WO2012067227A1 - Method for producing detergent particle group - Google Patents

Method for producing detergent particle group Download PDF

Info

Publication number
WO2012067227A1
WO2012067227A1 PCT/JP2011/076653 JP2011076653W WO2012067227A1 WO 2012067227 A1 WO2012067227 A1 WO 2012067227A1 JP 2011076653 W JP2011076653 W JP 2011076653W WO 2012067227 A1 WO2012067227 A1 WO 2012067227A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
water
detergent
anionic surfactant
mass
Prior art date
Application number
PCT/JP2011/076653
Other languages
French (fr)
Japanese (ja)
Inventor
将寛 山口
中山 高志
浩章 割田
今泉 義信
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to CN201180055720.2A priority Critical patent/CN103228776B/en
Publication of WO2012067227A1 publication Critical patent/WO2012067227A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/10Carbonates ; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/143Sulfonic acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/146Sulfuric acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/046Salts
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/08Silicates

Definitions

  • the present invention relates to a method for producing detergent particles, and more particularly to a method for producing detergent particles including particles prepared using a spray dryer and particles prepared using a container rotating mixer.
  • high bulk density detergents greater than 600 g / L
  • medium bulk density detergents 400 to 600 g / L
  • low bulk density detergents 250 g / L to 400 g. / L
  • liquid detergents for example, high bulk density detergents are often used in Japan, but there are also many demands for medium and low bulk density detergents in Asia, Oceania and Europe.
  • the production method includes a method in which an anionic surfactant and other builder are blended in a slurry and produced by spray drying.
  • a method has been proposed in which an anionic surfactant and other builder are blended in a slurry and spray-dried, followed by a high bulk density treatment.
  • medium bulk density detergent an anionic surfactant and other builder are mixed in a slurry and spray dried to prepare low bulk density spray dried particles, and then the spray dried particles and previously obtained high bulk density particles For example, and a method of mixing to increase the bulk density (see Patent Document 1).
  • the present invention provides a method for producing a medium and low bulk density detergent particle group having good fluidity and suppressed classification, and capable of reducing the ratio of spray-dried particles to be used. About. Furthermore, the present invention relates to providing detergent particles with high yield and low coarse rate.
  • a medium and low bulk density detergent particle group having good fluidity and reduced classification with a reduced spray-dried particle ratio to be used is obtained with a high yield and a low coarse particle ratio. I can do it.
  • Step (A) A step of preparing particles (A) containing 5 to 40% by mass of an anionic surfactant in the particles by spray drying a slurry containing an anionic surfactant;
  • Step (B) A step of preparing particles (B) by granulating a powder raw material for detergent using a container rotary mixer,
  • the detergent powder raw material is a water-soluble solid alkaline inorganic substance and / or a water-soluble inorganic salt, The amount of the water-soluble solid alkali inorganic substance and the water-soluble inorganic salt in the particles (B) is 30 to 88% by mass, and the container rotating mixer is a drum mixer or a pan mixer, A step of adding an anionic surfactant and / or a precursor thereof into the container rotary mixer using a multi-fluid nozzle to prepare particles (B); and step (C): particles (A) and particles.
  • a step of mixing (B) A detergent particle group is obtained using a method for producing a detergent particle
  • the granulation method using such a mixer is a non-consolidated granulation method.
  • an anionic surfactant and / or an acid precursor thereof in this specification, “an anionic surfactant and / or an acid precursor thereof” is indicated as “component C”). Since the granulation does not proceed unless the adhesiveness when in contact with the powder is strong, it is necessary to develop the adhesiveness when in contact with the powder.
  • a multi-fluid nozzle such as a two-fluid nozzle is used to spray the component C that develops tackiness when it comes into contact with the powder and is supplied into the rotating container of the container, unexpectedly, the coarse particles It was found that uniform granulation was possible while suppressing formation. This is because component C is made into fine droplets in advance using a multi-fluid nozzle, so that high dispersion of component C can be achieved even in a container-rotating mixer, and a large liquid mass forming coarse particles is generated. It is thought that it does not. Therefore, it is also one of the features of the present invention that the component C that develops adhesiveness when it comes into contact with the powder is added into the container rotary mixer using a multi-fluid nozzle.
  • a combination of a container rotating type mixer and a multi-fluid nozzle can be used to contain an anionic surfactant in a high ratio, which cannot be expected from the case where each is used alone.
  • Bulk density particles can be obtained, and further, by mixing the particles and spray-dried particles, an effect of obtaining a medium / low bulk density detergent having good fluidity at a low spray-dry particle ratio can be obtained.
  • the detergent particles are particles containing a surfactant and a builder, and the detergent particle group means an aggregate thereof.
  • the detergent composition contains detergent particles and is optionally added separately from the detergent particles (for example, builder granules, fluorescent dyes, enzymes, fragrances, antifoams, bleaches, bleach activators) Etc.).
  • Step (A) is a step of spray-drying a slurry containing an anionic surfactant to prepare particles (A) (spray-dried particles) containing 5 to 40% by mass of an anionic surfactant in the particles. is there.
  • the bulk density of the particles (A) is preferably 200 to 600 g / L, more preferably 200 to 550 g / L, and more preferably 200 to 550 g / L, from the viewpoint of reducing the ratio of spray-dried particles to obtain a medium and low bulk density detergent particle group. 500 g / L is more preferable.
  • the average particle size of all the particles (A) is preferably 150 to 500 ⁇ m, more preferably 200 to 400 ⁇ m, and still more preferably 200 to 350 ⁇ m from the viewpoint of solubility.
  • the fluidity of the particles (A) is preferably 4 to 12 seconds, more preferably 4 to 10 seconds, and further preferably 4 to 8 seconds, from the viewpoint of ease of charging into the mixer.
  • the angle of repose of the particles (A) is preferably 20 to 55 °, more preferably 25 to 50 °, and further preferably 30 to 50 °, from the viewpoint of ease of charging into the mixer and difficulty in bridging the particles. preferable. Below, each component used for this invention is demonstrated.
  • Anionic surfactant What is generally used can be used as an anionic surfactant. Examples thereof include linear alkylbenzene sulfonate, ⁇ -olefin sulfonate, alkyl sulfate, polyoxyethylene alkyl sulfate, and fatty acid ester sulfonate. Such an anionic surfactant may be used alone or in combination of two or more components.
  • the counter ion is preferably an alkali metal, particularly sodium. Of these, linear alkylbenzene sodium sulfonate and sodium alkyl sulfate are preferred from the viewpoints of economy, thermal stability and foaming.
  • the acid precursor is added to the slurry, and the acid precursor is neutralized in the slurry with a sodium hydroxide aqueous solution or the like added to the slurry separately.
  • a method of adding a previously neutralized anionic surfactant to the slurry may be used.
  • the amount of the anionic surfactant added to the slurry is preferably 5% by mass or more, more preferably 10% by mass or more, and further 15% by mass or more in the obtained spray-dried particles. preferable.
  • the amount added is preferably 40% by mass or less, and more preferably 35% by mass or less.
  • an anionic surfactant As an essential component for the spray-dried particles in the present invention, only an anionic surfactant is used, but from the viewpoint of cleaning performance, particle size distribution, and particle strength, it is usually used in detergent compositions as needed.
  • Other ingredients can be included in the spray-dried particles. Examples of other components include water-soluble solid alkali inorganic substances, chelating agents, water-soluble inorganic salts, water-soluble polymers, water-insoluble excipients, nonionic surfactants, and other auxiliary components. It is preferable to blend a water-soluble solid alkali inorganic substance, a chelating agent, a water-soluble inorganic salt and / or a water-soluble polymer.
  • Such other components are added to the spray-dried particles by being added to the slurry in the same manner as the anionic surfactant.
  • the amount of other components added to the slurry is not particularly limited, and is the remaining amount of the anionic surfactant and water in the resulting spray-dried particles.
  • the amount of other components added to the slurry is preferably 45 to 94% by mass in the resulting spray-dried particles. Specific examples of other components will be described below.
  • Water-soluble solid alkali inorganic substance is an alkali inorganic substance that is solid at room temperature (20 ° C.), and the water-soluble solid alkali inorganic substance is not particularly limited. Examples thereof include sodium, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, sodium silicate and the like. Among them, sodium carbonate and sodium silicate are preferable as an alkaline agent that exhibits a suitable pH buffer region in the washing liquid.
  • Chelating agents can be incorporated into spray-dried particles in order to suppress the cleaning action inhibition by metal ions. Examples include water-soluble chelating agents and water-insoluble chelating agents. It is also possible to mix.
  • the water-soluble chelating agent is not particularly limited, but for example, tripolyphosphate, orthophosphate, pyrophosphate, etc. can be used. Further, as the counter ion, an alkali metal salt is preferable, and sodium and / or potassium is particularly preferable.
  • the water-insoluble chelating agent may be added for the purpose of improving the sequestering ability and the strength of the spray-dried particles.
  • examples thereof include crystalline or non-crystalline alkali metal aluminosilicates (zeolites), and metal ions.
  • zeolites crystalline or non-crystalline alkali metal aluminosilicates
  • metal ions metal ions.
  • A-type zeolite is preferable in terms of sealing ability and economy.
  • the average particle size of the particles is preferably from 0.1 to 20 ⁇ m, more preferably from 0.5 to 10 ⁇ m.
  • Water-soluble inorganic salt The water-soluble inorganic salt is preferably added to the spray-dried particles in order to increase the ionic strength of the washing liquid and improve the effect of cleaning sebum dirt.
  • the water-soluble inorganic salt for example, sodium sulfate, sodium chloride, sodium sulfite and potassium sulfate having a high degree of ionic dissociation are preferable. From the viewpoint of improving the dissolution rate of the detergent particles, the combined use of magnesium sulfate is also effective.
  • Water-soluble polymer It is also preferable to blend a water-soluble polymer having effects such as metal ion scavenging ability and mud dirt dispersibility.
  • a water-soluble polymer having effects such as metal ion scavenging ability and mud dirt dispersibility.
  • polyethylene glycol, carboxylic acid polymer, carboxymethyl cellulose, soluble starch, saccharide and the like can be mentioned.
  • polyethylene glycol having a weight average molecular weight of 5,000 to 20,000 and a carboxylic acid polymer having a weight average molecular weight of several thousand to 100,000 are preferable from the viewpoint of sequestering ability, dispersibility of solid dirt, particle dirt, etc.
  • Particularly preferred are salts of acrylic acid-maleic acid copolymers and polyacrylates.
  • Water-insoluble excipient is not particularly limited as long as it is a substance that has good dispersibility in water and does not adversely affect detergency.
  • clay compounds such as silicon dioxide, hydrated silicate compound, barlite, bentonite and the like can be mentioned.
  • the primary particles preferably have an average particle size of 0.1 to 20 ⁇ m, more preferably 0.5 to 10 ⁇ m.
  • the moisture in the spray-dried particles is preferably 15% by mass or less in the spray-dried particles from the viewpoint of the particle strength of the spray-dried particles, and preferably 0.5% by mass or more from the viewpoint of energy efficiency.
  • Fluorescent dyes, pigments, dyes and the like may be blended in the spray-dried particles.
  • Spray-dried particles used in the present invention can be obtained by spray-drying the slurry obtained by adding and mixing the above components.
  • spray-dried particles can be obtained by the production method described in, for example, the well-known collection of conventional techniques (powder detergent for clothing) issued by the Japan Patent Office.
  • Step (B) is a step of preparing particles (B) that are granulated products using a container rotating mixer and a multi-fluid nozzle. That is, the particle (B) is prepared by adding the component C using a multi-fluid nozzle into the container rotary mixer into which the powder raw material for detergent is charged.
  • the bulk density of the particles (B) is preferably 400 to 650 g / L, more preferably 420 to 620 g / L, still more preferably 440 to 600 g / L.
  • the bulk density of the particles (B) is preferably 650 g / L or less, more preferably 620 g / L or less, and even more preferably 600 g / L or less from the viewpoint of reducing the ratio of spray-dried particles and from the viewpoint of suppressing classification during transportation. From the viewpoint of transportation cost, 400 g / L or more is preferable, 420 g / L or more is more preferable, and 440 g / L or more is more preferable.
  • the average particle size of the particles (B) is preferably from 150 to 700 ⁇ m, more preferably from 180 to 650 ⁇ m, and even more preferably from 200 to 600 ⁇ m, from the viewpoints of solubility and powdering.
  • the fluidity of the particles (B) is preferably 4 to 12 seconds, more preferably 4 to 10 seconds, and still more preferably 4 to 8 seconds, from the viewpoint of ease of charging into the mixer.
  • the angle of repose of the particles (B) is preferably 20 to 60 °, more preferably 25 to 55 °, and more preferably 30 to 50 ° from the viewpoint of ease of charging into the mixer and difficulty in bridging of the particles. Is more preferable, and 35 to 45 ° is more preferable.
  • the granulation yield of the particles (B) is preferably 85 to 100%, more preferably 90 to 100%, still more preferably 95 to 100%.
  • the coarse particle ratio of the particles (B) is preferably 25% or less, more preferably 20% or less, still more preferably 15% or less, and particularly preferably 10% or less from the viewpoints of appearance and solubility.
  • the anionic surfactant acid precursor used in step (B) is an anionic surfactant precursor that shows an acid form and is liquid at room temperature. Good, salt is formed by neutralization reaction. Accordingly, the acid precursor is not particularly limited as long as it is a precursor of a known anionic surfactant and has the above-mentioned properties, but linear alkylbenzene sulfonic acid, ⁇ -olefin sulfonic acid, alkyl sulfuric acid, polysulfate, Examples thereof include oxyethylene alkyl sulfuric acid and fatty acid ester sulfonic acid. Such an acid precursor may use only one component, and may use it in combination of 2 or more components. Of these, linear alkylbenzenesulfonic acid and alkylsulfuric acid are preferred from the viewpoints of economy, storage stability and foaming.
  • a predetermined amount of an inorganic acid such as sulfuric acid may be mixed in advance with the acid precursor.
  • Anionic surfactants as component C are: This was obtained by neutralizing the acid precursor of the anionic surfactant. Such an anionic surfactant may be used alone or in combination of two or more components. Of these, alkyl sulfates and polyoxyethylene alkyl sulfates are preferred from the viewpoints of economy and foaming. 1. An aqueous alkali solution is used as a neutralizer for the acid precursor of the anionic surfactant.
  • aqueous alkali solution Although it does not specifically limit as a kind of aqueous alkali solution, for example, strong alkali aqueous solutions, such as sodium hydroxide aqueous solution and potassium hydroxide aqueous solution, are mentioned, Sodium hydroxide aqueous solution is preferable from an economical viewpoint.
  • the anionic surfactant used in the step (B) contains an anionic surfactant and water, and has a viscosity at 60 ° C. of 100 Pa ⁇ s or less.
  • the viscosity of an anionic surfactant varies greatly depending on its water content. Therefore, it is preferable to adjust the concentration of the aqueous alkali solution used for neutralizing the acid precursor to prepare an anionic surfactant having a desired water content, that is, having a desired viscosity.
  • the anionic surfactant contains 25 to 70 parts by weight of water (the water content of the surfactant composition is about 20 to 40%) with respect to 100 parts by weight of the anionic surfactant.
  • the viscosity of the paste-like anionic surfactant has a temperature range of preferably 10 Pa ⁇ s or less, more preferably 5 Pa ⁇ s or less, from the viewpoint of handleability in production. Such a use temperature range is preferably up to 70 ° C., more preferably up to 60 ° C., from the viewpoint of the stability of the anionic surfactant.
  • the viscosity is determined by measuring at a shear rate of 50 [1 / s] with a coaxial double cylindrical rotational viscometer (manufactured by HAAKE, sensor: SV-DIN).
  • the acid precursors of the anionic surfactant those which are very unstable and easily decomposed are preferably prepared so that the decomposition can be suppressed.
  • the preparation method is not particularly limited, and a known method can be used. For example, using a loop reactor, the heat of neutralization is removed by a heat exchanger or the like, and the production may be performed while paying attention to the temperature control of the acid precursor and the anionic surfactant.
  • the obtained anionic surfactant preferably has an excessive alkalinity from the viewpoint of suppressing decomposition.
  • unreacted alcohol and unreacted polyoxyethylene alkyl ether at the time of producing the acid precursor, sodium sulfate as a by-product during the neutralization reaction, and neutralization reaction can be added to the anionic surfactant
  • a pH buffering agent, a decoloring agent, etc. may be contained.
  • the amount of the anionic surfactant is preferably 10 to 45% by mass and more preferably 13 to 35% by mass in the particles (B) from the viewpoint of detergency and granulation. Since the anionic surfactant acid precursor is neutralized in the detergent particle group, the anionic interface in the detergent particle group can be obtained even when the anionic surfactant acid precursor is added. Calculated as the amount of activator.
  • the anionic surfactant and / or its acid precursor has the ability to form a granulated product by combining powder raw materials for detergent, and as described in the above paragraph, component C It is one of the important points that the adhesiveness develops when it comes into contact with the powder raw material for detergent. The presumed mechanism about adhesive expression is demonstrated below.
  • an anionic surfactant acid precursor when added to a water-soluble solid alkaline inorganic material that is a powder raw material for detergents, the neutralization reaction proceeds on the surface of the particles, and the anionic surfactant has an adhesive property. A neutralized product of the acid precursor of the ionic surfactant is formed.
  • an anionic surfactant when the anionic surfactant is added to the detergent powder raw material, the water in the anionic surfactant is hydrated with the detergent powder raw material. Or when the temperature of the powder raw material for detergent is lower than the temperature of the anionic surfactant, the temperature of the anionic surfactant is lowered to near or below its melting point. When the anionic surfactant is solidified, adhesiveness is developed.
  • the component C is a detergent.
  • the viscosity when contacted with the powder raw material is preferably 2 Pa ⁇ s or more, and more preferably 3 Pa ⁇ s or more.
  • the viscosity was measured when component C was in contact with the powder raw material for detergent at a shear rate of 50 [1 / s] using a coaxial double cylindrical rotational viscometer (manufactured by HAAKE, sensor: SV-DIN). The temperature and moisture value may be adjusted and measured so as to be the same.
  • the powder raw material for the detergent is a water-soluble solid alkali inorganic material and / or a water-soluble inorganic salt.
  • Water-soluble solid alkaline inorganic substance in the present invention, when an anionic surfactant acid precursor is used as a component added by a multi-fluid nozzle, a water-soluble solid alkaline inorganic substance is used to dry neutralize the acid precursor. Is an essential component.
  • the water-soluble solid alkali-inorganic substance is an alkali inorganic substance that is solid at room temperature (20 ° C.), and the water-soluble solid alkali-inorganic substance is not particularly limited.
  • sodium carbonate, sodium bicarbonate, carbonate Examples thereof include potassium and sodium silicate.
  • sodium carbonate is preferable as an alkaline agent that exhibits a suitable pH buffer region in the washing liquid.
  • These water-soluble solid alkali inorganic materials may be used alone or in combination of two or more.
  • both light soda ash (light ash) and heavy soda ash (dense ash) can be used, but light ash is used from the viewpoint of reactivity with the acid precursor. preferable.
  • the water-soluble solid alkaline inorganic substance can function as a detergent builder and an alkaline agent in the final composition. Therefore, the addition amount of the water-soluble solid alkaline inorganic substance is the amount necessary for neutralizing the acid precursor of the anionic surfactant blended as component C (neutralization equivalent) to exert the above function. Preferably an amount is added. That is, the addition amount of the water-soluble solid alkali inorganic substance is preferably the neutralization equivalent or an amount substantially larger than the neutralization equivalent, for example, preferably 1 to 35 times the neutralization equivalent, more preferably 2 -30 times, more preferably 3-25 times.
  • an inorganic acid may be used in combination with an acid precursor. In that case, the neutralization equivalent is added with an amount necessary for neutralization of the inorganic acid.
  • the amount specified here does not include water-soluble solid alkaline inorganic materials derived from spray-dried particles.
  • the average particle diameter of the water-soluble solid alkali inorganic substance is not particularly limited, but when the surfactant is highly blended, it may be pulverized to 1 to 50 ⁇ m from the viewpoint of improving the yield.
  • the average particle size of the water-soluble solid alkali inorganic substance is calculated on a volume basis, and is measured using, for example, a laser diffraction particle size distribution analyzer: LA-920 (manufactured by Horiba, Ltd.). Value.
  • Water-soluble inorganic salt The water-soluble inorganic salt is preferably used as a powder raw material for detergents in order to increase the ionic strength of the washing liquid and improve the effects of sebum stain cleaning.
  • As the water-soluble inorganic salt for example, sodium sulfate, sodium chloride, sodium sulfite and potassium sulfate having a high degree of ionic dissociation are preferable. From the viewpoint of improving the dissolution rate, the combined use of magnesium sulfate is also effective.
  • the average particle size of the water-soluble inorganic salt is not particularly limited, but when an anionic surfactant is highly blended, it may be pulverized to 1 to 50 ⁇ m from the viewpoint of improving the yield of the detergent particles. .
  • the average particle diameter of the water-soluble inorganic salt is calculated on a volume basis. For example, it is a value measured using a laser diffraction particle size distribution analyzer: LA-920 (manufactured by Horiba, Ltd.). is there.
  • the exemplified raw materials may be used alone, or two or more kinds may be mixed and used.
  • the amount of the water-soluble solid alkali inorganic substance and the water-soluble inorganic salt in the particles (B) is 30% by mass to 88% by mass from the viewpoint of detergency and powdering of the particles (B). 85% by mass is preferable, and 40% by mass to 80% by mass is more preferable.
  • the amount of the other powder component in the particles (B) is preferably 0.2 to 30% by mass, and more preferably 0.3 to 25% by mass.
  • the amount specified here does not include powder components derived from spray-dried particles.
  • Such materials include surface modifiers (aluminosilicate, sodium sulfate, calcium silicate, silicon dioxide, bentonite, talc, clay, amorphous silica derivatives, crystalline silicate, primary particles having an average particle size of 0. .1 to 10 ⁇ m metal soap, powdered surfactant (eg, alkyl sulfate), water-soluble organic salt, etc., chelating agent (tripolyphosphate, orthophosphate, pyrophosphate, etc.) crystalline or non-crystalline Alkali metal aluminosilicate), water-soluble polymer powder (carboxylic acid polymer, carboxymethylcellulose, soluble starch, sugar, polyethylene glycol), water-insoluble excipient (silicon dioxide, hydrated silicate compound, bar)
  • surface modifiers aluminosilicate, sodium sulfate, calcium silicate, silicon dioxide, bentonite, talc, clay, amorphous silica derivatives, crystalline silicate, primary particles having an average
  • the above-mentioned substances may be added together with the powder raw material for detergent before adding component C, or may be added after adding component C.
  • a surface modifier such as an alkali metal aluminosilicate
  • the operation of adding other powder components may be performed in a container rotary mixer, or after discharging the particles (B) obtained in the step (B) from the container rotary mixer, another mixer / manufacturer is prepared. You may carry out using a granulator.
  • liquid components In the present invention, other liquid components may be added to produce the detergent particle group. Other liquid components to be added can be appropriately selected according to the composition of the detergent particle group to be obtained.
  • the addition timing of the liquid component is not particularly limited.
  • the liquid component may be mixed with the component C in advance, or may be performed before, during or after the addition of the component C. When performing, it is preferable before the addition of the surface modifier.
  • the liquid component When the liquid component is added after component C is added, the liquid component may be added using a container rotary mixer, or the detergent particles obtained by the production method of the present invention are removed from the container rotary mixer. After discharging, the obtained detergent particles may be charged into another mixer / granulator and the liquid component added thereto.
  • a surfactant for example, a nonionic surfactant, a fatty acid, a water-soluble polymer (carboxylic acid polymer, carboxymethyl cellulose, soluble starch, saccharides, polyethylene glycol, etc.) and the like are used in ordinary detergent compositions. Any liquid component may be mentioned. As the liquid component, only one component may be used, or two or more components may be used in combination.
  • the liquid component may be added as a liquid at a temperature equal to or higher than its melting point, or may be added in the form of an aqueous solution or dispersion.
  • the amount of the net liquid component excluding the medium is preferably 15% by mass or less, and more preferably 10% by mass or less of the detergent particle group as the final product, from the viewpoint of suppressing aggregation of the detergent particle group.
  • the nonionic surfactant used as the liquid component is not particularly limited, but from the viewpoint of detergency, for example, a polyoxyalkylene alkyl obtained by adding 6 to 22 moles of alkylene oxide to an alcohol having 10 to 14 carbon atoms. Ether is preferred.
  • spraying can be performed with any nozzle, not depending on the multi-fluid nozzle described in the present invention.
  • a drum mixer or a pan mixer is used as the container rotating mixer.
  • the drum-type mixer is not particularly limited as long as the drum-shaped cylinder rotates and performs processing.
  • the conical drum-type granulator is used. (Mixer), multi-stage conical drum granulator (mixer), etc. can also be used. These apparatuses can be used in both batch and continuous processes.
  • baffle plates baffles ( ) May be attached. This makes it possible to cause the particle group to perform an upward movement, and improves the powder mixing property and the solid-liquid mixing property.
  • the operating condition of the container rotation type mixer is not particularly limited as long as the components in the mixer can be stirred.
  • the operating condition is that the fluid number defined by the following formula is 0.005 to 1.0.
  • An operating condition of 0.01 to 0.6 is more preferable.
  • Fr V 2 / (R ⁇ g)
  • V Circumferential speed [m / s]
  • R Radius from the center of rotation to the circumference of the rotating object [m]
  • g Gravity acceleration [m / s 2 ]
  • Multi-fluid nozzle In the present invention, it is one feature that the component C is supplied using a multi-fluid nozzle. By using such a nozzle, the droplets can be made fine and dispersed.
  • a multi-fluid nozzle is a nozzle that mixes and atomizes a liquid and atomizing gas (air, nitrogen, etc.) through an independent channel to the vicinity of the nozzle tip.
  • a four-fluid nozzle or the like can be used.
  • the type of the mixing part of the component C and the atomizing gas may be either an internal mixing type for mixing inside the nozzle tip or an external mixing type for mixing outside the nozzle tip.
  • an internal mixed type two-fluid nozzle such as manufactured by Spraying Systems Japan Co., Ltd., manufactured by Kyoritsu Alloy Manufacturing Co., Ltd., or manufactured by Ikeuchi Co., Ltd., manufactured by Spraying Systems Japan Co., Ltd.
  • an external mixing type two-fluid nozzle manufactured by Kyoritsu Alloy Mfg. Co., Ltd. and Atmax Co., Ltd. an external mixing type four-fluid nozzle manufactured by Fujisaki Electric Co., Ltd., and the like.
  • the droplet diameter of the component C droplet can be adjusted by changing the balance between the flow rate and the atomization gas flow rate. That is, as the flow rate of the atomizing gas is increased with respect to the component C having a certain flow rate, the droplet diameter becomes smaller. Furthermore, the droplet diameter becomes smaller as the flow rate of the component C is decreased with respect to the atomizing gas having a certain flow rate.
  • the flow rate of the atomizing gas can be easily adjusted by adjusting the atomizing gas spray pressure.
  • the atomizing gas atomizing pressure [gauge pressure] is 0.1 MPa or more.
  • 1.0 MPa or less is preferable from the viewpoint of equipment load.
  • the average particle diameter of the component C droplet diameter is 1 to 300 ⁇ m. From the viewpoint, it is preferably 1 to 200 ⁇ m, more preferably 1 to 150 ⁇ m.
  • an anionic surfactant that is a high-viscosity paste can be uniformly dispersed, and the yield can be improved and a detergent particle group having a sharp particle size distribution can be obtained.
  • the average particle diameter of the droplet diameter of the component C is calculated on a volume basis, and is a value measured using a laser diffraction type particle size distribution measuring apparatus: Spray Tech (manufactured by Malvern).
  • component C Since component C is added through the multi-fluid nozzle, it is supplied to the multi-fluid nozzle as a fluid.
  • the anionic surfactant and / or the acid precursor thereof may be supplied as they are if they are liquid or paste at room temperature, may be diluted with water or the like to be liquid or paste, and heated to be liquid or paste It is good. Therefore, the temperature range at the time of supplying the component C to the nozzle (that is, at the time of addition into the mixer) is preferably 10 to 80 ° C., more preferably 20 to 70 ° C. from the viewpoint of stability and handling properties.
  • Step (C) is a step of mixing particles (A) and particles (B).
  • the blending amount of the particles (A) is preferably 20 to 70% by mass, more preferably 20 to 60% by mass, based on the total mass of the particles (A) and the particles (B).
  • components such as a surface modifier, an enzyme, a fragrance, a bleaching agent, and a pigment may be added and mixed.
  • the surface modifier include those described in the item [Other powder components].
  • the addition amount of these components is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the total mass of the particles (A) and the particles (B) from the viewpoint of exerting a desired effect by addition, 0.2 to 20 parts by mass is more preferable, 0.3 to 10 parts by mass is further preferable, and 0.5 to 5 parts by mass is even more preferable.
  • Mixing in the step (C) may be performed using a known mixer.
  • a suitable mixer in this case, a mixer which is difficult to be compacted against detergent particles is preferable, and examples thereof include a rotary kiln, a ribbon mixer, a drum mixer, a planetary mixer, and the like.
  • the value obtained by dividing the bulk density of the particles (B) by the bulk density of the particles (A) is preferably 0.5 to 3.5 or less, more preferably 0.7 to 3.0, and 0 A range of .8 to 2.5 is more preferable.
  • a detergent particle group of the present invention by mixing (A) particles and (B) particles, fluidity that can be produced at a low spray-dried particle ratio is good and classification is suppressed.
  • a medium and low bulk density detergent particle group can be obtained with a high yield and a low coarse particle ratio.
  • the bulk density of the detergent particle group is preferably a medium to low bulk density of 250 to 600 g / L, more preferably 300 to 550 g / L, and still more preferably 300 to 500 g / L.
  • the average particle size of the detergent particles is preferably 200 to 800 ⁇ m, and more preferably 200 to 600 ⁇ m. From the viewpoint of appearance and solubility, the average particle size is preferably 800 ⁇ m or less.
  • the fluidity of the detergent particles is preferably 4 to 12 seconds, more preferably 4 to 10 seconds, and still more preferably 4 to 8 seconds.
  • the angle of repose is preferably 20 ° to 45 ° from the viewpoint of easy filling of the product.
  • the granulation yield of the detergent particle group is preferably 90 to 100%, more preferably 95 to 100%.
  • the coarse particle ratio of the detergent particle group is preferably 25% or less, more preferably 20% or less, still more preferably 15% or less, and particularly preferably 10% or less from the viewpoint of appearance and solubility.
  • Average Particle Size For the average particle size, the median diameter is calculated from the mass fraction depending on the size of the mesh after vibrating for 5 minutes using a standard sieve of JIS Z 8801 (aperture 2000 to 45 ⁇ m). More specifically, using a 12-stage sieve having a mesh opening of 45 ⁇ m, 63 ⁇ m, 90 ⁇ m, 125 ⁇ m, 180 ⁇ m, 250 ⁇ m, 355 ⁇ m, 500 ⁇ m, 710 ⁇ m, 1000 ⁇ m, 1410 ⁇ m, and 2000 ⁇ m, a small sieve with a mesh on the tray Stack in order, add 100 g of particles from the top of the top 2000 ⁇ m sieve, cover and attach to a low-tap sieve shaker (manufactured by HEIKO, tapping 156 times / minute, rolling: 290 times / minute) After vibrating for 5 minutes, the mass of the particles remaining on each sieve and the saucer is measured, and the mass ratio (%) of the particles on each sieve is
  • the flow time is defined as the time required for 100 mL of powder to flow out from the bulk density measurement hopper defined by JIS K 3362.
  • liquidity is measured with the remaining particle
  • Angle of repose A cylinder having an inner diameter of 77 mm and a height of 55 mm is placed on a fluidity measurement table (80 mm diameter circular platform) placed on a flat place, and a sample is poured from the upper surface of the cylinder at a height of 1 to 2 cm above. Fill from the upper surface of the cylinder to a position of about 0 to 1 cm in a pile. The cylinder is then gently moved upwards and removed, and the filled sample is naturally discharged by gravity. Thereafter, an angle (inclination angle) formed between the surface of the sample remaining on the approximate measurement table and the horizontal plane is read using a protractor, and the angle is defined as an angle of repose.
  • Granulation yield The granulation yield in this invention shows the ratio (mass) of the particle
  • the mass of the particles of 2000 ⁇ m or less is the above-mentioned 2. The measurement was performed using the same apparatus as used for the average particle diameter. The granulation yield of the particles (B) is also determined by the same method.
  • the coarse grain ratio in the present invention indicates the ratio (mass) of particles of 1000 ⁇ m or more in the manufactured detergent particle group.
  • the mass of the particles of 1000 ⁇ m or more is the above 2.
  • the measurement was performed using the same apparatus as used for the average particle diameter.
  • the coarse particle ratio of the particles (B) is also obtained by the same method.
  • the present invention further discloses the following manufacturing method regarding the above-described embodiment.
  • the container rotating mixer is a drum type mixer or a pan type mixer
  • the blending amount of the particles (A) is 20 to 70% by mass of the total mass of the particles (A) and the particles (B), preferably 60% by mass or less, more preferably 20 to 60% by mass, [1] The production method according to [1].
  • the anionic surfactant and / or precursor thereof used in the step (B) are linear alkylbenzene sulfonic acid, alkyl sulfuric acid, polyoxyethylene alkyl sulfuric acid, ⁇ -olefin sulfonic acid, fatty acid ester sulfonic acid and the like.
  • the amount of the anionic surfactant used in the step (B) is 10 to 45% by mass in the particles (B), preferably 13% by mass or more, preferably 35% by mass or less, and 13 to 35% by mass. % Is more preferable, The production method according to any one of [1] to [4].
  • the amount of the water-soluble solid alkali inorganic substance added in the step (B) is 1 to 35 times the neutralization equivalent of the acid precursor of the anionic surfactant used in the step (B), and more than 2 times Any of the above-mentioned [1] to [5], preferably 3 times or more, more preferably 30 times or less, more preferably 25 times or less, further preferably 2 to 30 times, further preferably 3 to 25 times. 2.
  • the bulk density of the particles (B) is 400 to 650 g / L, preferably 420 g / L or more, more preferably 440 g / L or more, preferably 620 g / L or less, more preferably 600 g / L or less, 420
  • the production method according to any one of [1] to [6], further preferably ⁇ 620 g / L, more preferably 440 ⁇ 600 g / L.
  • Any one of [1] to [7], wherein the water-soluble solid alkali inorganic material is at least one selected from the group consisting of sodium carbonate, sodium hydrogen carbonate, potassium carbonate, and sodium silicate. Manufacturing method.
  • the bulk density of the particles (A) is 200 to 600 g / L, preferably 550 g / L or less, more preferably 500 g / L or less, further preferably 200 to 550 g / L, further 200 to 500 g / L.
  • the bulk density of the detergent particles is 250 to 600 g / L, preferably 300 g / L or more, preferably 550 g / L or less, more preferably 500 g / L or less, further preferably 300 to 550 g / L,
  • a 122L drum mixer ( ⁇ 50 cm ⁇ L62 cm) having a baffle plate was used as a container rotating mixer.
  • a two-fluid nozzle (manufactured by Atmax Co., Ltd .: model number BN160) was used.
  • the value described as the spray pressure of the two-fluid nozzle is the gauge pressure.
  • the slurry was sprayed at a spray pressure of 2.5 MPa from a pressure spray nozzle installed near the top of the spray drying tower to obtain spray-dried particles.
  • the hot gas supplied to the spray-drying tower was supplied at a temperature of 220 ° C. from the bottom of the tower and discharged at 110 ° C. from the top of the tower.
  • the obtained spray-dried particles were designated as spray-dried particles (A-1), and their compositions and physical properties are shown in Table 1.
  • (A-2) Spray-dried particles (A-2) were obtained in the same manner as (A-1) except that the amount of water and the like added to the mixing tank was changed and silicate was not added. Table 1 shows the composition and physical properties of (A-2).
  • (A-4) Sprayed in the same manner as (A-1) except that the amount of water added to the mixing tank was changed, and paste-like (60 ° C.) sodium alkyl sulfate was added as an anionic surfactant. Dry particles (A-4) were obtained. The addition of sodium alkyl sulfate was performed after the addition of sodium polyacrylate. The composition and physical properties of (A-4) are shown in Table 1.
  • (B-2) and (B-3) Particles were obtained by the same method as (B-1) except that the amount of raw material added to the drum mixer and the amount of anionic surfactant sprayed were changed.
  • Table 2 shows the composition and physical properties of the obtained particles (B-2) and (B-3).
  • (B-6) Particles were obtained in the same manner as in (B-1) except that the amount of raw material added to the drum mixer and the amount of anionic surfactant sprayed were changed and sodium sulfate was added. Table 2 shows the composition and physical properties of the obtained particles (B-6).
  • the detergent particles obtained in Examples 1 to 14 have a spray-dried particle ratio in the range of 20 to 70%, good fluidity and a bulk density of 350 to 600 g / L. It turned out to be a group.
  • Particles (B-1) to (B-6) have a bulk density of 470 to 600 g / L, which is a medium bulk density particle, and since (A) the difference in bulk density from the particles is small, Even if A) particles and (B) particles are mixed, classification during transportation or the like is suppressed. Furthermore, the granulation yield of the obtained detergent particle group was as high as 90% or more, and the coarse particle ratio was as low as 20% or less.
  • Comparative Examples 1 to 3 the fluidity is very poor and the angle of repose is large, so that it is difficult to inject the detergent particles as a product into the container, and the handling property of the consumer during use is poor. Met. Furthermore, it was found that each of Comparative Examples 1 to 3 had a bulk density of 77 g / L or more higher than that of the detergent particle group of Example when the same spray-dried particle ratio as in Example was used (Example 12). To 14, Comparative Examples 1 to 3). Therefore, in order to obtain a detergent particle group having the same bulk density as that of the detergent particle group produced according to the present invention, it is necessary to increase the spray-dried particle ratio, which increases the environmental load. Moreover, regarding the granulation yield and the coarse particle ratio of the detergent particles, the performance was lower than that obtained by the production method of the present invention.
  • Comparative Example 5 Although the fluidity and angle of repose are good, the difference in the bulk density between the particles (B) and the particles (A) is large because one fluid nozzle was used for the production of the particles (B-9). It is expected that classification will occur. Moreover, regarding the granulation yield and the coarse particle ratio of the detergent particles, the performance was lower than that obtained by the production method of the present invention.
  • a medium and low bulk density detergent particle group having good fluidity with a good yield and a low coarse particle ratio while reducing the spray-dried particle ratio.
  • Such a detergent particle group can be preferably used as a detergent composition for various uses such as clothing, or as one component of such a detergent composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

Provided is a method for producing a detergent particle group, which comprises: a step (A) for preparing particles (A) containing 5 to 40 mass% of an anionic surfactant by spray-drying a slurry containing the anionic surfactant; a step (B) for preparing particles (B) by granulating a powder starting material for a detergent using a vessel rotating-type mixer, wherein the powder starting material for a detergent is a water-soluble solid alkali inorganic substance and/or a water-soluble inorganic salt, the amount of water-soluble solid alkali inorganic substance and water-soluble inorganic salt contained in the particles (B) is 30 to 88 mass%, the vessel rotating-type mixer is a drum mixer or a pan mixer, and the anionic surfactant and/or a precursor thereof are added to the vessel rotating-type mixer using a multi-fluid nozzle to prepare the particles (B); and a step (C) for mixing the particles (A) and the particles (B). The effect of obtaining, at a good yield, a detergent particle group having an intermediate to low bulk density wherein the percentage of spray-dried particles used has been reduced is realized by the method for producing a detergent particle group of the present invention.

Description

洗剤粒子群の製造方法Method for producing detergent particles
 本発明は洗剤粒子群の製造方法に関し、より詳細には、噴霧乾燥機を用いて調製した粒子及び容器回転型混合機を用いて調製した粒子を含む洗剤粒子群の製造方法に関する。 The present invention relates to a method for producing detergent particles, and more particularly to a method for producing detergent particles including particles prepared using a spray dryer and particles prepared using a container rotating mixer.
 現在、市販されている洗剤には、大きく分けて高嵩密度型洗剤(600g/Lより大きい)、中嵩密度型洗剤(400~600g/L)、低嵩密度型洗剤(250g/L以上400g/L未満)、液体洗剤等がある。例えば、日本においては高嵩密度型洗剤が多く使用されているが、アジア・オセアニアや欧州等においては、中低嵩密度型洗剤の需要も多い。 Currently available detergents are broadly classified into high bulk density detergents (greater than 600 g / L), medium bulk density detergents (400 to 600 g / L), and low bulk density detergents (250 g / L to 400 g). / L) and liquid detergents. For example, high bulk density detergents are often used in Japan, but there are also many demands for medium and low bulk density detergents in Asia, Oceania and Europe.
 低嵩密度型洗剤においては、その製造方法としては、陰イオン界面活性剤及びその他ビルダーをスラリー配合し、噴霧乾燥によって製造する方法が挙げられる。一方、高嵩密度型洗剤においては、陰イオン界面活性剤及びその他ビルダーをスラリー配合して噴霧乾燥した後、高嵩密度化処理して製造する方法が提案されている。 In the low bulk density type detergent, the production method includes a method in which an anionic surfactant and other builder are blended in a slurry and produced by spray drying. On the other hand, in a high bulk density type detergent, a method has been proposed in which an anionic surfactant and other builder are blended in a slurry and spray-dried, followed by a high bulk density treatment.
 中嵩密度洗剤においては、陰イオン界面活性剤及びその他ビルダーをスラリー配合して噴霧乾燥して低嵩密度の噴霧乾燥粒子を調製した後、その噴霧乾燥粒子と予め得られた高嵩密度化粒子を混合して中嵩密度化する方法(特許文献1参照)等が挙げられる。 In medium bulk density detergent, an anionic surfactant and other builder are mixed in a slurry and spray dried to prepare low bulk density spray dried particles, and then the spray dried particles and previously obtained high bulk density particles For example, and a method of mixing to increase the bulk density (see Patent Document 1).
 近年、省エネルギーや環境負荷低減の観点から噴霧乾燥粒子を出来るだけ少なくしつつ中低嵩密度の洗剤を製造する方法が求められている。特許文献1に記載される製造方法では、高嵩密度粒子を混合しており、中低嵩密度の洗剤を製造するには噴霧乾燥粒子比率が高くなってしまうという課題がある。更に、特許文献1に記載される製造方法では輸送における分級を抑制する効果は見られるものの、製品の流動性にはいまだ不満の残るものであった。 In recent years, there has been a demand for a method for producing a medium-low bulk density detergent while minimizing spray-dried particles from the viewpoint of energy saving and environmental load reduction. In the production method described in Patent Document 1, high bulk density particles are mixed, and there is a problem that the ratio of spray-dried particles becomes high to produce a medium and low bulk density detergent. Furthermore, although the production method described in Patent Document 1 has an effect of suppressing classification in transportation, it still remains dissatisfied with the fluidity of the product.
特開2008-63419JP2008-63419
 従って本発明は、流動性が良好で且つ分級が抑制された中低嵩密度の洗剤粒子群の製造方法であって、使用する噴霧乾燥粒子比率を低減することが可能な製造方法を提供することに関する。さらに、本発明は、洗剤粒子群を収率良く且つ低粗粒率で提供することに関する。 Accordingly, the present invention provides a method for producing a medium and low bulk density detergent particle group having good fluidity and suppressed classification, and capable of reducing the ratio of spray-dried particles to be used. About. Furthermore, the present invention relates to providing detergent particles with high yield and low coarse rate.
 本発明の洗剤粒子群の製法により、使用する噴霧乾燥粒子比率が低減された流動性が良好で分級が抑制された中低嵩密度の洗剤粒子群を収率良く且つ低粗粒率で得ることが出来る。 By the method for producing the detergent particle group of the present invention, a medium and low bulk density detergent particle group having good fluidity and reduced classification with a reduced spray-dried particle ratio to be used is obtained with a high yield and a low coarse particle ratio. I can do it.
 本発明の特徴の一つは、
 工程(A):陰イオン界面活性剤を含有するスラリーを噴霧乾燥して、陰イオン界面活性剤を粒子中に5~40質量%含む粒子(A)を調製する工程、
 工程(B):洗剤用粉体原料を容器回転型混合機を用いて造粒して粒子(B)を調製する工程であって、
   洗剤用粉体原料が水溶性固体アルカリ無機物質及び/又は水溶性無機塩であり、
   水溶性固体アルカリ無機物質と水溶性無機塩とが粒子(B)中に占める量が30~88質量%であり、かつ
   容器回転型混合機がドラム型混合機又はパン型混合機であって、
 陰イオン界面活性剤及び/又はその前駆体を、多流体ノズルを用いて該容器回転型混合機内に添加して粒子(B)を調製する工程、並びに
 工程(C):粒子(A)と粒子(B)とを混合する工程、
を含む、洗剤粒子群の製造方法を用いて洗剤粒子群を得ることである。
One of the features of the present invention is that
Step (A): A step of preparing particles (A) containing 5 to 40% by mass of an anionic surfactant in the particles by spray drying a slurry containing an anionic surfactant;
Step (B): A step of preparing particles (B) by granulating a powder raw material for detergent using a container rotary mixer,
The detergent powder raw material is a water-soluble solid alkaline inorganic substance and / or a water-soluble inorganic salt,
The amount of the water-soluble solid alkali inorganic substance and the water-soluble inorganic salt in the particles (B) is 30 to 88% by mass, and the container rotating mixer is a drum mixer or a pan mixer,
A step of adding an anionic surfactant and / or a precursor thereof into the container rotary mixer using a multi-fluid nozzle to prepare particles (B); and step (C): particles (A) and particles. A step of mixing (B),
A detergent particle group is obtained using a method for producing a detergent particle group.
 一般に、容器回転型混合機を用いた造粒においては、粉体を均一に流動せしめることが可能であり、更に、回転による粒子の持ち上げ及び自重による滑り・落下を伴う混合機構の為、粉体に加えられるせん断力が抑制される。そのため、かかる混合機を用いた造粒方法は非圧密な造粒方法と言うことができる。また、陰イオン界面活性剤及び/又はその酸前駆体(本明細書中、「陰イオン界面活性剤及び/又はその酸前駆体」を「成分C」と表記している箇所がある。)は、粉体と接触した際の粘着性が強くないと造粒が進行しないために、粉体と接触した際に粘着性が発現する必要がある。このような成分Cを容器回転型混合機に一般的な供給方法である一流体ノズルや配管にて供給すると、供給される液体成分を混合機内で均一に分散させにくく、局在的に発生する大きな液塊により粗大粒子が形成されやすいという課題があった。 In general, in granulation using a rotating container mixer, it is possible to make the powder flow uniformly, and because of the mixing mechanism involving lifting of the particles by rotation and sliding / falling by their own weight, The shearing force applied to is suppressed. Therefore, it can be said that the granulation method using such a mixer is a non-consolidated granulation method. In addition, an anionic surfactant and / or an acid precursor thereof (in this specification, “an anionic surfactant and / or an acid precursor thereof” is indicated as “component C”). Since the granulation does not proceed unless the adhesiveness when in contact with the powder is strong, it is necessary to develop the adhesiveness when in contact with the powder. When such a component C is supplied to a container rotation type mixer by a one-fluid nozzle or pipe, which is a general supply method, the supplied liquid component is not easily dispersed in the mixer and is locally generated. There was a problem that coarse particles were easily formed by a large liquid mass.
 そこで、2流体ノズル等の多流体ノズルを用いて、粉体と接触した際に粘着性を発現する成分Cを噴霧することによって容器回転型混合機内に供給したところ、意外にも、粗大粒子の形成を抑制しつつ均一に造粒できることが分かった。これは、成分Cを多流体ノズルを用いてあらかじめ微細な液滴とすることにより、容器回転型混合機内であっても成分Cの高分散が達成でき、粗大粒子を形成する大きな液塊が発生しないためと考えられる。従って、粉体と接触した際に粘着性を発現する成分Cを多流体ノズルを用いて容器回転型混合機内に添加することも、本発明の特徴の一つである。 Therefore, when a multi-fluid nozzle such as a two-fluid nozzle is used to spray the component C that develops tackiness when it comes into contact with the powder and is supplied into the rotating container of the container, unexpectedly, the coarse particles It was found that uniform granulation was possible while suppressing formation. This is because component C is made into fine droplets in advance using a multi-fluid nozzle, so that high dispersion of component C can be achieved even in a container-rotating mixer, and a large liquid mass forming coarse particles is generated. It is thought that it does not. Therefore, it is also one of the features of the present invention that the component C that develops adhesiveness when it comes into contact with the powder is added into the container rotary mixer using a multi-fluid nozzle.
 このように、本発明においては、容器回転型混合機と多流体ノズルとを組み合わせて採用することで、それぞれ単独で使用する場合からは予期できない、陰イオン界面活性剤を高比率で含有する中嵩密度の粒子が得られ、更にその粒子と噴霧乾燥粒子を混合することで、流動性が良好な中低嵩密度洗剤を低い噴霧乾燥粒子比率で得られるという効果が奏される。 As described above, in the present invention, a combination of a container rotating type mixer and a multi-fluid nozzle can be used to contain an anionic surfactant in a high ratio, which cannot be expected from the case where each is used alone. Bulk density particles can be obtained, and further, by mixing the particles and spray-dried particles, an effect of obtaining a medium / low bulk density detergent having good fluidity at a low spray-dry particle ratio can be obtained.
 以下、本発明の製造方法の一例としての態様について、より詳細に説明する。 Hereinafter, the aspect as an example of the production method of the present invention will be described in more detail.
 本発明において、洗剤粒子とは界面活性剤及びビルダー等を含有する粒子であり、洗剤粒子群とはその集合体を意味する。洗剤組成物とは、洗剤粒子群を含有し、所望により洗剤粒子群以外に別途添加された洗剤成分(例えば、ビルダー顆粒、蛍光染料、酵素、香料、消泡剤、漂白剤、漂白活性化剤等)を含有する組成物を意味する。 In the present invention, the detergent particles are particles containing a surfactant and a builder, and the detergent particle group means an aggregate thereof. The detergent composition contains detergent particles and is optionally added separately from the detergent particles (for example, builder granules, fluorescent dyes, enzymes, fragrances, antifoams, bleaches, bleach activators) Etc.).
A.洗剤粒子群の製造方法
<工程(A)>
 工程(A)は、陰イオン界面活性剤を含有するスラリーを噴霧乾燥して、陰イオン界面活性剤を粒子中に5~40質量%含む粒子(A)(噴霧乾燥粒子)を調製する工程である。粒子(A)の嵩密度は、噴霧乾燥粒子の比率を低減して中低嵩密度の洗剤粒子群を得る観点から、200~600g/Lが好ましく、200~550g/Lがより好ましく、200~500g/Lが更に好ましい。粒子(A)の全粒の平均粒径は、溶解性の観点から、150~500μmが好ましく、200~400μmがより好ましく、200~350μmが更に好ましい。粒子(A)の流動性は、混合機への投入の容易さの観点から、4~12秒が好ましく、4~10秒がより好ましく、4~8秒が更に好ましい。粒子(A)の安息角は、混合機への投入の容易さや粒子のブリッジングのしにくさの観点から、20~55°が好ましく、25~50°がより好ましく、30~50°がさらに好ましい。以下に本発明に用いられる各成分について説明する。
A. Manufacturing method of detergent particle group <Process (A)>
Step (A) is a step of spray-drying a slurry containing an anionic surfactant to prepare particles (A) (spray-dried particles) containing 5 to 40% by mass of an anionic surfactant in the particles. is there. The bulk density of the particles (A) is preferably 200 to 600 g / L, more preferably 200 to 550 g / L, and more preferably 200 to 550 g / L, from the viewpoint of reducing the ratio of spray-dried particles to obtain a medium and low bulk density detergent particle group. 500 g / L is more preferable. The average particle size of all the particles (A) is preferably 150 to 500 μm, more preferably 200 to 400 μm, and still more preferably 200 to 350 μm from the viewpoint of solubility. The fluidity of the particles (A) is preferably 4 to 12 seconds, more preferably 4 to 10 seconds, and further preferably 4 to 8 seconds, from the viewpoint of ease of charging into the mixer. The angle of repose of the particles (A) is preferably 20 to 55 °, more preferably 25 to 50 °, and further preferably 30 to 50 °, from the viewpoint of ease of charging into the mixer and difficulty in bridging the particles. preferable. Below, each component used for this invention is demonstrated.
1.陰イオン界面活性剤
 陰イオン界面活性剤としては一般的に使用されているものを用いることができる。例えば、直鎖アルキルベンゼンスルホン酸塩、α-オレフィンスルホン酸塩、アルキル硫酸塩、ポリオキシエチレンアルキル硫酸塩、脂肪酸エステルスルホン酸塩等が挙げられる。このような陰イオン界面活性剤は一成分のみを用いても良く、二成分以上を組み合わせて用いても良い。また、対イオンとしては、アルカリ金属が好ましく、特にナトリウムが好ましい。中でも、経済性、熱安定性及び泡立ちの観点からは直鎖アルキルベンゼンスルホン酸ナトリウム、アルキル硫酸ナトリウムが好ましい。
1. Anionic surfactant What is generally used can be used as an anionic surfactant. Examples thereof include linear alkylbenzene sulfonate, α-olefin sulfonate, alkyl sulfate, polyoxyethylene alkyl sulfate, and fatty acid ester sulfonate. Such an anionic surfactant may be used alone or in combination of two or more components. The counter ion is preferably an alkali metal, particularly sodium. Of these, linear alkylbenzene sodium sulfonate and sodium alkyl sulfate are preferred from the viewpoints of economy, thermal stability and foaming.
 前記陰イオン界面活性剤の添加方法としては、その酸前駆体をスラリー中に添加し、別途スラリーに添加された水酸化ナトリウム水溶液等により、その酸前駆体をスラリー中にて中和するという方法でもよく、予め中和した陰イオン界面活性剤をスラリー中に添加するという方法でもよい。 As an addition method of the anionic surfactant, the acid precursor is added to the slurry, and the acid precursor is neutralized in the slurry with a sodium hydroxide aqueous solution or the like added to the slurry separately. Alternatively, a method of adding a previously neutralized anionic surfactant to the slurry may be used.
 前記陰イオン界面活性剤をスラリー中に含有させることで、得られる噴霧乾燥粒子の嵩密度を低下させることが可能となる。陰イオン界面活性剤のスラリーへの添加量は、得られる噴霧乾燥粒子中において5質量%以上となる量が好ましく、10質量%以上となる量がより好ましく、15質量%以上となる量が更に好ましい。また、陰イオン界面活性剤の熱安定性やエネルギー効率の観点から、当該添加量は40質量%以下となる量が好ましく、35質量%以下となる量がより好ましい。 It is possible to reduce the bulk density of the resulting spray-dried particles by containing the anionic surfactant in the slurry. The amount of the anionic surfactant added to the slurry is preferably 5% by mass or more, more preferably 10% by mass or more, and further 15% by mass or more in the obtained spray-dried particles. preferable. In addition, from the viewpoint of thermal stability and energy efficiency of the anionic surfactant, the amount added is preferably 40% by mass or less, and more preferably 35% by mass or less.
 本発明における噴霧乾燥粒子に必須の成分としては、陰イオン界面活性剤のみであるが、洗浄性能、粒度分布及び粒子強度の観点から、必要に応じて適宜、洗剤組成物に通常使用されている他の成分を噴霧乾燥粒子中に含有させることができる。例えば、その他の成分としては、水溶性固体アルカリ無機物質、キレート剤、水溶性無機塩、水溶性ポリマー、水不溶性賦形剤、非イオン界面活性剤、その他の補助成分等が挙げられるが、中でも、水溶性固体アルカリ無機物質、キレート剤、水溶性無機塩及び/又は水溶性ポリマーを配合することが好ましい。かかるその他成分は、陰イオン界面活性剤と同じくスラリーに添加することによって、噴霧乾燥粒子に配合される。その他の成分のスラリーへの添加量は特に限定されるわけではなく、得られる噴霧乾燥粒子中の陰イオン界面活性剤及び水分の占める量の残量となる。その他の成分のスラリーへの添加量は、得られる噴霧乾燥粒子中において45~94質量%が好ましい。以下に、その他の成分の具体例を説明する。 As an essential component for the spray-dried particles in the present invention, only an anionic surfactant is used, but from the viewpoint of cleaning performance, particle size distribution, and particle strength, it is usually used in detergent compositions as needed. Other ingredients can be included in the spray-dried particles. Examples of other components include water-soluble solid alkali inorganic substances, chelating agents, water-soluble inorganic salts, water-soluble polymers, water-insoluble excipients, nonionic surfactants, and other auxiliary components. It is preferable to blend a water-soluble solid alkali inorganic substance, a chelating agent, a water-soluble inorganic salt and / or a water-soluble polymer. Such other components are added to the spray-dried particles by being added to the slurry in the same manner as the anionic surfactant. The amount of other components added to the slurry is not particularly limited, and is the remaining amount of the anionic surfactant and water in the resulting spray-dried particles. The amount of other components added to the slurry is preferably 45 to 94% by mass in the resulting spray-dried particles. Specific examples of other components will be described below.
2.水溶性固体アルカリ無機物質
 水溶性固体アルカリ無機物質とは、常温(20℃)で固体状のアルカリ無機物質であり、該水溶性固体アルカリ無機物質としては、特に規定はないが、例えば、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、ケイ酸ナトリウム等を挙げることができる。中でも洗濯液中で好適なpH緩衝領域を示すアルカリ剤として炭酸ナトリウムやケイ酸ナトリウムが好ましい。
2. Water-soluble solid alkali inorganic substance Water-soluble solid alkali inorganic substance is an alkali inorganic substance that is solid at room temperature (20 ° C.), and the water-soluble solid alkali inorganic substance is not particularly limited. Examples thereof include sodium, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, sodium silicate and the like. Among them, sodium carbonate and sodium silicate are preferable as an alkaline agent that exhibits a suitable pH buffer region in the washing liquid.
3.キレート剤
 キレート剤は、金属イオンによる洗浄作用阻害を抑制する為、噴霧乾燥粒子に配合することができ、その例としては、水溶性キレート剤及び水不溶性キレート剤があり、複数のキレート剤を同時に配合することも可能である。
3. Chelating agents Chelating agents can be incorporated into spray-dried particles in order to suppress the cleaning action inhibition by metal ions. Examples include water-soluble chelating agents and water-insoluble chelating agents. It is also possible to mix.
 水溶性キレート剤としては、特に規定はないが、例えばトリポリリン酸塩、オルトリン酸塩、ピロリン酸塩等が使用可能である。又、対イオンとしては、アルカリ金属塩が好ましく、特にナトリウム及び/又はカリウムが好ましい。 The water-soluble chelating agent is not particularly limited, but for example, tripolyphosphate, orthophosphate, pyrophosphate, etc. can be used. Further, as the counter ion, an alkali metal salt is preferable, and sodium and / or potassium is particularly preferable.
 水不溶性キレート剤については、金属イオン封鎖能向上及び噴霧乾燥粒子の強度向上を目的に添加しても良いが、例えば結晶性又は非結晶性アルカリ金属アルミノケイ酸塩(ゼオライト)が挙げられ、金属イオン封鎖能及び経済性の点でA型ゼオライトが好ましい。水中での分散性の観点から、粒子の平均粒径が0.1~20μmのものが好ましく、0.5~10μmのものがより好ましい。 The water-insoluble chelating agent may be added for the purpose of improving the sequestering ability and the strength of the spray-dried particles. Examples thereof include crystalline or non-crystalline alkali metal aluminosilicates (zeolites), and metal ions. A-type zeolite is preferable in terms of sealing ability and economy. From the viewpoint of dispersibility in water, the average particle size of the particles is preferably from 0.1 to 20 μm, more preferably from 0.5 to 10 μm.
4.水溶性無機塩
 水溶性無機塩は、洗濯液のイオン強度を高め、皮脂汚れ洗浄等の効果を向上させる為、噴霧乾燥粒子に配合することが好ましい。該水溶性無機塩としては、例えばイオン解離度の高い硫酸ナトリウム、塩化ナトリウム、亜硫酸ナトリウム、硫酸カリウムが好ましい。又、洗剤粒子群の溶解速度向上の観点からは硫酸マグネシウムの併用も有効である。
4). Water-soluble inorganic salt The water-soluble inorganic salt is preferably added to the spray-dried particles in order to increase the ionic strength of the washing liquid and improve the effect of cleaning sebum dirt. As the water-soluble inorganic salt, for example, sodium sulfate, sodium chloride, sodium sulfite and potassium sulfate having a high degree of ionic dissociation are preferable. From the viewpoint of improving the dissolution rate of the detergent particles, the combined use of magnesium sulfate is also effective.
5.水溶性ポリマー
 金属イオン捕捉能、泥汚れ分散能等の効果を持つ水溶性ポリマーを配合することも好ましい。例えば、ポリエチレングリコール、カルボン酸ポリマー、カルボキシメチルセルロース、可溶性澱粉、糖類等が挙げられる。中でも金属イオン封鎖能、固体汚れ、粒子汚れ等の分散能及び再汚染防止能の観点から、質量平均分子量が5000~20000のポリエチレングリコール、質量平均分子量が数千~10万のカルボン酸ポリマーが好ましく、特にアクリル酸-マレイン酸コポリマーの塩とポリアクリル酸塩が好ましい。
5. Water-soluble polymer It is also preferable to blend a water-soluble polymer having effects such as metal ion scavenging ability and mud dirt dispersibility. For example, polyethylene glycol, carboxylic acid polymer, carboxymethyl cellulose, soluble starch, saccharide and the like can be mentioned. Of these, polyethylene glycol having a weight average molecular weight of 5,000 to 20,000 and a carboxylic acid polymer having a weight average molecular weight of several thousand to 100,000 are preferable from the viewpoint of sequestering ability, dispersibility of solid dirt, particle dirt, etc. Particularly preferred are salts of acrylic acid-maleic acid copolymers and polyacrylates.
6.水不溶性賦形剤
 水不溶性賦形剤としては、水中での分散性良好で、洗浄力に悪影響を与えない物質であれば特に規定はない。例えば二酸化ケイ素、水和ケイ酸化合物、バーライト、ベントナイト等の粘土化合物等が挙げられる。水中での分散性の観点から、一次粒子の平均粒径が0.1~20μmのものが好ましく、0.5~10μmのものがより好ましい。
6). Water-insoluble excipient The water-insoluble excipient is not particularly limited as long as it is a substance that has good dispersibility in water and does not adversely affect detergency. For example, clay compounds such as silicon dioxide, hydrated silicate compound, barlite, bentonite and the like can be mentioned. From the viewpoint of dispersibility in water, the primary particles preferably have an average particle size of 0.1 to 20 μm, more preferably 0.5 to 10 μm.
7.水分
 噴霧乾燥粒子中の水分としては、噴霧乾燥粒子の粒子強度の観点から噴霧乾燥粒子中の15質量%以下が好ましく、エネルギー効率の観点から0.5質量%以上が好ましい。
7. Moisture The moisture in the spray-dried particles is preferably 15% by mass or less in the spray-dried particles from the viewpoint of the particle strength of the spray-dried particles, and preferably 0.5% by mass or more from the viewpoint of energy efficiency.
8.その他補助成分
 蛍光染料、顔料、染料等を噴霧乾燥粒子中に配合してもよい。
8). Other auxiliary components Fluorescent dyes, pigments, dyes and the like may be blended in the spray-dried particles.
 以上の各成分を添加、混合したスラリーを噴霧乾燥することで、本発明に用いられる噴霧乾燥粒子を得ることができる。なお、スラリーの水分量や噴霧乾燥条件については、特に限定はない。日本国特許庁発行の例えば周知慣用技術集(衣料用粉末洗剤)に記載の製造方法にて噴霧乾燥粒子を得ることができる。 Spray-dried particles used in the present invention can be obtained by spray-drying the slurry obtained by adding and mixing the above components. In addition, there is no limitation in particular about the moisture content and spray-drying conditions of a slurry. Spray-dried particles can be obtained by the production method described in, for example, the well-known collection of conventional techniques (powder detergent for clothing) issued by the Japan Patent Office.
<工程(B)>
 工程(B)は、容器回転型混合機及び多流体ノズルを用いて、造粒物である粒子(B)を調製する工程である。即ち、洗剤用粉体原料が投入された該容器回転混合機内に、多流体ノズルを用いて成分Cを添加することにより、粒子(B)を調製する。
<Process (B)>
Step (B) is a step of preparing particles (B) that are granulated products using a container rotating mixer and a multi-fluid nozzle. That is, the particle (B) is prepared by adding the component C using a multi-fluid nozzle into the container rotary mixer into which the powder raw material for detergent is charged.
 粒子(B)の嵩密度は400~650g/Lが好ましく、420~620g/Lがより好ましく、440~600g/Lが更に好ましい。粒子(B)の嵩密度は噴霧乾燥粒子の比率を低減する観点から、また輸送時の分級抑制の観点から650g/L以下が好ましく、620g/L以下がより好ましく、600g/L以下が更に好ましく、輸送コストの観点から400g/L以上が好ましく、420g/L以上がより好ましく、440g/L以上が更に好ましい。粒子(B)の平均粒径は、溶解性や粉立ちの観点から、150~700μmが好ましく、180~650μmがより好ましく、200~600μmが更に好ましい。粒子(B)の流動性は、混合機への投入の容易さの観点から、4~12秒が好ましく、4~10秒がより好ましく、4~8秒が更に好ましい。粒子(B)の安息角は、混合機への投入の容易さ、また粒子のブリッジングのしにくさの観点から、20~60°が好ましく、25~55°がより好ましく、30~50°が更に好ましく、35~45°が更に好ましい。粒子(B)の造粒収率としては、85~100%が好ましく、90~100%がより好ましく、95~100%が更に好ましい。粒子(B)の粗粒率としては、外観や溶解性の観点から25%以下が好ましく、20%以下がより好ましく、15%以下が更に好ましく、10%以下が特に好ましい。
 以下に工程(B)において用いることができる各成分、容器回転型混合機、多流体ノズル等について説明する。
The bulk density of the particles (B) is preferably 400 to 650 g / L, more preferably 420 to 620 g / L, still more preferably 440 to 600 g / L. The bulk density of the particles (B) is preferably 650 g / L or less, more preferably 620 g / L or less, and even more preferably 600 g / L or less from the viewpoint of reducing the ratio of spray-dried particles and from the viewpoint of suppressing classification during transportation. From the viewpoint of transportation cost, 400 g / L or more is preferable, 420 g / L or more is more preferable, and 440 g / L or more is more preferable. The average particle size of the particles (B) is preferably from 150 to 700 μm, more preferably from 180 to 650 μm, and even more preferably from 200 to 600 μm, from the viewpoints of solubility and powdering. The fluidity of the particles (B) is preferably 4 to 12 seconds, more preferably 4 to 10 seconds, and still more preferably 4 to 8 seconds, from the viewpoint of ease of charging into the mixer. The angle of repose of the particles (B) is preferably 20 to 60 °, more preferably 25 to 55 °, and more preferably 30 to 50 ° from the viewpoint of ease of charging into the mixer and difficulty in bridging of the particles. Is more preferable, and 35 to 45 ° is more preferable. The granulation yield of the particles (B) is preferably 85 to 100%, more preferably 90 to 100%, still more preferably 95 to 100%. The coarse particle ratio of the particles (B) is preferably 25% or less, more preferably 20% or less, still more preferably 15% or less, and particularly preferably 10% or less from the viewpoints of appearance and solubility.
Below, each component which can be used in a process (B), a container rotation type mixer, a multifluid nozzle, etc. are demonstrated.
[陰イオン界面活性剤及び/又はその前駆体(成分C)]
1.陰イオン界面活性剤の酸前駆体
 工程(B)において用いられる陰イオン界面活性剤の酸前駆体とは、陰イオン界面活性剤の前駆体であって酸形態を示し、常温で液状のものをいい、中和反応により塩を形成するものである。よって酸前駆体としては、公知の陰イオン界面活性剤の前駆体であって上記の性質を有するものであれば特に限定されないが、直鎖アルキルベンゼンスルホン酸、α-オレフィンスルホン酸、アルキル硫酸、ポリオキシエチレンアルキル硫酸、脂肪酸エステルスルホン酸等が挙げられる。このような酸前駆体は一成分のみを用いても良く、二成分以上を組み合わせて用いても良い。中でも、経済性、保存安定性及び泡立ちの観点からは直鎖アルキルベンゼンスルホン酸、アルキル硫酸が好ましい。
[Anionic surfactant and / or its precursor (component C)]
1. Anionic Surfactant Acid Precursor The anionic surfactant acid precursor used in step (B) is an anionic surfactant precursor that shows an acid form and is liquid at room temperature. Good, salt is formed by neutralization reaction. Accordingly, the acid precursor is not particularly limited as long as it is a precursor of a known anionic surfactant and has the above-mentioned properties, but linear alkylbenzene sulfonic acid, α-olefin sulfonic acid, alkyl sulfuric acid, polysulfate, Examples thereof include oxyethylene alkyl sulfuric acid and fatty acid ester sulfonic acid. Such an acid precursor may use only one component, and may use it in combination of 2 or more components. Of these, linear alkylbenzenesulfonic acid and alkylsulfuric acid are preferred from the viewpoints of economy, storage stability and foaming.
 なお、特許第3313372号に記載されているように、上記酸前駆体に、所定量の硫酸等の無機酸を予め混合しておいてもよい。 In addition, as described in Japanese Patent No. 3313372, a predetermined amount of an inorganic acid such as sulfuric acid may be mixed in advance with the acid precursor.
2.陰イオン界面活性剤
 成分Cとしての陰イオン界面活性剤とは、1.の陰イオン界面活性剤の酸前駆体が中和されることにより得られたものである。このような陰イオン界面活性剤は一成分のみを用いても良く、二成分以上を組み合わせて用いても良い。中でも、経済性及び泡立ちの観点からはアルキル硫酸塩、ポリオキシエチレンアルキル硫酸塩が好ましい。1.の陰イオン界面活性剤の酸前駆体の中和に用いられるものとしてアルカリ水溶液が挙げられる。アルカリ水溶液の種類としては特に限定されるものではないが、例えば水酸化ナトリウム水溶液、水酸化カリウム水溶液等の強アルカリ水溶液が挙げられ、経済性の観点から水酸化ナトリウム水溶液が好ましい。
2. Anionic surfactants Anionic surfactants as component C are: This was obtained by neutralizing the acid precursor of the anionic surfactant. Such an anionic surfactant may be used alone or in combination of two or more components. Of these, alkyl sulfates and polyoxyethylene alkyl sulfates are preferred from the viewpoints of economy and foaming. 1. An aqueous alkali solution is used as a neutralizer for the acid precursor of the anionic surfactant. Although it does not specifically limit as a kind of aqueous alkali solution, For example, strong alkali aqueous solutions, such as sodium hydroxide aqueous solution and potassium hydroxide aqueous solution, are mentioned, Sodium hydroxide aqueous solution is preferable from an economical viewpoint.
 工程(B)において用いられる陰イオン界面活性剤とは陰イオン界面活性剤と水を含有し、60℃における粘度が100Pa・s以下のものである。陰イオン界面活性剤は、その含水率により粘度が大きく変化する。そのため酸前駆体の中和に用いるアルカリ水溶液の濃度を調節し、所望の含水率をもった、すなわち、所望の粘度を有する陰イオン界面活性剤を調製することが好ましい。該陰イオン界面活性剤は、該陰イオン界面活性剤100質量部に対して25~70質量部(該界面活性剤組成物の含水率が約20~40%)の水を含有する際に、粘度が低下したペースト状の陰イオン界面活性剤となり、ハンドリングしやすくなることが一般的に知られており、本発明ではこの範囲に陰イオン界面活性剤の水分を調整したペースト状の陰イオン界面活性剤を用いることが好ましい。ペースト状の陰イオン界面活性剤の粘度は、製造上のハンドリング性の観点から、好ましくは10Pa・s以下、より好ましくは5Pa・s以下となる温度域を有するものである。このような使用温度域としては、陰イオン界面活性剤の安定性の観点から、好ましくは70℃まで、より好ましくは60℃までに存在するのが好ましい。ここで、粘度は、共軸二重円筒型の回転粘度計(HAAKE製、センサー:SV-DIN)により剪断速度50〔1/s〕で測定して求める。 The anionic surfactant used in the step (B) contains an anionic surfactant and water, and has a viscosity at 60 ° C. of 100 Pa · s or less. The viscosity of an anionic surfactant varies greatly depending on its water content. Therefore, it is preferable to adjust the concentration of the aqueous alkali solution used for neutralizing the acid precursor to prepare an anionic surfactant having a desired water content, that is, having a desired viscosity. The anionic surfactant contains 25 to 70 parts by weight of water (the water content of the surfactant composition is about 20 to 40%) with respect to 100 parts by weight of the anionic surfactant. It is generally known that it becomes a paste-like anionic surfactant having a reduced viscosity and is easy to handle, and in the present invention, the paste-like anionic interface in which the moisture of the anionic surfactant is adjusted within this range. It is preferred to use an activator. The viscosity of the paste-like anionic surfactant has a temperature range of preferably 10 Pa · s or less, more preferably 5 Pa · s or less, from the viewpoint of handleability in production. Such a use temperature range is preferably up to 70 ° C., more preferably up to 60 ° C., from the viewpoint of the stability of the anionic surfactant. Here, the viscosity is determined by measuring at a shear rate of 50 [1 / s] with a coaxial double cylindrical rotational viscometer (manufactured by HAAKE, sensor: SV-DIN).
 該陰イオン界面活性剤の酸前駆体のうち、非常に不安定で分解しやすいものは、その分解を抑制できるように調製することが好ましい。調製法は、特に限定されず、公知の方法を用いることができる。たとえば、ループ反応器を用いて、中和熱を熱交換器などにより除去し、当該酸前駆体及び陰イオン界面活性剤の温度管理に注意しながら製造を行なえばよい。 Among the acid precursors of the anionic surfactant, those which are very unstable and easily decomposed are preferably prepared so that the decomposition can be suppressed. The preparation method is not particularly limited, and a known method can be used. For example, using a loop reactor, the heat of neutralization is removed by a heat exchanger or the like, and the production may be performed while paying attention to the temperature control of the acid precursor and the anionic surfactant.
 また、得られる該陰イオン界面活性剤は、分解を抑制する観点から、過剰のアルカリ度を有することが好ましい。 The obtained anionic surfactant preferably has an excessive alkalinity from the viewpoint of suppressing decomposition.
 また、該陰イオン界面活性剤には、酸前駆体を製造した際の未反応アルコールや未反応ポリオキシエチレンアルキルエーテル、中和反応時の副生成物である芒硝、中和反応時に添加され得るpH緩衝剤、脱色剤等が含有されていてもよい。 In addition, unreacted alcohol and unreacted polyoxyethylene alkyl ether at the time of producing the acid precursor, sodium sulfate as a by-product during the neutralization reaction, and neutralization reaction can be added to the anionic surfactant A pH buffering agent, a decoloring agent, etc. may be contained.
 陰イオン界面活性剤の量としては、洗浄力の観点及び造粒性の観点から、粒子(B)中の10~45質量%が好ましく、13~35質量%がより好ましい。洗剤粒子群中では陰イオン界面活性剤の酸前駆体は中和された状態となるため、陰イオン界面活性剤の酸前駆体を添加した場合であっても、洗剤粒子群中の陰イオン界面活性剤の量として計算される。 The amount of the anionic surfactant is preferably 10 to 45% by mass and more preferably 13 to 35% by mass in the particles (B) from the viewpoint of detergency and granulation. Since the anionic surfactant acid precursor is neutralized in the detergent particle group, the anionic interface in the detergent particle group can be obtained even when the anionic surfactant acid precursor is added. Calculated as the amount of activator.
 本発明における、陰イオン界面活性剤及び/又はその酸前駆体は、洗剤用粉体原料を結合させて造粒物を形成させる能力を有するものであり、上記段落で述べたように、成分Cが洗剤用粉体原料と接触した際に粘着性を発現することが重要なポイントの一つである。以下に粘着性発現についての推定メカニズムを説明する。 In the present invention, the anionic surfactant and / or its acid precursor has the ability to form a granulated product by combining powder raw materials for detergent, and as described in the above paragraph, component C It is one of the important points that the adhesiveness develops when it comes into contact with the powder raw material for detergent. The presumed mechanism about adhesive expression is demonstrated below.
 陰イオン界面活性剤の酸前駆体を用いる場合には、洗剤用粉体原料である水溶性固体アルカリ無機物質に添加された際に、粒子表面で中和反応が進行し、粘着性を持つ陰イオン界面活性剤の酸前駆体の中和物が生成する。また、陰イオン界面活性剤を用いる場合には、該陰イオン界面活性剤が洗剤用粉体原料に添加された際に、該陰イオン界面活性剤中の水分が洗剤用粉体原料の水和や溶解により奪われることにより、又は、洗剤用粉体原料の温度が該陰イオン界面活性剤の温度より低い場合において該陰イオン界面活性剤の温度がその融点近傍又は融点以下まで低下することにより、該陰イオン界面活性剤が固化することで粘着性が発現する。 When an anionic surfactant acid precursor is used, when added to a water-soluble solid alkaline inorganic material that is a powder raw material for detergents, the neutralization reaction proceeds on the surface of the particles, and the anionic surfactant has an adhesive property. A neutralized product of the acid precursor of the ionic surfactant is formed. When an anionic surfactant is used, when the anionic surfactant is added to the detergent powder raw material, the water in the anionic surfactant is hydrated with the detergent powder raw material. Or when the temperature of the powder raw material for detergent is lower than the temperature of the anionic surfactant, the temperature of the anionic surfactant is lowered to near or below its melting point. When the anionic surfactant is solidified, adhesiveness is developed.
 このように、成分Cが洗剤用粉体原料に接触した際に粘着性を発現することで、洗剤用粉体原料の造粒が進行するが、その粘着性発現の目安として、成分Cが洗剤用粉体原料と接触したときの粘度が2Pa・s以上が好ましく、3Pa・s以上がより好ましい。尚、粘度は、共軸二重円筒型の回転粘度計(HAAKE製、センサー:SV-DIN)により剪断速度50〔1/s〕の条件において、成分Cが洗剤用粉体原料と接触したときと同様となるように、その温度や水分値を調整して測定すればよい。 Thus, granulation of the powder raw material for the detergent proceeds when the component C comes into contact with the powder raw material for the detergent, and as a guideline for the expression of the adhesive, the component C is a detergent. The viscosity when contacted with the powder raw material is preferably 2 Pa · s or more, and more preferably 3 Pa · s or more. The viscosity was measured when component C was in contact with the powder raw material for detergent at a shear rate of 50 [1 / s] using a coaxial double cylindrical rotational viscometer (manufactured by HAAKE, sensor: SV-DIN). The temperature and moisture value may be adjusted and measured so as to be the same.
[洗剤用粉体原料]
 洗剤用粉体原料としては、水溶性固体アルカリ無機物質及び/又は水溶性無機塩である。
[Powder raw material for detergent]
The powder raw material for the detergent is a water-soluble solid alkali inorganic material and / or a water-soluble inorganic salt.
1.水溶性固体アルカリ無機物質
 本発明において、多流体ノズルで添加される成分として陰イオン界面活性剤の酸前駆体を用いる場合、当該酸前駆体を乾式中和させるために、水溶性固体アルカリ無機物質が必須成分となる。
1. Water-soluble solid alkaline inorganic substance In the present invention, when an anionic surfactant acid precursor is used as a component added by a multi-fluid nozzle, a water-soluble solid alkaline inorganic substance is used to dry neutralize the acid precursor. Is an essential component.
 水溶性固体アルカリ無機物質とは、常温(20℃)で固体状のアルカリ無機物質であり、該水溶性固体アルカリ無機物質としては、特に規定はないが、例えば、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、ケイ酸ナトリウム等を挙げることができる。中でも洗濯液中で好適なpH緩衝領域を示すアルカリ剤として炭酸ナトリウムが好ましい。これらの水溶性固体アルカリ無機物質は単独で用いても良く、二種以上を混合して用いても良い。 The water-soluble solid alkali-inorganic substance is an alkali inorganic substance that is solid at room temperature (20 ° C.), and the water-soluble solid alkali-inorganic substance is not particularly limited. For example, sodium carbonate, sodium bicarbonate, carbonate Examples thereof include potassium and sodium silicate. Among them, sodium carbonate is preferable as an alkaline agent that exhibits a suitable pH buffer region in the washing liquid. These water-soluble solid alkali inorganic materials may be used alone or in combination of two or more.
 炭酸ナトリウムとしては、軽質ソーダ灰(ライト灰)、重質ソーダ灰(デンス灰)のいずれも用いることが可能であるが、酸前駆体との反応性の観点から、ライト灰を使用するのが好ましい。 As sodium carbonate, both light soda ash (light ash) and heavy soda ash (dense ash) can be used, but light ash is used from the viewpoint of reactivity with the acid precursor. preferable.
 水溶性固体アルカリ無機物質は、最終組成物において洗剤ビルダー及びアルカリ剤として機能し得るものである。従って、水溶性固体アルカリ無機物質の添加量としては、成分Cとして配合される陰イオン界面活性剤の酸前駆体の中和に必要な量(中和当量)に、上記機能を発揮させるための量が追加されることが好ましい。即ち、水溶性固体アルカリ無機物質の添加量は、当該中和当量か、又はその量より実質的に多い量が好ましく、例えば、好ましくは中和当量の1~35倍であり、より好ましくは2~30倍、更に好ましくは3~25倍である。本発明においては無機酸を酸前駆体と併用してもよく、その場合、当該中和当量は、その無機酸の中和に必要な量がさらに加わることになる。ここで規定される量は、噴霧乾燥粒子に由来する水溶性固体アルカリ無機物質を含まない。 The water-soluble solid alkaline inorganic substance can function as a detergent builder and an alkaline agent in the final composition. Therefore, the addition amount of the water-soluble solid alkaline inorganic substance is the amount necessary for neutralizing the acid precursor of the anionic surfactant blended as component C (neutralization equivalent) to exert the above function. Preferably an amount is added. That is, the addition amount of the water-soluble solid alkali inorganic substance is preferably the neutralization equivalent or an amount substantially larger than the neutralization equivalent, for example, preferably 1 to 35 times the neutralization equivalent, more preferably 2 -30 times, more preferably 3-25 times. In the present invention, an inorganic acid may be used in combination with an acid precursor. In that case, the neutralization equivalent is added with an amount necessary for neutralization of the inorganic acid. The amount specified here does not include water-soluble solid alkaline inorganic materials derived from spray-dried particles.
 また、水溶性固体アルカリ無機物質の平均粒径は特に限定されないが、界面活性剤を高配合する場合には、収率の向上の観点から1~50μmまで粉砕して用いてもよい。なお、水溶性固体アルカリ無機物質の平均粒径は体積基準で算出されるものであり、例えば、レーザー回折式粒度分布測定装置:LA-920(堀場製作所(株)製)を用いて測定される値である。 Further, the average particle diameter of the water-soluble solid alkali inorganic substance is not particularly limited, but when the surfactant is highly blended, it may be pulverized to 1 to 50 μm from the viewpoint of improving the yield. The average particle size of the water-soluble solid alkali inorganic substance is calculated on a volume basis, and is measured using, for example, a laser diffraction particle size distribution analyzer: LA-920 (manufactured by Horiba, Ltd.). Value.
2.水溶性無機塩
 水溶性無機塩は、洗濯液のイオン強度を高め、皮脂汚れ洗浄等の効果を向上させる為、洗剤用粉体原料として用いることが好ましい。該水溶性無機塩としては、例えばイオン解離度の高い硫酸ナトリウム、塩化ナトリウム、亜硫酸ナトリウム、硫酸カリウムが好ましい。又、溶解速度向上の観点からは硫酸マグネシウムの併用も有効である。
2. Water-soluble inorganic salt The water-soluble inorganic salt is preferably used as a powder raw material for detergents in order to increase the ionic strength of the washing liquid and improve the effects of sebum stain cleaning. As the water-soluble inorganic salt, for example, sodium sulfate, sodium chloride, sodium sulfite and potassium sulfate having a high degree of ionic dissociation are preferable. From the viewpoint of improving the dissolution rate, the combined use of magnesium sulfate is also effective.
 また、水溶性無機塩の平均粒径は特に限定されないが、陰イオン界面活性剤を高配合する場合には、洗剤粒子群の収率向上の観点から1~50μmまで粉砕して用いてもよい。なお、水溶性無機塩の平均粒径は体積基準で算出されるものであり、例えば、レーザー回折式粒度分布測定装置:LA-920(堀場製作所(株)製)を用いて測定される値である。 Further, the average particle size of the water-soluble inorganic salt is not particularly limited, but when an anionic surfactant is highly blended, it may be pulverized to 1 to 50 μm from the viewpoint of improving the yield of the detergent particles. . The average particle diameter of the water-soluble inorganic salt is calculated on a volume basis. For example, it is a value measured using a laser diffraction particle size distribution analyzer: LA-920 (manufactured by Horiba, Ltd.). is there.
 洗剤用粉体原料としては、水溶性固体アルカリ無機物質、水溶性無機塩のうち、例示された原料を単独で用いてもよいし、2種以上を混合して用いてもよい。水溶性固体アルカリ無機物質と水溶性無機塩が粒子(B)中に占める量は、洗浄力及び粒子(B)の粉立ちの観点から、30質量%~88質量%であり、35質量%~85質量%が好ましく、40質量%~80質量%がより好ましい。 As the powder raw material for detergent, among the water-soluble solid alkali inorganic substance and the water-soluble inorganic salt, the exemplified raw materials may be used alone, or two or more kinds may be mixed and used. The amount of the water-soluble solid alkali inorganic substance and the water-soluble inorganic salt in the particles (B) is 30% by mass to 88% by mass from the viewpoint of detergency and powdering of the particles (B). 85% by mass is preferable, and 40% by mass to 80% by mass is more preferable.
[その他の粉体成分]
 容器回転型混合機には、「洗剤用粉体原料」以外の一般に洗剤組成物の分野に用いられる公知の物質を合わせて添加してもよい。粒子(B)中のその他の粉体成分の量は、0.2~30質量%が好ましく、0.3~25質量%がより好ましい。ここで規定される量は、噴霧乾燥粒子に由来する粉体成分を含まない。
[Other powder components]
You may add together the well-known substance generally used in the field | area of a detergent composition other than "the powder raw material for detergents" to a container rotation type mixer. The amount of the other powder component in the particles (B) is preferably 0.2 to 30% by mass, and more preferably 0.3 to 25% by mass. The amount specified here does not include powder components derived from spray-dried particles.
 かかる物質としては、表面改質剤(アルミノケイ酸塩、硫酸ナトリウム、ケイ酸カルシウム、二酸化ケイ素、ベントナイト、タルク、クレイ、非晶質シリカ誘導体、結晶性ケイ酸塩、一次粒子の平均粒径が0.1~10μmの金属石鹸、粉末の界面活性剤(例えばアルキル硫酸塩等)、水溶性有機塩等)、キレート剤(トリポリリン酸塩、オルトリン酸塩、ピロリン酸塩等、結晶性又は非結晶性アルカリ金属アルミノケイ酸塩)、水溶性ポリマーのうち粉体のもの(カルボン酸系ポリマー、カルボキシメチルセルロース、可溶性澱粉、糖類、ポリエチレングリコール)、水不溶性賦形剤(二酸化ケイ素、水和ケイ酸化合物、バーライト、ベントナイト等の粘土化合物等)といった噴霧乾燥粒子の成分として用いられ得るもののほかに、粒子状界面活性剤(脂肪酸又はその塩、直鎖アルキルベンゼンスルホン酸塩、アルキル硫酸塩等)が挙げられる。 Such materials include surface modifiers (aluminosilicate, sodium sulfate, calcium silicate, silicon dioxide, bentonite, talc, clay, amorphous silica derivatives, crystalline silicate, primary particles having an average particle size of 0. .1 to 10 μm metal soap, powdered surfactant (eg, alkyl sulfate), water-soluble organic salt, etc., chelating agent (tripolyphosphate, orthophosphate, pyrophosphate, etc.) crystalline or non-crystalline Alkali metal aluminosilicate), water-soluble polymer powder (carboxylic acid polymer, carboxymethylcellulose, soluble starch, sugar, polyethylene glycol), water-insoluble excipient (silicon dioxide, hydrated silicate compound, bar) In addition to those that can be used as components of spray-dried particles, such as clay compounds such as light and bentonite, particles Surfactants (fatty acids or salts thereof, linear alkylbenzenesulfonates, alkyl sulfates, etc.).
 上記の物質は、成分Cを添加する前に、洗剤用粉体原料と合わせて添加してもよいし、成分Cを添加した後に添加してもよい。アルカリ金属アルミノケイ酸塩等の表面改質剤を添加する場合は、成分Cを添加した後に用いることで、流動性の向上、保存安定性の向上を図ることができるため、成分Cを添加した後に添加することが好ましい。 The above-mentioned substances may be added together with the powder raw material for detergent before adding component C, or may be added after adding component C. When adding a surface modifier such as an alkali metal aluminosilicate, it is possible to improve fluidity and storage stability by using after adding Component C. It is preferable to add.
 その他の粉体成分の添加操作は容器回転型混合機にて行ってもよいし、工程(B)によって得られる粒子(B)を容器回転型混合機から排出した後に、別の混合機/造粒機を用いて行ってもよい。 The operation of adding other powder components may be performed in a container rotary mixer, or after discharging the particles (B) obtained in the step (B) from the container rotary mixer, another mixer / manufacturer is prepared. You may carry out using a granulator.
[その他の液体成分]
 本発明においては、さらにその他の液体成分を添加して洗剤粒子群を製造してもよい。添加されるその他の液体成分としては、得ようとする洗剤粒子群の組成に応じて適宜選択することができる。液体成分の添加時期は特に限定されるものではなく、例えば、成分Cに予め混合しておいてもよいし、成分Cを添加する前又はその途中、或いは後に行ってもよいが、表面改質を行う場合には、表面改質剤の添加前が好ましい。
[Other liquid components]
In the present invention, other liquid components may be added to produce the detergent particle group. Other liquid components to be added can be appropriately selected according to the composition of the detergent particle group to be obtained. The addition timing of the liquid component is not particularly limited. For example, the liquid component may be mixed with the component C in advance, or may be performed before, during or after the addition of the component C. When performing, it is preferable before the addition of the surface modifier.
 成分Cを添加した後に液体成分を添加する場合は、容器回転型混合機にて該液体成分を添加してもよいし、本発明の製造方法によって得られる洗剤粒子群を容器回転型混合機から排出した後に、別の混合機/造粒機に得られた洗剤粒子群を投入し、当該液体成分をここに添加してもよい。 When the liquid component is added after component C is added, the liquid component may be added using a container rotary mixer, or the detergent particles obtained by the production method of the present invention are removed from the container rotary mixer. After discharging, the obtained detergent particles may be charged into another mixer / granulator and the liquid component added thereto.
 液体成分としては、界面活性剤としては、例えば非イオン界面活性剤や脂肪酸、水溶性ポリマー(カルボン酸ポリマー、カルボキシメチルセルロース、可溶性澱粉、糖類、ポリエチレングリコール等)等の通常の洗剤組成物に用いられる任意の液体成分が挙げられる。液体成分は一成分のみを用いてもよく、二成分以上を併用しても良い。液体成分としては、その融点以上の温度にて液状として添加してもよく、又は水溶液若しくは分散液の形態で添加してもよい。媒体を除いた正味の液体成分の量としては、洗剤粒子群の凝集抑制の観点から、最終産物である洗剤粒子群の15質量%以下が好ましく、10質量%以下がより好ましい。 As a liquid component, as a surfactant, for example, a nonionic surfactant, a fatty acid, a water-soluble polymer (carboxylic acid polymer, carboxymethyl cellulose, soluble starch, saccharides, polyethylene glycol, etc.) and the like are used in ordinary detergent compositions. Any liquid component may be mentioned. As the liquid component, only one component may be used, or two or more components may be used in combination. The liquid component may be added as a liquid at a temperature equal to or higher than its melting point, or may be added in the form of an aqueous solution or dispersion. The amount of the net liquid component excluding the medium is preferably 15% by mass or less, and more preferably 10% by mass or less of the detergent particle group as the final product, from the viewpoint of suppressing aggregation of the detergent particle group.
 液体成分として用いられる非イオン界面活性剤としては、特に限定されるものではないが、洗浄力の観点から、例えば炭素数10~14のアルコールにアルキレンオキシドを6~22モル付加したポリオキシアルキレンアルキルエーテルが好ましい。 The nonionic surfactant used as the liquid component is not particularly limited, but from the viewpoint of detergency, for example, a polyoxyalkylene alkyl obtained by adding 6 to 22 moles of alkylene oxide to an alcohol having 10 to 14 carbon atoms. Ether is preferred.
 これら液体成分の添加方法としては、本発明で記載の多流体ノズルに依らず、任意のノズルにより噴霧可能である。 As a method for adding these liquid components, spraying can be performed with any nozzle, not depending on the multi-fluid nozzle described in the present invention.
[容器回転型混合機]
 容器回転型混合機としては、ドラム型混合機或いはパン型混合機が用いられる。ドラム型混合機としては、ドラム状の円筒が回転して処理を行うものであれば特に限定されるものではなく、水平又はわずかに傾斜させたドラム型混合機の他に円錐ドラム型造粒機(混合機)、多段円錐ドラム型造粒機(混合機)等も使用可能である。これらの装置はバッチ式、連続式いずれの方法においても用いることができる。
[Rotating container mixer]
As the container rotating mixer, a drum mixer or a pan mixer is used. The drum-type mixer is not particularly limited as long as the drum-shaped cylinder rotates and performs processing. In addition to the drum-type mixer that is horizontally or slightly inclined, the conical drum-type granulator is used. (Mixer), multi-stage conical drum granulator (mixer), etc. can also be used. These apparatuses can be used in both batch and continuous processes.
 なお、洗剤粒子群と容器回転型混合機の内壁との間の壁面摩擦係数が小さく、洗剤粒子群に充分な上昇運動力を加えることが困難な場合、容器内壁に複数個の邪魔板(バッフル)を取付けてもよい。このことにより、粒子群に上昇運動を行わせることが可能となり、粉末混合性及び固液混合性が向上する。 If the coefficient of wall friction between the detergent particle group and the inner wall of the container rotating mixer is small and it is difficult to apply sufficient lifting force to the detergent particle group, a plurality of baffle plates (baffles ( ) May be attached. This makes it possible to cause the particle group to perform an upward movement, and improves the powder mixing property and the solid-liquid mixing property.
 容器回転型混合機の運転条件としては、混合機内の成分が攪拌できる条件であれば特に限定されないが、下記の式で定義されるフルード数が、0.005~1.0である運転条件が好ましく、0.01~0.6である運転条件がより好ましい。 The operating condition of the container rotation type mixer is not particularly limited as long as the components in the mixer can be stirred. However, the operating condition is that the fluid number defined by the following formula is 0.005 to 1.0. An operating condition of 0.01 to 0.6 is more preferable.
  フルード数:Fr=V2/(R×g)
  V:周速[m/s]
  R:回転中心から回転物の円周までの半径[m]
  g:重力加速度[m/s2]
Fluid number: Fr = V 2 / (R × g)
V: Circumferential speed [m / s]
R: Radius from the center of rotation to the circumference of the rotating object [m]
g: Gravity acceleration [m / s 2 ]
[多流体ノズル]
 本発明においては、成分Cを多流体ノズルを用いて供給することが一つの特徴である。かかるノズルを用いることにより、その液滴を微細化して分散させることができる。多流体ノズルとは、液体と微粒化用気体(エアー、窒素等)とを独立の流路を通してノズル先端部近傍まで流通させて混合・微粒化するノズルであり、2流体ノズルや3流体ノズル、4流体ノズル等を用いることができる。また、成分Cと微粒化用気体の混合部のタイプとしては、ノズル先端部内で混合する内部混合型、或いはノズル先端部外で混合する外部混合型のいずれであっても良い。
[Multi-fluid nozzle]
In the present invention, it is one feature that the component C is supplied using a multi-fluid nozzle. By using such a nozzle, the droplets can be made fine and dispersed. A multi-fluid nozzle is a nozzle that mixes and atomizes a liquid and atomizing gas (air, nitrogen, etc.) through an independent channel to the vicinity of the nozzle tip. A four-fluid nozzle or the like can be used. Further, the type of the mixing part of the component C and the atomizing gas may be either an internal mixing type for mixing inside the nozzle tip or an external mixing type for mixing outside the nozzle tip.
 このような多流体ノズルとしては、スプレーイングシステムスジャパン(株)製、(株)共立合金製作所製、いけうち(株)製等の内部混合型2流体ノズル、スプレーイングシステムスジャパン(株)製、(株)共立合金製作所製、(株)アトマックス製等の外部混合型2流体ノズル、藤崎電機(株)製の外部混合型4流体ノズル等が挙げられる。 As such a multi-fluid nozzle, an internal mixed type two-fluid nozzle such as manufactured by Spraying Systems Japan Co., Ltd., manufactured by Kyoritsu Alloy Manufacturing Co., Ltd., or manufactured by Ikeuchi Co., Ltd., manufactured by Spraying Systems Japan Co., Ltd. And an external mixing type two-fluid nozzle manufactured by Kyoritsu Alloy Mfg. Co., Ltd. and Atmax Co., Ltd., an external mixing type four-fluid nozzle manufactured by Fujisaki Electric Co., Ltd., and the like.
 また、成分Cの液滴の液滴径については、その流量と微粒化用気体の流量のバランスを変更することにより調整可能である。すなわち、ある一定流量の成分Cに対して、微粒化用気体の流量を増加させればさせるほど、液滴径は小さくなる。更に、ある一定流量の微粒化用気体に対して、成分Cの流量を低下させればさせるほど、液滴径は小さくなる。 Also, the droplet diameter of the component C droplet can be adjusted by changing the balance between the flow rate and the atomization gas flow rate. That is, as the flow rate of the atomizing gas is increased with respect to the component C having a certain flow rate, the droplet diameter becomes smaller. Furthermore, the droplet diameter becomes smaller as the flow rate of the component C is decreased with respect to the atomizing gas having a certain flow rate.
 例えば、2流体ノズルを用いる場合、例えば、次の条件で成分Cを供給することが好ましい。微粒化用気体の流量の調整は、微粒化用気体の噴霧圧の調整により行うのが容易であり、液分散の観点から、微粒化用気体噴霧圧[ゲージ圧]としては0.1MPa以上が好ましく、設備負荷の観点から1.0MPa以下が好ましい。また、成分Cの噴霧圧[ゲージ圧]としては特に制限は無いが、設備負荷の観点から、例えば1.0MPa以下が好ましい。 For example, when a two-fluid nozzle is used, for example, it is preferable to supply component C under the following conditions. The flow rate of the atomizing gas can be easily adjusted by adjusting the atomizing gas spray pressure. From the viewpoint of liquid dispersion, the atomizing gas atomizing pressure [gauge pressure] is 0.1 MPa or more. Preferably, 1.0 MPa or less is preferable from the viewpoint of equipment load. Moreover, there is no restriction | limiting in particular as the spraying pressure [gauge pressure] of the component C, but 1.0 MPa or less is preferable from a viewpoint of equipment load, for example.
 液滴径の違いが、得られる洗剤粒子群の収率や粗粒量に与える影響を鋭意検討した結果、上記成分Cの液滴径の平均粒径を1~300μmにすることが収率の観点から好ましく、1~200μmがより好ましく、1~150μmがさらに好ましい。 As a result of intensive studies on the influence of the difference in droplet diameter on the yield and the amount of coarse particles obtained, the average particle diameter of the component C droplet diameter is 1 to 300 μm. From the viewpoint, it is preferably 1 to 200 μm, more preferably 1 to 150 μm.
 また、上記成分Cの添加速度を上げたい場合には、これらの多流体ノズルを複数個使用し、液滴の微細化を維持しつつ添加速度を上げることも効果的である。 In addition, when it is desired to increase the addition speed of the component C, it is also effective to use a plurality of these multi-fluid nozzles and increase the addition speed while maintaining finer droplets.
 このような方法を用いることで、高粘度のペーストとなっている陰イオン界面活性剤においても均一な分散が可能となり、収率が向上し粒度分布のシャープな洗剤粒子群が得られる。 By using such a method, even an anionic surfactant that is a high-viscosity paste can be uniformly dispersed, and the yield can be improved and a detergent particle group having a sharp particle size distribution can be obtained.
 なお、成分Cの液滴径の平均粒径は体積基準で算出されるものであり、レーザー回折式粒度分布測定装置:スプレーテック(マルバーン社製)を用いて測定される値である。 In addition, the average particle diameter of the droplet diameter of the component C is calculated on a volume basis, and is a value measured using a laser diffraction type particle size distribution measuring apparatus: Spray Tech (manufactured by Malvern).
 成分Cは多流体ノズルを介して添加されるため、流体として多流体ノズルに供給される。陰イオン界面活性剤及び/又はその酸前駆体は常温で液状又はペースト状であればそのまま供給してもよく、水等により希釈して液状又はペースト状としてもよく、加熱して液状又はペースト状としてもよい。従って、成分Cのノズルへの供給時(即ち混合機内への添加時)の温度域としては、その安定性やハンドリング性の観点から、10~80℃が好ましく、20~70℃がより好ましい。 Since component C is added through the multi-fluid nozzle, it is supplied to the multi-fluid nozzle as a fluid. The anionic surfactant and / or the acid precursor thereof may be supplied as they are if they are liquid or paste at room temperature, may be diluted with water or the like to be liquid or paste, and heated to be liquid or paste It is good. Therefore, the temperature range at the time of supplying the component C to the nozzle (that is, at the time of addition into the mixer) is preferably 10 to 80 ° C., more preferably 20 to 70 ° C. from the viewpoint of stability and handling properties.
<工程(C)>
 工程(C)は粒子(A)と粒子(B)とを混合する工程である。粒子(A)の配合量は、粒子(A)と粒子(B)の合計質量の20~70質量%が好ましく、20~60質量%がより好ましい。
<Process (C)>
Step (C) is a step of mixing particles (A) and particles (B). The blending amount of the particles (A) is preferably 20 to 70% by mass, more preferably 20 to 60% by mass, based on the total mass of the particles (A) and the particles (B).
 尚、この工程において、粒子(A)と粒子(B)の他に、例えば表面改質剤、酵素、香料、漂白剤、色素等の成分を添加・混合してもよい。表面改質剤としては、[その他の粉体成分]の項目に記載のものが挙げられる。これらの成分の添加量としては、添加による所望の効果を発揮させる観点から、粒子(A)と粒子(B)の合計質量の100質量部に対して、0.1~30質量部が好ましく、0.2~20質量部がより好ましく、0.3~10質量部がさらに好ましく、0.5~5質量部がさらにより好ましい。 In this step, in addition to the particles (A) and the particles (B), components such as a surface modifier, an enzyme, a fragrance, a bleaching agent, and a pigment may be added and mixed. Examples of the surface modifier include those described in the item [Other powder components]. The addition amount of these components is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the total mass of the particles (A) and the particles (B) from the viewpoint of exerting a desired effect by addition, 0.2 to 20 parts by mass is more preferable, 0.3 to 10 parts by mass is further preferable, and 0.5 to 5 parts by mass is even more preferable.
 工程(C)での混合は、公知の混合機を用いて行ってもよい。この場合の好適な混合機としては、洗剤粒子に対して圧密がかかりづらい混合機が好ましく、例えば、ロータリーキルン、リボンミキサー、ドラムミキサー、遊星式ミキサー等が挙げられる。 Mixing in the step (C) may be performed using a known mixer. As a suitable mixer in this case, a mixer which is difficult to be compacted against detergent particles is preferable, and examples thereof include a rotary kiln, a ribbon mixer, a drum mixer, a planetary mixer, and the like.
 粒子(A)と粒子(B)との嵩密度の差は小さい方が分級抑制の観点からは好ましい。例えば、粒子(B)の嵩密度を粒子(A)の嵩密度で除した値が0.5~3.5以下になることが好ましく、0.7~3.0の範囲がより好ましく、0.8~2.5の範囲がさらに好ましい。 The smaller the difference in bulk density between the particles (A) and the particles (B), the better from the viewpoint of suppressing classification. For example, the value obtained by dividing the bulk density of the particles (B) by the bulk density of the particles (A) is preferably 0.5 to 3.5 or less, more preferably 0.7 to 3.0, and 0 A range of .8 to 2.5 is more preferable.
 このように、本発明の洗剤粒子群の製造方法によれば、(A)粒子と(B)粒子とを混合することで、低い噴霧乾燥粒子比率で製造出来る流動性が良好で分級が抑制された中低嵩密度の洗剤粒子群を収率良く且つ低粗粒率で得ることが出来る。 Thus, according to the method for producing a detergent particle group of the present invention, by mixing (A) particles and (B) particles, fluidity that can be produced at a low spray-dried particle ratio is good and classification is suppressed. In addition, a medium and low bulk density detergent particle group can be obtained with a high yield and a low coarse particle ratio.
B.物性と評価
 本発明により得られる洗剤粒子群等の物性の指標としては、嵩密度、平均粒径、流動性、安息角、造粒収率、及び粗粒率が挙げられる。洗剤粒子群の嵩密度としては、中低嵩密度である250~600g/Lが好ましく、300~550g/Lがより好ましく、300~500g/Lが更に好ましい。洗剤粒子群の平均粒径としては、200~800μmが好ましく、200~600μmがより好ましい。外観や溶解性の観点から、該平均粒径としては800μm以下が好ましい。洗剤粒子群の流動性としては、4~12秒が好ましく、4~10秒がより好ましく、4~8秒が更に好ましい。また安息角は、製品の充填の容易さの観点から、20°~45°が好ましい。洗剤粒子群の造粒収率としては、90~100%が好ましく、95~100%がより好ましい。洗剤粒子群の粗粒率としては、外観や溶解性の観点から25%以下が好ましく、20%以下がより好ましく、15%以下が更に好ましく、10%以下が特に好ましい。各粒子及び洗剤粒子群等についてのこれらの物性の測定方法は以下に説明する通りである。
B. Physical properties and evaluation Examples of physical properties of the detergent particles obtained by the present invention include bulk density, average particle size, fluidity, angle of repose, granulation yield, and coarse particle ratio. The bulk density of the detergent particle group is preferably a medium to low bulk density of 250 to 600 g / L, more preferably 300 to 550 g / L, and still more preferably 300 to 500 g / L. The average particle size of the detergent particles is preferably 200 to 800 μm, and more preferably 200 to 600 μm. From the viewpoint of appearance and solubility, the average particle size is preferably 800 μm or less. The fluidity of the detergent particles is preferably 4 to 12 seconds, more preferably 4 to 10 seconds, and still more preferably 4 to 8 seconds. The angle of repose is preferably 20 ° to 45 ° from the viewpoint of easy filling of the product. The granulation yield of the detergent particle group is preferably 90 to 100%, more preferably 95 to 100%. The coarse particle ratio of the detergent particle group is preferably 25% or less, more preferably 20% or less, still more preferably 15% or less, and particularly preferably 10% or less from the viewpoint of appearance and solubility. The measuring method of these physical properties about each particle | grain, detergent particle group, etc. is as explaining below.
<物性の測定方法>
1.嵩密度
 嵩密度は、JIS K 3362により規定された方法で測定する。なお、嵩密度は、2000μmの篩上に残留した粒子をカットした残りの粒子にて測定する。
<Method of measuring physical properties>
1. Bulk density The bulk density is measured by a method defined by JIS K 3362. The bulk density is measured with the remaining particles obtained by cutting the particles remaining on the 2000 μm sieve.
2.平均粒径
 平均粒径については、JIS Z 8801の標準篩(目開き2000~45μm)を用いて5分間振動させた後、篩目のサイズによる質量分率からメジアン径を算出する。より詳細には、目開き45μm、63μm、90μm、125μm、180μm、250μm、355μm、500μm、710μm、1000μm、1410μm、2000μmの12段の篩と受け皿を用いて、受け皿上に目開きの小さな篩から順に積み重ね、最上部の2000μmの篩の上から100gの粒子を添加し、蓋をしてロータップ型ふるい振とう機(HEIKO製作所製、タッピング156回/分、ローリング:290回/分)に取り付け、5分間振動させたあと、それぞれの篩及び受け皿上に残留した当該粒子の質量を測定し、各篩上の当該粒子の質量割合(%)を算出する。受け皿から順に目開きの小さな篩上の当該粒子の質量割合を積算していき合計が50%となる粒径を平均粒径とする。
2. Average Particle Size For the average particle size, the median diameter is calculated from the mass fraction depending on the size of the mesh after vibrating for 5 minutes using a standard sieve of JIS Z 8801 (aperture 2000 to 45 μm). More specifically, using a 12-stage sieve having a mesh opening of 45 μm, 63 μm, 90 μm, 125 μm, 180 μm, 250 μm, 355 μm, 500 μm, 710 μm, 1000 μm, 1410 μm, and 2000 μm, a small sieve with a mesh on the tray Stack in order, add 100 g of particles from the top of the top 2000 μm sieve, cover and attach to a low-tap sieve shaker (manufactured by HEIKO, tapping 156 times / minute, rolling: 290 times / minute) After vibrating for 5 minutes, the mass of the particles remaining on each sieve and the saucer is measured, and the mass ratio (%) of the particles on each sieve is calculated. The average particle size is obtained by accumulating the mass ratios of the particles on the sieve having a small mesh size in order from the saucer to give a total of 50%.
3.流動性
 流動時間は、JIS K 3362により規定された嵩密度測定用のホッパーから、100mLの粉末が流出するのに要する時間とする。なお、流動性は、2000μmの篩上に残留した粒子をカットした残りの粒子にて測定する。
3. Flowability The flow time is defined as the time required for 100 mL of powder to flow out from the bulk density measurement hopper defined by JIS K 3362. In addition, fluidity | liquidity is measured with the remaining particle | grains which cut | disconnected the particle | grains which remained on the 2000 micrometer sieve.
4.安息角
 平らな場所に設置した流動性測定テーブル(80mm径の円形の台)に内径77mm、高さ55mmの円筒を載せ、該円筒の上面から上方1~2cmの高さよりサンプルを流し入れる。該円筒の上面から0~1cm程の位置まで山盛り状に充填する。次いで、円筒を静かに上方に移動させて取り除き、充填されたサンプルを重力により自然に排出させる。その後、概測定テーブルの上に残ったサンプルの表面と水平面とのなす角度(傾斜角)を、分度器を用いて読み取り、その角度を安息角とする。
4). Angle of repose A cylinder having an inner diameter of 77 mm and a height of 55 mm is placed on a fluidity measurement table (80 mm diameter circular platform) placed on a flat place, and a sample is poured from the upper surface of the cylinder at a height of 1 to 2 cm above. Fill from the upper surface of the cylinder to a position of about 0 to 1 cm in a pile. The cylinder is then gently moved upwards and removed, and the filled sample is naturally discharged by gravity. Thereafter, an angle (inclination angle) formed between the surface of the sample remaining on the approximate measurement table and the horizontal plane is read using a protractor, and the angle is defined as an angle of repose.
5.造粒収率
 本発明における造粒収率とは、製造された洗剤粒子群中の、2000μm以下の粒子の割合(質量)を示す。なお、この2000μm以下の粒子の質量は、上記2.平均粒径に用いた装置と同一のものを使用して測定した。粒子(B)の造粒収率も同じ方法で求められる。
5. Granulation yield The granulation yield in this invention shows the ratio (mass) of the particle | grains of 2000 micrometers or less in the manufactured detergent particle group. In addition, the mass of the particles of 2000 μm or less is the above-mentioned 2. The measurement was performed using the same apparatus as used for the average particle diameter. The granulation yield of the particles (B) is also determined by the same method.
6.粗粒率
 本発明における粗粒率とは、製造された洗剤粒子群中の、1000μm以上の粒子の割合(質量)を示す。なお、この1000μm以上の粒子の質量は、上記2.平均粒径に用いた装置と同一のものを使用して測定した。粒子(B)の粗粒率も同じ方法で求められる。
6). Coarse Grain Ratio The coarse grain ratio in the present invention indicates the ratio (mass) of particles of 1000 μm or more in the manufactured detergent particle group. The mass of the particles of 1000 μm or more is the above 2. The measurement was performed using the same apparatus as used for the average particle diameter. The coarse particle ratio of the particles (B) is also obtained by the same method.
 上述した実施形態に関し、本発明はさらに以下の製造方法を開示する。 The present invention further discloses the following manufacturing method regarding the above-described embodiment.
  〔1〕工程(A):陰イオン界面活性剤を含有するスラリーを噴霧乾燥して、陰イオン界面活性剤を粒子中に5~40質量%、好ましくは10質量%以上、より好ましくは15質量%以上、好ましくは35質量%以下、さらに好ましくは10~40質量%、さらに好ましくは15~35質量%含む粒子(A)を調製する工程、
 工程(B):洗剤用粉体原料を容器回転型混合機を用いて造粒して粒子(B)を調製する工程であって、
   洗剤用粉体原料が水溶性固体アルカリ無機物質及び/又は水溶性無機塩であり、
   水溶性固体アルカリ無機物質と水溶性無機塩とが粒子(B)中に占める量が30~88質量%であり、35質量%以上が好ましく、40質量%以上がより好ましく、85質量%以下が好ましく、80質量%以下がより好ましく、35~85質量%がさらに好ましく、40~80質量%がさらに好ましく、かつ
   容器回転型混合機がドラム型混合機又はパン型混合機であって、
 陰イオン界面活性剤及び/又はその前駆体を、多流体ノズルを用いて該容器回転型混合機内に添加して粒子(B)を調製する工程、並びに
 工程(C):粒子(A)と粒子(B)とを混合する工程、
を含む、洗剤粒子群の製造方法。
  〔2〕粒子(A)の配合量が、粒子(A)と粒子(B)の合計質量の20~70質量%であり、60質量%以下が好ましく、20~60質量%がさらに好ましい、前記〔1〕に記載の製造方法。
  〔3〕工程(B)で用いられる陰イオン界面活性剤及び/又はその前駆体が、直鎖アルキルベンゼンスルホン酸、アルキル硫酸、ポリオキシエチレンアルキル硫酸、α-オレフィンスルホン酸、脂肪酸エステルスルホン酸及びそれらの塩からなる群より選択される1種以上である、前記〔1〕又は〔2〕に記載の製造方法。
[1] Step (A): The slurry containing an anionic surfactant is spray-dried, and the anionic surfactant is contained in the particles in an amount of 5 to 40% by mass, preferably 10% by mass or more, more preferably 15% by mass. % Or more, preferably 35% by mass or less, more preferably 10 to 40% by mass, more preferably 15 to 35% by mass of particles (A),
Step (B): A step of preparing particles (B) by granulating a powder raw material for detergent using a container rotary mixer,
The detergent powder raw material is a water-soluble solid alkaline inorganic substance and / or a water-soluble inorganic salt,
The amount of the water-soluble solid alkali inorganic substance and the water-soluble inorganic salt in the particles (B) is 30 to 88% by mass, preferably 35% by mass or more, more preferably 40% by mass or more, and 85% by mass or less. Preferably, 80% by mass or less is more preferable, 35 to 85% by mass is more preferable, 40 to 80% by mass is more preferable, and the container rotating mixer is a drum type mixer or a pan type mixer,
A step of adding an anionic surfactant and / or a precursor thereof into the container rotary mixer using a multi-fluid nozzle to prepare particles (B); and step (C): particles (A) and particles. A step of mixing (B),
A method for producing a detergent particle group.
[2] The blending amount of the particles (A) is 20 to 70% by mass of the total mass of the particles (A) and the particles (B), preferably 60% by mass or less, more preferably 20 to 60% by mass, [1] The production method according to [1].
[3] The anionic surfactant and / or precursor thereof used in the step (B) are linear alkylbenzene sulfonic acid, alkyl sulfuric acid, polyoxyethylene alkyl sulfuric acid, α-olefin sulfonic acid, fatty acid ester sulfonic acid and the like. The production method according to the above [1] or [2], which is at least one selected from the group consisting of salts of:
  〔4〕多流体ノズルが2流体ノズルである、前記〔1〕~〔3〕のいずれか1項に記載の製造方法。
  〔5〕工程(B)に用いられる陰イオン界面活性剤の量が粒子(B)中の10~45質量%であり、13質量%以上が好ましく、35質量%以下が好ましく、13~35質量%がさらに好ましい、前記〔1〕~〔4〕のいずれか1項に記載の製造方法。
  〔6〕工程(B)における水溶性固体アルカリ無機物質の添加量が、工程(B)に用いられる陰イオン界面活性剤の酸前駆体の中和当量の1~35倍であり、2倍以上が好ましく、3倍以上がより好ましく、30倍以下が好ましく、25倍以下がより好ましく、2~30倍がさらに好ましく、3~25倍がさらに好ましい、前記〔1〕~〔5〕のいずれか1項に記載の製造方法。
  〔7〕粒子(B)の嵩密度が400~650g/Lであり、420g/L以上が好ましく、440g/L以上がより好ましく、620g/L以下が好ましく、600g/L以下がより好ましく、420~620g/Lがさらに好ましく、440~600g/Lがさらに好ましい、前記〔1〕~〔6〕のいずれか1項に記載の製造方法。
  〔8〕水溶性固体アルカリ無機物質が、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム及びケイ酸ナトリウムからなる群から選ばれる一種以上である、前記〔1〕~〔7〕のいずれか1項に記載の製造方法。
  〔9〕水溶性無機塩が、硫酸ナトリウム、塩化ナトリウム、亜硫酸ナトリウム及び硫酸カリウムからなる群から選ばれる一種以上である、前記〔1〕~〔8〕のいずれか1項に記載の製造方法。
  〔10〕粒子(A)の嵩密度が200~600g/Lであり、550g/L以下が好ましく、500g/L以下がより好ましく、200~550g/Lがさらに好ましく、200~500g/Lがさらに好ましい、前記〔1〕~〔9〕のいずれか1項に記載の製造方法。
  〔11〕洗剤粒子群の嵩密度が250~600g/Lであり、300g/L以上が好ましく、550g/L以下が好ましく、500g/L以下がより好ましく、300~550g/Lがさらに好ましく、300~500g/Lがさらに好ましい、前記〔1〕~〔10〕のいずれか1項に記載の製造方法。
[4] The manufacturing method according to any one of [1] to [3], wherein the multi-fluid nozzle is a two-fluid nozzle.
[5] The amount of the anionic surfactant used in the step (B) is 10 to 45% by mass in the particles (B), preferably 13% by mass or more, preferably 35% by mass or less, and 13 to 35% by mass. % Is more preferable, The production method according to any one of [1] to [4].
[6] The amount of the water-soluble solid alkali inorganic substance added in the step (B) is 1 to 35 times the neutralization equivalent of the acid precursor of the anionic surfactant used in the step (B), and more than 2 times Any of the above-mentioned [1] to [5], preferably 3 times or more, more preferably 30 times or less, more preferably 25 times or less, further preferably 2 to 30 times, further preferably 3 to 25 times. 2. The production method according to item 1.
[7] The bulk density of the particles (B) is 400 to 650 g / L, preferably 420 g / L or more, more preferably 440 g / L or more, preferably 620 g / L or less, more preferably 600 g / L or less, 420 The production method according to any one of [1] to [6], further preferably ˜620 g / L, more preferably 440˜600 g / L.
[8] Any one of [1] to [7], wherein the water-soluble solid alkali inorganic material is at least one selected from the group consisting of sodium carbonate, sodium hydrogen carbonate, potassium carbonate, and sodium silicate. Manufacturing method.
[9] The production method according to any one of [1] to [8], wherein the water-soluble inorganic salt is at least one selected from the group consisting of sodium sulfate, sodium chloride, sodium sulfite, and potassium sulfate.
[10] The bulk density of the particles (A) is 200 to 600 g / L, preferably 550 g / L or less, more preferably 500 g / L or less, further preferably 200 to 550 g / L, further 200 to 500 g / L. The production method according to any one of [1] to [9], which is preferable.
[11] The bulk density of the detergent particles is 250 to 600 g / L, preferably 300 g / L or more, preferably 550 g / L or less, more preferably 500 g / L or less, further preferably 300 to 550 g / L, The production method according to any one of the above [1] to [10], which is more preferably from 500 to 500 g / L.
 以下に、本発明を実施例に基づいてさらに詳細に説明するが、本発明は、かかる実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited to the examples.
 以下の調製例等においては、特に記載のない限り下記の原料を用いた。なお、表1、2中の組成の%は質量%を意味し、表3、表4中の粒子(A)、粒子(B)及びゼオライトの数値は質量部を意味する。
  直鎖アルキルベンゼンスルホン酸、花王(株)製「ネオペレックスGS」
  アルキル硫酸ナトリウム(純分65%、残部水;アルキル基の炭素数がC12/C14/C16=64/24/12(重量%))
In the following preparation examples and the like, the following raw materials were used unless otherwise specified. In Tables 1 and 2,% of the composition means mass%, and the numerical values of particles (A), particles (B) and zeolite in Tables 3 and 4 mean parts by mass.
Linear alkylbenzene sulfonic acid, “Neopelex GS” manufactured by Kao Corporation
Sodium alkyl sulfate (pure content 65%, balance water; carbon number of alkyl group is C12 / C14 / C16 = 64/24/12 (% by weight))
  ライト灰(炭酸ナトリウム)、平均粒径100μm、セントラル硝子(株)製
  粉砕ライト灰:平均粒径8μm(上記ライト灰を粉砕したもの)
  芒硝(硫酸ナトリウム):平均粒径200μm、四国化成工業(株)製「中性無水芒硝」
  粉砕芒硝、平均粒径14μm(上記芒硝を粉砕したもの)
  ゼオライト:平均粒径3.5μm、ゼオビルダー社製
  蛍光染料:チバ・スペシャルティ・ケミカルズ(株)製「AMS-GX」
  ケイ酸ナトリウム:富士化学(株)製「2号シリケート」(純分40%)
  ポリアクリル酸ナトリウム:重量平均分子量10000のもの(純分40%)(花王(株)製)
  ポリエチレングリコール:質量平均分子量13000のもの(純分60%)(花王(株)製)
Light ash (sodium carbonate), average particle size 100 μm, manufactured by Central Glass Co., Ltd. Ground light ash: Average particle size 8 μm (obtained from the above light ash)
Sodium sulfate (sodium sulfate): average particle size 200μm, “Neutral anhydrous sodium sulfate” manufactured by Shikoku Chemicals Co., Ltd.
Crushed mirabilite, average particle size 14μm (crushed mirabilite)
Zeolite: Average particle size 3.5 μm, manufactured by Zeo Builders Fluorescent dye: “AMS-GX” manufactured by Ciba Specialty Chemicals Co., Ltd.
Sodium silicate: “No. 2 silicate” manufactured by Fuji Chemical Co., Ltd. (40% pure)
Sodium polyacrylate: weight average molecular weight 10,000 (pure content 40%) (manufactured by Kao Corporation)
Polyethylene glycol: having a mass average molecular weight of 13,000 (pure content 60%) (manufactured by Kao Corporation)
 以下の調製例等では、容器回転型混合機として、邪魔板を有した122Lドラム型ミキサー(φ50cm×L62cm)を使用した。多流体ノズルとして、2流体ノズル((株)アトマックス製:型番BN160)を使用した。なお、2流体ノズルの噴霧圧として記載された値はゲージ圧である。 In the following preparation examples and the like, a 122L drum mixer (φ50 cm × L62 cm) having a baffle plate was used as a container rotating mixer. As the multi-fluid nozzle, a two-fluid nozzle (manufactured by Atmax Co., Ltd .: model number BN160) was used. The value described as the spray pressure of the two-fluid nozzle is the gauge pressure.
<粒子(A)の調製例>
(A-1)
 ジャケットを60℃に設定した攪拌翼を有する1m3の混合槽に温度25℃の水239.7kg、48質量%水酸化ナトリウム水溶液47.8kgの順に添加した後、171.9kgの直鎖アルキルベンゼンスルホン酸を添加した。5分攪拌後、ポリアクリル酸ナトリウム59.7kgを添加した。2分攪拌後、硫酸ナトリウム223.1kg、蛍光染料1.2kg、ケイ酸ナトリウム194.0kg、ポリエチレングリコール3.0kg、ゼオライト59.7kgを添加した後、120分間攪拌してスラリーを得た。このスラリー中の水分は43質量%であった。
<Preparation Example of Particle (A)>
(A-1)
After adding 239.7 kg of water at a temperature of 25 ° C. and 47.8 kg of a 48 mass% sodium hydroxide aqueous solution in this order to a 1 m 3 mixing tank having a stirring blade set at 60 ° C., 171.9 kg of linear alkylbenzene sulfone was added. Acid was added. After stirring for 5 minutes, 59.7 kg of sodium polyacrylate was added. After stirring for 2 minutes, 223.1 kg of sodium sulfate, 1.2 kg of fluorescent dye, 194.0 kg of sodium silicate, 3.0 kg of polyethylene glycol, and 59.7 kg of zeolite were added, followed by stirring for 120 minutes to obtain a slurry. The water content in this slurry was 43% by mass.
 このスラリーを噴霧乾燥塔の塔頂付近に設置した圧力噴霧ノズルから噴霧圧力2.5MPaで噴霧を行い、噴霧乾燥粒子を得た。噴霧乾燥塔に供給する高温ガスは塔下部より温度が220℃で供給され、塔頂より110℃で排出された。得られた噴霧乾燥粒子を噴霧乾燥粒子(A-1)とし、その組成と物性を表1に示す。 The slurry was sprayed at a spray pressure of 2.5 MPa from a pressure spray nozzle installed near the top of the spray drying tower to obtain spray-dried particles. The hot gas supplied to the spray-drying tower was supplied at a temperature of 220 ° C. from the bottom of the tower and discharged at 110 ° C. from the top of the tower. The obtained spray-dried particles were designated as spray-dried particles (A-1), and their compositions and physical properties are shown in Table 1.
(A-2)
 混合槽に添加する水等の添加量を変更したこと、シリケートを添加しなかったことを除いて、(A-1)と同様の方法で噴霧乾燥粒子(A-2)を得た。(A-2)の組成と物性を表1に示す。
(A-2)
Spray-dried particles (A-2) were obtained in the same manner as (A-1) except that the amount of water and the like added to the mixing tank was changed and silicate was not added. Table 1 shows the composition and physical properties of (A-2).
(A-3)
 混合槽に添加する水等の添加量を変更したこと、ゼオライト及びシリケートを添加しなかったことを除いて、(A-1)と同様の方法で噴霧乾燥粒子(A-3)を得た。(A-3)の組成と物性を表1に示す。
(A-3)
Spray-dried particles (A-3) were obtained in the same manner as (A-1) except that the amount of water and the like added to the mixing tank was changed and that zeolite and silicate were not added. Table 1 shows the composition and physical properties of (A-3).
(A-4)
 混合槽に添加する水等の添加量を変更したこと、陰イオン界面活性剤としてペースト状(60℃)のアルキル硫酸ナトリウムを添加したことを除いて、(A-1)と同様の方法で噴霧乾燥粒子(A-4)を得た。尚、アルキル硫酸ナトリウムの添加は、ポリアクリル酸ナトリウム添加後に行った。(A-4)の組成と物性を表1に示す。
(A-4)
Sprayed in the same manner as (A-1) except that the amount of water added to the mixing tank was changed, and paste-like (60 ° C.) sodium alkyl sulfate was added as an anionic surfactant. Dry particles (A-4) were obtained. The addition of sodium alkyl sulfate was performed after the addition of sodium polyacrylate. The composition and physical properties of (A-4) are shown in Table 1.
(A-5)
 混合槽に添加する水等の添加量を変更したこと、シリケートを添加しなかったことを除いて、(A-1)と同様の方法で噴霧乾燥粒子(A-5)を得た。(A-5)の組成と物性を表1に示す。
(A-5)
Spray-dried particles (A-5) were obtained in the same manner as (A-1) except that the amount of water and the like added to the mixing tank was changed and silicate was not added. Table 1 shows the composition and physical properties of (A-5).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<粒子(B)の調製例>
 炭酸ナトリウムとしては、(B-4)、(B-9)ではライト灰を用い、その他の粒子(B)の調製においては粉砕ライト灰を用いた。硫酸ナトリウムとしては、(B-4)のみ芒硝を用い、(B-6)、(B-7)、(B-8)では粉砕芒硝を用いた。
<Preparation Example of Particle (B)>
As sodium carbonate, light ash was used in (B-4) and (B-9), and pulverized light ash was used in the preparation of the other particles (B). As sodium sulfate, only (B-4) was used as mirabilite, and (B-6), (B-7) and (B-8) were used as pulverized mirabilite.
(B-1)
 炭酸ナトリウム11.4kg(中和当量の10.2倍)をドラム型ミキサー中に添加し、フルード数0.2で30秒間攪拌した後、60℃の液状の直鎖アルキルベンゼンスルホン酸5.6kgを2流体ノズル2本を用いて、添加速度0.67kg/min、微粒化用Air噴霧圧0.3MPaの噴霧条件にて添加し、添加後1分間攪拌した。その後攪拌を止め、ゼオライト1.3kgを添加して前記と同条件にて1分間攪拌を行い、造粒物としての粒子(B-1)を得た。得られた粒子の組成と物性を表2に示す。
(B-1)
11.4 kg of sodium carbonate (10.2 times the neutralization equivalent) was added to the drum mixer, stirred for 30 seconds at a fluid number of 0.2, and then 5.6 kg of liquid linear alkylbenzene sulfonic acid at 60 ° C. Using two two-fluid nozzles, the mixture was added under spray conditions of an addition rate of 0.67 kg / min and an atomization air spray pressure of 0.3 MPa, and the mixture was stirred for 1 minute after the addition. Thereafter, the stirring was stopped, 1.3 kg of zeolite was added, and stirring was performed for 1 minute under the same conditions as described above to obtain particles (B-1) as a granulated product. Table 2 shows the composition and physical properties of the obtained particles.
(B-2)及び(B-3)
 ドラム型ミキサーに添加する原料の量と噴霧する陰イオン界面活性剤の量を変更したことを除いて、(B-1)と同様の方法で粒子を得た。得られた粒子(B-2)及び(B-3)の組成と物性を表2に示す。
(B-2) and (B-3)
Particles were obtained by the same method as (B-1) except that the amount of raw material added to the drum mixer and the amount of anionic surfactant sprayed were changed. Table 2 shows the composition and physical properties of the obtained particles (B-2) and (B-3).
(B-4)
 ドラム型ミキサーに添加する原料の量と噴霧する陰イオン界面活性剤の量の変更を行ったこと、陰イオン界面活性剤の酸前駆体から、陰イオン界面活性剤のペースト状(60℃)のアルキル硫酸ナトリウムに変更したこと、及び硫酸ナトリウムを添加したことを除いて、(B-1)と同様の方法で粒子を得た。得られた粒子(B-4)の組成と物性を表2に示す。
(B-4)
The amount of the raw material added to the drum mixer and the amount of the anionic surfactant to be sprayed were changed. From the acid precursor of the anionic surfactant, the anionic surfactant paste form (60 ° C.) Particles were obtained in the same manner as in (B-1) except that sodium alkyl sulfate was used and sodium sulfate was added. Table 2 shows the composition and physical properties of the obtained particles (B-4).
(B-5)
 硫酸ナトリウムを添加しなかったことを除いて、(B-4)と同様の方法で粒子を得た。得られた粒子(B-5)の組成と物性を表2に示す。
(B-5)
Particles were obtained in the same manner as in (B-4) except that sodium sulfate was not added. Table 2 shows the composition and physical properties of the obtained particles (B-5).
(B-6)
 ドラム型ミキサーに添加する原料の量と噴霧する陰イオン界面活性剤の量を変更したこと、及び硫酸ナトリウムを添加したことを除いて、(B-1)と同様の方法で粒子を得た。得られた粒子(B-6)の組成と物性を表2に示す。
(B-6)
Particles were obtained in the same manner as in (B-1) except that the amount of raw material added to the drum mixer and the amount of anionic surfactant sprayed were changed and sodium sulfate was added. Table 2 shows the composition and physical properties of the obtained particles (B-6).
(B-7)
 炭酸ナトリウム1.6kg、硫酸ナトリウム1.4kgをレディゲミキサー((株)マツボー製、容量20L、ジャケット付)中で、攪拌羽根回転数80r/m、剪断機回転数3600r/mの条件で30秒間攪拌した。尚、ジャケットに40℃の温水を10L/分で流した。60℃の液状のアルキルベンゼンスルホン酸1.4kgを、添加速度0.7kg/minにて添加し、添加後1分間攪拌した。その後攪拌を止め、ゼオライト0.023kgを添加して前記と同条件にて2分間攪拌を行い、得られた洗剤粒子群をミキサーから排出して粒子(B-7)を得た。得られた粒子の組成と物性を表2に示す。
(B-7)
1.6 kg of sodium carbonate and 1.4 kg of sodium sulfate in a Redige mixer (manufactured by Matsubo Co., Ltd., capacity 20 L, with jacket) under conditions of a stirring blade speed of 80 r / m and a shearing machine speed of 3600 r / m Stir for 2 seconds. In addition, 40 degreeC warm water was poured through the jacket at 10 L / min. 1.4 kg of liquid alkylbenzenesulfonic acid at 60 ° C. was added at an addition rate of 0.7 kg / min, and stirred for 1 minute after the addition. Thereafter, stirring was stopped, 0.023 kg of zeolite was added, and stirring was performed for 2 minutes under the same conditions as described above. The obtained detergent particles were discharged from the mixer to obtain particles (B-7). Table 2 shows the composition and physical properties of the obtained particles.
(B-8)
 ゼオライトの添加量を変更したこと除いて、(B-7)と同様の方法で粒子を得た。得られた粒子(B-8)の組成と物性を表2に示す。
(B-8)
Particles were obtained in the same manner as (B-7) except that the amount of zeolite added was changed. Table 2 shows the composition and physical properties of the obtained particles (B-8).
(B-9)
 炭酸ナトリウム5.4kgをドラム型ミキサー(邪魔板を有した75Lのドラム型ミキサー(φ40cm×L60cm))中に添加し、フルード数0.2で30秒間攪拌した後、60℃の液状のアルキルベンゼンスルホン酸1.7kgを1流体ノズル(スプレーイングシステムスジャパン(株)製)1本を用いて、添加速度0.63kg/min、バインダー噴霧圧0.2MPaの噴霧条件にて添加し、添加後1分間攪拌した。その後攪拌を止め、ゼオライト0.35kgを添加して前記と同条件にて1分間攪拌を行い、造粒物としての粒子(B-9)を得た。得られた粒子の組成と物性を表2に示す。
(B-9)
5.4 kg of sodium carbonate was added to a drum type mixer (75 L drum type mixer (φ40 cm × L60 cm) with baffle plate), stirred for 30 seconds at a fluid number of 0.2, and then liquid alkylbenzene sulfone at 60 ° C. 1.7 kg of acid was added using one fluid nozzle (manufactured by Spraying Systems Japan Co., Ltd.) under spray conditions of an addition rate of 0.63 kg / min and a binder spray pressure of 0.2 MPa. Stir for minutes. Thereafter, the stirring was stopped, 0.35 kg of zeolite was added, and stirring was performed for 1 minute under the same conditions as described above to obtain particles (B-9) as a granulated product. Table 2 shows the composition and physical properties of the obtained particles.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<実施例1~14、比較例1~5>
 上記のようにして得られたそれぞれの(A)粒子、(B)粒子、ゼオライトを表3及び表4に示すような質量の割合でビニール袋に加えた。このビニール袋を30回上下に振って粒子を混合し、洗剤粒子群を得た。得られた洗剤粒子群の物性を表3及び表4に示す。
<Examples 1 to 14, Comparative Examples 1 to 5>
Each (A) particle | grain, (B) particle | grains, and zeolite which were obtained as mentioned above were added to the plastic bag in the mass ratio as shown in Table 3 and Table 4. The plastic bag was shaken up and down 30 times to mix the particles to obtain detergent particles. Tables 3 and 4 show the physical properties of the obtained detergent particles.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例1~14で得られた洗剤粒子群は、噴霧乾燥粒子比率が20~70%の範囲であって、流動性が良好かつ嵩密度も350~600g/Lという中低嵩密度の洗剤粒子群であることが分かった。(B)粒子である(B-1)~(B-6)の嵩密度は470~600g/Lと中嵩密度の粒子であり、(A)粒子との嵩密度の差が少ないので、(A)粒子と(B)粒子とを混合しても、輸送時等での分級が抑制される。更に得られた洗剤粒子群の造粒収率は90%以上と高く、粗粒率も20%以下と低いものであった。 The detergent particles obtained in Examples 1 to 14 have a spray-dried particle ratio in the range of 20 to 70%, good fluidity and a bulk density of 350 to 600 g / L. It turned out to be a group. (B) Particles (B-1) to (B-6) have a bulk density of 470 to 600 g / L, which is a medium bulk density particle, and since (A) the difference in bulk density from the particles is small, Even if A) particles and (B) particles are mixed, classification during transportation or the like is suppressed. Furthermore, the granulation yield of the obtained detergent particle group was as high as 90% or more, and the coarse particle ratio was as low as 20% or less.
 一方、比較例1~3については、流動性が非常に悪く、安息角も大きいので、製品としての洗剤粒子群を容器へ注入する操作が難しく、使用時の消費者の取扱い性にも劣るものであった。更に、比較例1~3の各々は、実施例と同様の噴霧乾燥粒子比率とした場合に、実施例の洗剤粒子群よりも嵩密度が77g/L以上高くなることが分かった(実施例12~14、比較例1~3)。よって、本発明によって製造される洗剤粒子群と同程度の嵩密度の洗剤粒子群を得るためには、噴霧乾燥粒子比率をあげる必要があり、環境負荷が高くなる。また、洗剤粒子群の造粒収率、粗粒率に関しても、本発明の製造方法により得られるものと比べて性能の低いものであった。 On the other hand, in Comparative Examples 1 to 3, the fluidity is very poor and the angle of repose is large, so that it is difficult to inject the detergent particles as a product into the container, and the handling property of the consumer during use is poor. Met. Furthermore, it was found that each of Comparative Examples 1 to 3 had a bulk density of 77 g / L or more higher than that of the detergent particle group of Example when the same spray-dried particle ratio as in Example was used (Example 12). To 14, Comparative Examples 1 to 3). Therefore, in order to obtain a detergent particle group having the same bulk density as that of the detergent particle group produced according to the present invention, it is necessary to increase the spray-dried particle ratio, which increases the environmental load. Moreover, regarding the granulation yield and the coarse particle ratio of the detergent particles, the performance was lower than that obtained by the production method of the present invention.
 比較例4については、流動性や安息角は良好であるものの、(A)粒子と(B)粒子との嵩密度の差が大きいために分級が生じると予想される。粒子(B-8)の嵩密度が高くなった理由としては、レディゲミキサーが混合対象物に与えるせん断力が強いので、造粒と共に粒子が圧密化され、更に、粒子(B-8)において添加するゼオライトを増量したことによって流動性が向上し、粒子の充填率が高まったためであると推定される。また、洗剤粒子群の造粒収率、粗粒率に関しても、本発明の製造方法により得られるものと比べて性能の低いものであった。 In Comparative Example 4, although fluidity and angle of repose are good, classification is expected to occur due to a large difference in bulk density between (A) particles and (B) particles. The reason why the bulk density of the particles (B-8) is increased is that the shear force exerted on the object to be mixed by the Redige mixer is so strong that the particles are consolidated together with the granulation, and further in the particles (B-8). It is presumed that the increase in the amount of zeolite to be added improved the fluidity and increased the particle filling rate. Moreover, regarding the granulation yield and the coarse particle ratio of the detergent particles, the performance was lower than that obtained by the production method of the present invention.
 比較例5についても、流動性や安息角は良好であるものの、粒子(B-9)の作製に1流体ノズルを用いたために、(B)粒子と(A)粒子の嵩密度の差が大きくなっており分級が生じると予想される。また、洗剤粒子群の造粒収率、粗粒率に関しても、本発明の製造方法により得られるものと比べて性能の低いものであった。 Also in Comparative Example 5, although the fluidity and angle of repose are good, the difference in the bulk density between the particles (B) and the particles (A) is large because one fluid nozzle was used for the production of the particles (B-9). It is expected that classification will occur. Moreover, regarding the granulation yield and the coarse particle ratio of the detergent particles, the performance was lower than that obtained by the production method of the present invention.
 本発明によれば、噴霧乾燥粒子比率を低減しつつ、流動性の良好な中低嵩密度の洗剤粒子群を収率良く且つ低粗粒率で製造することができる。かかる洗剤粒子群は、衣料用等様々な用途の洗剤組成物として、又はかかる洗剤組成物の一成分として好ましく用いることができる。 According to the present invention, it is possible to produce a medium and low bulk density detergent particle group having good fluidity with a good yield and a low coarse particle ratio while reducing the spray-dried particle ratio. Such a detergent particle group can be preferably used as a detergent composition for various uses such as clothing, or as one component of such a detergent composition.

Claims (11)

  1.  工程(A):陰イオン界面活性剤を含有するスラリーを噴霧乾燥して、陰イオン界面活性剤を粒子中に5~40質量%含む粒子(A)を調製する工程、
     工程(B):洗剤用粉体原料を容器回転型混合機を用いて造粒して粒子(B)を調製する工程であって、
       洗剤用粉体原料が水溶性固体アルカリ無機物質及び/又は水溶性無機塩であり、
       水溶性固体アルカリ無機物質と水溶性無機塩とが粒子(B)中に占める量が30~88質量%であり、かつ
       容器回転型混合機がドラム型混合機又はパン型混合機であって、
     陰イオン界面活性剤及び/又はその前駆体を、多流体ノズルを用いて該容器回転型混合機内に添加して粒子(B)を調製する工程、並びに
     工程(C):粒子(A)と粒子(B)とを混合する工程、
    を含む、洗剤粒子群の製造方法。
    Step (A): A step of preparing particles (A) containing 5 to 40% by mass of an anionic surfactant in the particles by spray drying a slurry containing an anionic surfactant;
    Step (B): A step of preparing particles (B) by granulating a powder raw material for detergent using a container rotary mixer,
    The detergent powder raw material is a water-soluble solid alkaline inorganic substance and / or a water-soluble inorganic salt,
    The amount of the water-soluble solid alkali inorganic substance and the water-soluble inorganic salt in the particles (B) is 30 to 88% by mass, and the container rotating mixer is a drum mixer or a pan mixer,
    A step of adding an anionic surfactant and / or a precursor thereof into the container rotary mixer using a multi-fluid nozzle to prepare particles (B); and step (C): particles (A) and particles. A step of mixing (B),
    A method for producing a detergent particle group.
  2.  粒子(A)の配合量が、粒子(A)と粒子(B)の合計質量の20~70質量%である、請求項1に記載の製造方法。 The production method according to claim 1, wherein the blending amount of the particles (A) is 20 to 70 mass% of the total mass of the particles (A) and the particles (B).
  3.  工程(B)で用いられる陰イオン界面活性剤及び/又はその前駆体が、直鎖アルキルベンゼンスルホン酸、アルキル硫酸、ポリオキシエチレンアルキル硫酸、α-オレフィンスルホン酸、脂肪酸エステルスルホン酸及びそれらの塩からなる群より選択される1種以上である、請求項1又は2に記載の製造方法。 The anionic surfactant used in the step (B) and / or its precursor is selected from linear alkylbenzene sulfonic acid, alkyl sulfuric acid, polyoxyethylene alkyl sulfuric acid, α-olefin sulfonic acid, fatty acid ester sulfonic acid and salts thereof. The manufacturing method of Claim 1 or 2 which is 1 or more types selected from the group which consists of.
  4.  多流体ノズルが2流体ノズルである、請求項1~3のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 3, wherein the multi-fluid nozzle is a two-fluid nozzle.
  5.  工程(B)に用いられる陰イオン界面活性剤の量が粒子(B)中の10~45質量%である、請求項1~4のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the amount of the anionic surfactant used in the step (B) is 10 to 45 mass% in the particles (B).
  6.  工程(B)における水溶性固体アルカリ無機物質の添加量が、工程(B)に用いられる陰イオン界面活性剤の酸前駆体の中和当量の1~35倍である、請求項1~5のいずれか1項に記載の製造方法。 The amount of the water-soluble solid alkaline inorganic substance added in the step (B) is 1 to 35 times the neutralization equivalent of the acid precursor of the anionic surfactant used in the step (B). The manufacturing method of any one of Claims.
  7.  粒子(B)の嵩密度が400~650g/Lである、請求項1~6のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 6, wherein the bulk density of the particles (B) is 400 to 650 g / L.
  8.  水溶性固体アルカリ無機物質が、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム及びケイ酸ナトリウムからなる群から選ばれる一種以上である、請求項1~7のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 7, wherein the water-soluble solid alkaline inorganic substance is at least one selected from the group consisting of sodium carbonate, sodium hydrogen carbonate, potassium carbonate and sodium silicate.
  9.  水溶性無機塩が、硫酸ナトリウム、塩化ナトリウム、亜硫酸ナトリウム及び硫酸カリウムからなる群から選ばれる一種以上である、請求項1~8のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 8, wherein the water-soluble inorganic salt is at least one selected from the group consisting of sodium sulfate, sodium chloride, sodium sulfite and potassium sulfate.
  10.  粒子(A)の嵩密度が200~600g/Lである、請求項1~9のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 9, wherein the bulk density of the particles (A) is 200 to 600 g / L.
  11.  洗剤粒子群の嵩密度が250~600g/Lである、請求項1~10のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 10, wherein the bulk density of the detergent particles is 250 to 600 g / L.
PCT/JP2011/076653 2010-11-19 2011-11-18 Method for producing detergent particle group WO2012067227A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180055720.2A CN103228776B (en) 2010-11-19 2011-11-18 Method for producing detergent particle group

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010259028A JP2012107165A (en) 2010-11-19 2010-11-19 Method for manufacturing detergent particle group
JP2010-259028 2010-11-19

Publications (1)

Publication Number Publication Date
WO2012067227A1 true WO2012067227A1 (en) 2012-05-24

Family

ID=46084146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076653 WO2012067227A1 (en) 2010-11-19 2011-11-18 Method for producing detergent particle group

Country Status (3)

Country Link
JP (1) JP2012107165A (en)
CN (1) CN103228776B (en)
WO (1) WO2012067227A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018003905A1 (en) * 2016-06-30 2019-04-25 ライオン株式会社 Powder detergent composition and method for producing the same
CN106544181A (en) * 2016-10-27 2017-03-29 陆腾蛟 One kind washes clean product and production equipment and process
CN106361588A (en) * 2016-10-27 2017-02-01 陆腾蛟 Tooth cleaning product and production device and process
JP7368399B2 (en) * 2021-01-07 2023-10-24 花王株式会社 Granular detergent composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105397A (en) * 2001-09-28 2003-04-09 Lion Corp Method for producing granular detergent composition having high bulk density
JP2004176055A (en) * 2002-11-15 2004-06-24 Lion Corp Producing method of particulate detergent
JP2005344109A (en) * 2004-05-06 2005-12-15 Lion Corp Method for producing granular detergent
JP2008063419A (en) * 2006-09-06 2008-03-21 Lion Corp Moderate bulk-density powdery detergent for clothing and its manufacturing method
WO2009142135A1 (en) * 2008-05-19 2009-11-26 花王株式会社 Surfactant-supporting granule cluster

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW397862B (en) * 1996-09-06 2000-07-11 Kao Corp Detergent granules and method for producing the same, and high-bulk density detergent composition
EP1041139B1 (en) * 1998-10-16 2004-12-22 Kao Corporation Process for producing detergent particles
WO2000077148A1 (en) * 1999-06-14 2000-12-21 Kao Corporation Granules for carrying surfactant and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105397A (en) * 2001-09-28 2003-04-09 Lion Corp Method for producing granular detergent composition having high bulk density
JP2004176055A (en) * 2002-11-15 2004-06-24 Lion Corp Producing method of particulate detergent
JP2005344109A (en) * 2004-05-06 2005-12-15 Lion Corp Method for producing granular detergent
JP2008063419A (en) * 2006-09-06 2008-03-21 Lion Corp Moderate bulk-density powdery detergent for clothing and its manufacturing method
WO2009142135A1 (en) * 2008-05-19 2009-11-26 花王株式会社 Surfactant-supporting granule cluster

Also Published As

Publication number Publication date
CN103228776A (en) 2013-07-31
JP2012107165A (en) 2012-06-07
CN103228776B (en) 2014-11-19

Similar Documents

Publication Publication Date Title
JP5525755B2 (en) Surfactant-supporting granules
JP5465872B2 (en) Anionic surfactant composition
EP2841553B1 (en) Process for the production of a detergent granule, detergent granule and detergent composition comprising said granule
WO2012067227A1 (en) Method for producing detergent particle group
WO2012067226A1 (en) Method for producing detergent particle aggregates
JP5624811B2 (en) Method for producing high bulk density detergent particles
AU2010320064B2 (en) Method for producing detergent granules
EP2870229B1 (en) Process for the production of a detergent granule, detergent granule and detergent composition comprising said granule
EP3030641B1 (en) Process for the production of a detergent granule, detergent granule and detergent composition comprising said granule
WO2012157681A1 (en) Process for manufacturing group of detergent granules
JP2012255146A (en) Method for producing detergent particle group
JP5713644B2 (en) Method for producing surfactant-supporting granules
JP4237532B2 (en) Surfactant-supporting granules
JP2011127104A (en) Method for producing detergent granules
JP4667730B2 (en) Method for treating crystalline alkali metal silicate
JP5971753B2 (en) Method for producing detergent particles
JP2010189488A (en) Detergent particle
JP2014125622A (en) Production method of detergent particle group
JP2006137832A (en) Method for producing detergent particle
JP2013147578A (en) Process for producing particle group added to detergent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11841978

Country of ref document: EP

Kind code of ref document: A1