spraying with a multi-fluid nozzle is preferably 10 to 500 ⁇ m in average particle diameter.
  • the average particle diameter of the droplet diameter of the foam of the anionic surfactant composition is calculated on a volume basis, and a laser diffraction particle size distribution analyzer: Spray Tech (manufactured by Malvern) is used. The value to be measured.
  • the specific gravity of the foam of the anionic surfactant composition after spraying with a multi-fluid nozzle is preferably from 0.1 to 0.95, more preferably from the viewpoint of obtaining a detergent particle group with medium to low bulk density in good yield. Is from 0.2 to 0.95, more preferably from 0.2 to 0.85.
  • an anionic surfactant foam, and a multi-fluid nozzle are combined, even an anionic surfactant foam can be uniformly dispersed. Thus, a medium and low bulk density detergent particle group with improved yield is obtained.
  • the detergent particle group produced as described above can be handled as a detergent composition as it is, but a composition to which a desired component is added is also used as a detergent composition. Can be handled. That is, the detergent composition of the present invention contains at least the detergent particles obtained by the production method of the present invention.
  • components to be added include builder granules, fluorescent dyes, enzymes, fragrances, antifoaming agents, bleaching agents, bleach activators and the like. Such components may be added to the container rotating mixer after the addition of the anionic surfactant composition, or the detergent particles obtained by the production method of the present invention are removed from the container rotating mixer. After discharging, another mixer may be used for addition.
  • the physical properties of the detergent particles obtained by the present invention include bulk density, fluidity, and average particle size. Moreover, a granulation yield is mentioned as a physical property used as an index of productivity. In addition, examples of physical properties that serve as an index of solubility include a dissolution rate for 60 seconds and a roughness disappearance time.
  • the bulk density of the detergent particles is preferably a medium to low bulk density of 250 to 690 g / L, more preferably 250 to 650 g / L, and more preferably 300 to 600 g / L, from the viewpoint of excellent dissolution rate for 60 seconds and roughness disappearance time. L is more preferable.
  • the average particle size of the detergent particles is preferably 200 to 800 ⁇ m, more preferably 200 to 600 ⁇ m from the viewpoint of improving the granulation yield of the detergent particles.
  • the fluidity of the detergent particles is preferably 4 to 12 seconds, more preferably 4 to 10 seconds, and still more preferably 4 to 8 seconds, from the viewpoint of excellent handling of the detergent particles.
  • the granulation yield is preferably as close to 100% as possible, for example, 80 to 100% is preferable, and 90 to 100% is more preferable.
  • a method for measuring physical properties of the detergent particle group and the like is as described below.
  • Bulk density The bulk density is measured by the method described as an apparent density in JIS K 3362: 2008. The bulk density is measured with the remaining particles obtained by cutting the particles remaining on the 2000 ⁇ m sieve.
  • Fluidity Fluidity is defined as the time required for 100 mL of powder to flow out from the apparent density measurement hopper described in JIS K 3362: 2008. If the powder does not flow out within 60 seconds due to bridging or the like in the hopper, the fluidity is 60 ⁇ .
  • liquidity is measured with the remaining particle
  • Average particle diameter As for the average particle diameter, it was vibrated for 5 minutes using a metal mesh sieve (mesh opening 2000 to 45 ⁇ m) described in JIS Z 8801-1: 2006, and then the median diameter was determined from the mass fraction according to the size of the mesh. Is calculated.
  • a small sieve with a mesh on the tray Stack in order, add 100 g of particles from the top of the top 2000 ⁇ m sieve, cover and attach to a low-tap sieve shaker (manufactured by HEIKO, tapping 156 times / minute, rolling: 290 times / minute) After vibrating for 5 minutes, the mass of the particles remaining on each sieve and the saucer is measured, and the mass ratio (%) of the particles on each sieve is calculated.
  • the average particle size is obtained by accumulating the mass ratios of the particles on the sieve having a small mesh size in order from the saucer to give a total of 50%.
  • the value of the percentage of detergent particles remaining on each sieve having an opening of 1000 ⁇ m, 1410 ⁇ m, and 2000 ⁇ m when the average particle size of the detergent particles is measured is obtained as a coarse particle (1000 ⁇ m ON) rate.
  • survives on a saucer and each sieve with an opening of 45 micrometers, 63 micrometers, and 90 micrometers in mass% is calculated
  • Granulation yield shows the ratio in the mass of the particle
  • Dissolution rate for 60 seconds The dissolution rate for 60 seconds is calculated by the following method. 1 liter of hard water (Ca / Mg molar ratio 7/3) adjusted to 10 ° C. corresponding to a hardness of 71.2 mg CaCO 3 / liter, 1 liter beaker (inner diameter 105 mm, height 150 mm cylindrical type, for example, manufactured by Iwaki Glass Co., Ltd.) Filled in a 1 liter glass beaker, and kept at a water temperature of 10 ° C.
  • stirrer length 35 mm, diameter 8 mm, for example, model: ADVANTEC, Teflon (registered trademark) SA ( In the round thin type)
  • stirring is performed at a rotational speed (800 r / m) at which the depth of the vortex with respect to the water depth is approximately 1/3.
  • the detergent particles which have been reduced and weighed so as to be 1.000 ⁇ 0.0010 g, are charged and dispersed in water with stirring, and stirring is continued.
  • the detergent particle group dispersion in the beaker was filtered through a metal mesh screen (diameter: 100 mm) having a mesh size of 74 ⁇ m described in JIS Z8801-1: 2006, and the water content remaining on the sieve.
  • the detergent particles are collected together with a sieve in an open container of known mass. The operation time from the start of filtration until the sieve is collected is 10 ⁇ 2 seconds.
  • the collected residue of detergent particles is dried in an electric dryer heated to 105 ° C. for 1 hour, and then cooled in a desiccator (25 ° C.) containing silica gel for 30 minutes. After cooling, the total mass of the dry detergent residue, sieve and collection container is measured, and the dissolution rate (%) of the detergent particle group is calculated by the equation (1).
  • Dissolution rate (%) for 60 seconds ⁇ 1 ⁇ (T / S) ⁇ ⁇ 100
  • S input mass of detergent particles
  • T Dry mass (g) of dissolved residue of detergent particles remaining on the sieve when the aqueous solution obtained under the above stirring conditions is applied to the sieve.
  • the roughness disappearance time is measured by the following method. When 3 L of water at 20 ° C. is put into a washbasin having a diameter of 35 cm and a depth of 12 cm, and after gently adding 15 g of detergent particles into the washbasin, the bottom of the washbasin is rubbed at a rate of once per second with a palm. The time (in seconds) when the roughness of the detergent particles disappeared.
  • the specific gravity of the foam of the anionic surfactant composition obtained from the foaming machine is the composition of the anionic surfactant discharged from the foaming machine outlet after measuring the volume of an arbitrary container in advance using water at 20 ° C. Repeatedly tapping while gradually adding the foam of the product to the container, filling so that no voids are formed between the foam, and dividing the mass of the obtained foam by the volume of the container Thus, the temperature is measured at the time of foaming (temperature supplied to the foaming machine when a foaming machine is used).
  • the specific gravity of the foam of the anionic surfactant composition after spraying can be recovered by collecting the sprayed anionic surfactant composition in a container such as a polyethylene bag or vat, and by the same method as described above at the temperature at the time of spraying. taking measurement.
  • specific gravity is specific gravity with respect to the density of 20 degreeC water.
  • the present invention further discloses the following manufacturing method regarding the above-described embodiment.
  • a method for producing a detergent particle group comprising a step of granulating a powder raw material for detergent using a container rotating mixer, A method for producing a detergent particle group, in which a foam of an anionic surfactant composition is sprayed into the container rotary mixer using a multi-fluid nozzle to granulate the detergent powder raw material.
  • the specific gravity of the foam of the anionic surfactant composition after spraying with a multi-fluid nozzle is 0.1 to 0.95, preferably 0.2 to 0.95, more preferably 0.2 to 0. .85, wherein the production method is ⁇ 85>.
  • ⁇ 3> The production method according to ⁇ 1> or ⁇ 2>, wherein the foam of the anionic surfactant composition is obtained by mixing a gas medium in the anionic surfactant composition. . ⁇ 4> The production method according to ⁇ 3>, wherein the gas medium is mixed into the anionic surfactant composition using a foaming machine.
  • ⁇ 5> The production method according to ⁇ 3> or ⁇ 4>, wherein the gas medium is air.
  • An anionic surfactant composition comprising the following components a) and b): a) one or more anionic surfactants selected from the group consisting of salts of linear alkylbenzene sulfonic acids, salts of alkyl sulfates and salts of polyoxyethylene alkyl sulfates, b) 25 to 70 parts by weight, preferably 30 to 65 parts by weight, more preferably 35 to 65 parts by weight of water based on 100 parts by weight of the component a) The production method according to any one of the above items ⁇ 1> to ⁇ 6>, wherein the paste is a surfactant paste.
  • ⁇ 8> The above ⁇ 1> to ⁇ 7>, wherein 20 to 100 parts by mass, preferably 25 to 90 parts by mass of the foam of the anionic surfactant composition is sprayed with respect to 100 parts by mass of the powder raw material for detergent.
  • ⁇ 9> The production method according to any one of ⁇ 1> to ⁇ 8>, wherein the detergent powder material is a water-soluble solid alkali inorganic substance and / or a water-soluble inorganic salt.
  • the content of the detergent powder raw material is 10% by mass or more, preferably 20% by mass or more, preferably 80% by mass or less, preferably 10 to 80% by mass, more preferably
  • the detergent powder raw material is sodium carbonate and / or sodium sulfate, preferably light ash.
  • the anionic surfactant as the component a) is a salt of a linear alkylbenzene sulfonic acid having 10 to 18 carbon atoms, preferably 12 to 16 carbon atoms, 10 to 18 carbon atoms, preferably 12 to 16 carbon atoms. Any one of the above ⁇ 7> to ⁇ 11>, which is at least one selected from the group consisting of a salt of alkylsulfuric acid and a polyoxyethylene alkylsulfuric acid salt having 10 to 18 carbon atoms, preferably 12 to 16 carbon atoms.
  • the content of the anionic surfactant in the detergent particle group is 5% by mass or more, preferably 10% by mass or more, preferably 50% by mass or less, more preferably 40% by mass or less, preferably 5%.
  • the container rotation type mixer is a drum type mixer or a pan type mixer.
  • the specific gravity of the foam of the anionic surfactant composition is 0.1 to 0.9, preferably 0.1 to 0.8, more preferably 0.1 to 0.7.
  • a multi-fluid nozzle is a nozzle for mixing a foam of an anionic surfactant composition and a gas for atomization, wherein [volume flow rate of foam of an anionic surfactant composition (cm 3 / min )] / [Flow rate of atomizing gas (L / min)] is in the range of 0.5 to 30 cm 3 / L, preferably 1 to 20 cm 3 / L, in the above ⁇ 1> to ⁇ 15> The manufacturing method of any one of Claims.
  • ⁇ 17> Any one of the above ⁇ 1> to ⁇ 16>, wherein the obtained detergent particle group has a bulk density of 250 to 690 g / L, preferably 250 to 650 g / L, more preferably 300 to 600 g / L.
  • the production method according to item. ⁇ 18> Granulation of the powder raw material for the detergent is performed under an operating condition in which the fluid number obtained from the following formula of the container rotary mixer is 0.005 to 1.0, preferably 0.01 to 0.6.
  • Fr V 2 / (R ⁇ g)
  • V Circumferential speed [m / s]
  • R Radius from the center of rotation to the circumference of the rotating object [m]
  • g Gravity acceleration [m / s 2 ]
  • Crushed light ash pulverized light ash above to an average particle size of 10 ⁇ m
  • Sodium sulfate average particle size 200 ⁇ m, manufactured by Shikoku Kasei Kogyo Co., Ltd. " Ground sodium sulfate: The above sodium sulfate ground to an average particle size of 22 ⁇ m.
  • Zeolite Average particle size of 3.5 ⁇ m, manufactured by Zeobuilder Co., Ltd.
  • Sodium polyacrylate manufactured by Kao Corp. Weight average molecular weight 10,000 (pure content 40%)
  • Polyethylene glycol Kao Corporation weight average molecular weight 13000 (pure content 60%)
  • a 75 L drum type mixer ( ⁇ 40 cm ⁇ L60 cm) having a baffle plate was used as a container rotating mixer, tilted at 14 ° from the horizontal so that the bottom of the mixer was on the lower side.
  • the multi-fluid nozzle one two-fluid nozzle (manufactured by Atmax Co., Ltd .: model number BN90) was used.
  • the temperature of the foam of the anionic surfactant when supplying to the two-fluid nozzle was set to 60 ° C.
  • the foam of the anionic surfactant composition was prepared using MDF0 (manufactured by Taiyo Kiko Co., Ltd.), which is a continuous foaming machine. The temperature of the composition when it was supplied to the foaming machine was 60 ° C.
  • Example 1 (Preparation of detergent particles) 100 parts by mass of sodium alkyl sulfate at 60 ° C. and 135 parts by mass of sodium dodecylbenzenesulfonate at 60 ° C. were mixed to prepare an anionic surfactant composition.
  • the prepared anionic surfactant composition was a surfactant paste containing 52.8 parts by mass of water with respect to 100 parts by mass of the anionic surfactant.
  • the viscosity of the paste at 60 ° C. was 1.7 Pa ⁇ s.
  • the flow rate of the mixed gas in the foaming machine was 0.50 L / min, and the specific gravity of the foam of the anionic surfactant composition obtained from the foaming machine was 0.20. Further, the specific gravity of the foam of the anionic surfactant composition after being sprayed by the two-fluid nozzle was 0.85, which was broken by the shearing force of the atomizing gas. Table 1 shows the composition and properties of the obtained detergent particles.
  • Example 2 Sodium alkyl sulfate was adjusted to 60 ° C. to obtain an anionic surfactant composition.
  • the prepared anionic surfactant composition was a surfactant paste containing 51.52 parts by mass of water with respect to 100 parts by mass of the anionic surfactant.
  • the viscosity of the paste at 60 ° C. was 1.4 Pa ⁇ s.
  • the flow rate of the mixed gas in the foaming machine was 0.50 L / min, and the specific gravity of the foam of the anionic surfactant composition obtained from the foaming machine was 0.20.
  • the specific gravity of the foam of the anionic surfactant composition sprayed by the two-fluid nozzle was 0.85 when the foam was broken by the shearing force of the atomizing gas. Table 1 shows the composition and properties of the obtained detergent particles.
  • Example 3 Granulation is carried out under the same conditions as in Example 2 except that the flow rate of the atomization gas is 42 L / min (volume flow rate of foam / flow rate of atomization gas is 10.0 cm 3 / L). It was. The specific gravity of the foam of the anionic surfactant composition sprayed by the two-fluid nozzle was 0.68. Table 1 shows the composition and properties of the obtained detergent particles.
  • Example 4 Sodium alkyl sulfate was adjusted to 60 ° C. to obtain an anionic surfactant composition.
  • the flow rate of the mixed gas in the foaming machine was 0.50 L / min, and the specific gravity of the foam of the anionic surfactant composition obtained from the foaming machine was 0.20.
  • the specific gravity of the foam of the anionic surfactant composition sprayed by the two-fluid nozzle was 0.85 when the foam was broken by the shearing force of the atomizing gas. Table 1 shows the composition and properties of the obtained detergent particles.
  • Example 5 The amount of gas mixture in the foaming machine is 0.10 L / min, and the specific gravity of the foam of the anionic surfactant composition obtained from the foaming machine is 0.58 (volume flow rate of foam / flow rate of atomization gas) was granulated under the same conditions as in Example 4 except that it was 1.8 cm 3 / L). The specific gravity of the foam of the anionic surfactant composition sprayed by the two-fluid nozzle was similarly broken to 0.85. Table 1 shows the composition and properties of the obtained detergent particles.
  • Example 6 Sodium alkyl sulfate was adjusted to 60 ° C. to obtain an anionic surfactant composition.
  • the prepared anionic surfactant composition was a surfactant paste containing 51.52 parts by mass of water with respect to 100 parts by mass of the anionic surfactant.
  • the viscosity of the paste at 60 ° C. was 1.4 Pa ⁇ s.
  • the flow rate of the mixed gas in the foaming machine was 0.50 L / min, and the specific gravity of the foam of the anionic surfactant composition obtained from the foaming machine was 0.20.
  • the specific gravity of the foam of the anionic surfactant composition sprayed by the two-fluid nozzle was 0.44 when the foam was broken by the shearing force of the atomizing gas. Table 1 shows the composition and properties of the obtained detergent particles.
  • Example 7 Sodium alkyl sulfate was adjusted to 60 ° C. to obtain an anionic surfactant composition.
  • the prepared anionic surfactant composition was a surfactant paste containing 51.52 parts by mass of water with respect to 100 parts by mass of the anionic surfactant.
  • the viscosity of the paste at 60 ° C. was 1.4 Pa ⁇ s.
  • the flow rate of the mixed gas in the foaming machine was 0.50 L / min, and the specific gravity of the foam of the anionic surfactant composition obtained from the foaming machine was 0.20.
  • the specific gravity of the foam of the anionic surfactant composition sprayed by the two-fluid nozzle was 0.39 as a result of breaking by the shearing force of the atomizing gas. Table 1 shows the composition and properties of the obtained detergent particles.
  • Example 8 Sodium alkyl sulfate was adjusted to 60 ° C. to obtain an anionic surfactant composition.
  • the prepared anionic surfactant composition was a surfactant paste containing 51.52 parts by mass of water with respect to 100 parts by mass of the anionic surfactant.
  • the viscosity of the paste at 60 ° C. was 1.4 Pa ⁇ s.
  • the flow rate of the mixed gas in the foaming machine was 0.50 L / min, and the specific gravity of the foam of the anionic surfactant composition obtained from the foaming machine was 0.20.
  • the specific gravity of the foam of the anionic surfactant composition sprayed by the two-fluid nozzle was 0.36, which was broken by the shearing force of the atomizing gas. Table 1 shows the composition and properties of the obtained detergent particles.
  • Example 9 Sodium polyoxyethylene alkyl sulfate was adjusted to 60 ° C. to obtain an anionic surfactant composition.
  • the prepared anionic surfactant composition was a surfactant paste containing 42.86 parts by mass of water with respect to 100 parts by mass of the anionic surfactant.
  • the viscosity of the paste at 60 ° C. was 1.9 Pa ⁇ s.
  • the flow rate of the mixed gas in the foaming machine was 0.29 L / min, and the specific gravity of the foam of the anionic surfactant composition obtained from the foaming machine was 0.32.
  • the specific gravity of the foam of the anionic surfactant composition sprayed by the two-fluid nozzle was 0.67, which was broken by the shearing force of the atomizing gas.
  • Table 1 shows the composition and properties of the obtained detergent particles.
  • Comparative Example 1 100 parts by mass of sodium alkyl sulfate at 60 ° C. and 135 parts by mass of sodium dodecylbenzenesulfonate at 60 ° C. were mixed to prepare an anionic surfactant composition.
  • the specific gravity of the surfactant composition was 1.0, and the specific gravity after spraying with a two-fluid nozzle was 1.0.
  • Table 1 shows the composition and properties of the obtained detergent particles.
  • the specific gravity of the surfactant composition was 1.0, and the specific gravity after spraying with a two-fluid nozzle was 1.0.
  • Table 1 shows the composition and properties of the obtained detergent particles.
  • the flow rate of the mixed gas in the foaming machine was 0.50 L / min, and the specific gravity of the foam of the anionic surfactant composition obtained from the foaming machine was 0.20.
  • the specific gravity of the foam of the anionic surfactant composition added by the two-fluid nozzle was 0.20. This is considered to be the result of no bubble breakage due to the shearing force caused by the gas because the atomizing gas was not supplied.
  • Table 1 shows the composition and properties of the obtained detergent particles.
  • Comparative Example 4 Sodium polyoxyethylene alkyl sulfate was adjusted to 60 ° C. to obtain an anionic surfactant composition. 4.33 kg of light ash was added into a drum mixer as a powder raw material for detergent, and stirred at a fluid number of 0.2 for 30 seconds. Thereafter, while continuing stirring, 2.33 kg of the prepared anionic surfactant composition was added for 18 minutes at an addition time of 80 L / min for atomization gas (volume flow rate of the composition / flow rate of atomization gas was 1). 0.5 cm 3 / L) was added by a two-fluid nozzle under the spraying condition, and stirred for 1 minute after the addition. That is, 53.8 parts by mass of the composition was sprayed at 60 ° C.
  • the specific gravity of the surfactant composition was 1.08, and the specific gravity after spraying with a two-fluid nozzle was 1.08.
  • Table 1 shows the composition and properties of the obtained detergent particles.
  • the bulk of the detergent particles obtained in Examples 1 to 9 was 444 to 682 g / L.
  • the granulation yield was 96% or more, and a medium and low bulk density detergent particle group was obtained with good yield.
  • a detergent particle group having a medium to low bulk density could be obtained with a high yield.
  • Comparative Examples 1, 2, and 4 became detergent particle groups with higher bulk density (715 g / L or more) than the Examples. This is presumably because the foam of the anionic surfactant composition having a low specific gravity was not provided with the effect of the foam because the foam of the anionic surfactant composition was not used.
  • Comparative Example 3 the granulation yield was lower (60.6%) than in the Examples. This is because the foam of the anionic surfactant composition is used, but the atomization gas is set to 0 L / min, that is, the foam is sprayed substantially through one fluid nozzle. It is considered that the high dispersion of the body was not achieved and the formation of coarse particles was caused by the adhesiveness of the foam. Further, Comparative Example 3 was a detergent particle group having a higher bulk density (743 g / L) than the Examples.
  • the foam of the anionic surfactant composition was supplied as a large liquid mass, and as a result, the time required for hydration and dissolution of the detergent powder raw material in contact with the detergent powder raw material, It is also considered that the time for cooling by the detergent powder raw material increased as compared with the case of fine droplets, the foam was hard to solidify, and foam foaming during granulation was more likely to occur.
  • Example 1 and Comparative Example 1 having the same composition were compared, the dissolution rate was improved for 60 seconds, and the roughness disappearance time was shortened.
  • the bulk density in Example 1 was lower than that in Comparative Example 1, it is considered that the use of the foam increased the number of voids in the particles and facilitated dissolution. .
  • the particle size distribution became sharp and the fluidity was improved.
  • a medium and low bulk density detergent particle group can be produced with high yield by a method that does not use spray drying.
  • a detergent particle group can be preferably used as a detergent composition for various uses such as clothing, or as one component of such a detergent composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Glanulating (AREA)

Abstract

A process for manufacturing a group of detergent granules which includes a step of granulating powdery raw materials for a detergent in a rotating mixer, wherein the granulation of the powdery raw materials is conducted with a foamed anionic surfactant composition sprayed in the rotating mixer through a multi-fluid nozzle. By this process, a group of detergent granules having a medium or low bulk density can be obtained in a high yield. The group of detergent granules thus obtained exhibits high solubility.

Description

洗剤粒子群の製造方法Method for producing detergent particles
 本発明は容器回転型混合機と、陰イオン界面活性剤組成物の発泡体、多流体ノズルを用いた洗剤粒子群の製造方法に関する。 The present invention relates to a method for producing a detergent particle group using a container rotating mixer, a foam of an anionic surfactant composition, and a multi-fluid nozzle.
 現在、市販されている洗剤には、大きく分けて高嵩密度型洗剤(690g/Lより大きい)、中嵩密度型洗剤(400~690g/L)、低嵩密度型洗剤(250g/L以上400g/L未満)、液体洗剤等がある。例えば、日本においては高嵩密度型洗剤が多く使用されているが、アジア・オセアニアや欧州等においては、中低嵩密度型洗剤の需要も多い。 Currently available detergents are roughly classified into high bulk density detergents (greater than 690 g / L), medium bulk density detergents (400 to 690 g / L), and low bulk density detergents (250 g / L to 400 g). / L) and liquid detergents. For example, high bulk density detergents are often used in Japan, but there are also many demands for medium and low bulk density detergents in Asia, Oceania and Europe.
 経済性、環境対応の観点からは、噴霧乾燥を用いない製造方法として、非噴霧乾燥法による陰イオン性界面活性剤を用いた洗剤組成物の製造法が開示されている。特許文献1には、界面活性剤ペーストと乾燥した洗剤材料を高速ミキサー/中速ミキサー/乾燥機にて連続的に洗剤組成物を製造する方法が開示されている。特許文献2には、界面活性剤ペーストと乾燥した洗剤原料を高速ミキサー/中速ミキサー/コンディショニング装置にて微粒子を再循環させながら連続的に洗剤組成物を製造する方法が開示されている。 From the viewpoint of economy and environmental friendliness, a method for producing a detergent composition using an anionic surfactant by a non-spray drying method is disclosed as a production method not using spray drying. Patent Document 1 discloses a method of continuously producing a detergent composition using a surfactant paste and a dried detergent material in a high speed mixer / medium speed mixer / dryer. Patent Document 2 discloses a method for continuously producing a detergent composition while recirculating fine particles of a surfactant paste and a dried detergent raw material with a high speed mixer / medium speed mixer / conditioning device.
 しかしながら、特許文献1の製法では粒度の調整が困難であり、また、特許文献2の製法では粒度の調整を行う為、微粒子を再循環させる製法を用いており、生産性が低い製造法である。その為、より簡単に必要な粒度の洗剤粒子群を収率良く得られる製法が求められている。更に、これら特許文献はいずれも、洗剤粒子の嵩密度を増加する方法を提供するものであり、中低嵩密度の洗剤粒子群の製造方法としては適切ではない。 However, it is difficult to adjust the particle size in the manufacturing method of Patent Document 1, and the manufacturing method of Patent Document 2 uses a manufacturing method in which fine particles are recirculated in order to adjust the particle size, which is a manufacturing method with low productivity. . Therefore, there is a demand for a production method that can easily obtain a detergent particle group having a required particle size with a high yield. Furthermore, all of these patent documents provide a method for increasing the bulk density of detergent particles, and are not suitable as a method for producing a group of medium and low bulk density detergent particles.
 また、特許文献3には、噴霧乾燥の使用を低減するかまたは使用しない製造方法として、界面活性剤の発泡体をミキサーに導入することによる界面活性剤顆粒の製造方法が開示されている。 Patent Document 3 discloses a method for producing surfactant granules by introducing a foam of a surfactant into a mixer as a production method for reducing or not using spray drying.
 しかしながら、特許文献3の製造方法では、洗剤粒子群を収率良く得る製法としては不十分である。 However, the production method of Patent Document 3 is insufficient as a production method for obtaining detergent particles in good yield.
特表平10-500716号公報Japanese National Patent Publication No. 10-500716 特表平10-506141号公報Japanese National Patent Publication No. 10-506141 特表2002-525420号公報Special table 2002-525420 gazette
 本発明は、洗剤用粉体原料を容器回転型混合機を用いて造粒する工程を有する洗剤粒子群の製造方法であって、
 陰イオン界面活性剤組成物の発泡体を、多流体ノズルを用いて該容器回転型混合機内に噴霧して該洗剤用粉体原料の造粒を行う、洗剤粒子群の製造方法に関するものである。
The present invention is a method for producing detergent particles having a step of granulating a powder raw material for detergent using a container rotating mixer,
The present invention relates to a method for producing a detergent particle group in which a foam of an anionic surfactant composition is sprayed into the container rotary mixer using a multi-fluid nozzle to granulate the detergent powder raw material. .
発明の詳細な説明Detailed Description of the Invention
 本発明は、噴霧乾燥を使用しない方法にて、陰イオン界面活性剤を含有する、中低嵩密度の洗剤粒子群を収率良く製造する方法を提供することに関する。 The present invention relates to providing a method for producing a medium / low bulk density detergent particle group containing an anionic surfactant with high yield without using spray drying.
 本発明の洗剤粒子群の製造方法により、中低嵩密度の洗剤粒子群が収率良く得られるという効果が奏される。このようにして得られた中低嵩密度の洗剤粒子群は高い溶解性を示すという効果も有する。 According to the method for producing detergent particles of the present invention, there is an effect that a detergent particle group having a medium to low bulk density can be obtained with good yield. The medium and low bulk density detergent particles obtained in this way also have the effect of exhibiting high solubility.
 本発明の特徴の一つは、容器回転型混合機を用いて洗剤用粉体原料の造粒を行うことである。 One of the features of the present invention is that the powder raw material for detergent is granulated using a rotating container mixer.
 一般に、容器回転型混合機を用いた造粒においては、粉体を均一に流動せしめることが可能であり、更に、回転による粒子の持ち上げ及び自重による滑り・落下を伴う混合機構の為、粉体に加えられるせん断力が抑制される。そのため、かかる混合機を用いた造粒方法は非圧密な造粒方法と言うことができる。また、かかる混合機に添加する陰イオン界面活性剤組成物は、粉体と接触した際の粘着性が強くないと造粒が進行しないために、粉体と接触した際に粘着性が発現する必要がある。このような陰イオン界面活性剤組成物を容器回転型混合機に一般的な供給方法である一流体ノズルや配管にて供給すると、供給される液体成分を混合機内で均一に分散させにくく、局在的に発生する大きな液塊により粗大粒子が形成されやすいという傾向が見られる。 In general, in granulation using a rotating container mixer, it is possible to make the powder flow uniformly, and because of the mixing mechanism involving lifting of the particles by rotation and sliding / falling by their own weight, The shearing force applied to is suppressed. Therefore, it can be said that the granulation method using such a mixer is a non-consolidated granulation method. In addition, since the anionic surfactant composition added to such a mixer does not progress in granulation unless the adhesiveness when it comes into contact with the powder is strong, the adhesiveness develops when it comes into contact with the powder. There is a need. When such an anionic surfactant composition is supplied to a container rotation type mixer by a one-fluid nozzle or pipe, which is a general supply method, it is difficult to uniformly disperse the supplied liquid component in the mixer. There is a tendency that coarse particles are likely to be formed due to the large liquid mass generated in nature.
 そこで、2流体ノズル等の多流体ノズルを用いて、粉体と接触した際に粘着性を発現する陰イオン界面活性剤組成物の発泡体を噴霧することによって容器回転型混合機内に供給したところ、意外にも、粗大粒子の形成を抑制しつつ均一に造粒できることが分かった。これは、このような陰イオン界面活性剤組成物の発泡体を多流体ノズルを用いてあらかじめ微細な液滴とすることにより、容器回転型混合機内であっても陰イオン界面活性剤組成物の発泡体の高分散が達成でき、粗大粒子を形成する大きな液塊が発生しないためと考えられる。従って、粉体と接触した際に粘着性を発現する陰イオン界面活性剤組成物の発泡体を多流体ノズルを用いて容器回転型混合機内に添加することで、洗剤粒子群を収率良く製造することができる。 Thus, when a multi-fluid nozzle such as a two-fluid nozzle is used and sprayed with a foam of an anionic surfactant composition that develops an adhesive property when it comes into contact with the powder, it is supplied into the container rotary mixer. Surprisingly, it was found that uniform granulation can be achieved while suppressing the formation of coarse particles. This is because the foam of such an anionic surfactant composition is made into fine droplets in advance using a multi-fluid nozzle so that the anionic surfactant composition can be obtained even in a container-rotating mixer. It is considered that high dispersion of the foam can be achieved and a large liquid mass forming coarse particles is not generated. Therefore, detergent particles can be produced in a high yield by adding a foam of an anionic surfactant composition that exhibits adhesiveness when it comes into contact with the powder into a rotating container mixer using a multi-fluid nozzle. can do.
 更に、本発明の特徴の一つは、陰イオン界面活性剤組成物の発泡体を多流体ノズルを用いて噴霧することである。 Furthermore, one of the features of the present invention is that the foam of the anionic surfactant composition is sprayed using a multi-fluid nozzle.
 陰イオン界面活性剤組成物は、発泡体とすることにより、粉体との接触時に粘着性を発現するだけでなく、比重も減少する。このような発泡体を多流体ノズルを用いて噴霧すると、比重が減少した微細な液滴が生成され、その個数も増加する。その結果、洗剤用粉体原料との造粒において、陰イオン界面活性剤組成物が洗剤粒子1個当たりに占める体積が増加し、しかも該陰イオン界面活性剤組成物は発泡体となっており比重が減少しているので、該陰イオン界面活性剤組成物を発泡体としていない場合と比べて、洗剤粒子1個当たりの密度が減少するため、中低嵩密度の洗剤粒子群を得ることができる。 When the anionic surfactant composition is made into a foam, it not only exhibits adhesiveness when in contact with the powder, but also reduces the specific gravity. When such a foam is sprayed using a multi-fluid nozzle, fine droplets having a reduced specific gravity are generated and the number thereof is increased. As a result, the volume of the anionic surfactant composition per detergent particle increases in the granulation with the detergent powder raw material, and the anionic surfactant composition is a foam. Since the specific gravity is reduced, the density per detergent particle is reduced as compared with the case where the anionic surfactant composition is not made into a foam, so that a detergent particle group having a medium to low bulk density can be obtained. it can.
 このように、本発明においては、容器回転型混合機と多流体ノズルとを組み合わせて採用し、更に陰イオン界面活性剤組成物の発泡体を用いることで、それぞれ単独で使用する場合からは予期できない、中低嵩密度の洗剤粒子群を収率良く得るという効果が奏される。 As described above, in the present invention, a combination of a container rotating type mixer and a multi-fluid nozzle is adopted, and further, a foam of an anionic surfactant composition is used. An effect of obtaining a detergent particle group having a medium to low bulk density with high yield is obtained.
 本発明の製造方法における造粒の態様としては、容器回転型混合器を使用して洗剤用粉体原料を撹拌しつつ、陰イオン界面活性剤組成物の発泡体を、多流体ノズルを用いて該洗剤用粉体原料に噴霧する態様であれば特に限定されるものではない。以下、本発明の製造方法の一例としての態様について、より詳細に説明する。 As an aspect of the granulation in the production method of the present invention, the foam of the anionic surfactant composition is stirred using the multi-fluid nozzle while stirring the powder raw material for the detergent using a container rotating mixer. If it is the aspect sprayed on this powder raw material for detergents, it will not specifically limit. Hereinafter, the aspect as an example of the manufacturing method of this invention is demonstrated in detail.
 本発明において、洗剤粒子とは界面活性剤及びビルダー等を含有する粒子であり、洗剤粒子群とはその集合体を意味する。洗剤組成物とは、洗剤粒子群を含有し、所望により洗剤粒子群以外に別途添加された洗剤成分(例えば、ビルダー顆粒、蛍光染料、酵素、香料、消泡剤、漂白剤、漂白活性化剤等)を含有する組成物を意味する。 In the present invention, the detergent particles are particles containing a surfactant and a builder, and the detergent particle group means an aggregate thereof. The detergent composition contains detergent particles and is optionally added separately from the detergent particles (for example, builder granules, fluorescent dyes, enzymes, fragrances, antifoams, bleaches, bleach activators) Etc.).
 本明細書において、水溶性とは25℃の水に対する溶解度が0.5g/100g以上であることを意味し、水不溶性とは、25℃の水に対する溶解度が0.5g/100g未満であることを意味する。 In this specification, water-soluble means that the solubility in water at 25 ° C. is 0.5 g / 100 g or more, and water-insoluble means that the solubility in water at 25 ° C. is less than 0.5 g / 100 g. Means.
A.洗剤粒子群
 本発明の洗剤粒子群は、(1)洗剤用粉体原料、(2)陰イオン界面活性剤組成物の発泡体、が配合されてなるものである。本発明の洗剤粒子群は、更に、(3)その他の粉体成分及び/又は(4)その他の液体成分を含有してもよい。
A. Detergent Particle Group The detergent particle group of the present invention comprises (1) a powder raw material for detergent and (2) a foamed anionic surfactant composition. The detergent particle group of the present invention may further contain (3) other powder components and / or (4) other liquid components.
(1)洗剤用粉体原料
 洗剤用粉体原料としては、水溶性固体アルカリ無機物質及び/又は水溶性無機塩が挙げられる。
(1) Powder raw material for detergent The powder raw material for detergent includes a water-soluble solid alkali inorganic substance and / or a water-soluble inorganic salt.
(1-1)水溶性固体アルカリ無機物質
 水溶性固体アルカリ無機物質とは、常温(20℃)で固体状のアルカリ無機物質であり、該水溶性固体アルカリ無機物質としては、特に規定はないが、例えば、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、ケイ酸ナトリウム等を挙げることができる。中でも洗濯液中で好適なpH緩衝領域を示すアルカリ剤として炭酸ナトリウムが好ましい。これらの水溶性固体アルカリ無機物質は単独で用いても良く、二種以上を混合して用いても良い。
(1-1) Water-soluble solid alkali-inorganic substance The water-soluble solid alkali-inorganic substance is an alkali inorganic substance that is solid at room temperature (20 ° C.), and the water-soluble solid alkali-inorganic substance is not particularly defined. Examples thereof include sodium carbonate, sodium hydrogen carbonate, potassium carbonate, sodium silicate and the like. Among them, sodium carbonate is preferable as an alkaline agent that exhibits a suitable pH buffer region in the washing liquid. These water-soluble solid alkali inorganic materials may be used alone or in combination of two or more.
 炭酸ナトリウムとしては、軽質ソーダ灰(ライト灰)、重質ソーダ灰(デンス灰)のいずれも用いることが可能である。 As sodium carbonate, either light soda ash (light ash) or heavy soda ash (dense ash) can be used.
 また、水溶性固体アルカリ無機物質の平均粒径は特に限定されないが、界面活性剤を高配合する場合には、収率の向上の観点から1~50μmまで粉砕して用いてもよい。なお、水溶性固体アルカリ無機物質の平均粒径は体積基準で算出されるものであり、例えば、レーザー回折式粒度分布測定装置:LA-920(堀場製作所(株)製)を用いて測定される値である。 Further, the average particle diameter of the water-soluble solid alkali inorganic substance is not particularly limited, but when the surfactant is highly blended, it may be pulverized to 1 to 50 μm from the viewpoint of improving the yield. The average particle size of the water-soluble solid alkali inorganic substance is calculated on a volume basis, and is measured using, for example, a laser diffraction particle size distribution analyzer: LA-920 (manufactured by Horiba, Ltd.). Value.
(1-2)水溶性無機塩
 水溶性無機塩は、洗濯液のイオン強度を高め、皮脂汚れ洗浄等の効果を向上させる為、洗剤用粉体原料として用いることが好ましい。該水溶性無機塩としては、例えばイオン解離度の高い硫酸ナトリウム、塩化ナトリウム、亜硫酸ナトリウム、硫酸カリウムが好ましい。又、溶解速度向上の観点からは硫酸マグネシウムの併用も有効である。
(1-2) Water-soluble inorganic salt The water-soluble inorganic salt is preferably used as a powder raw material for detergents in order to increase the ionic strength of the washing liquid and improve the effects of cleaning sebum dirt. As the water-soluble inorganic salt, for example, sodium sulfate, sodium chloride, sodium sulfite and potassium sulfate having a high degree of ionic dissociation are preferable. From the viewpoint of improving the dissolution rate, the combined use of magnesium sulfate is also effective.
 また、水溶性無機塩の平均粒径は特に限定されないが、陰イオン界面活性剤を高配合する場合には、洗剤粒子群の収率向上の観点から1~50μmまで粉砕して用いてもよい。なお、水溶性無機塩の平均粒径は体積基準で算出されるものであり、例えば、レーザー回折式粒度分布測定装置:LA-920(堀場製作所(株)製)を用いて測定される値である。 Further, the average particle size of the water-soluble inorganic salt is not particularly limited, but when an anionic surfactant is highly blended, it may be pulverized to 1 to 50 μm from the viewpoint of improving the yield of the detergent particles. . The average particle diameter of the water-soluble inorganic salt is calculated on a volume basis. For example, it is a value measured using a laser diffraction particle size distribution analyzer: LA-920 (manufactured by Horiba, Ltd.). is there.
 洗剤用粉体原料としては、水溶性固体アルカリ無機物質、水溶性無機塩のうち、例示された原料を単独で用いてもよいし、2種以上を混合して用いてもよい。洗剤用粉体原料としては、好ましくは炭酸ナトリウム及び/又は硫酸ナトリウムであり、より好ましくはライト灰である。 As the powder raw material for detergent, among the water-soluble solid alkali inorganic substance and the water-soluble inorganic salt, the exemplified raw materials may be used alone, or two or more kinds may be mixed and used. The powder raw material for detergent is preferably sodium carbonate and / or sodium sulfate, and more preferably light ash.
 洗剤粒子群中、洗剤用粉体原料の含有量、好ましくは水溶性固体アルカリ無機物質と水溶性無機塩との含有量は、洗浄力向上の観点から10質量%以上が好ましく、20質量%以上がより好ましい。また、洗剤粒子群の嵩密度の低減の観点から80質量%以下が好ましい。これらの観点から、洗剤粒子群中、洗剤用粉体原料の含有量、好ましくは水溶性固体アルカリ無機物質と水溶性無機塩との含有量は、10~80質量%が好ましく、20~80質量%がより好ましい。 In the detergent particle group, the content of the powder raw material for the detergent, preferably the content of the water-soluble solid alkali inorganic substance and the water-soluble inorganic salt is preferably 10% by mass or more, and 20% by mass or more from the viewpoint of improving detergency. Is more preferable. Moreover, 80 mass% or less is preferable from a viewpoint of the reduction of the bulk density of a detergent particle group. From these viewpoints, the content of the powder raw material for the detergent in the detergent particle group, preferably the content of the water-soluble solid alkali inorganic substance and the water-soluble inorganic salt is preferably 10 to 80% by mass, and 20 to 80% by mass. % Is more preferable.
(2)陰イオン界面活性剤組成物の発泡体
(2-1)陰イオン界面活性剤組成物
 本発明に使用する陰イオン界面活性剤組成物としてはシャープな粒度分布の洗剤粒子群を得る観点から、界面活性剤ペーストが好ましく、次のa)成分及びb)成分を含有する界面活性剤ペーストがさらに好ましい。
(2) Foam of anionic surfactant composition (2-1) Anionic surfactant composition As the anionic surfactant composition used in the present invention, a viewpoint of obtaining detergent particles having a sharp particle size distribution Therefore, a surfactant paste is preferable, and a surfactant paste containing the following components a) and b) is more preferable.
a)直鎖アルキルベンゼンスルホン酸の塩、アルキル硫酸の塩及びポリオキシエチレンアルキル硫酸の塩からなる群より選択される1種以上の陰イオン界面活性剤。
b)上記a)成分100質量部に対して25~70質量部の水。
a) One or more anionic surfactants selected from the group consisting of salts of linear alkylbenzene sulfonic acids, salts of alkyl sulfates and salts of polyoxyethylene alkyl sulfates.
b) 25 to 70 parts by weight of water with respect to 100 parts by weight of component a) above.
 直鎖アルキルベンゼンスルホン酸の塩としては、好ましくはアルキル基の炭素数が10~18、より好ましくは炭素数12~16のものが好ましい。また、塩としてはNa塩、K塩、アンモニウム塩又はアミン塩が挙げられる。アルキル硫酸の塩としては、炭素鎖の炭素数が10~18、より好ましくは炭素数12~16のアルキル基又はアルケニル基のものが好ましい。また、塩としてはNa塩、K塩、アンモニウム塩又はアミン塩が挙げられる。 As the salt of the linear alkylbenzene sulfonic acid, the alkyl group preferably has 10 to 18 carbon atoms, more preferably 12 to 16 carbon atoms. Examples of the salt include Na salt, K salt, ammonium salt, and amine salt. As the salt of the alkyl sulfate, an alkyl group or an alkenyl group having 10 to 18 carbon atoms, more preferably 12 to 16 carbon atoms in the carbon chain is preferable. Examples of the salt include Na salt, K salt, ammonium salt, and amine salt.
 ポリオキシエチレンアルキル硫酸の塩としては、炭素鎖の炭素数が10~18、より好ましくは炭素数12~16のアルキル基又はアルケニル基のものが好ましい。また、ポリオキシエチレンの平均付加モル数として、0.1~3.0のものが好ましい。さらに、塩としてはNa塩、K塩、アンモニウム塩又はアミン塩、が挙げられる。
 これらの中でも、シャープな粒度分布の洗剤粒子群を得る観点から、アルキル硫酸の塩が好ましい。
The polyoxyethylene alkylsulfuric acid salt is preferably an alkyl or alkenyl group having 10 to 18 carbon atoms, more preferably 12 to 16 carbon atoms in the carbon chain. Further, the average added mole number of polyoxyethylene is preferably 0.1 to 3.0. Further, examples of the salt include Na salt, K salt, ammonium salt or amine salt.
Among these, from the viewpoint of obtaining detergent particles having a sharp particle size distribution, alkyl sulfate salts are preferred.
 界面活性剤ペーストとは、上記a)成分として示される陰イオン界面活性剤と上記b)成分として示される水を少なくとも含有するものである。かかるペーストの60℃における粘度として、100Pa・s以下のものが好ましい。 The surfactant paste contains at least an anionic surfactant shown as the component a) and water shown as the component b). The paste at 60 ° C. preferably has a viscosity of 100 Pa · s or less.
 該界面活性剤ペーストは、その含水率により粘度が大きく変化する。例えば、a)成分の酸前駆体をアルカリ化合物で中和して当該界面活性剤ペーストを調製することができるが、その際に、用いるアルカリ化合物の水分量を調節し、所望の含水率をもった、すなわち、所望の粘度を有する界面活性剤ペーストを調製することが好ましい。該陰イオン界面活性剤は、該陰イオン界面活性剤100質量部に対して25~70質量部の水を含有する際に、粘度が低下したペースト状の陰イオン界面活性剤となり、ハンドリングしやすくなることが一般的に知られており、本発明ではこの範囲に陰イオン界面活性剤の水分を調整した界面活性剤ペーストを用いることが好ましい。 The viscosity of the surfactant paste varies greatly depending on its water content. For example, the surfactant paste can be prepared by neutralizing the acid precursor of component a) with an alkali compound. At this time, the water content of the alkali compound used is adjusted to have a desired moisture content. That is, it is preferable to prepare a surfactant paste having a desired viscosity. When the anionic surfactant contains 25 to 70 parts by mass of water with respect to 100 parts by mass of the anionic surfactant, it becomes a paste-like anionic surfactant having a reduced viscosity and is easy to handle. In the present invention, it is preferable to use a surfactant paste in which the water content of the anionic surfactant is adjusted.
 界面活性剤ペーストにおける水の量の範囲としては、ハンドリングの観点から、a)成分100質量部に対して25~70質量部が好ましく、30~65質量部がより好ましく、35~65質量部が更に好ましく、界面活性剤ペースト中の水分量は、ハンドリングの観点から、20~41質量%が好ましく、23~39質量%がより好ましく、26~39質量%がより更に好ましい。 The range of the amount of water in the surfactant paste is preferably 25 to 70 parts by weight, more preferably 30 to 65 parts by weight, and more preferably 35 to 65 parts by weight with respect to 100 parts by weight of component a) from the viewpoint of handling. More preferably, the water content in the surfactant paste is preferably 20 to 41% by mass, more preferably 23 to 39% by mass, and even more preferably 26 to 39% by mass from the viewpoint of handling.
 また、界面活性剤ペーストの粘度は、好ましくは該界面活性剤ペーストの使用温度域において、製造上のハンドリング性の観点から、好ましくは10Pa・s以下、より好ましくは5Pa・s以下、また同様に、好ましくは0.5Pa・s以上、より好ましくは1Pa・s以上であり、これらの観点から、好ましくは0.5~10Pa・sであり、更に好ましくは1~5Pa・sである。前記使用温度域としては、界面活性剤ペーストの安定性の観点から、好ましくは20~70℃、より好ましくは20~60℃である。ここで、粘度は、共軸二重円筒型の回転粘度計(HAAKE製、センサー:SV-DIN)により剪断速度50〔1/s〕で測定して求める。 In addition, the viscosity of the surfactant paste is preferably 10 Pa · s or less, more preferably 5 Pa · s or less, preferably from the viewpoint of handleability in production, preferably in the use temperature range of the surfactant paste. Preferably, it is 0.5 Pa · s or more, more preferably 1 Pa · s or more. From these viewpoints, it is preferably 0.5 to 10 Pa · s, and more preferably 1 to 5 Pa · s. The use temperature range is preferably 20 to 70 ° C., more preferably 20 to 60 ° C., from the viewpoint of the stability of the surfactant paste. Here, the viscosity is determined by measuring at a shear rate of 50 [1 / s] with a coaxial double cylindrical rotational viscometer (manufactured by HAAKE, sensor: SV-DIN).
 界面活性剤ペーストの調製法は、特に限定されず、公知の方法を用いることができる。該陰イオン界面活性剤の酸前駆体のうち、非常に不安定で分解しやすいものは、その分解を抑制できるように調製することが好ましい。たとえば、ループ反応器を用いて、中和熱を熱交換器などにより除去し、当該酸前駆体及び界面活性剤ペーストの温度管理に注意しながら製造を行なえばよい。製造時の温度域としては、30~60℃が好ましく、製造後の保存温度域としては60℃以下が好ましい。また、使用時、必要に応じて昇温し、界面活性剤ペーストを用いればよい。 The method for preparing the surfactant paste is not particularly limited, and a known method can be used. Among the acid precursors of the anionic surfactant, those which are very unstable and easily decomposed are preferably prepared so that the decomposition can be suppressed. For example, using a loop reactor, the heat of neutralization is removed by a heat exchanger or the like, and the production may be performed while paying attention to the temperature control of the acid precursor and the surfactant paste. The temperature range during production is preferably 30 to 60 ° C., and the storage temperature range after production is preferably 60 ° C. or less. Further, at the time of use, the temperature may be raised as necessary, and a surfactant paste may be used.
 得られる界面活性剤ペーストは、分解を抑制する観点から、過剰のアルカリ度を有することが好ましい。 The obtained surfactant paste preferably has an excessive alkalinity from the viewpoint of suppressing decomposition.
 該界面活性剤ペーストには、酸前駆体を製造した際の未反応アルコールや未反応ポリオキシエチレンアルキルエーテル、中和反応時の副生成物である芒硝、中和反応時に添加され得るpH緩衝剤、脱色剤等が含有されていてもよい。 The surfactant paste includes unreacted alcohol and unreacted polyoxyethylene alkyl ether at the time of producing the acid precursor, sodium sulfate as a by-product during the neutralization reaction, and a pH buffer that can be added during the neutralization reaction Further, a decolorizing agent or the like may be contained.
 該界面活性剤ペーストにおいて、界面活性剤としてa)成分からなる一種以上を単独で用いることもできるが、下記の界面活性剤を併用して用いることもできる。併用する場合は、あらかじめa)成分含有の界面活性剤ペーストと混合して用いても良いし、それぞれ別々に添加しても良い。なお、下記界面活性剤を併用する場合、下記界面活性剤は、a)成分100質量部に対して、好ましくは1~70質量部、より好ましくは2~50質量部、更に好ましくは3~30質量部である。かかる界面活性剤としては、α-スルホ脂肪酸エステル塩や二級アルカンスルホン酸塩が挙げられる。 In the surfactant paste, one or more of the component a) can be used alone as the surfactant, but the following surfactants can also be used in combination. When using together, you may mix and use the surfactant paste containing a) component previously, and you may add separately, respectively. When the following surfactant is used in combination, the following surfactant is preferably 1 to 70 parts by weight, more preferably 2 to 50 parts by weight, and still more preferably 3 to 30 parts per 100 parts by weight of component a). Part by mass. Examples of such surfactants include α-sulfo fatty acid ester salts and secondary alkane sulfonates.
(2-2)発泡体
 本発明においては、上記陰イオン界面活性剤組成物の発泡体を使用する。発泡体は、該陰イオン界面活性剤組成物中にガス媒体(エアー、窒素、二酸化炭素等)が含有されてなるものである。ガス媒体としては、生産性の観点からエアー(空気)が好ましい。
(2-2) Foam In the present invention, a foam of the above anionic surfactant composition is used. The foam is obtained by containing a gas medium (air, nitrogen, carbon dioxide, etc.) in the anionic surfactant composition. As the gas medium, air (air) is preferable from the viewpoint of productivity.
 かかる発泡体は、例えば、陰イオン界面活性剤組成物にガス媒体を混入することによって得ることができる。該発泡体のより具体的な調製方法として、バッチ式、連続式が挙げられる。バッチ式としては、バッチニーダー等の一般に用いられる混練機に、該陰イオン界面活性剤組成物を投入し、ガス媒体存在下、所定の時間の間混練を行うことによりガス媒体を巻き込み、発泡体を調製する方法である。 Such a foam can be obtained, for example, by mixing a gas medium into an anionic surfactant composition. More specific methods for preparing the foam include a batch method and a continuous method. As a batch type, the anionic surfactant composition is put into a kneader generally used such as a batch kneader, and the gas medium is entrained by performing kneading for a predetermined time in the presence of the gas medium. It is a method of preparing.
 連続式としては、所定量の該界面活性剤組成物及びガス媒体を連続的に高速回転部に導入することによりガス媒体を混合分散し、発泡体を調製する方法である。 The continuous method is a method of preparing a foam by mixing and dispersing a gas medium by continuously introducing a predetermined amount of the surfactant composition and the gas medium into a high-speed rotating part.
 該発泡体の比重等の物性の安定性や調製法の容易さ、及び生産性の観点から、連続式の調製方法が好ましい。このような連続式の調製方法を行う発泡機の一例としては、MDFシリーズ(大平洋機工株式会社製)、BMシリーズ(株式会社ヤナギヤ製)等が挙げられる。 The continuous preparation method is preferred from the viewpoints of stability of physical properties such as specific gravity of the foam, ease of preparation method, and productivity. As an example of the foaming machine which performs such a continuous preparation method, there are MDF series (manufactured by Taihei Kiko Co., Ltd.), BM series (manufactured by Yana Gear Co., Ltd.) and the like.
 バッチ式の調製方法においては、該界面活性剤組成物の混練時間により、該発泡体の比重がコントロールできる。 In the batch-type preparation method, the specific gravity of the foam can be controlled by the kneading time of the surfactant composition.
 また、連続式の調製方法においては、該界面活性剤組成物に対するガス媒体の流量を調製することにより、該発泡体の比重がコントロールできる。ガス媒体の体積流量の範囲としては、例えば、該界面活性剤組成物の体積流量の0.2倍から10倍の範囲であることが好ましい。陰イオン界面活性剤へのガス媒体の混入が、発泡機を用いて行われることが好ましい。 In the continuous preparation method, the specific gravity of the foam can be controlled by adjusting the flow rate of the gas medium with respect to the surfactant composition. The range of the volume flow rate of the gas medium is preferably, for example, in the range of 0.2 to 10 times the volume flow rate of the surfactant composition. The gas medium is preferably mixed into the anionic surfactant using a foaming machine.
 発泡機に供給する際の陰イオン界面活性剤組成物の温度としては、界面活性剤ペーストの安定性の観点から、好ましくは20~70℃、より好ましくは20~60℃である。 The temperature of the anionic surfactant composition at the time of supplying to the foaming machine is preferably 20 to 70 ° C., more preferably 20 to 60 ° C., from the viewpoint of the stability of the surfactant paste.
 得られる該陰イオン界面活性剤組成物の発泡体の比重は、中低嵩密度の洗剤粒子群を収率良く得る観点から、好ましくは0.1~0.9、より好ましくは0.1~0.8、さらに好ましくは0.1~0.7である。 The specific gravity of the resulting foam of the anionic surfactant composition is preferably 0.1 to 0.9, more preferably 0.1 to 0.9, from the viewpoint of obtaining a medium / low bulk density detergent particle group in good yield. 0.8, more preferably 0.1 to 0.7.
 なお、本発明で得られる洗剤粒子群中における陰イオン界面活性剤の含有量としては、洗浄力及び洗剤用粉体原料との造粒物を形成させる観点から、洗剤粒子群中の5質量%以上が好ましく、10質量%以上がより好ましい。また、粗大粒子の生成を抑制する観点から、50質量%以下が好ましく、40質量%以下がより好ましく、これらの観点から、洗剤粒子群中における上記含有量としては5~50質量%が好ましく、10~50質量%がより好ましく、10~40質量%がより更に好ましい。 In addition, as content of the anionic surfactant in the detergent particle group obtained by this invention, it is 5 mass% in detergent particle group from a viewpoint of forming a granulated material with a cleaning power and the powder raw material for detergents. The above is preferable, and 10 mass% or more is more preferable. Further, from the viewpoint of suppressing the generation of coarse particles, it is preferably 50% by mass or less, more preferably 40% by mass or less. From these viewpoints, the content in the detergent particle group is preferably 5 to 50% by mass, 10 to 50% by mass is more preferable, and 10 to 40% by mass is even more preferable.
 本発明における、(2)陰イオン界面活性剤組成物の発泡体は、洗剤用粉体原料を結合させて造粒物を形成させる能力を有するものであり、上記段落で述べたように、該陰イオン界面活性剤組成物が洗剤用粉体原料と接触した際に粘着性を発現することが本願の一つの特徴である。 In the present invention, (2) the foam of the anionic surfactant composition has the ability to form a granulated product by combining powder raw materials for detergent, and as described in the above paragraph, One feature of the present application is that the anionic surfactant composition exhibits adhesiveness when it comes into contact with the powder raw material for detergent.
 該陰イオン界面活性剤組成物の発泡体は、洗剤用粉体原料に添加された際に、該陰イオン界面活性剤組成物中の水分が洗剤用粉体原料の水和や溶解により奪われることにより、又は、洗剤用粉体原料の温度が該陰イオン界面活性剤の温度より低い場合において、該陰イオン界面活性剤組成物の発泡体の温度が、その融点近傍又は融点以下まで低下することにより、該陰イオン界面活性剤組成物の発泡体が固化することで粘着性が発現すると推定される。 When the foam of the anionic surfactant composition is added to the detergent powder raw material, the moisture in the anionic surfactant composition is deprived by the hydration or dissolution of the detergent powder raw material. Or when the temperature of the detergent powder raw material is lower than the temperature of the anionic surfactant, the temperature of the foam of the anionic surfactant composition decreases to near or below its melting point. Thus, it is presumed that the anionic surfactant composition foam is solidified to develop adhesiveness.
 このように、該陰イオン界面活性剤組成物の発泡体が洗剤用粉体原料に接触した際に粘着性を発現することで、洗剤用粉体原料の造粒が進行するが、その粘着性発現の目安として、該陰イオン界面活性剤組成物の発泡体が洗剤用粉体原料と接触したときの粘度が2Pa・s以上が好ましく、3Pa・s以上がより好ましい。尚、接触時の発泡体の粘度は、共軸二重円筒型の回転粘度計(HAAKE製、センサー:SV-DIN)により剪断速度50〔1/s〕の条件において、該陰イオン界面活性剤組成物の発泡体が洗剤用粉体原料と接触したときと同様となるように、その温度や水分値を調整して測定すればよい。 As described above, when the foam of the anionic surfactant composition comes into contact with the detergent powder raw material, it develops an adhesive property, whereby granulation of the detergent powder raw material proceeds. As a standard of expression, the viscosity of the foam of the anionic surfactant composition when it comes into contact with the powder raw material for detergent is preferably 2 Pa · s or more, more preferably 3 Pa · s or more. The viscosity of the foam at the time of contact was determined by the anionic surfactant under the condition of a shear rate of 50 [1 / s] using a coaxial double cylindrical rotational viscometer (manufactured by HAAKE, sensor: SV-DIN). What is necessary is just to adjust and measure the temperature and moisture value so that it may become the same as when the foam of a composition contacts the powder raw material for detergents.
(3)その他の粉体成分
 容器回転型混合機には、「洗剤用粉体原料」以外の一般に洗剤組成物の分野に用いられる公知の物質を合わせて添加してもよい。洗剤粒子群中のその他の粉体成分の量は、1~30質量%が好ましく、1~20質量%がより好ましい。
(3) Other powder components In addition to the "powder raw material for detergents", generally known substances generally used in the field of detergent compositions may be added to the container rotary mixer. The amount of the other powder component in the detergent particle group is preferably 1 to 30% by mass, and more preferably 1 to 20% by mass.
 かかる物質としては、キレート剤(トリポリリン酸塩、オルトリン酸塩、ピロリン酸塩等、アルカリ金属アルミノケイ酸塩)、水溶性ポリマーのうち粉体のもの(カルボン酸ポリマー、カルボキシメチルセルロース、可溶性澱粉、糖類、ポリエチレングリコール)、水不溶性賦形剤(二酸化ケイ素、水和ケイ酸化合物、バーライト、ベントナイト等の粘土化合物等)や、粒子状界面活性剤(脂肪酸又はその塩、直鎖アルキルベンゼンスルホン酸塩、アルキル硫酸塩等)が挙げられる。 Such substances include chelating agents (tripolyphosphates, orthophosphates, pyrophosphates, alkali metal aluminosilicates), powders of water-soluble polymers (carboxylic acid polymers, carboxymethylcellulose, soluble starch, saccharides, Polyethylene glycol), water-insoluble excipients (silicon dioxide, hydrated silicate compounds, clay compounds such as barlite, bentonite, etc.), particulate surfactants (fatty acids or salts thereof, linear alkylbenzene sulfonates, alkyls) Sulfate, etc.).
 上記の物質は、該陰イオン界面活性剤組成物の発泡体を添加する前に、洗剤用粉体原料と合わせて添加してもよいし、該陰イオン界面活性剤組成物の発泡体を添加した後に添加してもよい。アルカリ金属アルミノケイ酸塩を添加する場合は、表面改質剤として用いることで、流動性の向上、保存安定性の向上を図ることができるため、該陰イオン界面活性剤の発泡体を添加した後に添加することが好ましい。 The above substances may be added together with the powder raw material for the detergent before adding the foam of the anionic surfactant composition, or the foam of the anionic surfactant composition may be added. It may be added after. When adding an alkali metal aluminosilicate, it can be used as a surface modifier to improve fluidity and storage stability, so after adding the foam of the anionic surfactant It is preferable to add.
(4)その他の液体成分
 本発明においては、さらにその他の液体成分を添加して洗剤粒子群を製造してもよい。添加されるその他の液体成分としては、得ようとする洗剤粒子群の組成に応じて適宜選択することができる。液体成分の添加時期は特に限定されるものではなく、例えば、該陰イオン界面活性剤組成物に予め混合しておいてもよいし、該陰イオン界面活性剤組成物の発泡体を添加する前又はその途中、或いは後に行ってもよいが、表面改質剤を添加する場合には、表面改質剤の添加前が好ましい。
(4) Other liquid components In the present invention, other liquid components may be added to produce detergent particles. Other liquid components to be added can be appropriately selected according to the composition of the detergent particle group to be obtained. The addition timing of the liquid component is not particularly limited. For example, the liquid component may be mixed in advance with the anionic surfactant composition, or before the foam of the anionic surfactant composition is added. Alternatively, it may be performed during or after that, but when a surface modifier is added, it is preferably before the addition of the surface modifier.
 該陰イオン界面活性剤組成物の発泡体を添加した後に液体成分を添加する場合は、容器回転型混合機にて該液体成分を添加してもよいし、本発明の製造方法によって得られる洗剤粒子群を容器回転型混合機から排出した後に、別の混合機/造粒機に得られた洗剤粒子群を投入し、当該液体成分をここに添加してもよい。 When the liquid component is added after adding the foam of the anionic surfactant composition, the liquid component may be added using a container rotating mixer, or the detergent obtained by the production method of the present invention. After discharging the particle group from the container rotating mixer, the detergent particle group obtained in another mixer / granulator may be charged and the liquid component added thereto.
 液体成分としては、例えば非イオン界面活性剤や脂肪酸、水溶性ポリマー(カルボン酸ポリマー、カルボキシメチルセルロース、可溶性澱粉、糖類、ポリエチレングリコール等)等の通常の洗剤組成物に用いられる任意の液体成分が挙げられる。液体成分は一成分のみを用いてもよく、二成分以上を併用しても良い。液体成分としては、その融点以上の温度にて液状として添加してもよく、又は水溶液若しくは分散液の形態で添加してもよい。媒体を除いた正味の液体成分の量としては、洗剤粒子群の凝集抑制の観点から、最終産物である洗剤粒子群の15質量%以下が好ましく、10質量%以下がより好ましい。 Examples of the liquid component include any liquid component used in ordinary detergent compositions such as nonionic surfactants, fatty acids, and water-soluble polymers (such as carboxylic acid polymer, carboxymethyl cellulose, soluble starch, saccharide, and polyethylene glycol). It is done. As the liquid component, only one component may be used, or two or more components may be used in combination. The liquid component may be added as a liquid at a temperature equal to or higher than its melting point, or may be added in the form of an aqueous solution or dispersion. The amount of the net liquid component excluding the medium is preferably 15% by mass or less, and more preferably 10% by mass or less of the detergent particle group as the final product, from the viewpoint of suppressing aggregation of the detergent particle group.
 液体成分として用いられる非イオン界面活性剤としては、特に限定されるものではないが、洗浄力の観点から、例えば炭素数10~14のアルコールにアルキレンオキシドを6~22モル付加したポリオキシアルキレンアルキルエーテルが好ましい。 The nonionic surfactant used as the liquid component is not particularly limited, but from the viewpoint of detergency, for example, a polyoxyalkylene alkyl obtained by adding 6 to 22 moles of alkylene oxide to an alcohol having 10 to 14 carbon atoms. Ether is preferred.
 これら液体成分の添加方法としては、本発明で記載の多流体ノズルに依らず、任意のノズルにより噴霧可能である。 As a method for adding these liquid components, spraying can be performed with any nozzle, not depending on the multi-fluid nozzle described in the present invention.
B.洗剤粒子群の製造方法
 本発明の製造方法では、容器回転型混合機を用いて、陰イオン界面活性剤組成物の発泡体を該混合機内に噴霧することによって、洗剤用粉体原料を造粒する工程を有する。該陰イオン界面活性剤組成物の発泡体を添加する際には、多流体ノズルを用いて該容器回転型混合機内に噴霧することによって、造粒が行われる。
B. Method for Producing Detergent Particle Group In the production method of the present invention, a powder raw material for detergent is granulated by spraying a foam of an anionic surfactant composition into the mixer using a container rotating mixer. The process of carrying out. When the foam of the anionic surfactant composition is added, granulation is performed by spraying into the container rotary mixer using a multi-fluid nozzle.
 噴霧される陰イオン界面活性剤組成物の発泡体の量としては、洗剤用粉体原料100質量部に対して20~100質量部が好ましく、25~90質量部がより好ましい。洗浄力の観点から20質量部以上が好ましく、造粒収率、溶解性の観点から100質量部以下が好ましい。 The amount of foam of the anionic surfactant composition to be sprayed is preferably 20 to 100 parts by mass, more preferably 25 to 90 parts by mass with respect to 100 parts by mass of the powder raw material for detergent. 20 parts by mass or more is preferable from the viewpoint of detergency, and 100 parts by mass or less is preferable from the viewpoint of granulation yield and solubility.
(1)容器回転型混合機
 容器回転型混合機としては、ドラム型混合機或いはパン型混合機が好ましい。ドラム型混合機としては、ドラム状の円筒が回転して処理を行うものであれば特に限定されるものではなく、水平又はわずかに傾斜させたドラム型混合機の他に円錐ドラム型造粒機(混合機)、多段円錐ドラム型造粒機(混合機)等も使用可能である。これらの装置はバッチ式、連続式いずれの方法においても用いることができる。
(1) Container rotation type mixer As the container rotation type mixer, a drum type mixer or a pan type mixer is preferable. The drum-type mixer is not particularly limited as long as the drum-shaped cylinder rotates and performs processing. In addition to the drum-type mixer that is horizontally or slightly inclined, the conical drum-type granulator is used. (Mixer), multi-stage conical drum granulator (mixer), etc. can also be used. These apparatuses can be used in both batch and continuous processes.
 なお、洗剤粒子群と容器回転型混合機の内壁との間の壁面摩擦係数が小さく、洗剤粒子群に充分な上昇運動力を加えることが困難な場合、容器内壁に複数個の邪魔板(バッフル)を取付けてもよい。このことにより、粒子群に上昇運動を行わせることが可能となり、粉末混合性及び固液混合性が向上する。 If the coefficient of wall friction between the detergent particle group and the inner wall of the container rotating mixer is small and it is difficult to apply sufficient lifting force to the detergent particle group, a plurality of baffle plates (baffles ( ) May be attached. This makes it possible to cause the particle group to perform an upward movement, and improves the powder mixing property and the solid-liquid mixing property.
 容器回転型混合機の運転条件としては、混合機内の成分が攪拌できる条件であれば特に限定されないが、下記の式で定義されるフルード数が、0.005~1.0である運転条件が好ましく、0.01~0.6である運転条件がより好ましい。 The operating condition of the container rotation type mixer is not particularly limited as long as the components in the mixer can be stirred. However, the operating condition is that the fluid number defined by the following formula is 0.005 to 1.0. An operating condition of 0.01 to 0.6 is more preferable.
  フルード数:Fr=V2/(R×g)
  V:周速[m/s]
  R:回転中心から回転物の円周までの半径[m]
  g:重力加速度[m/s2]
Fluid number: Fr = V 2 / (R × g)
V: Circumferential speed [m / s]
R: Radius from the center of rotation to the circumference of the rotating object [m]
g: Gravity acceleration [m / s 2 ]
(2)多流体ノズル
 本発明においては、該陰イオン界面活性剤組成物の発泡体を多流体ノズルを用いて供給することが一つの特徴である。かかるノズルを用いることにより、上記の界面活性剤ペーストやその発泡体といった比較的粘度が高い流動性成分であっても、その液滴を微細化して分散させることができる。多流体ノズルとは、液体と微粒化用気体(エアー、窒素等)とを独立の流路を通してノズル先端部近傍まで流通させて混合・微粒化するノズルであり、2流体ノズルや3流体ノズル、4流体ノズル等を用いることができる。これらの多流体ノズルの中で、操作の容易性や入手の容易性の観点から、2流体ノズルが好ましい。
(2) Multi-fluid nozzle In the present invention, one feature is that the foam of the anionic surfactant composition is supplied using a multi-fluid nozzle. By using such a nozzle, even a fluid component having a relatively high viscosity, such as the above-described surfactant paste or foam thereof, can be used to make the droplets finer and disperse. A multi-fluid nozzle is a nozzle that mixes and atomizes a liquid and atomizing gas (air, nitrogen, etc.) through an independent channel to the vicinity of the nozzle tip. A four-fluid nozzle or the like can be used. Among these multi-fluid nozzles, a two-fluid nozzle is preferable from the viewpoint of ease of operation and availability.
 本発明では、該陰イオン界面活性剤組成物の発泡体と微粒化用気体とを混合して、微粒化させることが好ましい。該陰イオン界面活性剤組成物の発泡体と微粒化用気体の混合部のタイプとしては、ノズル先端部内で混合する内部混合型、或いはノズル先端部外で混合する外部混合型のいずれであっても良い。 In the present invention, the foam of the anionic surfactant composition and the atomizing gas are preferably mixed and atomized. The type of the mixing part of the foam of the anionic surfactant composition and the gas for atomization is either an internal mixing type that mixes inside the nozzle tip or an external mixing type that mixes outside the nozzle tip. Also good.
 このような多流体ノズルとしては、スプレーイングシステムスジャパン(株)製、(株)共立合金製作所製、いけうち(株)製等の内部混合型2流体ノズル、スプレーイングシステムスジャパン(株)製、(株)共立合金製作所製、(株)アトマックス製等の外部混合型2流体ノズル、藤崎電機(株)製の外部混合型4流体ノズル等が挙げられる。 As such a multi-fluid nozzle, an internal mixed type two-fluid nozzle such as manufactured by Spraying Systems Japan Co., Ltd., manufactured by Kyoritsu Alloy Manufacturing Co., Ltd., or manufactured by Ikeuchi Co., Ltd., manufactured by Spraying Systems Japan Co., Ltd. And an external mixing type two-fluid nozzle manufactured by Kyoritsu Alloy Mfg. Co., Ltd. and Atmax Co., Ltd., an external mixing type four-fluid nozzle manufactured by Fujisaki Electric Co., Ltd., and the like.
 また、該陰イオン界面活性剤組成物の発泡体の液滴の液滴径については、その流量と微粒化用気体の流量のバランスを変更することにより調整可能である。すなわち、ある一定流量の該陰イオン界面活性剤組成物の発泡体に対して、微粒化用気体の流量を増加させればさせるほど、液滴径は小さくなる。更に、ある一定流量の微粒化用気体に対して該陰イオン界面活性剤組成物の発泡体の流量を低下させればさせるほど、液滴径は小さくなる。液滴径が小さいほど、すなわち、微粒化用気体の流量を増やすほど微細化された液滴により粗粒の低減、すなわち収率の向上が可能となる。 Moreover, the droplet diameter of the foam droplet of the anionic surfactant composition can be adjusted by changing the balance between the flow rate and the flow rate of the atomizing gas. That is, as the flow rate of the atomizing gas is increased with respect to the foam of the anionic surfactant composition having a certain flow rate, the droplet diameter becomes smaller. Furthermore, the droplet diameter becomes smaller as the flow rate of the foam of the anionic surfactant composition is decreased with respect to the atomizing gas at a certain flow rate. As the droplet diameter is smaller, that is, as the flow rate of the atomization gas is increased, the refined droplets can reduce coarse particles, that is, improve the yield.
 一方で、該発泡体は、多流体ノズルに供給される微粒化用気体によりせん断力を受け、該発泡体が破泡して該発泡体の比重の上昇が起こりやすい。そのため、該発泡体の比重の上昇を抑制可能となるように多流体ノズルに供給される微粒化用気体の流量を調整することが好ましい。すなわち、本発明においては、粗粒の低減と該発泡体の比重の上昇抑制を両立するために好適な微粒化用気体の流量が存在することとなる。 On the other hand, the foam is subjected to a shearing force by the atomizing gas supplied to the multi-fluid nozzle, and the foam is likely to break up and the specific gravity of the foam is likely to increase. Therefore, it is preferable to adjust the flow rate of the atomizing gas supplied to the multi-fluid nozzle so that an increase in the specific gravity of the foam can be suppressed. That is, in the present invention, there is a suitable atomization gas flow rate in order to achieve both reduction of coarse particles and suppression of increase in the specific gravity of the foam.
 好適な微粒化用気体の流量は、用いる多流体ノズルの種類により異なるが、〔陰イオン界面活性剤組成物の発泡体の体積流量(cm3/min)〕/〔微粒化用気体の流量(L/min)〕とのパラメータを考えた場合、中低嵩密度の洗剤粒子群を収率良く得る観点から、好ましくは0.5~30cm3/L、より好ましくは1~20cm3/Lである。(株)アトマックス製の2流体ノズルBN90を用いる場合に、上記の範囲は好適である。 The flow rate of a suitable atomizing gas varies depending on the type of multi-fluid nozzle to be used, but [volume flow rate of foam of an anionic surfactant composition (cm 3 / min)] / [flow rate of atomizing gas ( L / min)], it is preferably 0.5 to 30 cm 3 / L, more preferably 1 to 20 cm 3 / L from the viewpoint of obtaining a medium / low bulk density detergent particle group with good yield. is there. The above range is suitable when using a two-fluid nozzle BN90 manufactured by Atmax Co., Ltd.
 多流体ノズルで噴霧後の該陰イオン界面活性剤組成物の発泡体の液滴径としては、平均粒径で10~500μmであることが好ましい。 The droplet diameter of the foam of the anionic surfactant composition after spraying with a multi-fluid nozzle is preferably 10 to 500 μm in average particle diameter.
 なお、該陰イオン界面活性剤組成物の発泡体の液滴径の平均粒径は体積基準で算出されるものであり、レーザー回折式粒度分布測定装置:スプレーテック(マルバーン社製)を用いて測定される値である。 In addition, the average particle diameter of the droplet diameter of the foam of the anionic surfactant composition is calculated on a volume basis, and a laser diffraction particle size distribution analyzer: Spray Tech (manufactured by Malvern) is used. The value to be measured.
 多流体ノズルで噴霧後の該陰イオン界面活性剤組成物の発泡体の比重は、中低嵩密度の洗剤粒子群を収率良く得る観点から、好ましくは0.1~0.95、より好ましくは0.2~0.95、更に好ましくは0.2~0.85である。 The specific gravity of the foam of the anionic surfactant composition after spraying with a multi-fluid nozzle is preferably from 0.1 to 0.95, more preferably from the viewpoint of obtaining a detergent particle group with medium to low bulk density in good yield. Is from 0.2 to 0.95, more preferably from 0.2 to 0.85.
 また、該陰イオン界面活性剤組成物の発泡体の添加速度を上げたい場合には、これらの多流体ノズルを複数個使用し、液滴の微細化を維持しつつ添加速度を上げることも効果的である。 In addition, when it is desired to increase the rate of addition of the foam of the anionic surfactant composition, it is also effective to use a plurality of these multi-fluid nozzles and increase the rate of addition while maintaining finer droplets. Is.
 このような容器回転型混合機と、陰イオン界面活性剤の発泡体と、多流体ノズルを組み合わせた方法を用いることで、陰イオン界面活性剤組成物の発泡体においても均一な分散が可能となり、収率が向上した中低嵩密度の洗剤粒子群が得られる。 By using a method in which such a container rotating mixer, an anionic surfactant foam, and a multi-fluid nozzle are combined, even an anionic surfactant foam can be uniformly dispersed. Thus, a medium and low bulk density detergent particle group with improved yield is obtained.
C.洗剤粒子群を含有する洗剤組成物及びその製造方法
 上記のようにして製造される洗剤粒子群をそのまま洗剤組成物として扱うこともできるが、さらに所望の成分が添加されたものも洗剤組成物として扱うことができる。即ち、本発明の洗剤組成物は、本発明の製造方法によって得られる洗剤粒子群を少なくとも含有してなるものである。
C. Detergent Composition Containing Detergent Particle Group and Method for Producing the Same The detergent particle group produced as described above can be handled as a detergent composition as it is, but a composition to which a desired component is added is also used as a detergent composition. Can be handled. That is, the detergent composition of the present invention contains at least the detergent particles obtained by the production method of the present invention.
 添加される成分としては、例えば、ビルダー顆粒、蛍光染料、酵素、香料、消泡剤、漂白剤、漂白活性化剤等が挙げられる。かかる成分は、該陰イオン界面活性剤組成物を添加した後に、容器回転型混合機に添加してもよいし、又は、本発明の製造方法によって得られる洗剤粒子群を容器回転型混合機から排出した後に、別の混合機を用いて添加してもよい。 Examples of components to be added include builder granules, fluorescent dyes, enzymes, fragrances, antifoaming agents, bleaching agents, bleach activators and the like. Such components may be added to the container rotating mixer after the addition of the anionic surfactant composition, or the detergent particles obtained by the production method of the present invention are removed from the container rotating mixer. After discharging, another mixer may be used for addition.
D.物性と評価
 本発明により得られる洗剤粒子群等の物性としては、嵩密度や流動性、平均粒径が挙げられる。また生産性の指標となる物性として造粒収率が挙げられる。また溶解性の指標となる物性として60秒間溶解率、及びザラツキ消失時間が挙げられる。洗剤粒子群の嵩密度としては、60秒間溶解率、及びザラツキ消失時間に優れる観点から、中低嵩密度である250~690g/Lが好ましく、250~650g/Lがさらに好ましく、300~600g/Lがより好ましい。洗剤粒子群の平均粒径としては、洗剤粒子の造粒収率を向上させる観点から、200~800μmが好ましく、200~600μmがより好ましい。洗剤粒子群の流動性としては、洗剤粒子の取り扱い性に優れる観点から、4~12秒が好ましく、4~10秒がより好ましく、4~8秒が更に好ましい。造粒収率としては、100%に近ければ近い程好ましく、例えば、80~100%が好ましく、90~100%がより好ましい。
D. Physical properties and evaluation The physical properties of the detergent particles obtained by the present invention include bulk density, fluidity, and average particle size. Moreover, a granulation yield is mentioned as a physical property used as an index of productivity. In addition, examples of physical properties that serve as an index of solubility include a dissolution rate for 60 seconds and a roughness disappearance time. The bulk density of the detergent particles is preferably a medium to low bulk density of 250 to 690 g / L, more preferably 250 to 650 g / L, and more preferably 300 to 600 g / L, from the viewpoint of excellent dissolution rate for 60 seconds and roughness disappearance time. L is more preferable. The average particle size of the detergent particles is preferably 200 to 800 μm, more preferably 200 to 600 μm from the viewpoint of improving the granulation yield of the detergent particles. The fluidity of the detergent particles is preferably 4 to 12 seconds, more preferably 4 to 10 seconds, and still more preferably 4 to 8 seconds, from the viewpoint of excellent handling of the detergent particles. The granulation yield is preferably as close to 100% as possible, for example, 80 to 100% is preferable, and 90 to 100% is more preferable.
 洗剤粒子群等についての物性の測定方法は以下に説明する通りである。
<物性の測定方法>
1.嵩密度
 嵩密度は、JIS K 3362:2008において見掛け密度として記載された方法で測定する。なお、嵩密度は、2000μmの篩上に残留した粒子をカットした残りの粒子にて測定する。
A method for measuring physical properties of the detergent particle group and the like is as described below.
<Method of measuring physical properties>
1. Bulk density The bulk density is measured by the method described as an apparent density in JIS K 3362: 2008. The bulk density is measured with the remaining particles obtained by cutting the particles remaining on the 2000 μm sieve.
2.流動性
 流動性は、JIS K 3362:2008記載の見掛け密度測定用のホッパーから、100mLの粉末が流出するのに要する時間とする。ホッパー内におけるブリッジング等により粉末が60秒以内に流出しない場合、流動性は60<とする。なお、流動性は、2000μmの篩上に残留した粒子をカットした残りの粒子にて測定する。
2. Fluidity Fluidity is defined as the time required for 100 mL of powder to flow out from the apparent density measurement hopper described in JIS K 3362: 2008. If the powder does not flow out within 60 seconds due to bridging or the like in the hopper, the fluidity is 60 <. In addition, fluidity | liquidity is measured with the remaining particle | grains which cut | disconnected the particle | grains which remained on the 2000 micrometer sieve.
3.平均粒径
 平均粒径については、JIS Z 8801-1:2006記載の金属製網ふるい(目開き2000~45μm)を用いて5分間振動させた後、篩目のサイズによる質量分率からメジアン径を算出する。より詳細には、目開き45μm、63μm、90μm、125μm、180μm、250μm、355μm、500μm、710μm、1000μm、1410μm、2000μmの12段の篩と受け皿を用いて、受け皿上に目開きの小さな篩から順に積み重ね、最上部の2000μmの篩の上から100gの粒子を添加し、蓋をしてロータップ型ふるい振とう機(HEIKO製作所製、タッピング156回/分、ローリング:290回/分)に取り付け、5分間振動させたあと、それぞれの篩及び受け皿上に残留した当該粒子の質量を測定し、各篩上の当該粒子の質量割合(%)を算出する。受け皿から順に目開きの小さな篩上の当該粒子の質量割合を積算していき合計が50%となる粒径を平均粒径とする。
3. Average particle diameter As for the average particle diameter, it was vibrated for 5 minutes using a metal mesh sieve (mesh opening 2000 to 45 μm) described in JIS Z 8801-1: 2006, and then the median diameter was determined from the mass fraction according to the size of the mesh. Is calculated. More specifically, using a 12-stage sieve having a mesh opening of 45 μm, 63 μm, 90 μm, 125 μm, 180 μm, 250 μm, 355 μm, 500 μm, 710 μm, 1000 μm, 1410 μm, and 2000 μm, a small sieve with a mesh on the tray Stack in order, add 100 g of particles from the top of the top 2000 μm sieve, cover and attach to a low-tap sieve shaker (manufactured by HEIKO, tapping 156 times / minute, rolling: 290 times / minute) After vibrating for 5 minutes, the mass of the particles remaining on each sieve and the saucer is measured, and the mass ratio (%) of the particles on each sieve is calculated. The average particle size is obtained by accumulating the mass ratios of the particles on the sieve having a small mesh size in order from the saucer to give a total of 50%.
 さらに、上記の洗剤粒子群の平均粒径の測定時に目開き1000μm、1410μm及び2000μmの各篩上に残留する洗剤粒子群の割合を質量%で表した値を粗粒(1000μmON)率として求める。同様に、受け皿及び目開き45μm、63μm、90μmの各篩上に残留する洗剤粒子群の割合を質量%で表した値を微粉(125μmPASS)率として求める。 Further, the value of the percentage of detergent particles remaining on each sieve having an opening of 1000 μm, 1410 μm, and 2000 μm when the average particle size of the detergent particles is measured is obtained as a coarse particle (1000 μm ON) rate. Similarly, the value which represented the ratio of the detergent particle group which remain | survives on a saucer and each sieve with an opening of 45 micrometers, 63 micrometers, and 90 micrometers in mass% is calculated | required as a fine powder (125 micrometers PASS) rate.
4.造粒収率
 本発明における造粒収率とは、製造された洗剤粒子群中の、2000μm以下の粒子の質量での割合を示したものである。
4). Granulation yield The granulation yield in this invention shows the ratio in the mass of the particle | grains below 2000 micrometers in the manufactured detergent particle group.
5.60秒間溶解率
 60秒間溶解率については以下の方法で算出する。
 硬度が71.2mgCaCO3/リットルに相当する10℃に調整した1リットルの硬水(Ca/Mgモル比7/3)を1リットルビーカー(内径105mm、高さ150mmの円筒型、例えば岩城硝子社製1リットルガラスビーカー)の中に満たし、10℃の水温をウォーターバスにて一定に保った状態で、撹拌子(長さ35mm、直径8mm、例えば型式:ADVANTEC社製、テフロン(登録商標)SA(丸型細型))にて水深に対する渦巻きの深さが略1/3となる回転数(800r/m)で撹拌する。1.0000±0.0010gとなるように縮分・秤量した洗剤粒子群を撹拌下に水中に投入・分散させ撹拌を続ける。投入から60秒後にビーカー中の洗剤粒子群分散液を、質量既知のJIS Z 8801-1:2006記載の目開き74μmの金属製網ふるい(直径100mm)で濾過し、篩上に残留した含水状態の洗剤粒子群を篩と共に質量既知の開放容器に回収する。なお、濾過開始から篩を回収するまでの操作時間を10±2秒とする。回収した洗剤粒子群の溶残物を105℃に加熱した電気乾燥機にて1時間乾燥し、その後、シリカゲルを入れたデシケーター(25℃)内で30分間保持して冷却する。冷却後、乾燥した洗剤の溶残物と篩と回収容器の合計の質量を測定し、式(1)によって洗剤粒子群の溶解率(%)を算出する。
5. Dissolution rate for 60 seconds The dissolution rate for 60 seconds is calculated by the following method.
1 liter of hard water (Ca / Mg molar ratio 7/3) adjusted to 10 ° C. corresponding to a hardness of 71.2 mg CaCO 3 / liter, 1 liter beaker (inner diameter 105 mm, height 150 mm cylindrical type, for example, manufactured by Iwaki Glass Co., Ltd.) Filled in a 1 liter glass beaker, and kept at a water temperature of 10 ° C. in a water bath, a stirrer (length 35 mm, diameter 8 mm, for example, model: ADVANTEC, Teflon (registered trademark) SA ( In the round thin type)), stirring is performed at a rotational speed (800 r / m) at which the depth of the vortex with respect to the water depth is approximately 1/3. The detergent particles, which have been reduced and weighed so as to be 1.000 ± 0.0010 g, are charged and dispersed in water with stirring, and stirring is continued. 60 seconds after the addition, the detergent particle group dispersion in the beaker was filtered through a metal mesh screen (diameter: 100 mm) having a mesh size of 74 μm described in JIS Z8801-1: 2006, and the water content remaining on the sieve. The detergent particles are collected together with a sieve in an open container of known mass. The operation time from the start of filtration until the sieve is collected is 10 ± 2 seconds. The collected residue of detergent particles is dried in an electric dryer heated to 105 ° C. for 1 hour, and then cooled in a desiccator (25 ° C.) containing silica gel for 30 minutes. After cooling, the total mass of the dry detergent residue, sieve and collection container is measured, and the dissolution rate (%) of the detergent particle group is calculated by the equation (1).
  60秒間溶解率(%)={1-(T/S)}×100・・・(1)
S:洗剤粒子群の投入質量(g)
T:上記撹拌条件にて得られた水溶液を上記篩に供したときに、篩上の残存する洗剤粒子群の溶残物の乾燥質量(g)
Dissolution rate (%) for 60 seconds = {1− (T / S)} × 100 (1)
S: input mass of detergent particles (g)
T: Dry mass (g) of dissolved residue of detergent particles remaining on the sieve when the aqueous solution obtained under the above stirring conditions is applied to the sieve.
6.ザラツキ消失時間
 ザラツキ消失時間は以下の方法で測定する。
 直径35cm、深さ12cmの洗面器に20℃の水3Lを入れ、洗剤粒子群15gを洗面器内に静かに添加した後、手の平にて洗面器底面を毎秒1回の速度にて擦った際の洗剤粒子群のザラツキが消失した時間(秒)とする。
6). Roughness disappearance time The roughness disappearance time is measured by the following method.
When 3 L of water at 20 ° C. is put into a washbasin having a diameter of 35 cm and a depth of 12 cm, and after gently adding 15 g of detergent particles into the washbasin, the bottom of the washbasin is rubbed at a rate of once per second with a palm. The time (in seconds) when the roughness of the detergent particles disappeared.
<陰イオン界面活性剤組成物の発泡体の比重の測定方法>
 発泡機より得られる陰イオン界面活性剤組成物の発泡体の比重は、任意の容器の容積を予め20℃の水を用いて測定した後、発泡機出口から排出された陰イオン界面活性剤組成物の発泡体を該容器に徐々に添加しながら繰り返しタッピングを行い、発泡体と発泡体の間に空隙が生じないように充填し、得られた発泡体の質量を該容器の容積で除すことにより、発泡時の温度(発泡機を用いる場合は発泡機に供給する温度)で測定する。噴霧後の陰イオン界面活性剤組成物の発泡体の比重は、噴霧された陰イオン界面活性剤組成物をポリエチレン袋やバット等の容器により回収し、噴霧時の温度で上記と同様の方法により測定する。なお、本明細書において別途記載のない限り、比重とは20℃の水の密度に対する比重である。
<Method for Measuring Specific Gravity of Foam of Anionic Surfactant Composition>
The specific gravity of the foam of the anionic surfactant composition obtained from the foaming machine is the composition of the anionic surfactant discharged from the foaming machine outlet after measuring the volume of an arbitrary container in advance using water at 20 ° C. Repeatedly tapping while gradually adding the foam of the product to the container, filling so that no voids are formed between the foam, and dividing the mass of the obtained foam by the volume of the container Thus, the temperature is measured at the time of foaming (temperature supplied to the foaming machine when a foaming machine is used). The specific gravity of the foam of the anionic surfactant composition after spraying can be recovered by collecting the sprayed anionic surfactant composition in a container such as a polyethylene bag or vat, and by the same method as described above at the temperature at the time of spraying. taking measurement. In addition, unless otherwise indicated in this specification, specific gravity is specific gravity with respect to the density of 20 degreeC water.
 上述した実施形態に関し、本発明はさらに以下の製造方法を開示する。 The present invention further discloses the following manufacturing method regarding the above-described embodiment.
<1>洗剤用粉体原料を容器回転型混合機を用いて造粒する工程を有する洗剤粒子群の製造方法であって、
 陰イオン界面活性剤組成物の発泡体を、多流体ノズルを用いて該容器回転型混合機内に噴霧して該洗剤用粉体原料の造粒を行う、洗剤粒子群の製造方法。
<1> A method for producing a detergent particle group comprising a step of granulating a powder raw material for detergent using a container rotating mixer,
A method for producing a detergent particle group, in which a foam of an anionic surfactant composition is sprayed into the container rotary mixer using a multi-fluid nozzle to granulate the detergent powder raw material.
<2>多流体ノズルで噴霧後の該陰イオン界面活性剤組成物の発泡体の比重が0.1~0.95、好ましくは0.2~0.95、より好ましくは0.2~0.85である、前記<1>に記載の製造方法。
<3>陰イオン界面活性剤組成物の発泡体が、陰イオン界面活性剤組成物中にガス媒体を混入して得られたものである、前記<1>又は<2>に記載の製造方法。
<4>陰イオン界面活性剤組成物へのガス媒体の混入が発泡機を用いて行われる、前記<3>に記載の製造方法。
<5>ガス媒体がエアーである、前記<3>又は<4>記載の製造方法。
<6>多流体ノズルが2流体ノズルである、前記<1>~<5>いずれかに記載の製造方法。
<7>陰イオン界面活性剤組成物が、次のa)成分及びb)成分:
a)直鎖アルキルベンゼンスルホン酸の塩、アルキル硫酸の塩及びポリオキシエチレンアルキル硫酸の塩からなる群より選択される1種以上の陰イオン界面活性剤、
b)上記a)成分100質量部に対して25~70質量部、好ましくは30~65質量部、より好ましくは35~65質量部の水、
を含有する界面活性剤ペーストである、前記<1>~<6>のいずれか1項に記載の製造方法。
<2> The specific gravity of the foam of the anionic surfactant composition after spraying with a multi-fluid nozzle is 0.1 to 0.95, preferably 0.2 to 0.95, more preferably 0.2 to 0. .85, wherein the production method is <85>.
<3> The production method according to <1> or <2>, wherein the foam of the anionic surfactant composition is obtained by mixing a gas medium in the anionic surfactant composition. .
<4> The production method according to <3>, wherein the gas medium is mixed into the anionic surfactant composition using a foaming machine.
<5> The production method according to <3> or <4>, wherein the gas medium is air.
<6> The method according to any one of <1> to <5>, wherein the multi-fluid nozzle is a two-fluid nozzle.
<7> An anionic surfactant composition comprising the following components a) and b):
a) one or more anionic surfactants selected from the group consisting of salts of linear alkylbenzene sulfonic acids, salts of alkyl sulfates and salts of polyoxyethylene alkyl sulfates,
b) 25 to 70 parts by weight, preferably 30 to 65 parts by weight, more preferably 35 to 65 parts by weight of water based on 100 parts by weight of the component a)
The production method according to any one of the above items <1> to <6>, wherein the paste is a surfactant paste.
<8>洗剤用粉体原料100質量部に対して20~100質量部、好ましくは25~90質量部の陰イオン界面活性剤組成物の発泡体を噴霧する、前記<1>~<7>のいずれか1項に記載の製造方法。
<9>洗剤用粉体原料が水溶性固体アルカリ無機物質及び/又は水溶性無機塩である前記<1>~<8>のいずれか1項に記載の製造方法。
<10>洗剤粒子群中、洗剤用粉体原料の含有量が、10質量%以上、好ましくは20質量%以上、好ましくは80質量%以下であり、好ましくは10~80質量%、より好ましくは20~80質量%である、前記<1>~<9>のいずれか1項に記載の製造方法。
<11>洗剤用粉体原料が炭酸ナトリウム及び/又は硫酸ナトリウムであり、好ましくはライト灰である、前記<1>~ <10>のいずれか1項に記載の製造方法。
<12>上記a)成分の陰イオン界面活性剤が、炭素数10~18、好ましくは炭素数12~16の直鎖アルキルベンゼンスルホン酸の塩、炭素数10~18、好ましくは炭素数12~16のアルキル硫酸の塩及び炭素数10~18、好ましくは炭素数12~16のポリオキシエチレンアルキル硫酸の塩からなる群より選択される1種以上である、前記<7>~<11>のいずれか1項に記載の製造方法。
<13>洗剤粒子群中の陰イオン界面活性剤の含有量が、5質量%以上、好ましくは10質量%以上、好ましくは50質量%以下、より好ましくは40質量%以下であり、好ましくは5~50質量%、より好ましくは10~50質量%、更に好ましくは10~40質量%である、前記<1>~<12>のいずれか1項に記載の製造方法。
<14>容器回転型混合機がドラム型混合機或いはパン型混合機である、前記<1>~<13>のいずれか1項に記載の製造方法。
<15>陰イオン界面活性剤組成物の発泡体の比重が、0.1~0.9、好ましくは0.1~0.8、より好ましくは0.1~0.7である、前記<1>~<14>のいずれか1項に記載の製造方法。
<8> The above <1> to <7>, wherein 20 to 100 parts by mass, preferably 25 to 90 parts by mass of the foam of the anionic surfactant composition is sprayed with respect to 100 parts by mass of the powder raw material for detergent. The manufacturing method of any one of these.
<9> The production method according to any one of <1> to <8>, wherein the detergent powder material is a water-soluble solid alkali inorganic substance and / or a water-soluble inorganic salt.
In the <10> detergent particle group, the content of the detergent powder raw material is 10% by mass or more, preferably 20% by mass or more, preferably 80% by mass or less, preferably 10 to 80% by mass, more preferably The production method according to any one of <1> to <9>, wherein the production method is 20 to 80% by mass.
<11> The production method according to any one of <1> to <10>, wherein the detergent powder raw material is sodium carbonate and / or sodium sulfate, preferably light ash.
<12> The anionic surfactant as the component a) is a salt of a linear alkylbenzene sulfonic acid having 10 to 18 carbon atoms, preferably 12 to 16 carbon atoms, 10 to 18 carbon atoms, preferably 12 to 16 carbon atoms. Any one of the above <7> to <11>, which is at least one selected from the group consisting of a salt of alkylsulfuric acid and a polyoxyethylene alkylsulfuric acid salt having 10 to 18 carbon atoms, preferably 12 to 16 carbon atoms The production method according to claim 1.
<13> The content of the anionic surfactant in the detergent particle group is 5% by mass or more, preferably 10% by mass or more, preferably 50% by mass or less, more preferably 40% by mass or less, preferably 5%. The production method according to any one of <1> to <12>, wherein the production amount is ˜50 mass%, more preferably 10 to 50 mass%, and still more preferably 10 to 40 mass%.
<14> The production method according to any one of <1> to <13>, wherein the container rotation type mixer is a drum type mixer or a pan type mixer.
<15> The specific gravity of the foam of the anionic surfactant composition is 0.1 to 0.9, preferably 0.1 to 0.8, more preferably 0.1 to 0.7. The production method according to any one of 1> to <14>.
<16>多流体ノズルが陰イオン界面活性剤組成物の発泡体と微粒化用気体とを混合するノズルであって、〔陰イオン界面活性剤組成物の発泡体の体積流量(cm3/min)〕/〔微粒化用気体の流量(L/min)〕の値の範囲が0.5~30cm3/L、好ましくは1~20cm3/Lである、前記<1>~<15>のいずれか1項に記載の製造方法。
<17>得られる洗剤粒子群の嵩密度が、250~690g/L、好ましくは250~650g/L、より好ましくは300~600g/Lである、前記<1>~<16>のいずれか1項に記載の製造方法。
<18>容器回転型混合機の下記式より求められるフルード数が、0.005~1.0、好ましくは0.01~0.6である運転条件で洗剤用粉体原料の造粒を行う、前記<1>~<17>のいずれか1項に記載の製造方法。
  フルード数:Fr=V2/(R×g)
  V:周速[m/s]
  R:回転中心から回転物の円周までの半径[m]
  g:重力加速度[m/s2]
<16> A multi-fluid nozzle is a nozzle for mixing a foam of an anionic surfactant composition and a gas for atomization, wherein [volume flow rate of foam of an anionic surfactant composition (cm 3 / min )] / [Flow rate of atomizing gas (L / min)] is in the range of 0.5 to 30 cm 3 / L, preferably 1 to 20 cm 3 / L, in the above <1> to <15> The manufacturing method of any one of Claims.
<17> Any one of the above <1> to <16>, wherein the obtained detergent particle group has a bulk density of 250 to 690 g / L, preferably 250 to 650 g / L, more preferably 300 to 600 g / L. The production method according to item.
<18> Granulation of the powder raw material for the detergent is performed under an operating condition in which the fluid number obtained from the following formula of the container rotary mixer is 0.005 to 1.0, preferably 0.01 to 0.6. The production method according to any one of <1> to <17>.
Fluid number: Fr = V 2 / (R × g)
V: Circumferential speed [m / s]
R: Radius from the center of rotation to the circumference of the rotating object [m]
g: Gravity acceleration [m / s 2 ]
 以下に、本発明を実施例等に基づいてさらに詳細に説明するが、本発明はかかる実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples and the like, but the present invention is not limited to such examples.
 以下の実施例等においては、特に記載のない限り下記の原料を用いた。なお、表中の組成の%は質量%を意味する。
  ポリオキシエチレンアルキル硫酸ナトリウム(純分70%、残部水:アルキル基の炭素数がC12/C14=70/30)、花王製「エマール270J」
  アルキル硫酸ナトリウム(純分66%、残部水;アルキル基の炭素数がC12/C14/C16=64/24/12(質量%))
  ドデシルベンゼンスルホン酸ナトリウム(純分65%、残部水)、花王製「ネオペレックス G-65」
  ライト灰:平均粒径100μm、セントラル硝子(株)製
  粉砕ライト灰:上記ライト灰を平均粒径10μmに粉砕したもの
  硫酸ナトリウム:平均粒径200μm、四国化成工業(株)製「中性無水芒硝」
  粉砕硫酸ナトリウム:上記硫酸ナトリウムを平均粒径22μmに粉砕したもの
  ゼオライト:平均粒径3.5μm、ゼオビルダー社製
  ポリアクリル酸ナトリウム:花王(株)製 重量平均分子量10000のもの(純分40%)
  ポリエチレングリコール:花王(株)製 重量平均分子量13000のもの(純分60%)
In the following examples and the like, the following raw materials were used unless otherwise specified. In addition,% of a composition in a table | surface means the mass%.
Sodium polyoxyethylene alkyl sulfate (70% pure, remaining water: C12 / C14 = 70/30 carbon number of alkyl group), “Emar 270J” manufactured by Kao
Sodium alkyl sulfate (pure content 66%, balance water; carbon number of alkyl group is C12 / C14 / C16 = 64/24/12 (mass%))
Sodium dodecylbenzenesulfonate (65% pure, balance water), Kao's “Neopelex G-65”
Light ash: average particle size 100 μm, manufactured by Central Glass Co., Ltd. Crushed light ash: pulverized light ash above to an average particle size of 10 μm Sodium sulfate: average particle size 200 μm, manufactured by Shikoku Kasei Kogyo Co., Ltd. "
Ground sodium sulfate: The above sodium sulfate ground to an average particle size of 22 μm. Zeolite: Average particle size of 3.5 μm, manufactured by Zeobuilder Co., Ltd. Sodium polyacrylate: manufactured by Kao Corp. Weight average molecular weight 10,000 (pure content 40%)
Polyethylene glycol: Kao Corporation weight average molecular weight 13000 (pure content 60%)
 以下の実施例等では、容器回転型混合機として、邪魔板を有した75Lドラム型ミキサー(φ40cm×L60cm)を、ミキサー底部が下側になるように水平から14°に傾けて使用した。多流体ノズルとして、2流体ノズル((株)アトマックス製:型番BN90)を1本使用した。2流体ノズルに供給する際の陰イオン界面活性剤の発泡体の温度は60℃とした。また、陰イオン界面活性剤組成物の発泡体は、連続式の発泡機であるMDF0(大平洋機工(株)製)を用いて調製した。発泡機に供給する際の該組成物の温度は60℃とした。 In the following examples and the like, a 75 L drum type mixer (φ40 cm × L60 cm) having a baffle plate was used as a container rotating mixer, tilted at 14 ° from the horizontal so that the bottom of the mixer was on the lower side. As the multi-fluid nozzle, one two-fluid nozzle (manufactured by Atmax Co., Ltd .: model number BN90) was used. The temperature of the foam of the anionic surfactant when supplying to the two-fluid nozzle was set to 60 ° C. The foam of the anionic surfactant composition was prepared using MDF0 (manufactured by Taiyo Kiko Co., Ltd.), which is a continuous foaming machine. The temperature of the composition when it was supplied to the foaming machine was 60 ° C.
実施例1(洗剤粒子群の調製)
 60℃のアルキル硫酸ナトリウム100質量部と60℃のドデシルベンゼンスルホン酸ナトリウム135質量部を混合して、陰イオン界面活性剤組成物を調製した。調製された陰イオン界面活性剤組成物は、陰イオン界面活性剤100質量部に対して水を52.8質量部含有する界面活性剤ペーストであった。また、該ペーストの60℃での粘度は1.7Pa・sであった。
Example 1 (Preparation of detergent particles)
100 parts by mass of sodium alkyl sulfate at 60 ° C. and 135 parts by mass of sodium dodecylbenzenesulfonate at 60 ° C. were mixed to prepare an anionic surfactant composition. The prepared anionic surfactant composition was a surfactant paste containing 52.8 parts by mass of water with respect to 100 parts by mass of the anionic surfactant. The viscosity of the paste at 60 ° C. was 1.7 Pa · s.
 ライト灰1.81kg、粉砕硫酸ナトリウム3.42kgを洗剤用粉体原料としてドラム型ミキサー内に添加し、フルード数0.2で30秒間攪拌した。その後、攪拌を継続したまま、前記MDF0により調製した陰イオン界面活性剤組成物の発泡体1.55kgを、添加時間17分間、微粒化用気体80L/min(発泡体の体積流量/微粒化用気体の流量は5.3cm3/L)の噴霧条件にて2流体ノズルにより添加し、添加後1分間攪拌した。即ち、洗剤用粉体原料100質量部に対して29.6質量部の該発泡体を60℃で噴霧した。その後攪拌を止め、ゼオライト0.22kgを添加して前記と同条件にて1分間攪拌を行い、得られた造粒物をドラム型ミキサーから排出して洗剤粒子群とした。 1.81 kg of light ash and 3.42 kg of pulverized sodium sulfate were added as a powder material for detergent into a drum mixer, and stirred for 30 seconds at a fluid number of 0.2. Thereafter, while continuing stirring, 1.55 kg of the foam of the anionic surfactant composition prepared by the MDF0 was added to the gas for atomization 80 L / min (volume flow rate of foam / for atomization) for 17 minutes. The gas was added through a two-fluid nozzle under a spraying condition of 5.3 cm 3 / L) and stirred for 1 minute after the addition. That is, 29.6 parts by mass of the foam was sprayed at 60 ° C. with respect to 100 parts by mass of the powder raw material for detergent. Thereafter, stirring was stopped, 0.22 kg of zeolite was added and stirring was performed for 1 minute under the same conditions as described above, and the resulting granulated product was discharged from a drum-type mixer to form a detergent particle group.
 尚、発泡機における混合気体の流量は0.50L/minであり、発泡機より得られた陰イオン界面活性剤組成物の発泡体の比重は0.20であった。また、2流体ノズルにより噴霧された後の陰イオン界面活性剤組成物の発泡体の比重は、微粒化用気体によるせん断力により破泡し0.85であった。得られた洗剤粒子群の組成及び物性を表1に示す。 In addition, the flow rate of the mixed gas in the foaming machine was 0.50 L / min, and the specific gravity of the foam of the anionic surfactant composition obtained from the foaming machine was 0.20. Further, the specific gravity of the foam of the anionic surfactant composition after being sprayed by the two-fluid nozzle was 0.85, which was broken by the shearing force of the atomizing gas. Table 1 shows the composition and properties of the obtained detergent particles.
実施例2
 アルキル硫酸ナトリウムを60℃に調整し、陰イオン界面活性剤組成物とした。調製された陰イオン界面活性剤組成物は、陰イオン界面活性剤100質量部に対して水を51.52質量部含有する界面活性剤ペーストであった。また、該ペーストの60℃での粘度は1.4Pa・sであった。
Example 2
Sodium alkyl sulfate was adjusted to 60 ° C. to obtain an anionic surfactant composition. The prepared anionic surfactant composition was a surfactant paste containing 51.52 parts by mass of water with respect to 100 parts by mass of the anionic surfactant. The viscosity of the paste at 60 ° C. was 1.4 Pa · s.
 粉砕硫酸ナトリウム4.20kgを洗剤用粉体原料としてドラム型ミキサー内に添加し、フルード数0.2で30秒間攪拌した。その後、攪拌を継続したまま、調製した陰イオン界面活性剤組成物の発泡体2.80kgを、添加時間33分、微粒化用気体80L/min(発泡体の体積流量/微粒化用気体の流量は5.3cm3/L)の噴霧条件にて2流体ノズルにより添加し、添加後1分間攪拌した。即ち、洗剤用粉体原料100質量部に対して66.7質量部の該発泡体を60℃で噴霧した。その後攪拌を止め、得られた造粒物をドラム型ミキサーから排出して洗剤粒子群とした。 4.20 kg of pulverized sodium sulfate was added as a powder raw material for a detergent into a drum mixer and stirred for 30 seconds at a fluid number of 0.2. Thereafter, 2.80 kg of the foamed anionic surfactant composition thus prepared was added with a stirring time of 33 minutes, and the gas for atomization 80 L / min (volume flow rate of foam / flow rate of gas for atomization). Was added with a two-fluid nozzle under spraying conditions of 5.3 cm 3 / L) and stirred for 1 minute after the addition. That is, 66.7 parts by mass of the foam was sprayed at 60 ° C. with respect to 100 parts by mass of the powder raw material for detergent. Thereafter, stirring was stopped, and the resulting granulated product was discharged from a drum mixer to form a detergent particle group.
 尚、発泡機における混合気体の流量は0.50L/minであり、発泡機より得られた陰イオン界面活性剤組成物の発泡体の比重は0.20であった。また、2流体ノズルにより噴霧された陰イオン界面活性剤組成物の発泡体の比重は、微粒化用気体によるせん断力により破泡し0.85であった。得られた洗剤粒子群の組成及び物性を表1に示す。 In addition, the flow rate of the mixed gas in the foaming machine was 0.50 L / min, and the specific gravity of the foam of the anionic surfactant composition obtained from the foaming machine was 0.20. In addition, the specific gravity of the foam of the anionic surfactant composition sprayed by the two-fluid nozzle was 0.85 when the foam was broken by the shearing force of the atomizing gas. Table 1 shows the composition and properties of the obtained detergent particles.
実施例3
 微粒化用気体の流量を42L/min(発泡体の体積流量/微粒化用気体の流量は10.0cm3/L)としたことを除いて、実施例2と同条件にて造粒を行った。2流体ノズルにより噴霧された陰イオン界面活性剤組成物の発泡体の比重は、0.68であった。得られた洗剤粒子群の組成及び物性を表1に示す。
Example 3
Granulation is carried out under the same conditions as in Example 2 except that the flow rate of the atomization gas is 42 L / min (volume flow rate of foam / flow rate of atomization gas is 10.0 cm 3 / L). It was. The specific gravity of the foam of the anionic surfactant composition sprayed by the two-fluid nozzle was 0.68. Table 1 shows the composition and properties of the obtained detergent particles.
実施例4
 アルキル硫酸ナトリウムを60℃に調整し、陰イオン界面活性剤組成物とした。
Example 4
Sodium alkyl sulfate was adjusted to 60 ° C. to obtain an anionic surfactant composition.
 ライト灰4.20kgを洗剤用粉体原料としてドラム型ミキサー内に添加し、フルード数0.2で30秒間攪拌した。その後、攪拌を継続したまま、調製した陰イオン界面活性剤組成物の発泡体2.80kgを、添加時間33分、微粒化用気体80L/min(発泡体の体積流量/微粒化用気体の流量は5.3cm3/L)の噴霧条件にて2流体ノズルにより添加し、添加後1分間攪拌した。即ち、洗剤用粉体原料100質量部に対して66.7質量部の該発泡体を60℃で噴霧した。その後攪拌を止め、得られた造粒物をドラム型ミキサーから排出して洗剤粒子群とした。 4.20 kg of light ash was added into a drum-type mixer as a powder raw material for detergent, and stirred for 30 seconds at a fluid number of 0.2. Thereafter, 2.80 kg of the foamed anionic surfactant composition thus prepared was added with a stirring time of 33 minutes, and the gas for atomization 80 L / min (volume flow rate of foam / flow rate of gas for atomization). Was added with a two-fluid nozzle under spraying conditions of 5.3 cm 3 / L) and stirred for 1 minute after the addition. That is, 66.7 parts by mass of the foam was sprayed at 60 ° C. with respect to 100 parts by mass of the powder raw material for detergent. Thereafter, stirring was stopped, and the resulting granulated product was discharged from a drum mixer to form a detergent particle group.
 尚、発泡機における混合気体の流量は0.50L/minであり、発泡機より得られた陰イオン界面活性剤組成物の発泡体の比重は0.20であった。また、2流体ノズルにより噴霧された陰イオン界面活性剤組成物の発泡体の比重は、微粒化用気体によるせん断力により破泡し0.85であった。得られた洗剤粒子群の組成及び物性を表1に示す。 In addition, the flow rate of the mixed gas in the foaming machine was 0.50 L / min, and the specific gravity of the foam of the anionic surfactant composition obtained from the foaming machine was 0.20. In addition, the specific gravity of the foam of the anionic surfactant composition sprayed by the two-fluid nozzle was 0.85 when the foam was broken by the shearing force of the atomizing gas. Table 1 shows the composition and properties of the obtained detergent particles.
実施例5
 発泡機における混合気体の量を0.10L/minとし、発泡機より得られた陰イオン界面活性剤組成物の発泡体の比重が0.58(発泡体の体積流量/微粒化用気体の流量は1.8cm3/L)であったことを除いて、実施例4と同条件にて造粒を行った。2流体ノズルにより噴霧された陰イオン界面活性剤組成物の発泡体の比重は、同様に破泡し0.85であった。得られた洗剤粒子群の組成及び物性を表1に示す。
Example 5
The amount of gas mixture in the foaming machine is 0.10 L / min, and the specific gravity of the foam of the anionic surfactant composition obtained from the foaming machine is 0.58 (volume flow rate of foam / flow rate of atomization gas) Was granulated under the same conditions as in Example 4 except that it was 1.8 cm 3 / L). The specific gravity of the foam of the anionic surfactant composition sprayed by the two-fluid nozzle was similarly broken to 0.85. Table 1 shows the composition and properties of the obtained detergent particles.
実施例6
 アルキル硫酸ナトリウムを60℃に調整し、陰イオン界面活性剤組成物とした。調製された陰イオン界面活性剤組成物は、陰イオン界面活性剤100質量部に対して水を51.52質量部含有する界面活性剤ペーストであった。また、該ペーストの60℃での粘度は1.4Pa・sであった。
Example 6
Sodium alkyl sulfate was adjusted to 60 ° C. to obtain an anionic surfactant composition. The prepared anionic surfactant composition was a surfactant paste containing 51.52 parts by mass of water with respect to 100 parts by mass of the anionic surfactant. The viscosity of the paste at 60 ° C. was 1.4 Pa · s.
 粉砕硫酸ナトリウム4.20kgを洗剤用粉体原料としてドラム型ミキサー内に添加し、フルード数0.2で30秒間攪拌した。その後、攪拌を継続したまま、調製した陰イオン界面活性剤組成物の発泡体2.80kgを、添加時間34.6分、微粒化用気体32L/min(発泡体の体積流量/微粒化用気体の流量は12.6cm3/L)の噴霧条件にて2流体ノズルにより添加し、添加後1分間攪拌した。即ち、洗剤用粉体原料100質量部に対して66.7質量部の該発泡体を60℃で噴霧した。その後攪拌を止め、得られた造粒物をドラム型ミキサーから排出して洗剤粒子群とした。 4.20 kg of pulverized sodium sulfate was added as a powder raw material for a detergent into a drum mixer and stirred for 30 seconds at a fluid number of 0.2. Thereafter, 2.80 kg of the foam of the prepared anionic surfactant composition was added to the atomized gas 32 L / min (the volume flow rate of the foam / the gas for atomization) while the stirring was continued. Was added by a two-fluid nozzle under spraying conditions of 12.6 cm 3 / L) and stirred for 1 minute after the addition. That is, 66.7 parts by mass of the foam was sprayed at 60 ° C. with respect to 100 parts by mass of the powder raw material for detergent. Thereafter, stirring was stopped, and the resulting granulated product was discharged from a drum mixer to form a detergent particle group.
 尚、発泡機における混合気体の流量は0.50L/minであり、発泡機より得られた陰イオン界面活性剤組成物の発泡体の比重は0.20であった。また、2流体ノズルにより噴霧された陰イオン界面活性剤組成物の発泡体の比重は、微粒化用気体によるせん断力により破泡し0.44であった。得られた洗剤粒子群の組成及び物性を表1に示す。 In addition, the flow rate of the mixed gas in the foaming machine was 0.50 L / min, and the specific gravity of the foam of the anionic surfactant composition obtained from the foaming machine was 0.20. In addition, the specific gravity of the foam of the anionic surfactant composition sprayed by the two-fluid nozzle was 0.44 when the foam was broken by the shearing force of the atomizing gas. Table 1 shows the composition and properties of the obtained detergent particles.
実施例7
 アルキル硫酸ナトリウムを60℃に調整し、陰イオン界面活性剤組成物とした。調製された陰イオン界面活性剤組成物は、陰イオン界面活性剤100質量部に対して水を51.52質量部含有する界面活性剤ペーストであった。また、該ペーストの60℃での粘度は1.4Pa・sであった。
Example 7
Sodium alkyl sulfate was adjusted to 60 ° C. to obtain an anionic surfactant composition. The prepared anionic surfactant composition was a surfactant paste containing 51.52 parts by mass of water with respect to 100 parts by mass of the anionic surfactant. The viscosity of the paste at 60 ° C. was 1.4 Pa · s.
 粉砕ライト灰0.93kg、粉砕硫酸ナトリウム4.07kgを洗剤用粉体原料としてドラム型ミキサー内に添加し、フルード数0.2で30秒間攪拌した。その後、攪拌を継続したまま、調製した陰イオン界面活性剤組成物の発泡体2.01kgを、添加時間22.6分、微粒化用気体29L/min(発泡体の体積流量/微粒化用気体の流量は15.2cm3/L)の噴霧条件にて2流体ノズルにより添加し、添加後1分間攪拌した。即ち、洗剤用粉体原料100質量部に対して40.2質量部の該発泡体を60℃で噴霧した。その後攪拌を止め、得られた造粒物をドラム型ミキサーから排出して洗剤粒子群とした。 0.93 kg of pulverized light ash and 4.07 kg of pulverized sodium sulfate were added as a powder raw material for a detergent into a drum mixer and stirred for 30 seconds at a fluid number of 0.2. Thereafter, while the stirring was continued, 2.01 kg of the foamed anionic surfactant composition was added to an addition time of 22.6 minutes, atomization gas 29 L / min (volume flow rate of foam / gas for atomization). Was added with a two-fluid nozzle under spraying conditions of 15.2 cm 3 / L) and stirred for 1 minute after the addition. That is, 40.2 parts by mass of the foam was sprayed at 60 ° C. with respect to 100 parts by mass of the detergent powder raw material. Thereafter, stirring was stopped, and the resulting granulated product was discharged from a drum mixer to form a detergent particle group.
 尚、発泡機における混合気体の流量は0.50L/minであり、発泡機より得られた陰イオン界面活性剤組成物の発泡体の比重は0.20であった。また、2流体ノズルにより噴霧された陰イオン界面活性剤組成物の発泡体の比重は、微粒化用気体によるせん断力により破泡し0.39であった。得られた洗剤粒子群の組成及び物性を表1に示す。 In addition, the flow rate of the mixed gas in the foaming machine was 0.50 L / min, and the specific gravity of the foam of the anionic surfactant composition obtained from the foaming machine was 0.20. In addition, the specific gravity of the foam of the anionic surfactant composition sprayed by the two-fluid nozzle was 0.39 as a result of breaking by the shearing force of the atomizing gas. Table 1 shows the composition and properties of the obtained detergent particles.
実施例8
 アルキル硫酸ナトリウムを60℃に調整し、陰イオン界面活性剤組成物とした。調製された陰イオン界面活性剤組成物は、陰イオン界面活性剤100質量部に対して水を51.52質量部含有する界面活性剤ペーストであった。また、該ペーストの60℃での粘度は1.4Pa・sであった。
Example 8
Sodium alkyl sulfate was adjusted to 60 ° C. to obtain an anionic surfactant composition. The prepared anionic surfactant composition was a surfactant paste containing 51.52 parts by mass of water with respect to 100 parts by mass of the anionic surfactant. The viscosity of the paste at 60 ° C. was 1.4 Pa · s.
 粉砕ライト灰2.00kg、粉砕硫酸ナトリウム2.03kgを洗剤用粉体原料としてドラム型ミキサー内に添加し、フルード数0.2で30秒間攪拌した。その後、攪拌を継続したまま、調製した陰イオン界面活性剤組成物の発泡体2.24kgを、添加時間26.4分、微粒化用気体28L/min(発泡体の体積流量/微粒化用気体の流量は15.1cm3/L)の噴霧条件にて2流体ノズルにより添加し、添加後1分間攪拌した。即ち、洗剤用粉体原料100質量部に対して55.7質量部の該発泡体を60℃で噴霧した。 2.00 kg of pulverized light ash and 2.03 kg of pulverized sodium sulfate were added as a powder raw material for a detergent into a drum mixer and stirred for 30 seconds at a fluid number of 0.2. Thereafter, 2.24 kg of the foamed anionic surfactant composition thus prepared was added with a stirring time of 26.4 minutes, atomization gas 28 L / min (volume flow rate of foam / gas for atomization). Was added with a two-fluid nozzle under spraying conditions of 15.1 cm 3 / L) and stirred for 1 minute after the addition. That is, 55.7 parts by mass of the foam was sprayed at 60 ° C. with respect to 100 parts by mass of the powder raw material for detergent.
 続いて、60℃のポリアクリル酸ナトリウム0.19kgと60℃のポリエチレングリコール0.025kgを圧送用ポット(ジャケット付き,ジャケット温度60℃)に添加し、ポットに空気により圧力0.1MPaをかけ、ポット出口のコントロールバルブの開度を90度だけ開き、圧送してドラム型ミキサー内に2流体ノズル(アトマックス社製、BN90)を用いて噴霧時間2.0分間、微粒化用気体80L/minで添加し、添加後1分間攪拌した。その後攪拌を止め、ゼオライト0.19kgを添加して前記と同条件にて1分間攪拌を行い、得られた造粒物をドラム型ミキサーから排出して洗剤粒子群とした。 Subsequently, 0.19 kg of sodium polyacrylate at 60 ° C. and 0.025 kg of polyethylene glycol at 60 ° C. were added to the pot for feeding (with jacket, jacket temperature 60 ° C.), and the pressure was applied to the pot with air by 0.1 MPa, Opening the opening of the control valve at the pot outlet by 90 degrees, pumping and using a two-fluid nozzle (manufactured by Atmax Co., BN90) in a drum type mixer, spraying time 2.0 minutes, atomizing gas 80 L / min And stirred for 1 minute after the addition. Thereafter, stirring was stopped, 0.19 kg of zeolite was added and stirring was performed for 1 minute under the same conditions as described above, and the resulting granulated product was discharged from a drum type mixer to obtain a detergent particle group.
 尚、発泡機における混合気体の流量は0.50L/minであり、発泡機より得られた陰イオン界面活性剤組成物の発泡体の比重は0.20であった。また、2流体ノズルにより噴霧された陰イオン界面活性剤組成物の発泡体の比重は、微粒化用気体によるせん断力により破泡し0.36であった。得られた洗剤粒子群の組成及び物性を表1に示す。 In addition, the flow rate of the mixed gas in the foaming machine was 0.50 L / min, and the specific gravity of the foam of the anionic surfactant composition obtained from the foaming machine was 0.20. In addition, the specific gravity of the foam of the anionic surfactant composition sprayed by the two-fluid nozzle was 0.36, which was broken by the shearing force of the atomizing gas. Table 1 shows the composition and properties of the obtained detergent particles.
実施例9
 ポリオキシエチレンアルキル硫酸ナトリウムを60℃に調整し、陰イオン界面活性剤組成物とした。調製された陰イオン界面活性剤組成物は、陰イオン界面活性剤100質量部に対して水を42.86質量部含有する界面活性剤ペーストであった。また、該ペーストの60℃での粘度は1.9Pa・sであった。
Example 9
Sodium polyoxyethylene alkyl sulfate was adjusted to 60 ° C. to obtain an anionic surfactant composition. The prepared anionic surfactant composition was a surfactant paste containing 42.86 parts by mass of water with respect to 100 parts by mass of the anionic surfactant. The viscosity of the paste at 60 ° C. was 1.9 Pa · s.
 ライト灰4.67kgを洗剤用粉体原料としてドラム型ミキサー内に添加し、フルード数0.2で30秒間攪拌した。その後、攪拌を継続したまま、調製した陰イオン界面活性剤組成物の発泡体2.00kgを、添加時間15.3分、微粒化用気体30L/min(発泡体の体積流量/微粒化用気体の流量は13.6cm3/L)の噴霧条件にて2流体ノズルにより添加し、添加後1分間攪拌した。即ち、洗剤用粉体原料100質量部に対して42.83質量部の該発泡体を60℃で噴霧した。その後攪拌を止め、ゼオライト0.33kgを添加して前記と同条件にて1分間攪拌を行い、得られた造粒物をドラム型ミキサーから排出して洗剤粒子群とした。 4.67 kg of light ash was added as a powder raw material for a detergent into a drum mixer and stirred for 30 seconds at a fluid number of 0.2. Thereafter, with the stirring continued, 2.00 kg of the foamed anionic surfactant composition was added to the addition time 15.3 minutes, atomization gas 30 L / min (foam volume flow rate / atomization gas). Was added through a two-fluid nozzle under spraying conditions of 13.6 cm 3 / L) and stirred for 1 minute after the addition. That is, 42.83 parts by mass of the foam was sprayed at 60 ° C. with respect to 100 parts by mass of the detergent powder raw material. Thereafter, stirring was stopped, 0.33 kg of zeolite was added and stirring was performed for 1 minute under the same conditions as described above, and the resulting granulated product was discharged from a drum-type mixer to form a detergent particle group.
 尚、発泡機における混合気体の流量は0.29L/minであり、発泡機より得られた陰イオン界面活性剤組成物の発泡体の比重は0.32であった。また、2流体ノズルにより噴霧された陰イオン界面活性剤組成物の発泡体の比重は、微粒化用気体によるせん断力により破泡し0.67であった。得られた洗剤粒子群の組成及び物性を表1に示す。 The flow rate of the mixed gas in the foaming machine was 0.29 L / min, and the specific gravity of the foam of the anionic surfactant composition obtained from the foaming machine was 0.32. In addition, the specific gravity of the foam of the anionic surfactant composition sprayed by the two-fluid nozzle was 0.67, which was broken by the shearing force of the atomizing gas. Table 1 shows the composition and properties of the obtained detergent particles.
比較例1
 60℃のアルキル硫酸ナトリウム100質量部と60℃のドデシルベンゼンスルホン酸ナトリウム135質量部を混合して、陰イオン界面活性剤組成物を調製した。
Comparative Example 1
100 parts by mass of sodium alkyl sulfate at 60 ° C. and 135 parts by mass of sodium dodecylbenzenesulfonate at 60 ° C. were mixed to prepare an anionic surfactant composition.
 ライト灰1.81kg、粉砕硫酸ナトリウム3.42kgを洗剤用粉体原料としてドラム型ミキサー内に添加し、フルード数0.2で30秒間攪拌した。その後、攪拌を継続したまま、調製した陰イオン界面活性剤組成物1.55kgを、添加時間17分、微粒化用気体80L/min(該組成物の体積流量/微粒化用気体の流量は1.1cm3/L)の噴霧条件にて2流体ノズルにより添加し、添加後1分間攪拌した。即ち、洗剤用粉体原料100質量部に対して29.64質量部の該組成物を60℃で噴霧した。その後攪拌を止め、ゼオライト0.22kgを添加して前記と同条件にて1分間攪拌を行い、得られた造粒物をドラム型ミキサーから排出して洗剤粒子群とした。 1.81 kg of light ash and 3.42 kg of pulverized sodium sulfate were added as a powder material for detergent into a drum mixer, and stirred for 30 seconds at a fluid number of 0.2. Thereafter, with the stirring continued, 1.55 kg of the prepared anionic surfactant composition was added at an addition time of 17 minutes, atomization gas 80 L / min (volume flow rate of the composition / flow rate of atomization gas 1 0.1 cm 3 / L) was added with a two-fluid nozzle under a spraying condition, and stirred for 1 minute after the addition. That is, 29.64 parts by weight of the composition was sprayed at 60 ° C. with respect to 100 parts by weight of the detergent powder raw material. Thereafter, stirring was stopped, 0.22 kg of zeolite was added and stirring was performed for 1 minute under the same conditions as described above, and the resulting granulated product was discharged from a drum-type mixer to form a detergent particle group.
 尚、該界面活性剤組成物の比重は1.0であり、2流体ノズルにより噴霧された後の比重についても1.0であった。得られた洗剤粒子群の組成及び物性を表1に示す。 The specific gravity of the surfactant composition was 1.0, and the specific gravity after spraying with a two-fluid nozzle was 1.0. Table 1 shows the composition and properties of the obtained detergent particles.
比較例2
 アルキル硫酸ナトリウムを60℃に調整し、陰イオン界面活性剤組成物とした。
Comparative Example 2
Sodium alkyl sulfate was adjusted to 60 ° C. to obtain an anionic surfactant composition.
 粉砕硫酸ナトリウム4.20kgを洗剤用粉体原料としてドラム型ミキサー内に添加し、フルード数0.2で30秒間攪拌した。その後、攪拌を継続したまま、調製した陰イオン界面活性剤組成物2.80kgを、添加時間33分、微粒化用気体80L/min(該組成物の体積流量/微粒化用気体の流量は1.1cm3/L)の噴霧条件にて2流体ノズルにより添加し、添加後1分間攪拌した。即ち、洗剤用粉体原料100質量部に対して66.7質量部の該組成物を60℃で噴霧した。その後攪拌を止め、得られた造粒物をドラム型ミキサーから排出して洗剤粒子群とした。 4.20 kg of pulverized sodium sulfate was added as a powder raw material for a detergent into a drum mixer and stirred for 30 seconds at a fluid number of 0.2. Thereafter, with the stirring continued, 2.80 kg of the prepared anionic surfactant composition was added to an addition time of 33 minutes, atomization gas 80 L / min (volume flow rate of the composition / flow rate of atomization gas was 1). 0.1 cm 3 / L) was added with a two-fluid nozzle under a spraying condition, and stirred for 1 minute after the addition. That is, 66.7 parts by mass of the composition was sprayed at 60 ° C. with respect to 100 parts by mass of the powder raw material for detergent. Thereafter, stirring was stopped, and the resulting granulated product was discharged from a drum mixer to form a detergent particle group.
 尚、該界面活性剤組成物の比重は1.0であり、2流体ノズルにより噴霧された後の比重についても1.0であった。得られた洗剤粒子群の組成及び物性を表1に示す。 The specific gravity of the surfactant composition was 1.0, and the specific gravity after spraying with a two-fluid nozzle was 1.0. Table 1 shows the composition and properties of the obtained detergent particles.
比較例3
 アルキル硫酸ナトリウムを60℃に調整し、陰イオン界面活性剤組成物とした。
Comparative Example 3
Sodium alkyl sulfate was adjusted to 60 ° C. to obtain an anionic surfactant composition.
 粉砕硫酸ナトリウム4.20kgを洗剤用粉体原料としてドラム型ミキサー内に添加し、フルード数0.2で30秒間攪拌した。その後、攪拌を継続したまま、調製した陰イオン界面活性剤組成物の発泡体2.80kgを、添加時間33分、微粒化用気体0L/minの噴霧条件にて2流体ノズルにより添加し、添加後1分間攪拌した。即ち、洗剤用粉体原料100質量部に対して66.7質量部の該発泡体を60℃で添加した。その後攪拌を止め、得られた造粒物をドラム型ミキサーから排出して洗剤粒子群とした。 4.20 kg of pulverized sodium sulfate was added to a drum mixer as a powder material for detergent, and stirred for 30 seconds at a fluid number of 0.2. Thereafter, 2.80 kg of the prepared anionic surfactant composition foam was added with a two-fluid nozzle under a spraying condition of a gas for atomization of 0 L / min with an addition time of 33 minutes while stirring was continued. Stir for 1 minute. That is, 66.7 parts by mass of the foam was added at 60 ° C. with respect to 100 parts by mass of the detergent powder raw material. Thereafter, stirring was stopped, and the resulting granulated product was discharged from a drum mixer to form a detergent particle group.
 尚、発泡機における混合気体の流量は0.50L/minであり、発泡機より得られた陰イオン界面活性剤組成物の発泡体の比重は0.20であった。また、2流体ノズルにより添加された陰イオン界面活性剤組成物の発泡体の比重は0.20であった。これは、微粒化用気体の供給が伴わないため、該気体によるせん断力による破泡が生じなかった結果と考えられる。得られた洗剤粒子群の組成及び物性を表1に示す。 In addition, the flow rate of the mixed gas in the foaming machine was 0.50 L / min, and the specific gravity of the foam of the anionic surfactant composition obtained from the foaming machine was 0.20. The specific gravity of the foam of the anionic surfactant composition added by the two-fluid nozzle was 0.20. This is considered to be the result of no bubble breakage due to the shearing force caused by the gas because the atomizing gas was not supplied. Table 1 shows the composition and properties of the obtained detergent particles.
比較例4
 ポリオキシエチレンアルキル硫酸ナトリウムを60℃に調整し、陰イオン界面活性剤組成物とした。ライト灰4.33kgを洗剤用粉体原料としてドラム型ミキサー内に添加し、フルード数0.2で30秒間攪拌した。その後、攪拌を継続したまま、調製した陰イオン界面活性剤組成物2.33kgを、添加時間18分、微粒化用気体80L/min(該組成物の体積流量/微粒化用気体の流量は1.5cm3/L)の噴霧条件にて2流体ノズルにより添加し、添加後1分間攪拌した。即ち、洗剤用粉体原料100質量部に対して53.8質量部の該組成物を60℃で噴霧した。その後攪拌を止め、ゼオライト0.66kgを添加して前記と同条件にて1分間攪拌を行い、得られた造粒物をドラム型ミキサーから排出して洗剤粒子群とした。
Comparative Example 4
Sodium polyoxyethylene alkyl sulfate was adjusted to 60 ° C. to obtain an anionic surfactant composition. 4.33 kg of light ash was added into a drum mixer as a powder raw material for detergent, and stirred at a fluid number of 0.2 for 30 seconds. Thereafter, while continuing stirring, 2.33 kg of the prepared anionic surfactant composition was added for 18 minutes at an addition time of 80 L / min for atomization gas (volume flow rate of the composition / flow rate of atomization gas was 1). 0.5 cm 3 / L) was added by a two-fluid nozzle under the spraying condition, and stirred for 1 minute after the addition. That is, 53.8 parts by mass of the composition was sprayed at 60 ° C. with respect to 100 parts by mass of the powder raw material for detergent. Thereafter, stirring was stopped, 0.66 kg of zeolite was added, and stirring was performed for 1 minute under the same conditions as described above, and the resulting granulated product was discharged from a drum mixer to form a detergent particle group.
 尚、該界面活性剤組成物の比重は1.08であり、2流体ノズルにより噴霧された後の比重についても1.08であった。得られた洗剤粒子群の組成及び物性を表1に示す。 The specific gravity of the surfactant composition was 1.08, and the specific gravity after spraying with a two-fluid nozzle was 1.08. Table 1 shows the composition and properties of the obtained detergent particles.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~9で得られた洗剤粒子群は、嵩密度が444~682g/Lとなった。また、造粒収率は96%以上であり、中低嵩密度の洗剤粒子群が収率良く得られた。さらに、洗剤用粉体原料の中では比重が大きい部類に入る硫酸ナトリウムが多い組成であっても、中低嵩密度の洗剤粒子群を収率良く得ることができた。 The bulk of the detergent particles obtained in Examples 1 to 9 was 444 to 682 g / L. In addition, the granulation yield was 96% or more, and a medium and low bulk density detergent particle group was obtained with good yield. Furthermore, even in the case of a composition containing a large amount of sodium sulfate that falls into a category with a large specific gravity among the powder raw materials for detergents, a detergent particle group having a medium to low bulk density could be obtained with a high yield.
 一方、比較例1、2及び4については、実施例より高嵩密度(715g/L以上)の洗剤粒子群となった。これは、陰イオン界面活性剤組成物の発泡体を用いていないので、低比重の陰イオン界面活性剤組成物により粒子が構成されるという発泡体の効果が付与されなかったためと考えられる。 On the other hand, Comparative Examples 1, 2, and 4 became detergent particle groups with higher bulk density (715 g / L or more) than the Examples. This is presumably because the foam of the anionic surfactant composition having a low specific gravity was not provided with the effect of the foam because the foam of the anionic surfactant composition was not used.
 比較例3については、実施例より造粒収率が低下(60.6%)した。これは、陰イオン界面活性剤組成物の発泡体を用いているものの、微粒化気体を0L/minとしたことにより、即ち実質的に1流体ノズルを介して発泡体を噴霧したことにより、発泡体の高分散が達成されず、発泡体の持つ粘着性により粗大粒子の形成が生じたためと考えられる。更に、比較例3については、実施例より高嵩密度(743g/L)の洗剤粒子群となった。これは、陰イオン界面界面活性剤組成物の発泡体が大きな液塊となって供給された結果、洗剤用粉体原料との接触において、洗剤用粉体原料の水和や溶解にかかる時間、及び洗剤用粉体原料により冷やされる時間が微細液滴の場合と比べて増加し、発泡体が固化しにくく、造粒中における発泡体の破泡がより起こりやすかったためと考えられる。 For Comparative Example 3, the granulation yield was lower (60.6%) than in the Examples. This is because the foam of the anionic surfactant composition is used, but the atomization gas is set to 0 L / min, that is, the foam is sprayed substantially through one fluid nozzle. It is considered that the high dispersion of the body was not achieved and the formation of coarse particles was caused by the adhesiveness of the foam. Further, Comparative Example 3 was a detergent particle group having a higher bulk density (743 g / L) than the Examples. This is because the foam of the anionic surfactant composition was supplied as a large liquid mass, and as a result, the time required for hydration and dissolution of the detergent powder raw material in contact with the detergent powder raw material, It is also considered that the time for cooling by the detergent powder raw material increased as compared with the case of fine droplets, the foam was hard to solidify, and foam foaming during granulation was more likely to occur.
 更に、同組成の実施例1と比較例1を比較すると、60秒間溶解率が向上し、ザラツキ消失時間も短くなった。これは、実施例1は、比較例1と比較して嵩密度が低くなったことからも判るように、発泡体を用いることで、粒子内の空隙が多く、溶解しやすくなったためと考えられる。更に、粗粒率及び微粉率の値に示されるように、粒径分布がシャープになり、流動性も向上した。 Furthermore, when Example 1 and Comparative Example 1 having the same composition were compared, the dissolution rate was improved for 60 seconds, and the roughness disappearance time was shortened. As can be seen from the fact that the bulk density in Example 1 was lower than that in Comparative Example 1, it is considered that the use of the foam increased the number of voids in the particles and facilitated dissolution. . Furthermore, as shown by the values of the coarse particle ratio and fine powder ratio, the particle size distribution became sharp and the fluidity was improved.
 本発明によれば、噴霧乾燥を使用しない方法にて、中低嵩密度の洗剤粒子群を収率良く製造することができる。かかる洗剤粒子群は、衣料用等様々な用途の洗剤組成物として、又はかかる洗剤組成物の一成分として好ましく用いることができる。 According to the present invention, a medium and low bulk density detergent particle group can be produced with high yield by a method that does not use spray drying. Such a detergent particle group can be preferably used as a detergent composition for various uses such as clothing, or as one component of such a detergent composition.

Claims (11)

  1.  洗剤用粉体原料を容器回転型混合機を用いて造粒する工程を有する洗剤粒子群の製造方法であって、
     陰イオン界面活性剤組成物の発泡体を、多流体ノズルを用いて該容器回転型混合機内に噴霧して該洗剤用粉体原料の造粒を行う、洗剤粒子群の製造方法。
    A method for producing detergent particles having a step of granulating a powder raw material for detergent using a container rotary mixer,
    A method for producing a detergent particle group, in which a foam of an anionic surfactant composition is sprayed into the container rotary mixer using a multi-fluid nozzle to granulate the detergent powder raw material.
  2.  多流体ノズルで噴霧後の該陰イオン界面活性剤組成物の発泡体の比重が0.1~0.95である、請求項1に記載の製造方法。 2. The production method according to claim 1, wherein the specific gravity of the foam of the anionic surfactant composition after spraying with a multi-fluid nozzle is 0.1 to 0.95.
  3.  陰イオン界面活性剤組成物の発泡体が、陰イオン界面活性剤組成物中にガス媒体を混入して得られたものである、請求項1又は2に記載の製造方法。 The production method according to claim 1 or 2, wherein the foam of the anionic surfactant composition is obtained by mixing a gas medium in the anionic surfactant composition.
  4.  陰イオン界面活性剤組成物へのガス媒体の混入が発泡機を用いて行われる、請求項3記載の製造方法。 The production method according to claim 3, wherein mixing of the gas medium into the anionic surfactant composition is performed using a foaming machine.
  5.  ガス媒体がエアーである、請求項3又は4記載の製造方法。 The manufacturing method according to claim 3 or 4, wherein the gas medium is air.
  6.  多流体ノズルが2流体ノズルである、請求項1~5のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 5, wherein the multi-fluid nozzle is a two-fluid nozzle.
  7.  陰イオン界面活性剤組成物が、次のa)成分及びb)成分:
    a)直鎖アルキルベンゼンスルホン酸の塩、アルキル硫酸の塩及びポリオキシエチレンアルキル硫酸の塩からなる群より選択される1種以上の陰イオン界面活性剤、
    b)上記a)成分100質量部に対して25~70質量部の水、
    を含有する界面活性剤ペーストである、請求項1~6のいずれか1項に記載の製造方法。
    The anionic surfactant composition comprises the following components a) and b):
    a) one or more anionic surfactants selected from the group consisting of salts of linear alkylbenzene sulfonic acids, salts of alkyl sulfates and salts of polyoxyethylene alkyl sulfates,
    b) 25 to 70 parts by weight of water with respect to 100 parts by weight of component a) above;
    The production method according to any one of claims 1 to 6, which is a surfactant paste containing
  8.  洗剤用粉体原料100質量部に対して20~100質量部の陰イオン界面活性剤組成物の発泡体を噴霧する、請求項1~7のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 7, wherein a foam of 20 to 100 parts by mass of an anionic surfactant composition is sprayed with respect to 100 parts by mass of the powder raw material for detergent.
  9.  洗剤粒子群中の陰イオン界面活性剤の含有量が5~50質量%である、請求項1~8のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 8, wherein the content of the anionic surfactant in the detergent particle group is 5 to 50% by mass.
  10.  洗剤粒子群中、洗剤用粉体原料の含有量が10~80質量%である、請求項1~9のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 9, wherein the content of the detergent powder raw material is 10 to 80% by mass in the detergent particle group.
  11.  洗剤用粉体原料が水溶性固体アルカリ無機物質及び/又は水溶性無機塩である、請求項1~10のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 10, wherein the powder raw material for the detergent is a water-soluble solid alkali inorganic substance and / or a water-soluble inorganic salt.
PCT/JP2012/062536 2011-05-18 2012-05-16 Process for manufacturing group of detergent granules WO2012157681A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280023908.3A CN103547665B (en) 2011-05-18 2012-05-16 The manufacture method of detergent particles group

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-111867 2011-05-18
JP2011111867 2011-05-18

Publications (1)

Publication Number Publication Date
WO2012157681A1 true WO2012157681A1 (en) 2012-11-22

Family

ID=47176998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062536 WO2012157681A1 (en) 2011-05-18 2012-05-16 Process for manufacturing group of detergent granules

Country Status (3)

Country Link
JP (1) JP2012255145A (en)
CN (1) CN103547665B (en)
WO (1) WO2012157681A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6139994B2 (en) * 2012-06-20 2017-05-31 花王株式会社 Process for producing dentifrice granules
JP6350500B2 (en) * 2015-12-04 2018-07-04 トヨタ自動車株式会社 Granule manufacturing apparatus and manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192500A (en) * 1981-05-20 1982-11-26 Lion Corp Manufacture of granular detergent
JPH0827494A (en) * 1994-07-18 1996-01-30 Lion Corp Method for producing high bulk density detergent composition
JP2003105397A (en) * 2001-09-28 2003-04-09 Lion Corp Method for producing granular detergent composition having high bulk density
JP2005534721A (en) * 2001-12-21 2005-11-17 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチエン Method for producing surfactant granule containing builder
JP2010001460A (en) * 2008-05-19 2010-01-07 Kao Corp Surfactant-supporting granule cluster
WO2011001966A1 (en) * 2009-06-30 2011-01-06 花王株式会社 Method for producing high bulk density detergent granules

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181691A (en) * 1999-12-22 2001-07-03 Lion Corp Vessel rotary type mixing machine and method for producing granular detergent composition
JP5246051B2 (en) * 2009-06-16 2013-07-24 新日鐵住金株式会社 Water-containing gas holder, internal dust collector thereof, and dust collection method inside water-containing gas holder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192500A (en) * 1981-05-20 1982-11-26 Lion Corp Manufacture of granular detergent
JPH0827494A (en) * 1994-07-18 1996-01-30 Lion Corp Method for producing high bulk density detergent composition
JP2003105397A (en) * 2001-09-28 2003-04-09 Lion Corp Method for producing granular detergent composition having high bulk density
JP2005534721A (en) * 2001-12-21 2005-11-17 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチエン Method for producing surfactant granule containing builder
JP2010001460A (en) * 2008-05-19 2010-01-07 Kao Corp Surfactant-supporting granule cluster
WO2011001966A1 (en) * 2009-06-30 2011-01-06 花王株式会社 Method for producing high bulk density detergent granules

Also Published As

Publication number Publication date
JP2012255145A (en) 2012-12-27
CN103547665A (en) 2014-01-29
CN103547665B (en) 2016-04-13

Similar Documents

Publication Publication Date Title
JP5525755B2 (en) Surfactant-supporting granules
JP5465872B2 (en) Anionic surfactant composition
AU2010320064B2 (en) Method for producing detergent granules
CN103221527B (en) Method for producing detergent particle aggregates
JP5624811B2 (en) Method for producing high bulk density detergent particles
WO2012157681A1 (en) Process for manufacturing group of detergent granules
WO2012067227A1 (en) Method for producing detergent particle group
JP4799951B2 (en) Method for producing mononuclear detergent particles
JP2012255146A (en) Method for producing detergent particle group
JP2013249384A (en) Granular detergent and method for producing the same
CN102712885B (en) Method for producing detergent granules
JP5713644B2 (en) Method for producing surfactant-supporting granules
JP2013139489A (en) Method for producing detergent particle group
JP4772415B2 (en) Method for producing mononuclear detergent particles
WO2012043699A1 (en) Powder detergent composition and method for producing same
JP2011202149A (en) Granular detergent composition
JP4970036B2 (en) Nonionic surfactant-containing particles and method for producing the same
JP2014125622A (en) Production method of detergent particle group
JP2014031450A (en) Production method of detergent particle group
JP2007045865A (en) Method for producing mononuclear detergent granular mass
JP5971753B2 (en) Method for producing detergent particles
JP2006137832A (en) Method for producing detergent particle
JP2013147578A (en) Process for producing particle group added to detergent
MXPA98002733A (en) Procedure for manufacturing a low density detergent composition through agglomeration containing inorgan salt
WO2007077943A1 (en) Method for producing detergent particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12785718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12785718

Country of ref document: EP

Kind code of ref document: A1