WO2012157413A1 - 脱硝装置及び脱硝方法 - Google Patents
脱硝装置及び脱硝方法 Download PDFInfo
- Publication number
- WO2012157413A1 WO2012157413A1 PCT/JP2012/060986 JP2012060986W WO2012157413A1 WO 2012157413 A1 WO2012157413 A1 WO 2012157413A1 JP 2012060986 W JP2012060986 W JP 2012060986W WO 2012157413 A1 WO2012157413 A1 WO 2012157413A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- denitration
- correlation
- catalyst
- nox concentration
- reducing agent
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/54—Nitrogen compounds
- B01D53/56—Nitrogen oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8621—Removing nitrogen compounds
- B01D53/8625—Nitrogen oxides
- B01D53/8631—Processes characterised by a specific device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/75—Multi-step processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8696—Controlling the catalytic process
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J15/00—Arrangements of devices for treating smoke or fumes
- F23J15/006—Layout of treatment plant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/003—Systems for controlling combustion using detectors sensitive to combustion gas properties
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J2215/00—Preventing emissions
- F23J2215/10—Nitrogen; Compounds thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J2219/00—Treatment devices
- F23J2219/10—Catalytic reduction devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J2219/00—Treatment devices
- F23J2219/20—Non-catalytic reduction devices
Definitions
- the present invention relates to a denitration apparatus and a denitration method.
- a denitration device described in Patent Document 1 below is known as a denitration device that removes (denitration) nitrogen oxides (NOx) contained in exhaust gas from a combustion furnace.
- ammonia reducing agent
- this denitration apparatus ammonia (reducing agent) is injected into combustion exhaust gas from a pressurized fluidized bed boiler that is a combustion furnace to perform non-catalytic denitration to obtain reduced treatment exhaust gas, and further ammonia is injected into this reduced treatment exhaust gas, Catalyst denitration is performed by a denitration catalyst device having a denitration catalyst to obtain catalyst-passing exhaust gas, and the catalyst-passing exhaust gas is discharged from the chimney to the outside.
- a control function that correlates the operating load of the pressurized fluidized bed boiler with the ammonia injection amount necessary for removing NOx contained in the exhaust gas from the pressurized fluidized bed boiler at the time of this operating load is controlled by ammonia injection.
- the ammonia injection control means receives the load signal from the pressurized fluidized bed boiler and controls the ammonia injection amount based on the control function described above.
- the circulating fluidized bed boiler is more effective in exhaust gas than other types of boilers. Since the amount of soot contained in the catalyst is large, the soot may be clogged with the catalyst used for the catalytic denitration and the catalyst may be deteriorated.
- circulating fluidized bed boilers may burn fuels such as biomass, waste plastic, waste tires, sludge, RPF (Refuse Paper & Plastic Fuel), and RDF (Refuse Derived Fuel). Although possible, these fuels contain heavy metals such as lead and zinc, sodium, potassium, phosphorus, etc., and these substances may deteriorate the catalyst.
- the ammonia injection amount is set using a control function that correlates the boiler load and the ammonia injection amount as in the above-described denitration device. Even if controlled, NOx cannot be sufficiently removed as desired.
- the present invention has been made to solve such problems, and provides a denitration apparatus and a denitration method that can sufficiently remove NOx even if a catalyst used for catalytic denitration deteriorates. Objective.
- a denitration apparatus includes a non-catalytic denitration means for performing non-catalytic denitration by injecting a reducing agent into exhaust gas containing NOx generated in a combustion furnace, and a reductant for the exhaust gas subjected to non-catalytic denitration.
- a denitration apparatus comprising a catalytic denitration means for injecting and performing catalytic denitration using a denitration catalyst, the correlation between the load of the combustion furnace and the amount of reducing agent injected by the noncatalytic denitration means One correlation is stored in advance, the amount of reducing agent injected by the non-catalytic denitration means is controlled based on the first correlation, and the inlet is the NOx concentration at the combustion furnace load and the denitration catalyst inlet side.
- the second correlation which is a correlation with the NOx concentration is stored in advance, the inlet NOx concentration is predicted based on the second correlation, and the reducing agent injection amount injected by the catalytic denitration means based on the inlet NOx concentration
- control means for controlling NOx removal catalyst A catalyst deterioration detecting means for detecting deterioration, and the control means rewrites the first correlation and the second correlation according to the deterioration of the denitration catalyst when the catalyst deterioration detection means detects that the denitration catalyst has deteriorated. It is possible to do this.
- the denitration method performs non-catalytic denitration by injecting a reducing agent into exhaust gas containing NOx generated in a combustion furnace, and injects the reducing agent into the exhaust gas subjected to non-catalytic denitration,
- a denitration method for performing catalytic denitration using a denitration catalyst wherein a first correlation that is a correlation between a load of a combustion furnace and an injection amount of a reducing agent injected by non-catalytic denitration is stored in advance, and a first correlation Based on the relationship, the amount of reducing agent injected by non-catalytic denitration is controlled, and the second correlation is a correlation between the load of the combustion furnace and the NOx concentration at the inlet side of the denitration catalyst Is stored in advance, the inlet NOx concentration is predicted based on the second correlation, the injection amount of the reducing agent injected by catalytic denitration is controlled based on the inlet NOx concentration, and it is detected that the
- the load of the combustion furnace and the amount of reducing agent injected by non-catalytic denitration are stored in advance as a first correlation, and the amount of reducing agent injected by non-catalytic denitration means is controlled according to the load of the combustion furnace. Is done. Also, the load of the combustion furnace and the inlet NOx concentration are stored in advance as a second correlation, the inlet NOx concentration is predicted from the load of the combustion furnace, and the amount of reducing agent injected by catalytic denitration according to the inlet NOx concentration Is controlled.
- the first correlation and the second correlation can be rewritten according to the deterioration of the denitration catalyst to optimally adjust the reducing agent injection amount. Even if the catalyst used in the process deteriorates, NOx can be sufficiently removed.
- control means may be capable of storing a plurality of first correlations and second correlations according to the type of fuel combusted in the combustion furnace. In this way, the amount of reducing agent injected can be adjusted more optimally according to the type of fuel combusted in the combustion furnace.
- the present invention it is possible to provide a denitration apparatus and a denitration method that can sufficiently remove NOx even if a catalyst used for catalytic denitration deteriorates.
- FIG. 1 It is a block diagram which shows the denitration apparatus to which the denitration method which concerns on embodiment of this invention is applied. It is a graph which shows the 1st correlation. It is a graph which shows a 2nd correlation. It is a flowchart which shows operation
- FIG. 1 is a configuration diagram showing a denitration apparatus to which a denitration method according to an embodiment of the present invention is applied.
- a denitration apparatus 100 is provided in a plant P including a boiler (combustion furnace) 1 that is a circulating fluidized bed boiler here, and nitrogen oxide (NOx) contained in exhaust gas from the boiler 1. ).
- a boiler combustion furnace
- NOx nitrogen oxide
- the plant P In the plant P, first, in the boiler 1, in addition to fossil fuels such as coal, fuels such as biomass, waste plastics, waste tires, sludge, RPF, and RDF are mixed with the air supplied into the boiler 1.
- the exhaust gas is combusted while circulating in the boiler 1, and exhaust gas containing solid particles such as dust and NOx is generated by this combustion, and the exhaust gas is sent to the cyclone 2 from the first duct D 1 connected to the upper part of the boiler 1. .
- solid particles are separated from the exhaust gas by solid-gas separation by centrifugal separation, and the solid particles separated from the exhaust gas are returned to the boiler 1 through a pipe from the bottom of the cyclone 2, while the solid particles are separated.
- the exhaust gas is sent from the upper part of the cyclone 2 to the heat recovery units 3 and 4 through a pipe.
- heat is recovered from the exhaust gas, and the exhaust gas after the heat recovery is sent to the exhaust gas purification device 5 through the second duct D2.
- the exhaust gas purification device 5 fine solid particles such as fly ash still entrained in the exhaust gas are removed and the exhaust gas is desulfurized to purify the exhaust gas, and the purified exhaust gas is discharged to the outside through the chimney 6. Is done.
- a denitration apparatus 100 provided in such a plant P includes a first NH 3 (ammonia) injection unit 7, a second NH 3 injection unit 8, a denitration catalyst installation unit 9, a catalyst inlet O 2 concentration meter 10, and a catalyst inlet NOx concentration meter 11.
- the first NH 3 injection unit 7 functions as non-catalytic denitration means for performing non-catalytic denitration by injecting a reducing agent (here, NH 3 ) into exhaust gas containing NOx generated in the boiler 1. and it is provided so as to inject NH 3 to the first duct D1 between the cyclone 2.
- a reducing agent here, NH 3
- Non-catalytic denitration is performed, for example, in a region where the temperature of exhaust gas is about 700 to 1100 ° C.
- the 2NH 3 injection unit 8 is adapted to inject NH 3 in the exhaust gas was carried out without a catalyst denitration in the first duct D1, it is provided so as to inject NH 3 between the heat recovery unit 3,4 . Further, the denitration catalyst installation section 9, the exhaust gas of ammonia from the 2NH 3 injection unit 8 is injected is for removing NOx by passing the installation the denitration catalyst, a 2NH 3 injection unit 8 and the heat It arrange
- the denitration catalyst for example, a ceramic having vanadium supported thereon is used.
- the catalyst surface area S (m 2 ), which is the surface area of the denitration catalyst is a fixed value determined by the operating conditions of the plant P, and is stored in advance in the catalyst deterioration detection unit 16.
- the catalytic denitration is performed, for example, in a region where the temperature of the exhaust gas is about 200 to 400 ° C.
- the pipe connecting the second 1N H 3 injection unit 7 and the NH 3 supply unit 19, a 1N H 3 injection rate is the amount of NH 3 to be supplied to the 1N H 3 injection section 7 A in1 the (Nm 3 / h) and the 1N H 3 flow meter 20 for measuring a first control valve 21 for adjusting the amount of NH 3 to be supplied to the 1N H 3 injection section 7 is provided.
- a second NH 3 injection amount A in2 (Nm 3 / h), which is the amount of NH 3 supplied to the second NH 3 injection part 8, is used.
- a second NH 3 flow meter 22 to be measured and a second control valve 23 for adjusting the amount of NH 3 supplied to the second NH 3 injection section 8 are provided.
- the catalyst inlet O 2 concentration meter 10 is disposed between the second NH 3 injection section 8 and the denitration catalyst installation section 9, and has an inlet O 2 concentration that is the concentration of O 2 in the exhaust gas on the inlet side of the denitration catalyst installation section 9. B in (%) is measured.
- the catalyst inlet O 2 concentration meter 10 is connected to the catalyst deterioration detector 16 and outputs the measured inlet O 2 concentration B in to the catalyst deterioration detector 16.
- the catalyst inlet NOx concentration meter 11 is disposed between the second NH 3 injection section 8 and the denitration catalyst installation section 9, and has an inlet NOx concentration C in (the concentration of NOx in the exhaust gas on the inlet side of the denitration catalyst installation section 9. ppm).
- the catalyst inlet NOx concentration meter 11 is connected to the catalyst deterioration detector 16 and outputs the measured inlet NOx concentration C in to the catalyst deterioration detector 16.
- the catalyst inlet O 2 concentration meter 10 and the catalyst inlet NOx concentration meter 11 disposed on the inlet side of the denitration catalyst installation unit 9 are deteriorated by fine solid particles such as fly ash still accompanying the exhaust gas. It is preferable to operate intermittently because there is a risk of causing problems. Therefore, in this embodiment, the catalyst inlet O 2 concentration meter 10 and the catalyst inlet NOx concentration meter 11 operate only when the catalyst deterioration detector 16 described later in detail determines deterioration of the denitration catalyst, and during other operations. It doesn't work.
- the catalyst outlet O 2 concentration meter 12 is disposed in the second duct D2, and measures the outlet O 2 concentration B out (%), which is the concentration of O 2 in the exhaust gas on the outlet side of the denitration catalyst installation unit 9. .
- the catalyst outlet O 2 concentration meter 12 is connected to the catalyst deterioration detection unit 16, and outputs the measured outlet O 2 concentration B out to the catalyst deterioration detection unit 16.
- the catalyst outlet NOx concentration meter 13 is disposed in the second duct D2 and measures the outlet NOx concentration C out (ppm), which is the concentration of NOx in the exhaust gas on the outlet side of the denitration catalyst installation unit 9.
- the catalyst outlet NOx concentration meter 13 is connected to the catalyst deterioration detection unit 16 and outputs the measured outlet NOx concentration C out to the catalyst deterioration detection unit 16.
- the catalyst outlet NOx concentration meter 13 is connected to the denitration distribution unit 18 and outputs the measured outlet NOx concentration Cout to the denitration distribution unit 18.
- the catalyst outlet NH 3 concentration meter 14 is disposed in the second duct D2 and measures the outlet NH 3 concentration A out (ppm), which is the concentration of NH 3 in the exhaust gas on the outlet side of the denitration catalyst installation unit 9. .
- the catalyst outlet NH 3 concentration meter 14 is connected to the catalyst deterioration detection unit 16, and outputs the measured outlet NH 3 concentration A out to the catalyst deterioration detection unit 16.
- the exhaust gas flow rate calculation unit 15 calculates an exhaust gas amount G (Nm 3 / h) that is a flow rate of exhaust gas that passes through the first duct D1, and is connected to the catalyst deterioration detection unit 16, and calculates the calculated exhaust gas amount G. Output to the catalyst deterioration detector 16.
- the exhaust gas flow rate calculation unit 15 calculates the exhaust gas amount G by installing a flow meter in the first duct D1 and using a value measured by the flow meter, and calculating from the load of the boiler 1 And a method of calculating from the amount of fuel combusted in the boiler 1 are used.
- the catalyst deterioration detection unit 16 functions as a catalyst deterioration detection unit that detects whether or not the denitration catalyst has deteriorated more than a predetermined level, and includes a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random). It is composed of an electronic control unit composed of (Access Memory).
- the catalyst deterioration detection unit 16 calculates a reaction rate constant K expressed by the following formula (1) using various input values. Then, the catalyst deterioration detection unit 16 determines whether or not the denitration catalyst has deteriorated more than a predetermined value by determining whether or not the reaction rate constant K is below a predetermined threshold value stored in advance. Detects catalyst deterioration.
- AV (Nm / h) represents the area velocity
- Eff represents the denitration efficiency
- ⁇ represents the molar ratio
- C in6%, C out6% , A out6% , using B in and B out is the oxygen concentration in the inlet and outlet sides of the denitration catalyst installation section 9, the same oxygen concentration under (6% in this case) It is the value converted into the concentration at.
- the catalyst deterioration detection unit 16 is connected to the denitration distribution unit 18 and outputs a signal to that effect to the denitration distribution unit 18 when it is detected that the denitration catalyst has deteriorated more than a predetermined level.
- the boiler operation unit 17 is for controlling the operation of the boiler 1, and is configured by an electronic control unit in the same manner as the catalyst deterioration detection unit 16.
- the boiler operation unit 17 is connected to the denitration distribution unit 18 and outputs information such as the load on the boiler 1 and the type of fuel combusted in the boiler 1 to the denitration distribution unit 18.
- the load on the boiler 1 can be determined from the amount of fuel combusted in the boiler 1, for example.
- Denitration distributor 18 which functions as a control means for controlling determines the amount of NH 3 supplied from the NH 3 supply unit 19 to the 1N H 3 injection section 7 and the 2NH 3 injection unit 8, the catalyst deterioration detection As with the section 16, it is composed of an electronic control unit.
- FIG. 2 is a graph showing the first correlation
- FIG. 3 is a graph showing the second correlation
- Denitration distributor 18, as shown in FIG. 2 stores a graph showing a first correlation is a correlation between the load of the boiler 1 3 injection rate (horizontal axis) and the 1N H A in1 (vertical axis) Yes.
- a plurality of graphs showing the first correlation are stored according to the degree of deterioration of the denitration catalyst and the type of fuel combusted in the boiler 1.
- the denitration distribution unit 18 injects the first NH 3 injection based on the load information of the boiler 1 input from the boiler operation unit 17 according to the degree of deterioration of the denitration catalyst and the type of fuel combusted in the boiler 1.
- the first NH 3 injection amount A in1 supplied to the unit 7 is determined (details will be described later).
- the concentration of NOx remaining in exhaust gas was carried out without a catalyst denitration (inlet NOx concentration C in)
- inlet NOx concentration C in the concentration of NOx remaining in exhaust gas was carried out without a catalyst denitration
- the denitration distributor 18 in order to predict the inlet NOx concentration C in, a correlation between, as shown in FIG. 3, of the boiler 1 load (horizontal axis) and the inlet NOx concentration C in (ordinate) first 2 A graph showing the correlation is stored.
- the graph indicating the second correlation can be created, for example, from the measurement result during the trial operation of the plant P. Further, a plurality of graphs indicating the second correlation are stored according to the degree of deterioration of the denitration catalyst and the type of fuel combusted in the boiler 1, corresponding to the graph indicating the first correlation.
- the denitration distribution unit 18 determines the inlet NOx concentration C based on the load information of the boiler 1 input from the boiler operation unit 17 according to the degree of deterioration of the denitration catalyst and the type of fuel combusted in the boiler 1. to predict the in (the details will be described below).
- the denitration distribution unit 18 determines the second NH 3 injection amount A in2 by the following equation (2) based on the inlet NOx concentration C in predicted from the second correlation.
- C target represents the NOx removal target NOx concentration (ppm), which is the target NOx concentration after catalytic denitration.
- the denitration distribution unit 18 includes a graph for determining the first NH 3 injection amount A in1 when the signal indicating that the denitration catalyst installation unit 9 has deteriorated more than a predetermined value is input from the catalyst deterioration detection unit 16, and the inlet It is possible to rewrite the graph for predicting the NOx concentration C in to another stored graph (details will be described later).
- the denitration distribution unit 18 is provided with a manual switch (not shown). When this manual switch is pressed, the denitration distribution unit 18 sets the first NH 3 injection amount A in1 even when the signal indicating that the denitration catalyst installation unit 9 has deteriorated more than a predetermined value is not input from the catalyst deterioration detection unit 16. It is possible to forcibly rewrite the graph for determination and the graph for predicting the inlet NOx concentration C in to another stored graph.
- the manual switch is pushed, for example, when the second NH 3 injection amount A in2 in the catalytic denitration is not obtained as desired due to a problem such as clogging of the second NH 3 injection portion 8, forcibly, For example, the second NH 3 injection amount A in2 in the catalytic denitration is decreased, and instead the first NH 3 injection amount A in1 in the non-catalytic denitration is increased.
- the sampling inspection of the denitration catalyst installation unit 9 is performed, and when it is determined that the denitration catalyst is deteriorated, the catalyst is forcibly
- the second NH 3 injection amount A in2 in the denitration is decreased, and instead the first NH 3 injection amount A in1 in the non-catalytic denitration is increased.
- the denitration distributor 18 is connected to the first control valve 21 and sends a control signal (a) to the first control valve 21 so that the determined first NH 3 injection amount A in1 is obtained. Further, the denitration distributor 18 is connected to the second control valve 23 and sends a control signal (b) to the second control valve 23 so that the determined second NH 3 injection amount A in2 is obtained.
- denitration distributor 18 the outlet NOx concentration C out input from catalyst outlet NOx concentration meter 13, and checks whether the desired denitration performance is exhibited, it is possible to perform the feedback control Yes.
- FIG. 4 is a flowchart showing the operation of the denitration apparatus shown in FIG.
- the operation of the denitration apparatus 100 is such that the denitration distribution unit 18 determines whether or not a signal indicating that the denitration catalyst has deteriorated more than a predetermined value is input from the catalyst deterioration detection unit 16. It starts from executing the determination (step S101). Whether or not the denitration catalyst has deteriorated more than a predetermined value is determined by the catalyst deterioration detection unit 16 calculating a reaction rate constant K and determining whether or not the reaction rate constant K is below a predetermined threshold value stored in advance. Judge by. The determination by the catalyst deterioration detection unit 16 is performed at a predetermined interval, for example, once a day, and is not performed during other operations.
- step S101 When it is determined in step S101 that no signal is input, the denitration distribution unit 18 performs manual determination of catalyst deterioration progress to determine whether or not the manual switch has been pressed (step S103).
- step S103 if it is determined that it has not been pressed manual switch, the denitration distributor 18, the amount of NH 3 supplied from the NH 3 supply unit 19 to the 1N H 3 injection section 7 and the 2NH 3 injector 8 It is determined that the denitration distribution adjustment for adjusting the NO is unnecessary, and the series of operations of the denitration apparatus 100 ends.
- step S101 determines that a signal has been input, or if it is determined in step S103 that the manual switch has been pressed.
- step S105 determines that denitration distribution adjustment is necessary.
- the denitration efficiency in the catalytic denitration is high. Therefore, in order to actively perform the catalytic denitration, the first NH 3 injection amount A in1 in the non-catalytic denitration is decreased, It is preferable to increase the second NH 3 injection amount A in2 . Therefore, denitration distributor 18, as shown in FIG. 2 (a), by selecting the graph first 1N H 3 injection amount A in1 is small to determine a second 1N H 3 injection amount A in1, a 1N H 3 injection determined the amount a in1 accordance together with transmission control signal (a) to the first control valve 21 to inject NH 3 from the 1N H 3 injection unit 7, as shown in FIG.
- a high inlet NOx concentration C in The graph is selected to predict the inlet NOx concentration C in
- the second NH 3 injection amount A in2 is determined based on the above equation (2)
- the second control valve is determined according to the determined second NH 3 injection amount A in2
- a control signal (b) is transmitted to 23 and NH 3 is injected from the second NH 3 injection section 8.
- the denitration efficiency in the catalytic denitration is lowered. Therefore, the first NH 3 injection amount A in1 in the noncatalytic denitration is also used in order to use noncatalytic denitration. Is increased, and the amount of second NH 3 injection A in2 in catalytic denitration is preferably reduced.
- the denitration distribution unit 18 next displays a graph for determining the first NH 3 injection amount A in1 in accordance with the deterioration of the denitration catalyst, as shown in FIG. As shown in b) and (c), a graph for predicting the inlet NOx concentration C in corresponding to this is rewritten step by step to a graph with a large first NH 3 injection amount A in1 (step S107). , FIG. 3 (b), the (c), the stepwise rewritten inlet NOx concentration C in the lower graph (step S109).
- the series of operations of the denitration apparatus 100 is terminated, and the 1N H 3 injection amount A in1, which is determined based on the rewritten graph, pursuant 2NH 3 injection amount A in2 and a 1N H 3 injection section 7, NH 3 is injected from the second NH 3 injection section 8.
- the load of the boiler 1 and the first NH 3 injection amount A in1 that is the amount of NH 3 injected by non-catalytic denitration are as a first correlation, the denitration distribution unit.
- the first NH 3 injection amount A in1 is controlled according to the load of the boiler 1.
- the load of the boiler 1, and the inlet NOx concentration C in the concentration of NOx in the exhaust gas at the inlet side of the denitration catalyst installation portion 9, stored in advance in the denitration distribution portion 18 as a second correlation the boiler 1 inlet NOx concentration C in is predicted according to the load
- the 2NH 3 injection amount a in2 is the amount of NH 3 to be injected in organic catalyst denitration is controlled according to the inlet NOx concentration C in.
- the inlet NOx concentration Cin is predicted from the second correlation stored in advance, and therefore the catalyst inlet NOx concentration meter 11 is used for determining the deterioration of the denitration catalyst. It can be made to operate only during the other driving. Thereby, deterioration and malfunction of the catalyst inlet NOx concentration meter 11 can be suppressed.
- the denitration distribution unit 18 stores a plurality of first correlations and second correlations according to the type of fuel combusted in the boiler 1, NH is determined according to the type of fuel combusted in the boiler 1.
- the injection amount of 3 can be adjusted even more optimally.
- the denitration distribution unit 18 stores the first correlation and the second correlation as a graph, but instead stores the first correlation and the second correlation as a function. May be.
- the use of the NH 3 as a reducing agent instead of this, may be used urea water.
- the reducing agent to be injected at the 1N H 3 injection section 7 and the 2NH 3 injection unit 8 may be the same, may be different.
- the 1N H 3 injection section 7 is a non-catalytic denitration unit is provided in the first duct D1, may be provided in the boiler 1.
- the 2NH 3 injector 8 and the denitration catalyst installation portion 9 is perforated catalyst denitration means is provided between the heat recovery unit 3 and 4 is not limited to this, flowing exhaust gas It suffices if it is on the downstream side of the first NH 3 injection section 7 which is a non-catalytic denitration means in the direction.
- the present invention it is possible to provide a denitration apparatus and a denitration method that can sufficiently remove NOx even when a catalyst used for catalytic denitration deteriorates.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Treating Waste Gases (AREA)
Abstract
燃焼炉で発生するNOxを含有した排ガスに、還元剤を注入して無触媒脱硝を行う無触媒脱硝手段と、無触媒脱硝を行った排ガスに還元剤を注入し、脱硝触媒を用いて有触媒脱硝を行う有触媒脱硝手段とを備える脱硝装置であって、燃焼炉の負荷と無触媒脱硝手段で注入する還元剤の注入量との相関関係である第1相関関係を予め記憶し、第1相関関係に基づいて無触媒脱硝手段で注入する還元剤の注入量を制御し、且つ、燃焼炉の負荷と脱硝触媒の入口側におけるNOxの濃度である入口NOx濃度との相関関係である第2相関関係を予め記憶し、第2相関関係に基づいて入口NOx濃度を予測し、当該入口NOx濃度に基づいて有触媒脱硝手段で注入する還元剤の注入量を制御する制御手段と、脱硝触媒の劣化を検知する触媒劣化検知手段と、を備え、制御手段は、触媒劣化検知手段により脱硝触媒が劣化したと検知した場合に、脱硝触媒の劣化に応じて第1相関関係及び第2相関関係を書き換えることが可能である。
Description
本発明は、脱硝装置及び脱硝方法に関する。
従来、燃焼炉からの排ガスに含まれる窒素酸化物(NOx)を除去(脱硝)する脱硝装置として、以下の特許文献1に記載の脱硝装置が知られている。この脱硝装置では、燃焼炉である加圧流動層ボイラからの燃焼排ガスにアンモニア(還元剤)を注入し無触媒脱硝を行って低減処理排ガスを得、この低減処理排ガスに更にアンモニアを注入し、脱硝触媒を有する脱硝触媒装置で有触媒脱硝を行って触媒通過排ガスを得、この触媒通過排ガスを煙突から外部に放出している。そして、加圧流動層ボイラの運転負荷と、この運転負荷時の加圧流動層ボイラからの排ガスに含まれるNOxを除去するために必要なアンモニア注入量とを相関させた制御関数をアンモニア注入制御手段に予め設定し、このアンモニア注入制御手段が加圧流動層ボイラからの負荷信号を受けて、上述の制御関数に基づいて上記アンモニア注入量を制御するようになっている。
ところで、上述のような脱硝装置を、燃料を空気と混合させて火炉内を循環させながら燃焼する循環流動層ボイラに適用する場合、循環流動層ボイラでは他の形式のボイラに比して排ガス中に含まれる煤塵の量が多いため、この煤塵が有触媒脱硝に用いる触媒に詰まって、触媒が劣化するおそれがある。また、循環流動層ボイラでは、石炭等の化石燃料以外に、バイオマス、廃プラスチック、廃タイヤ、汚泥、RPF(Refuse Paper & Plastic Fuel)、及びRDF(Refuse Derived Fuel)等の燃料を燃焼することが可能であるが、これらの燃料には、鉛や亜鉛等の重金属類、ナトリウム、カリウム、及びリン等が含まれており、これらの物質が触媒を劣化させるおそれがある。
このように、触媒が劣化すると、有触媒脱硝におけるNOxの除去効率が低下するため、上述の脱硝装置のようにボイラの負荷とアンモニア注入量とを相関させた制御関数を用いてアンモニア注入量を制御しても、所望通りにNOxを十分除去できない。
本発明は、このような課題を解決するためになされたものであり、有触媒脱硝に用いる触媒が劣化しても、十分にNOxを除去することができる脱硝装置及び脱硝方法を提供することを目的とする。
本発明の一側面の脱硝装置は、燃焼炉で発生するNOxを含有した排ガスに、還元剤を注入して無触媒脱硝を行う無触媒脱硝手段と、無触媒脱硝を行った排ガスに還元剤を注入し、脱硝触媒を用いて有触媒脱硝を行う有触媒脱硝手段とを備える脱硝装置であって、燃焼炉の負荷と無触媒脱硝手段で注入する還元剤の注入量との相関関係である第1相関関係を予め記憶し、第1相関関係に基づいて無触媒脱硝手段で注入する還元剤の注入量を制御し、且つ、燃焼炉の負荷と脱硝触媒の入口側におけるNOxの濃度である入口NOx濃度との相関関係である第2相関関係を予め記憶し、第2相関関係に基づいて入口NOx濃度を予測し、当該入口NOx濃度に基づいて有触媒脱硝手段で注入する還元剤の注入量を制御する制御手段と、脱硝触媒の劣化を検知する触媒劣化検知手段とを備え、制御手段は、触媒劣化検知手段により脱硝触媒が劣化したと検知した場合に、脱硝触媒の劣化に応じて第1相関関係及び第2相関関係を書き換えることが可能であることを特徴とする。
また、本発明の一側面の脱硝方法は、燃焼炉で発生するNOxを含有した排ガスに、還元剤を注入して無触媒脱硝を行い、無触媒脱硝を行った排ガスに還元剤を注入し、脱硝触媒を用いて有触媒脱硝を行う脱硝方法であって、燃焼炉の負荷と無触媒脱硝で注入する還元剤の注入量との相関関係である第1相関関係を予め記憶し、第1相関関係に基づいて無触媒脱硝で注入する還元剤の注入量を制御し、且つ、燃焼炉の負荷と脱硝触媒の入口側におけるNOxの濃度である入口NOx濃度との相関関係である第2相関関係を予め記憶し、第2相関関係に基づいて入口NOx濃度を予測し、当該入口NOx濃度に基づいて有触媒脱硝で注入する還元剤の注入量を制御し、脱硝触媒が劣化したと検知した場合に、脱硝触媒の劣化に応じて第1相関関係及び第2相関関係を書き換えることを特徴とする。
本発明では、燃焼炉の負荷と無触媒脱硝で注入する還元剤の量とが第1相関関係として予め記憶され、燃焼炉の負荷に応じて無触媒脱硝手段で注入する還元剤の量が制御される。また、燃焼炉の負荷と入口NOx濃度とが第2相関関係として予め記憶され、燃焼炉の負荷から入口NOx濃度が予測され、この入口NOx濃度に応じて有触媒脱硝で注入する還元剤の量が制御される。そして、脱硝触媒が劣化したと検知した場合には、脱硝触媒の劣化に応じて第1相関関係及び第2相関関係が書き換えられて還元剤の注入量を最適に調整でき、従って、有触媒脱硝に用いる触媒が劣化しても、十分にNOxを除去することができる。
ここで、制御手段は、燃焼炉で燃焼する燃料の種類に応じて、第1相関関係及び第2相関関係を複数記憶することが可能であってもよい。こうすると、燃焼炉で燃焼する燃料の種類に応じて、還元剤の注入量を一層最適に調整することができる。
本発明によれば、有触媒脱硝に用いる触媒が劣化しても、十分にNOxを除去することができる脱硝装置及び脱硝方法を提供することができる。
以下、図面を参照しつつ本発明の脱硝装置及び脱硝方法の好適な実施形態について詳細に説明する。
図1は、本発明の実施形態に係る脱硝方法を適用した脱硝装置を示す構成図である。図1に示すように、脱硝装置100は、ここでは循環流動層ボイラであるボイラ(燃焼炉)1を備えるプラントPに設けられるものであり、ボイラ1からの排ガスに含まれる窒素酸化物(NOx)を除去するための装置である。
プラントPでは、先ず、ボイラ1で、石炭等の化石燃料の他、バイオマス、廃プラスチック、廃タイヤ、汚泥、RPF、及びRDF等の燃料が、ボイラ1内に給気された空気と混合されて、ボイラ1内を循環しながら燃焼され、この燃焼により煤塵等の固体粒子やNOxを含有する排ガスが発生し、この排ガスがボイラ1の上部に接続された第1ダクトD1からサイクロン2に送られる。サイクロン2では、遠心分離による固気分離により、排ガスから固体粒子が分離され、固気分離された固体粒子は、サイクロン2の下部から配管を通じてボイラ1に戻され、一方、固体粒子が分離された排ガスは、サイクロン2の上部から配管を通じて熱回収部3,4に送られる。熱回収部3,4では、排ガスから熱が回収され、熱回収後の排ガスは第2ダクトD2を通じて排ガス浄化装置5に送られる。排ガス浄化装置5では、排ガスに未だ同伴している飛灰等の微細な固体粒子が除去されると共に排ガスの脱硫が行われて排ガスが浄化され、この浄化済みの排ガスが煙突6を通じて外部に放出される。
このようなプラントPに設けられる脱硝装置100は、第1NH3(アンモニア)注入部7、第2NH3注入部8、脱硝触媒設置部9、触媒入口O2濃度計10、触媒入口NOx濃度計11、触媒出口O2濃度計12、触媒出口NOx濃度計13、触媒出口NH3濃度計14、排ガス流量算出部15、触媒劣化検知部16、ボイラ運転部17、及び脱硝分配部18を備えている。
第1NH3注入部7は、ボイラ1で発生するNOxを含有した排ガスに還元剤(ここでは、NH3)を注入して無触媒脱硝を行う無触媒脱硝手段として機能するものであり、ボイラ1とサイクロン2との間の第1ダクトD1にNH3を注入するように設けられている。なお、無触媒脱硝は、例えば、排ガスの温度が700~1100℃程度の領域で行われる。
第2NH3注入部8は、第1ダクトD1で無触媒脱硝を行った排ガスにNH3を注入するものであり、熱回収部3,4の間にNH3を注入するように設けられている。また、脱硝触媒設置部9は、第2NH3注入部8からアンモニアが注入された排ガスを、設置した脱硝触媒に通過させてNOxを除去するためのものであり、第2NH3注入部8と熱回収部4との間に配置されている。このように、第2NH3注入部8と脱硝触媒設置部9とが、第1NH3注入部7で無触媒脱硝を行った排ガスにNH3を注入し、その後、脱硝触媒を用いて有触媒脱硝を行う有触媒脱硝手段として機能する。ここで、脱硝触媒としては、例えば、セラミックにバナジウムを担持させたものが用いられる。また、脱硝触媒の表面積である触媒表面積S(m2)は、プラントPの運転条件により決まる固定値であり、触媒劣化検知部16に予め記憶されている。なお、有触媒脱硝は、例えば、排ガスの温度が200~400℃程度の領域で行われる。
第1NH3注入部7及び第2NH3注入部8には、これらにNH3を供給するためのNH3供給部19が接続されている。第1NH3注入部7とNH3供給部19とを接続する配管には、第1NH3注入部7に供給されるNH3の量である第1NH3注入量Ain1(Nm3/h)を測定する第1NH3流量計20と、第1NH3注入部7に供給されるNH3の量を調節する第1調節弁21とが設けられている。
第2NH3注入部8とNH3供給部19とを接続する配管には、第2NH3注入部8に供給されるNH3の量である第2NH3注入量Ain2(Nm3/h)を測定する第2NH3流量計22と、第2NH3注入部8に供給されるNH3の量を調節する第2調節弁23とが設けられている。
触媒入口O2濃度計10は、第2NH3注入部8と脱硝触媒設置部9との間に配置され、脱硝触媒設置部9の入口側における排ガス中のO2の濃度である入口O2濃度Bin(%)を測定するものである。この触媒入口O2濃度計10は、触媒劣化検知部16と接続されており、測定された入口O2濃度Binを触媒劣化検知部16に出力する。
触媒入口NOx濃度計11は、第2NH3注入部8と脱硝触媒設置部9との間に配置され、脱硝触媒設置部9の入口側における排ガス中のNOxの濃度である入口NOx濃度Cin(ppm)を測定するものである。この触媒入口NOx濃度計11は、触媒劣化検知部16と接続されており、測定された入口NOx濃度Cinを触媒劣化検知部16に出力する。
ここで、脱硝触媒設置部9の入口側に配置される上述の触媒入口O2濃度計10及び触媒入口NOx濃度計11は、排ガスに未だ同伴している飛灰等の微細な固体粒子により劣化や不具合を生じるおそれがあるため、間欠的に動作させることが好ましい。そのため、本実施形態においては、触媒入口O2濃度計10及び触媒入口NOx濃度計11は、詳しくは後述する触媒劣化検知部16による脱硝触媒の劣化の判定時にのみ動作し、それ以外の運転時には動作しないようにしている。
触媒出口O2濃度計12は、第2ダクトD2に配置され、脱硝触媒設置部9の出口側における排ガス中のO2の濃度である出口O2濃度Bout(%)を測定するものである。この触媒出口O2濃度計12は、触媒劣化検知部16と接続されており、測定された出口O2濃度Boutを触媒劣化検知部16に出力する。
触媒出口NOx濃度計13は、第2ダクトD2に配置され、脱硝触媒設置部9の出口側における排ガス中のNOxの濃度である出口NOx濃度Cout(ppm)を測定するものである。この触媒出口NOx濃度計13は、触媒劣化検知部16と接続されており、測定された出口NOx濃度Coutを触媒劣化検知部16に出力する。また、触媒出口NOx濃度計13は、脱硝分配部18と接続されており、測定された出口NOx濃度Coutを脱硝分配部18に出力する。
触媒出口NH3濃度計14は、第2ダクトD2に配置され、脱硝触媒設置部9の出口側における排ガス中のNH3の濃度である出口NH3濃度Aout(ppm)を測定するものである。この触媒出口NH3濃度計14は、触媒劣化検知部16と接続されており、測定された出口NH3濃度Aoutを触媒劣化検知部16に出力する。
排ガス流量算出部15は、第1ダクトD1を通過する排ガスの流量である排ガス量G(Nm3/h)を算出するものであり、触媒劣化検知部16に接続され、算出した排ガス量Gを触媒劣化検知部16に出力する。なお、排ガス流量算出部15が排ガス量Gを算出する方法としては、第1ダクトD1に流量計を設置してこの流量計により測定される値を用いて算出する方法、ボイラ1の負荷から算出する方法、及び、ボイラ1で燃焼する燃料の量から算出する方法等が用いられる。
触媒劣化検知部16は、脱硝触媒が所定以上に劣化したか否かを検知する触媒劣化検知手段として機能するものであり、CPU(Central Processing Unit)、ROM(Read Only Memory)、及びRAM(Random Access Memory)等からなる電子制御ユニットで構成されている。この触媒劣化検知部16は、入力された各種の値を用いて、下記式(1)で表される反応速度定数Kを算出する。そして、触媒劣化検知部16は、反応速度定数Kが予め記憶されている所定の閾値を下回っているか否かを判定することにより、脱硝触媒が所定以上に劣化したか否かを判定して脱硝触媒の劣化を検知する。
ここで、AV(Nm/h)は面積速度、Effは脱硝効率、αはモル比を表している。また、Cin6%、Cout6%、Aout6%は、脱硝触媒設置部9の入口側及び出口側の酸素濃度であるBin及びBoutを用いて、同じ酸素濃度下(ここでは6%)における濃度に換算した値である。
この触媒劣化検知部16は、脱硝分配部18と接続されており、脱硝触媒が所定以上に劣化したと検知した場合に、その旨の信号を脱硝分配部18に出力する。
ボイラ運転部17は、ボイラ1の運転を制御するためのものであり、触媒劣化検知部16と同様に、電子制御ユニットで構成されている。このボイラ運転部17は、脱硝分配部18と接続されており、ボイラ1の負荷やボイラ1で燃焼する燃料の種類といった情報を脱硝分配部18に出力する。なお、ボイラ1の負荷は、例えば、ボイラ1で燃焼する燃料の量から決定することができる。
脱硝分配部18は、NH3供給部19から第1NH3注入部7及び第2NH3注入部8に供給されるNH3の量を決定し制御する制御手段として機能するものであり、触媒劣化検知部16と同様に、電子制御ユニットで構成されている。
図2は第1相関関係を示すグラフ、図3は第2相関関係を示すグラフである。脱硝分配部18は、図2に示すような、ボイラ1の負荷(横軸)と第1NH3注入量Ain1(縦軸)との相関関係である第1相関関係を示すグラフを記憶している。この第1相関関係を示すグラフは、脱硝触媒の劣化の程度及びボイラ1で燃焼する燃料の種類に応じて、複数記憶されている。これにより、脱硝分配部18は、脱硝触媒の劣化の程度及びボイラ1で燃焼する燃料の種類に応じて、ボイラ運転部17から入力されたボイラ1の負荷の情報を基に、第1NH3注入部7に供給する第1NH3注入量Ain1を決定する(詳しくは後述)。
ここで、決定された第1NH3注入量Ain1に従って、NH3を第1NH3注入部7に供給した場合に、無触媒脱硝を行った排ガスに残留するNOxの濃度(入口NOx濃度Cin)は、例えば、プラントPの試運転時に測定し記憶しておくことで、その後は予測することが可能である。すなわち、ボイラ1の負荷を基に第1NH3注入量Ain1を決定すると同時に、その時の入口NOx濃度Cinを予測することが可能である。
そこで、脱硝分配部18は、入口NOx濃度Cinを予測すべく、図3に示すような、ボイラ1の負荷(横軸)と入口NOx濃度Cin(縦軸)との相関関係である第2相関関係を示すグラフを記憶している。この第2相関関係を示すグラフは、上述のように、例えば、プラントPの試運転時の測定結果から作成することが可能である。また、この第2相関関係を示すグラフは、第1相関関係を示すグラフに対応して、脱硝触媒の劣化の程度及びボイラ1で燃焼する燃料の種類に応じ複数記憶されている。これにより、脱硝分配部18は、脱硝触媒の劣化の程度及びボイラ1で燃焼する燃料の種類に応じて、ボイラ運転部17から入力されたボイラ1の負荷の情報を基に、入口NOx濃度Cinを予測する(詳しくは後述)。
ここで、Ctargetは、有触媒脱硝後における目標のNOxの濃度である脱硝目標NOx濃度(ppm)を表している。
脱硝分配部18は、触媒劣化検知部16から脱硝触媒設置部9が所定以上に劣化した旨の信号を入力された場合に、第1NH3注入量Ain1を決定するためのグラフ、及び、入口NOx濃度Cinを予測するためのグラフを、記憶されている他のグラフに書き換えることが可能となっている(詳しくは後述)。
脱硝分配部18には、図示しない手動スイッチが設けられている。この手動スイッチが押されると、脱硝分配部18は、触媒劣化検知部16から脱硝触媒設置部9が所定以上に劣化した旨の信号を入力していない場合でも、第1NH3注入量Ain1を決定するためのグラフ、及び、入口NOx濃度Cinを予測するためのグラフを、記憶されている他のグラフに強制的に書き換えることが可能となっている。
手動スイッチが押される場合としては、例えば、第2NH3注入部8が詰まった等の不具合により、有触媒脱硝における第2NH3注入量Ain2が所望通りに得られないときに、強制的に、有触媒脱硝における第2NH3注入量Ain2を減らして、代わりに、無触媒脱硝における第1NH3注入量Ain1を増やす場合等が挙げられる。また、例えば、プラントPの定期検査時等にプラントPを停止させて、脱硝触媒設置部9の抜き取り検査を行い、脱硝触媒が劣化していると判断されたときに、強制的に、有触媒脱硝における第2NH3注入量Ain2を減らして、代わりに、無触媒脱硝における第1NH3注入量Ain1を増やす場合等が挙げられる。
脱硝分配部18は、第1調節弁21と接続されており、決定された第1NH3注入量Ain1が得られるように、第1調節弁21に制御信号(a)を送る。また、脱硝分配部18は、第2調節弁23と接続されており、決定された第2NH3注入量Ain2が得られるように、第2調節弁23に制御信号(b)を送る。
なお、脱硝分配部18は、触媒出口NOx濃度計13から入力された出口NOx濃度Coutにより、所望の脱硝性能が発揮されているか否かを確認し、フィードバック制御を行うことが可能となっている。
次に、脱硝装置100の動作について説明する。
図4は、図1に示す脱硝装置の動作を示すフローチャートである。
図4に示すように、脱硝装置100の動作は、脱硝分配部18が、触媒劣化検知部16から脱硝触媒が所定以上に劣化した旨の信号を入力されたか否かを判定する触媒劣化進行自動判定を実行することから始まる(ステップS101)。脱硝触媒が所定以上に劣化したか否かは、触媒劣化検知部16が反応速度定数Kを算出し、この反応速度定数Kが予め記憶されている所定の閾値を下回っているか否かを判定することにより判定する。この触媒劣化検知部16による判定は、所定の間隔、例えば1日1回程度の頻度で行われ、それ以外の運転時には行われない。
ステップS101にて、信号を入力していないと判定した場合、脱硝分配部18は、手動スイッチが押されたか否かを判定する触媒劣化進行手動判定を実行する(ステップS103)。
ステップS103にて、手動スイッチが押されていないと判定した場合、脱硝分配部18は、NH3供給部19から第1NH3注入部7及び第2NH3注入部8に供給されるNH3の量を調整する脱硝分配調整は不要と判断し、脱硝装置100の一連の動作は終了する。
一方、ステップS101にて信号を入力されたと判定した場合、又は、ステップS103にて手動スイッチが押されたと判定した場合には、脱硝分配部18は、脱硝分配調整が必要と判断する(ステップS105)。
ここで、脱硝触媒の劣化が少ない場合、有触媒脱硝における脱硝効率は高いため、有触媒脱硝を積極的に行うべく、無触媒脱硝における第1NH3注入量Ain1を少なくし、有触媒脱硝における第2NH3注入量Ain2を多くした方が好ましい。そこで、脱硝分配部18は、図2(a)に示すような、第1NH3注入量Ain1が少ないグラフを選択して第1NH3注入量Ain1を決定し、決定された第1NH3注入量Ain1に従って第1調節弁21に制御信号(a)を送信して第1NH3注入部7からNH3を注入する共に、図3(a)に示すような、入口NOx濃度Cinが高いグラフを選択して入口NOx濃度Cinを予測し、上述の式(2)に基づいて、第2NH3注入量Ain2を決定し、決定された第2NH3注入量Ain2に従って第2調節弁23に制御信号(b)を送信して第2NH3注入部8からNH3を注入する。
その後、プラントPの運転により、脱硝触媒が劣化してきた場合には、有触媒脱硝における脱硝効率は低下してくるため、無触媒脱硝も利用すべく、無触媒脱硝における第1NH3注入量Ain1を増やし、有触媒脱硝における第2NH3注入量Ain2を減らした方が好ましい。
そこで、ステップS105にて脱硝分配調整が必要と判断すると、脱硝分配部18は、次に、脱硝触媒の劣化に応じて、第1NH3注入量Ain1を決定するためのグラフを、図2(b),(c)に示すように、第1NH3注入量Ain1が多いグラフに段階的に書き換え(ステップS107)、これと対応するように、入口NOx濃度Cinを予測するためのグラフを、図3(b),(c)に示すように、入口NOx濃度Cinが低いグラフに段階的に書き換える(ステップS109)。そして、脱硝装置100の一連の動作は終了し、書き換えたグラフに基づいて決定された第1NH3注入量Ain1、及び、第2NH3注入量Ain2に従って、第1NH3注入部7、及び、第2NH3注入部8からNH3を注入する。
このように、本実施形態に係る脱硝装置100では、ボイラ1の負荷と、無触媒脱硝で注入するNH3の量である第1NH3注入量Ain1とが、第1相関関係として脱硝分配部18に予め記憶され、ボイラ1の負荷に応じて第1NH3注入量Ain1が制御される。また、ボイラ1の負荷と、脱硝触媒設置部9の入口側における排ガス中のNOxの濃度である入口NOx濃度Cinとが、第2相関関係として脱硝分配部18に予め記憶され、ボイラ1の負荷に応じて入口NOx濃度Cinが予測され、この入口NOx濃度Cinに応じて有触媒脱硝で注入するNH3の量である第2NH3注入量Ain2が制御される。そして、脱硝触媒が劣化したと検知された場合には、脱硝触媒の劣化に応じて第1相関関係及び第2相関関係が書き換えられ、これにより、NH3の注入量を最適に調整でき、従って、有触媒脱硝に用いる脱硝触媒が劣化しても、十分にNOxを除去することができる。
また、このように、本実施形態に係る脱硝装置100では、予め記憶された第2相関関係から入口NOx濃度Cinが予測されるため、触媒入口NOx濃度計11を脱硝触媒の劣化の判定時にのみ動作させ、それ以外の運転時には動作させないようにすることができる。これにより、触媒入口NOx濃度計11の劣化や不具合を抑制することができる。
また、脱硝分配部18は、ボイラ1で燃焼する燃料の種類に応じて、第1相関関係及び第2相関関係を複数記憶しているため、ボイラ1で燃焼する燃料の種類に応じて、NH3の注入量をより一層最適に調整することができる。
以上、本発明の脱硝装置及び脱硝方法に係る実施形態について説明したが、本発明は上記実施形態に限定されない。例えば、上記実施形態では、脱硝分配部18は、第1相関関係及び第2相関関係をグラフとして記憶しているが、これに代えて、第1相関関係及び第2相関関係を関数として記憶していても良い。
また、上記実施形態では、還元剤としてNH3を使用しているが、これに代えて、尿素水を使用しても良い。さらに、第1NH3注入部7及び第2NH3注入部8で注入する還元剤は、同一のものであっても良いし、異なるものであっても良い。
また、上記実施形態では、無触媒脱硝手段である第1NH3注入部7は、第1ダクトD1に設けられているが、ボイラ1に設けられても良い。さらに、上記実施形態では、有触媒脱硝手段である第2NH3注入部8及び脱硝触媒設置部9は、熱回収部3,4の間に設けられているが、これに限らず、排ガスの流れる方向において無触媒脱硝手段である第1NH3注入部7の下流側にあれば良い。
本発明によれば、有触媒脱硝に用いる触媒が劣化しても、十分にNOxを除去することができる脱硝装置及び脱硝方法を提供することが可能となる。
1…ボイラ(燃焼炉)、7…第1NH3注入部(無触媒脱硝手段)、8…第2NH3注入部(有触媒脱硝手段)、9…脱硝触媒設置部(有触媒脱硝手段)、16…触媒劣化検知部(触媒劣化検知手段)、18…脱硝分配部(制御手段)、100…脱硝装置。
Claims (3)
- 燃焼炉で発生するNOxを含有した排ガスに、還元剤を注入して無触媒脱硝を行う無触媒脱硝手段と、前記無触媒脱硝を行った排ガスに還元剤を注入し、脱硝触媒を用いて有触媒脱硝を行う有触媒脱硝手段とを備える脱硝装置であって、
前記燃焼炉の負荷と前記無触媒脱硝手段で注入する還元剤の注入量との相関関係である第1相関関係を予め記憶し、前記第1相関関係に基づいて前記無触媒脱硝手段で注入する還元剤の注入量を制御し、且つ、前記燃焼炉の負荷と前記脱硝触媒の入口側におけるNOxの濃度である入口NOx濃度との相関関係である第2相関関係を予め記憶し、前記第2相関関係に基づいて入口NOx濃度を予測し、当該入口NOx濃度に基づいて前記有触媒脱硝手段で注入する還元剤の注入量を制御する制御手段と、
前記脱硝触媒の劣化を検知する触媒劣化検知手段と、を備え、
前記制御手段は、前記触媒劣化検知手段により前記脱硝触媒が劣化したと検知した場合に、前記脱硝触媒の劣化に応じて前記第1相関関係及び前記第2相関関係を書き換えることが可能であること、
を特徴とする脱硝装置。 - 前記制御手段は、前記燃焼炉で燃焼する燃料の種類に応じて、前記第1相関関係及び前記第2相関関係を複数記憶することが可能であることを特徴とする請求項1に記載の脱硝装置。
- 燃焼炉で発生するNOxを含有した排ガスに、還元剤を注入して無触媒脱硝を行い、前記無触媒脱硝を行った排ガスに還元剤を注入し、脱硝触媒を用いて有触媒脱硝を行う脱硝方法であって、
前記燃焼炉の負荷と前記無触媒脱硝で注入する還元剤の注入量との相関関係である第1相関関係を予め記憶し、前記第1相関関係に基づいて前記無触媒脱硝で注入する還元剤の注入量を制御し、且つ、前記燃焼炉の負荷と前記脱硝触媒の入口側におけるNOxの濃度である入口NOx濃度との相関関係である第2相関関係を予め記憶し、前記第2相関関係に基づいて入口NOx濃度を予測し、当該入口NOx濃度に基づいて前記有触媒脱硝で注入する還元剤の注入量を制御し、
前記脱硝触媒が劣化したと検知した場合に、前記脱硝触媒の劣化に応じて前記第1相関関係及び前記第2相関関係を書き換えること、
を特徴とする脱硝方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020137027020A KR101470784B1 (ko) | 2011-05-18 | 2012-04-24 | 탈초장치 및 탈초방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011111472A JP5575701B2 (ja) | 2011-05-18 | 2011-05-18 | 脱硝装置及び脱硝方法 |
JP2011-111472 | 2011-05-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012157413A1 true WO2012157413A1 (ja) | 2012-11-22 |
Family
ID=47176749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/060986 WO2012157413A1 (ja) | 2011-05-18 | 2012-04-24 | 脱硝装置及び脱硝方法 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5575701B2 (ja) |
KR (1) | KR101470784B1 (ja) |
MY (1) | MY165561A (ja) |
WO (1) | WO2012157413A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111514726B (zh) * | 2019-02-02 | 2024-01-26 | 广东万引科技发展有限公司 | 一种新型干法水泥窑用复合生物质脱硝剂、其使用方法以及脱硝系统 |
CN111636934B (zh) | 2020-05-24 | 2021-03-16 | 西安交通大学 | 一种高效清洁高变负荷速率燃煤发电系统及运行方法 |
CN112651166B (zh) * | 2020-11-24 | 2023-03-28 | 呼和浩特科林热电有限责任公司 | 脱硝系统入口氮氧化物浓度预测方法、装置及脱硝系统 |
CN114558434A (zh) * | 2022-03-04 | 2022-05-31 | 广东瑞星环境科技有限公司 | 一种针对生物质锅炉烟气超净排放协同处理的方法及设备 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1119469A (ja) * | 1997-06-30 | 1999-01-26 | Babcock Hitachi Kk | 脱硝反応器のアンモニア注入制御装置 |
JPH11235516A (ja) * | 1998-02-24 | 1999-08-31 | Chugoku Electric Power Co Inc:The | 排ガスの脱硝装置 |
JP2000237536A (ja) * | 1998-12-21 | 2000-09-05 | Nkk Corp | 焼却炉の排ガス脱硝装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05103951A (ja) * | 1991-10-14 | 1993-04-27 | Ebara Corp | 排ガス脱硝方法及びその装置 |
TWI276461B (en) * | 2002-06-14 | 2007-03-21 | Chugoku Electric Power | NOx removal catalyst management unit for NOx removal apparatus and method for managing NOx removal catalyst |
-
2011
- 2011-05-18 JP JP2011111472A patent/JP5575701B2/ja active Active
-
2012
- 2012-04-24 KR KR1020137027020A patent/KR101470784B1/ko active IP Right Grant
- 2012-04-24 MY MYPI2013004146A patent/MY165561A/en unknown
- 2012-04-24 WO PCT/JP2012/060986 patent/WO2012157413A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1119469A (ja) * | 1997-06-30 | 1999-01-26 | Babcock Hitachi Kk | 脱硝反応器のアンモニア注入制御装置 |
JPH11235516A (ja) * | 1998-02-24 | 1999-08-31 | Chugoku Electric Power Co Inc:The | 排ガスの脱硝装置 |
JP2000237536A (ja) * | 1998-12-21 | 2000-09-05 | Nkk Corp | 焼却炉の排ガス脱硝装置 |
Also Published As
Publication number | Publication date |
---|---|
KR101470784B1 (ko) | 2014-12-08 |
JP5575701B2 (ja) | 2014-08-20 |
KR20130133291A (ko) | 2013-12-06 |
JP2012239970A (ja) | 2012-12-10 |
MY165561A (en) | 2018-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5297215B2 (ja) | 排ガス浄化装置 | |
US7712306B2 (en) | Dynamic control of selective non-catalytic reduction system for semi-batch-fed stoker-based municipal solid waste combustion | |
JP6254012B2 (ja) | 排ガス処理システム及び排ガス処理方法 | |
JP5302597B2 (ja) | 排ガス処理装置及び排ガス処理方法 | |
TWI450755B (zh) | 控制選擇性催化還原設備之操作之方法 | |
JP2009052440A (ja) | 舶用排ガス処理装置 | |
WO2012157413A1 (ja) | 脱硝装置及び脱硝方法 | |
WO2004023040A1 (ja) | 排煙処理システム | |
JP2007245074A (ja) | 排ガス処理装置 | |
TW201233432A (en) | System and method of managing energy utilized in a flue gas processing system | |
JP5276460B2 (ja) | 排ガス浄化装置 | |
JP5442411B2 (ja) | 排ガス処理装置、燃焼炉、及び排ガス処理方法 | |
JP5758181B2 (ja) | 乾式脱硫方法及び装置 | |
CN112105442B (zh) | 废气汞去除系统 | |
US20100021363A1 (en) | SYSTEM AND METHOD OF PROTECTING A NOx REDUCING CATALYST | |
JP6413034B1 (ja) | バイオガス燃焼機関を併設した焼却炉の燃焼制御方法 | |
KR101727257B1 (ko) | 보일러 설비 및 이의 운전 방법 | |
JP2012130854A (ja) | 排ガス処理装置 | |
JPH06218229A (ja) | 排煙浄化剤の供給制御方法および装置 | |
JP6916854B2 (ja) | 廃棄物焼却設備の脱硝及び腐食低減方法 | |
FR3004539A1 (fr) | Procede de controle d'un reacteur de denitrification catalytique de fumees | |
CN111346510A (zh) | 一种气体净化系统和气体净化方法 | |
JP2020020503A (ja) | 廃棄物焼却設備の脱硝及び腐食低減方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12785287 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20137027020 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12785287 Country of ref document: EP Kind code of ref document: A1 |