WO2012155829A1 - 一种极化继电器的磁路结构 - Google Patents

一种极化继电器的磁路结构 Download PDF

Info

Publication number
WO2012155829A1
WO2012155829A1 PCT/CN2012/075546 CN2012075546W WO2012155829A1 WO 2012155829 A1 WO2012155829 A1 WO 2012155829A1 CN 2012075546 W CN2012075546 W CN 2012075546W WO 2012155829 A1 WO2012155829 A1 WO 2012155829A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnet
magnetic steel
yoke
yokes
Prior art date
Application number
PCT/CN2012/075546
Other languages
English (en)
French (fr)
Inventor
陈永兵
刘振照
Original Assignee
厦门宏发电声股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2011201654781U external-priority patent/CN202094053U/zh
Priority claimed from CN201110131491.XA external-priority patent/CN102208305B/zh
Application filed by 厦门宏发电声股份有限公司 filed Critical 厦门宏发电声股份有限公司
Priority to DE112012002161.4T priority Critical patent/DE112012002161B4/de
Publication of WO2012155829A1 publication Critical patent/WO2012155829A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/22Polarised relays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/163Details concerning air-gaps, e.g. anti-remanence, damping, anti-corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/18Movable parts of magnetic circuits, e.g. armature
    • H01H50/30Mechanical arrangements for preventing or damping vibration or shock, e.g. by balancing of armature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/36Stationary parts of magnetic circuit, e.g. yoke
    • H01H50/40Branched or multiple-limb main magnetic circuits

Definitions

  • the present invention relates to a relay, and more particularly to a magnetic circuit structure of a polarization relay.
  • a polarization relay is a DC relay whose state changes depending on the polarity of the input amount (excitation amount). For a symmetric or asymmetric contact structure of a polarization relay, it is necessary to match a symmetric magnetic circuit structure or an asymmetric magnetic circuit structure.
  • FIG. 1 and FIG. 2 An asymmetric magnetic circuit structure of a conventional polarization relay is shown in FIG. 1 and FIG. 2.
  • the magnetic circuit structure includes a yoke 1', a magnetic isolation piece 2' and an armature portion, wherein the armature portion includes a magnetic steel 31. ', two armatures are the armature 32', the armature 33' and a push block 34'.
  • the magnetic steel 31' is fixed in the middle of the two armatures 32', 33', and is in a magnetic circuit symmetrical position in the magnetic circuit. Therefore, for products of the asymmetric contact form, the biasing mode is adopted in the yoke and the armature head. The intersection of the parts is welded to the stainless steel piece 4'.
  • the stainless steel piece 4' can be welded to the yoke 1' or welded to the armature 32' or the armature 33'. In this way of welding, there is a need to put into the welding equipment. And the welding process is poor and other shortcomings.
  • the magnetic steel of the magnetic circuit structure has a large volume, and the disadvantages are as follows: first, the cost is increased, and secondly, the magnetic resistance of the magnetic circuit is increased, which affects the efficiency of exciting the magnetic circuit of the coil. At the same time, since the magnetic steel 31' is fixed on the armature, the magnetic steel 31' and the armature move once, resulting in a large mass of the entire moving part, and thus the impact vibration resistance is poor.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a magnetic circuit structure of a polarization relay, which is an asymmetric way of realizing a magnetic circuit by combining magnetic steel bias and magnetic air leakage.
  • a magnetic circuit structure of a polarization relay comprising a magnetic steel, a yoke, a magnetic isolation piece and an armature provided with a coil externally;
  • the yoke is two pieces, which are arranged side by side in parallel Provided; one end of the armature is rotatably mounted between one ends of the upper portions of the two yokes through the magnetic shield, and the other end of the armature is swingably disposed between the other ends of the upper portions of the two yokes;
  • the magnetic steel is in the shape of a sheet; The magnetic steel is located between the lower portions of the two yokes;
  • the magnetic circuit structure further comprises one or two magnet pieces, one or two pieces of magnet pieces are inserted in the gap between the magnetic steel and the yoke on one side or both sides of the magnetic steel, so that the magnetic steel is in two pieces The offset position or the intermediate position of the gap between the yokes; the two sides of the inserted magnet pieces are respectively connected to one side of the magnetic steel and one side of the corresponding yoke.
  • the yoke has a U-shaped shape; the two U-shaped yokes are arranged side by side in parallel; one end of the armature is rotatably mounted between the heads of the two yokes through the magnetic shield, and the other end of the armature can be oscillated It is placed between the other ends of the two yokes.
  • the magnet piece is one piece, and the piece of magnet piece is inserted into a gap between the magnetic steel on the side of the magnetic steel and the yoke, so that the magnetic steel is at an offset position of the gap between the two yokes.
  • One side of the magnet piece is in contact with one side of one of the yokes, the other side of the magnet piece is in contact with one side of the magnet, and the other side of the magnet is in contact with one side of the other of the yokes.
  • the length of the magnet piece is greater than or equal to the length of the magnet.
  • the magnet piece is one piece, and the piece of magnet piece is inserted into a gap between the magnetic steel on the side of the magnetic steel and the yoke, so that the magnetic steel is at an offset position of the gap between the two yokes.
  • One side of the magnet piece is provided with a plurality of tenons, the tenon of the magnet piece is connected to one side of one of the yokes, and the other side of the magnet piece is connected to one side of the magnetic steel, and the other side of the magnetic steel is One side of the other yoke is joined.
  • the length of the magnet piece containing the tenon is greater than or equal to the length dimension of the magnet.
  • the magnet pieces are two pieces, and the thicknesses of the two pieces of the magnet pieces are the same.
  • the two pieces of the magnet pieces are respectively inserted into the gap between the magnetic steel and the yoke on both sides of the magnetic steel, so that the magnetic steel is in the gap.
  • An intermediate position of the gap between the two yokes; one side of one of the magnet pieces is in contact with one side of one of the yokes, and the other side of the piece of magnet is connected to one side of the magnetic steel, and the other side of the magnetic steel
  • the other side of the other piece of the magnet piece is in contact with one side of the other piece of the yoke.
  • the two magnet pieces are the same in shape and size; the length of the magnet piece is greater than or equal to the length of the magnet.
  • the magnetic circuit structure of a polarization relay of the present invention the magnetic steel adopts a sheet shape, and can realize the asymmetric magnetic circuit structure by means of the positional deviation of the magnetic steel and the magnetic flux leakage of the magnetic circuit by using the magnetic conductive piece.
  • the magnetic steel is a thin-film structure, which can reduce its volume, reduce the cost, reduce the magnetic resistance of the magnetic circuit, and improve the efficiency of the magnetic circuit of the coil excitation.
  • the size of the magnet piece is longer than that of the magnetic steel, forming a certain offset magnetic flux leakage, and enhancing the degree of asymmetry of the magnetic circuit.
  • the magnetic circuit structure magnetic circuit structure of a polarization relay of the present invention comprises a bridge magnetic circuit composed of two yokes, a magnetic steel, a magnet guide piece and an armature.
  • the two non-working air gaps of the bridge magnetic circuit are provided with magnetic spacers to form a double working gap magnetic circuit.
  • the armature is the action part of the magnetic circuit, and its rotating shaft is on the non-working air gap side. Since the magnetic steel is not on the armature, the armature component is light in weight, and the impact vibration resistance can be improved.
  • the utility model has the beneficial effects that the magnetic circuit structure of the polarization relay is formed by using the magnetic steel, the yoke, the magnetic isolation piece, the outer armature with the coil and the one or two magnet pieces, and the yoke is two pieces.
  • the shape is U-shaped; the two yokes are arranged side by side in parallel; the armature is disposed in the gap between the upper portions of the two yokes, and the two ends of the armature are respectively located between the U-shaped heads on the corresponding sides of the two yokes,
  • a magnetic spacer is disposed between one end of the armature and the U-shaped head of the corresponding side of the two yokes; and the magnetic steel and one or two pieces are inserted side by side in the gap between the U-shaped bottoms of the two yokes
  • the magnet guide piece adjusts the position of the magnetic steel by one or two pieces of the magnet piece, so that the magnetic steel is at the offset position or the intermediate position of the gap between the two y
  • the transformation of the road structure, or the conversion of the symmetric magnetic circuit structure to the asymmetric magnetic circuit structure is simple and easy to implement, and can simplify the production process.
  • the magnetic circuit structure can easily realize the original non-symmetric
  • the product in the form of a symmetrical contact is changed from a symmetric magnetic circuit structure to an asymmetric magnetic circuit structure to improve the electrical life performance of the product.
  • FIG. 1 is a schematic view showing a magnetic circuit structure of a polarization relay in the prior art
  • FIG. 2 is a schematic exploded view of a magnetic circuit structure of a polarization relay in the prior art
  • FIG. 3 is a schematic structural view showing a magnetic circuit structure of a polarization relay according to Embodiment 1 of the present invention.
  • Figure 4 is a schematic exploded view showing the structure of the first embodiment of the present invention.
  • Figure 5 is a schematic view showing the structure (flip direction) of the first embodiment of the present invention.
  • FIG. 6 is a schematic structural view of a polarization relay of the second embodiment of the present invention.
  • FIG. 7 is a schematic structural view of a magnetic circuit structure of a polarization relay of the third embodiment of the present invention.
  • FIG. 8 is a schematic structural view of a magnetic circuit structure of a polarization relay of the fourth embodiment of the present invention.
  • Figure 9 is a schematic view 1 of the magnetic circuit structure analysis of the present invention.
  • Figure 10 is a schematic diagram 2 of the magnetic circuit structure analysis of the present invention.
  • Figure 11 is a third schematic view of the magnetic circuit structure analysis of the present invention.
  • the magnetic circuit structure of a polarization relay of the present invention comprises a magnetic steel 1, a yoke, a magnetic spacer 4 and an armature 2 provided with a coil externally;
  • the yoke is Two pieces, that is, the yoke 51 and the yoke 52, the yoke 51 and the yoke 52 are arranged side by side in parallel; one end of the armature 2 is rotatably mounted on the two yokes, that is, the yoke 51 and the yoke 52 through the magnetic shield 4
  • the other end of the armature 2 is swingably disposed between the two yokes, that is, the yoke 51, and the other end of the upper portion of the yoke 52;
  • the magnetic steel 1 is in the shape of a sheet;
  • the magnetic steel 1 is located in the two yokes The iron is between the yoke 51 and the lower portion of the yok
  • the magnetic circuit structure further includes a magnet guide piece 3 which is inserted into the gap between the magnetic steel 1 on the side of the magnetic steel 1 and the yoke 51, so that the magnetic steel 1 is placed on the two yokes That is, the offset position of the gap between the yoke 51 and the yoke 52 is opposite to the yoke 52; one side of the magnet piece 3 is in contact with one side of one of the yokes 51, and the other side of the magnet piece 3 is One side of the magnet 1 is joined, and the other side of the magnet 1 is in contact with one side of the other yoke 52.
  • the yoke 51 and the yoke 52 are U-shaped; the two U-shaped yokes, that is, the yoke 51 and the yoke 52 are arranged side by side in parallel; one end of the armature 2 is rotatably mounted through the magnetic shield 4
  • the two yokes, that is, the yoke 51 and the one end of the yoke 52, the other end of the armature 2 is swingably provided between the yokes of the two yokes, that is, the yoke 51 and the other end of the yoke 52.
  • the length of the magnet piece 3 is larger than the length of the magnet 1 .
  • the magnetic circuit structure of a polarization relay of the present invention is an asymmetric magnetic circuit structure suitable for an asymmetric contact structure.
  • the magnet 1 is mounted on the side close to the yoke 52, and the air gap between the yoke 51 and the yoke 51 is loaded into the magnet piece 3.
  • the length of the magnet piece 3 is longer than that of the magnet 1 and there is still a certain air gap between the yoke 52 to cause magnetic flux leakage. Due to the influence of magnetic flux leakage, when the head of the armature 2 is attached to the pole face of the yoke 51, the magnetism of the armature 2 is less than the suction force generated by the armature on the yoke 52, thereby achieving a magnetic circuit asymmetry. the goal of.
  • the magnetic steel 1 adopts a sheet shape, and can achieve asymmetrical magnetic magnetic field by using a positional offset of the magnetic steel 1 and forming a certain magnetic path air gap leakage magnetic flux by the magnetic conductive sheet 3.
  • the magnetic steel 1 has a sheet structure, which can reduce its volume, reduce the cost, reduce the magnetic resistance of the magnetic circuit, and improve the efficiency of the coil excitation magnetic circuit.
  • the size of the magnet piece 3 is longer than that of the magnet 1 and forms a certain offset magnetic flux leakage, which enhances the degree of asymmetry of the magnetic circuit.
  • a magnetic circuit structure magnetic circuit structure of a polarization relay comprises a bridge magnetic circuit composed of two yokes, that is, a yoke 51 and a yoke 52, a magnetic steel 1, a magnet piece 3, and an armature 2.
  • the two non-working air gaps of the bridge magnetic circuit are provided with magnetic isolation sheets 4 to form a double working gap magnetic circuit.
  • the armature 2 is the action part of the magnetic circuit, and its rotating shaft is on the non-working air gap side. Since the magnetic steel 1 is not on the armature 2, the armature component is light in weight, and the shock vibration resistance can be improved.
  • a polarization relay of the present invention comprises a base assembly, a coil assembly and a casing 33.
  • the magnetic steel 1, the yoke 51, the yoke 52, and the magnetic conductive sheet 3 are all mounted on the base portion 30, and the magnetic shield 4, the armature 2, the push card 34, and the bobbin 32 constitute a coil portion 35, and the coil portion is fixed to the base portion.
  • Upper, the coil portion and the electrical contact portion are isolated by the frame 31.
  • the relay is actuated and reset by applying opposite polarity excitations to the coil take-up legs 351 and 352.
  • the magnet 1 is in the shape of a sheet, and the magnet 1 is located between the lower portions of the two yokes 51, 52; the magnet piece 3 is inserted into the gap between the magnet 1 on the side of the magnet 1 and the yoke 51,
  • the magnetic steel 1 is placed at an offset position of the gap between the two yokes; the both sides of the inserted magnet piece 3 are respectively in contact with one side of the magnetic steel 1 and one side of the corresponding yoke 51.
  • the length of the magnet piece 3 is longer than that of the magnet 1 and there is still a certain air gap between the yoke 52 to cause magnetic flux leakage.
  • Embodiment 3 as shown in FIG. 7, the magnetic circuit structure of a polarization relay of the present invention is different from that of the first embodiment in that one side of the magnet piece 3 is provided with a plurality of protrusions 301, and the magnets are provided.
  • the tab 301 of the sheet is in contact with one surface of one of the yokes 51, the other surface of the magnet guide sheet 3 is in contact with one surface of the magnet steel 1, and the other surface of the magnet steel 1 is in contact with one surface of the other yoke 52.
  • This embodiment is another magnetic circuit structure with more obvious asymmetry effect.
  • the magnetic steel 1 is close to the other side yoke, that is, the yoke 52, and the one side yoke, that is, the yoke 51 and the magnet piece 3, retains a certain air gap.
  • two small ridges 301 can be punched on the magnet piece.
  • Embodiment 4 as shown in FIG. 8, the magnetic circuit structure of a polarization relay of the present invention is different from that of the first embodiment in that the magnet guide piece 3 is two pieces, and two pieces of the magnet piece 3 are two.
  • the thickness of the two magnet pieces 3 are respectively inserted into the gap between the magnetic steel 1 and the yoke on both sides of the magnetic steel 1, so that the magnetic steel 1 is placed on the two yokes, that is, the yoke 51 and the yoke An intermediate position of the gap between 52; one side of one of the magnet pieces 3 is in contact with one side of one of the yokes 51, and the other side of the piece of magnet piece 3 is in contact with one side of the magnetic steel 1, the magnetic steel 1 The other side is in contact with one of the other ones of the magnet pieces 3, and the other side of the other of the magnet pieces 3 is in contact with one of the other of the yokes 52.
  • the two magnet pieces 3 have the same shape and size; the length of the magnet piece 3 is larger than the length of the magnet.
  • the magnetic steel 1 is located at the middle of the two yokes, that is, the yoke 51 and the yoke 52. At this time, the magnet piece 3 is two iron pieces of equal thickness. At this time, the entire magnetic circuit has a symmetrical structure and is suitable for a symmetrical contact structure. form.
  • the magnetic steel 1 used in the invention has a thin sheet structure, which can reduce the volume thereof, reduce the cost, reduce the magnetic resistance of the magnetic steel 1 itself, and improve the efficiency of the magnetic circuit of the coil excitation.
  • the magnetic steel is thin, the space between the two yokes is relatively large, which is advantageous for utilizing the magnetic flux leakage generated by the air gap to realize the symmetrical and biased state of the magnetic circuit.
  • the present invention biases the magnetic circuit by the positional displacement of the magnetic steel 1 between the two yokes (i.e., the yoke 51 and the yoke 52), and at the same time, the magnet piece 3 is used to enhance the magnetic circuit offset effect. 3 length to change the degree of bias.
  • the length of the magnetic conductive sheet 3 is the same as the length of the magnetic steel 1.
  • the magnetic flux leakage generated by the magnetic steel 1 is relatively small, and the magnetic circuit offset is mainly achieved by the offset of the magnetic steel position, and the bias effect is achieved. Poor.
  • the magnetic field line distribution is as shown in FIG. 10.
  • the magnetic steel 1 is thin, the gap between the magnetic conductive sheet 3 and the yoke 52 is small, so that a large amount of magnetic leakage occurs here. Since the magnetic flux leakage is biased toward the side of the yoke 52, it serves as a biasing purpose, and the biasing effect is better than simply biasing the magnetic steel 1. If the magnet 1 is in the intermediate position and the magnet pieces 3 are arranged on both sides of the magnet 1, the magnetic circuit is in a symmetrical state regardless of whether the magnet piece 3 is longer or equal than the magnet, as shown in FIG.
  • the magnetic circuit structure of a polarization relay of the invention adopts a combination of a magnetic steel bias and a magnetic circuit air leakage magnetic flux to realize an asymmetric manner of the magnetic circuit, which is simple and easy to implement, and can simplify the production process.
  • the magnetic circuit structure is easy to change the product in the form of the original asymmetric contact into a symmetric magnetic circuit structure to adopt an asymmetric magnetic circuit structure to improve the electrical life performance of the product.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electromagnets (AREA)

Abstract

本发明公开了一种极化继电器的磁路结构,包括磁钢、轭铁、隔磁片、衔铁和一片或两片导磁铁片;轭铁为二片,呈平行并排设置;衔铁设在二片轭铁上部之间,磁钢为薄片形状位于二片轭铁的下部之间,一片或两片导磁铁片插装在磁钢一侧或两侧的磁钢与轭铁之间的间隙中,使磁钢处在两片轭铁之间的间隙的偏置位置或中间位置;已插装的导磁铁片的两面分别与磁钢的一面和对应轭铁的一面相接。该结构是采用磁钢偏置和磁路空气漏磁相结合的方式来实现磁路的非对称方式,具有简便容易实现,并可以简化生产工艺的特点,同时,该磁路结构容易实现将原非对称触点形式的产品采用对称磁路结构改成采用非对称磁路结构以提高产品的电寿命性能。

Description

一种极化继电器的磁路结构 技术领域
本发明涉及一种继电器,特别是涉及一种极化继电器的磁路结构。
背景技术
极化继电器是一种状态改变取决于输入量(激励量)极性的直流继电器,对于极化继电器对称或非对称的触点形式结构,需要匹配对称磁路结构或非对称磁路结构形式。
现有的一种极化继电器的非对称磁路结构参见图1、图2所示,该磁路结构包括轭铁1′、隔磁片2′和衔铁部分,其中衔铁部分包括一块磁钢31′、两块衔铁即衔铁32′、衔铁33′和一推动块34′。磁钢31′固定在两块衔铁32′、33′的中间,在磁路中处于磁路对称位置,因此对于其非对称触点形式的产品,其偏磁方式是采用在轭铁与衔铁头部的相交处焊不锈钢片4′的方式,不锈钢片4′可以焊在轭铁1′上,也可以焊在衔铁32′或衔铁33′上,这种焊接的方式,存在着需要投入焊接设备及焊接工艺性差等缺点。另外这种磁路结构的磁钢的体积较大,存在的弊端:一是增加了成本,其次是增加了磁路磁阻,影响线圈激励磁路的效率。同时,由于磁钢31′是固定在衔铁上,磁钢31′与衔铁一周运动,致使整个运动部件质量较大,因此抗冲击振动性能较差。
现有的另一种极化继电器,无论产品的触点结构形式为对称还是非对称形式,其磁路完全采用对称结构,该方式在生产上容易实现,工艺性好。但是当产品触点形式为非对称形式时,如果其磁路仍是对称结构,由于磁钢本身的特性,其磁性能在一定条件下会有所下降,此时非对称触点形式下的产品反力对产品的影响会变得很明显,因此对产品的电寿命性能产生很大的不利影响。
发明内容
本发明的目的在于克服现有技术之不足,提供一种极化继电器的磁路结构,是采用磁钢偏置和磁路空气漏磁相结合的方式来实现磁路的非对称方式。
本发明解决其技术问题所采用的技术方案是:一种极化继电器的磁路结构,包括磁钢、轭铁、隔磁片和外部套装有线圈的衔铁;轭铁为二片,呈平行并排设置;衔铁的一端通过隔磁片可转动地安装在二片轭铁上部的一端之间,衔铁的另一端可摆动地设在二片轭铁上部的另一端之间;磁钢为薄片形状;该磁钢位于二片轭铁的下部之间;
该磁路结构还包括一片或两片导磁铁片,一片或两片导磁铁片插装在磁钢一侧或两侧的磁钢与轭铁之间的间隙中,使磁钢处在两片轭铁之间的间隙的偏置位置或中间位置;已插装的导磁铁片的两面分别与磁钢的一面和对应轭铁的一面相接。
所述轭铁的形状为U型;二片U型轭铁呈平行并排设置;衔铁的一端通过隔磁片可转动地安装在二片轭铁的一端头部之间,衔铁的另一端可摆动地设在二片轭铁的另一端头部之间。
所述的导磁铁片为一片,该片导磁铁片插装在磁钢一侧的磁钢与轭铁之间的间隙中,使磁钢处在两片轭铁之间的间隙的偏置位置;该导磁铁片的一面与其中一片轭铁的一面相接,导磁铁片的另一面与磁钢的一面相接,磁钢的另一面与其中另一片轭铁的一面相接。
所述导磁铁片的长度尺寸大于或等于所述磁钢的长度尺寸。
所述的导磁铁片为一片,该片导磁铁片插装在磁钢一侧的磁钢与轭铁之间的间隙中,使磁钢处在两片轭铁之间的间隙的偏置位置;该导磁铁片的一面设有若干凸苞,该导磁铁片的凸苞与其中一片轭铁的一面相接,导磁铁片的另一面与磁钢的一面相接,磁钢的另一面与其中另一片轭铁的一面相接。
含有凸苞的导磁铁片的长度尺寸大于或等于所述磁钢的长度尺寸。
所述的导磁铁片为二片,二片导磁铁片的厚度相一致,二片导磁铁片分别插装在磁钢两侧的磁钢与轭铁之间的间隙中,使磁钢处在两片轭铁之间的间隙的中间位置;其中一片导磁铁片的一面与其中一片轭铁的一面相接,该片导磁铁片的另一面与磁钢的一面相接,磁钢的另一面与其中另一片导磁铁片的一面相接,该另一片导磁铁片的另一面与其中另一片轭铁的一面相接。
二片导磁铁片的形状、大小相同;导磁铁片的长度尺寸大于或等于所述磁钢的长度尺寸。
本发明的一种极化继电器的磁路结构,磁钢采用薄片形状,可以通过磁钢位置偏置的方式和利用导磁铁片形成一定的磁路空气间隙漏磁来达到非对称磁路结构的目的。磁钢为薄片结构,可以减小其体积,降低成本,减少磁路的磁阻,提高了线圈激励磁路的效率。导磁铁片尺寸比磁钢长,形成一定的偏置漏磁,加强磁路的非对称程度。
本发明的一种极化继电器的磁路结构磁路结构,由两片轭铁、磁钢、导磁铁片、衔铁构成桥式磁路。桥式磁路的两个非工作气隙装有隔磁片,形成双工作间隙磁路。衔铁为磁路的动作部分,其转动轴在非工作气隙侧,由于磁钢不在衔铁上,衔铁部件的质量较轻,可以提高抗冲击振动性能。
本发明的有益效果是,由于采用了磁钢、轭铁、隔磁片、外部套装有线圈的衔铁和一片或两片导磁铁片来构成极化继电器的磁路结构,轭铁为二片,形状U型;二片轭铁呈平行并排设置;衔铁设置在二片轭铁的上部之间的间隙中,衔铁的两端分别处在二片轭铁的对应侧的U型头部之间,衔铁的其中一端与二块轭铁的该对应侧的U型头部之间装有隔磁片;在二块轭铁的U型底之间的间隙中并排插装磁钢和一片或两片导磁铁片,通过一片或两片导磁铁片来调节磁钢的位置,使磁钢处在两片轭铁之间的间隙的偏置位置或中间位置,容易实现非对称磁路结构向对称磁路结构的转化,或者是对称磁路结构向非对称磁路结构的转化。这种采用磁钢偏置和磁路空气漏磁相结合的方式来实现磁路的非对称方式,具有简便容易实现,并可以简化生产工艺的特点,同时,该磁路结构容易实现将原非对称触点形式的产品采用对称磁路结构改成采用非对称磁路结构以提高产品的电寿命性能。
以下结合附图及实施例对本发明作进一步详细说明;但本发明的一种极化继电器的磁路结构磁路结构不局限于实施例。
附图说明
图1是现有技术的一种极化继电器磁路结构示意图;
图2是现有技术的一种极化继电器磁路结构分解示意图;
图3是实施例一本发明极化继电器的磁路结构的结构示意图;
图4是实施例一本发明的结构分解示意图;
图5是实施例一本发明的结构(翻转方向)示意图;
图6是实施例二本发明极化继电器的构造示意图;
图7是实施例三本发明极化继电器的磁路结构的结构示意图;
图8是实施例四本发明极化继电器的磁路结构的结构示意图;
图9是本发明的磁路结构分析示意图一;
图10是本发明的磁路结构分析示意图二;
图11是本发明的磁路结构分析示意图三。
具体实施方式
实施例一,参见图3至图5所示,本发明的一种极化继电器的磁路结构,包括磁钢1、轭铁、隔磁片4和外部套装有线圈的衔铁2;轭铁为二片,即轭铁51和轭铁52,轭铁51、轭铁52呈平行并排设置;衔铁2的一端通过隔磁片4可转动地安装在二片轭铁即轭铁51、轭铁52上部的一端之间,衔铁2的另一端可摆动地设在二片轭铁即轭铁51、轭铁52上部的另一端之间;磁钢1为薄片形状;该磁钢1位于二片轭铁即轭铁51、轭铁52的下部之间;
该磁路结构还包括一片导磁铁片3,该片导磁铁片3插装在磁钢1一侧的磁钢1与轭铁51之间的间隙中,使磁钢1处在两片轭铁即轭铁51、轭铁52之间的间隙的偏置位置,即靠向轭铁52;该导磁铁片3的一面与其中一片轭铁51的一面相接,导磁铁片3的另一面与磁钢1的一面相接,磁钢1的另一面与其中另一片轭铁52的一面相接。
其中,
所述的轭铁51、轭铁52的形状均为U型;二片U型轭铁即轭铁51、轭铁52呈平行并排设置;衔铁2的一端通过隔磁片4可转动地安装在二片轭铁即轭铁51、轭铁52的一端头部之间,衔铁2的另一端可摆动地设在二片轭铁即轭铁51、轭铁52的另一端头部之间。
所述导磁铁片3的长度尺寸大于所述磁钢1的长度尺寸。
本发明的一种极化继电器的磁路结构,为一种非对称磁路结构,适用于非对称触点结构形式。磁钢1装在靠近轭铁52一侧,与轭铁51间的空气间隙装入导磁铁片3。导磁铁片3的长度比磁钢1长,与轭铁52间仍存在一定空气间隙以产生漏磁。由于磁路漏磁的影响,当衔铁2头部贴合在轭铁51极面上时,衔铁2受到的磁钢吸力比衔铁在轭铁52上面产生的吸力要小,从而达到磁路非对称的目的。
本发明的一种极化继电器的磁路结构,磁钢1采用薄片形状,可以通过磁钢1位置偏置的方式和利用导磁铁片3形成一定的磁路空气间隙漏磁来达到非对称磁路结构的目的。磁钢1为薄片结构,可以减小其体积,降低成本,减少磁路的磁阻,提高了线圈激励磁路的效率。导磁铁片3尺寸比磁钢1长,形成一定的偏置漏磁,加强磁路的非对称程度。
本发明的一种极化继电器的磁路结构磁路结构,由两片轭铁即轭铁51和轭铁52、磁钢1、导磁铁片3、衔铁2构成桥式磁路。桥式磁路的两个非工作气隙装有隔磁片4,形成双工作间隙磁路。衔铁2为磁路的动作部分,其转动轴在非工作气隙侧,由于磁钢1不在衔铁2上,衔铁部件的质量较轻,可以提高抗冲击振动性能。
实施例二,参见图6所示,本发明的一种极化继电器,包括底座组件、线圈组件和外壳33组成。磁钢1、轭铁51、轭铁52、导磁片3均安装在底座部分30上,隔磁片4、衔铁2、推动卡34、线圈架32组成线圈部分35,线圈部分固定在底座部分上,线圈部分与电接触部分通过框架31进行隔离。通过对线圈引出脚351和352施加极性相反的激励,使继电器进行动作和复归。
磁钢1为薄片形状,该磁钢1位于二片轭铁51、52的下部之间;导磁铁片3插装在磁钢1一侧的磁钢1与轭铁51之间的间隙中,使磁钢1处在两片轭铁之间的间隙的偏置位置;已插装的导磁铁片3的两面分别与磁钢1的一面和对应轭铁51的一面相接。导磁铁片3的长度比磁钢1长,与轭铁52间仍存在一定空气间隙以产生漏磁。由于磁路漏磁的影响,当衔铁2头部贴合在轭铁51极面上时,衔铁2受到的磁钢吸力比衔铁在轭铁52上面产生的吸力要小,从而达到磁路非对称的目的。
实施例三,参见图7所示,本发明的一种极化继电器的磁路结构,与实施例一的不同之处在于,该导磁铁片3的一面设有若干凸苞301,该导磁铁片的凸苞301与其中一片轭铁51的一面相接,导磁铁片3的另一面与磁钢1的一面相接,磁钢1的另一面与其中另一片轭铁52的一面相接。
本实施例为另一种非对称效果更明显的磁路结构,磁钢1靠近另一侧轭铁即轭铁52,一侧轭铁即轭铁51与导磁铁片3保留有一定的空气缝隙,为保证磁钢1与轭铁52贴合紧密,可以在导磁铁片上冲两个小凸苞301。
实施例四,参见图8所示,本发明的一种极化继电器的磁路结构,与实施例一的不同之处在于,所述的导磁铁片3为二片,二片导磁铁片3的厚度相一致,二片导磁铁片3分别插装在磁钢1两侧的磁钢1与轭铁之间的间隙中,使磁钢1处在两片轭铁即轭铁51、轭铁52之间的间隙的中间位置;其中一片导磁铁片3的一面与其中一片轭铁51的一面相接,该片导磁铁片3的另一面与磁钢1的一面相接,磁钢1的另一面与其中另一片导磁铁片3的一面相接,该另一片导磁铁片3的另一面与其中另一片轭铁52的一面相接。
二片导磁铁片3的形状、大小相同;导磁铁片3的长度尺寸大于所述磁钢的长度尺寸。
磁钢1位于两轭铁即轭铁51、轭铁52的中间位置,此时导磁铁片3为两个厚度相等的铁片,此时整个磁路为对称的结构,适用于对称触点结构形式。
本发明采用的磁钢1为薄片结构,可以减小其体积,降低成本,同时减少磁钢1本身的磁阻,提高了线圈激励磁路的效率。另外由于磁钢薄,两轭铁间的空间相对较大,有利于利用该空气间隙产生的漏磁来实现磁路的对称和偏置状态。
本发明通过磁钢1在两轭铁(即轭铁51、轭铁52)间的位置偏移来偏置磁路,同时采用导磁铁片3来加强磁路偏置的效果,通过导磁片3长度来改变偏置的程度。如图9所示,导磁片3长度与磁钢1长度相同,此时磁钢1产生的漏磁相对较少,磁路偏置主要是通过磁钢位置的偏置来实现,偏置效果较差。加长导磁片3的长度后磁路磁力线分布如图10所示,此时由于磁钢1薄,导磁片3与轭铁52之间缝隙小,因而在此处会产生大量的漏磁,由于该漏磁偏向于轭铁52一侧,从而起到偏置目的,而且偏置效果比单纯通过磁钢1偏置的要好。如果磁钢1处于中间位置,而导磁铁片3分列于磁钢1两侧,则不论导磁铁片3比磁钢长或相等,磁路均处于对称状态,如图11所示。
上述实施例仅用来进一步说明本发明的一种极化继电器的磁路结构,但本发明并不局限于实施例,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均落入本发明技术方案的保护范围。
工业实用性
本发明一种极化继电器的磁路结构,采用磁钢偏置和磁路空气漏磁相结合的方式来实现磁路的非对称方式,具有简便容易实现,并可以简化生产工艺的特点,同时,该磁路结构容易实现将原非对称触点形式的产品采用对称磁路结构改成采用非对称磁路结构以提高产品的电寿命性能。

Claims (10)

  1. 一种极化继电器的磁路结构,包括磁钢、轭铁、隔磁片和外部套装有线圈的衔铁;轭铁为二片,呈平行并排设置;衔铁的一端通过隔磁片可转动地安装在二片轭铁上部的一端之间,衔铁的另一端可摆动地设在二片轭铁上部的另一端之间;其特征在于:磁钢为薄片形状;该磁钢位于二片轭铁的下部之间;
    该磁路结构还包括一片或两片导磁铁片,一片或两片导磁铁片插装在磁钢一侧或两侧的磁钢与轭铁之间的间隙中,使磁钢处在两片轭铁之间的间隙的偏置位置或中间位置;已插装的导磁铁片的两面分别与磁钢的一面和对应轭铁的一面相接。
  2. 根据权利要求1所述的极化继电器的磁路结构,其特征在于:所述轭铁的形状为U型;二片U型轭铁呈平行并排设置;衔铁的一端通过隔磁片可转动地安装在二片轭铁的一端头部之间,衔铁的另一端可摆动地设在二片轭铁的另一端头部之间。
  3. 根据权利要求1或2所述的极化继电器的磁路结构,其特征在于:所述的导磁铁片为一片,该片导磁铁片插装在磁钢一侧的磁钢与轭铁之间的间隙中,使磁钢处在两片轭铁之间的间隙的偏置位置;该导磁铁片的一面与其中一片轭铁的一面相接,导磁铁片的另一面与磁钢的一面相接,磁钢的另一面与其中另一片轭铁的一面相接。
  4. 根据权利要求3所述的极化继电器的磁路结构,其特征在于:所述导磁铁片的长度尺寸大于或等于所述磁钢的长度尺寸。
  5. 根据权利要求1或2所述的极化继电器的磁路结构,其特征在于:所述的导磁铁片为一片,该片导磁铁片插装在磁钢一侧的磁钢与轭铁之间的间隙中,使磁钢处在两片轭铁之间的间隙的偏置位置;该导磁铁片的一面设有若干凸苞,该导磁铁片的凸苞与其中一片轭铁的一面相接,导磁铁片的另一面与磁钢的一面相接,磁钢的另一面与其中另一片轭铁的一面相接。
  6. 根据权利要求5所述的极化继电器的磁路结构,其特征在于:所述导磁铁片的长度尺寸大于或等于所述磁钢的长度尺寸。
  7. 根据权利要求1或2所述的极化继电器的磁路结构,其特征在于:所述的导磁铁片为二片,二片导磁铁片的厚度相一致,二片导磁铁片分别插装在磁钢两侧的磁钢与轭铁之间的间隙中,使磁钢处在两片轭铁之间的间隙的中间位置;其中一片导磁铁片的一面与其中一片轭铁的一面相接,该片导磁铁片的另一面与磁钢的一面相接,磁钢的另一面与其中另一片导磁铁片的一面相接,该另一片导磁铁片的另一面与其中另一片轭铁的一面相接。
  8. 根据权利要求7所述的极化继电器的磁路结构,其特征在于:二片导磁铁片的形状、大小相同;导磁铁片的长度尺寸大于或等于所述磁钢的长度尺寸。
  9. 一种极化继电器,包括底座组件、线圈组件、外壳;磁钢、两片轭铁均安装在底座上,隔铁片、衔铁、推动卡、线圈架组成线圈组件,其特征在于:磁钢为薄片形状;该磁钢位于二片轭铁的下部之间;
    还包括一导磁铁片,导磁铁片插装在磁钢一侧的磁钢与轭铁之间的间隙中,使磁钢处在两片轭铁之间的间隙的偏置位置;已插装的导磁铁片的两面分别与磁钢的一面和对应轭铁的一面相接;导磁片安装在底座上。
  10. 根据权利要求9所述的极化继电器,其特征在于:所述导磁铁片的长度尺寸大于或等于所述磁钢的长度尺寸。
PCT/CN2012/075546 2011-05-19 2012-05-16 一种极化继电器的磁路结构 WO2012155829A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112012002161.4T DE112012002161B4 (de) 2011-05-19 2012-05-16 Magnetsystem eines polarisierten Relais

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2011201654781U CN202094053U (zh) 2011-05-19 2011-05-19 极化继电器的磁路结构
CN201110131491.XA CN102208305B (zh) 2011-05-19 2011-05-19 一种极化继电器的磁路结构
CN201120165478.1 2011-05-19
CN201110131491.X 2011-05-19

Publications (1)

Publication Number Publication Date
WO2012155829A1 true WO2012155829A1 (zh) 2012-11-22

Family

ID=47176311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/075546 WO2012155829A1 (zh) 2011-05-19 2012-05-16 一种极化继电器的磁路结构

Country Status (2)

Country Link
DE (1) DE112012002161B4 (zh)
WO (1) WO2012155829A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110085484A (zh) * 2019-04-30 2019-08-02 厦门宏发电声股份有限公司 一种低高度的电磁继电器
CN110335788A (zh) * 2019-07-09 2019-10-15 厦门宏发电声股份有限公司 一种小型化大功率磁保持继电器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007172934A (ja) * 2005-12-20 2007-07-05 Matsushita Electric Works Ltd 高周波リレーおよびそれを用いるテレビジョンチューナ
CN100424801C (zh) * 2005-06-09 2008-10-08 厦门宏发电声有限公司 一种具有高灵敏度的极化继电器
CN100429732C (zh) * 2005-06-09 2008-10-29 厦门宏发电声有限公司 衔铁定位可靠且更换方便的双工作气隙的极化继电器
JP2011077141A (ja) * 2009-09-29 2011-04-14 Panasonic Electric Works Co Ltd 電磁石装置、およびこれを用いた電磁リレー
CN102208305A (zh) * 2011-05-19 2011-10-05 厦门宏发电声股份有限公司 一种极化继电器的磁路结构
CN202094053U (zh) * 2011-05-19 2011-12-28 厦门宏发电声股份有限公司 极化继电器的磁路结构

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1157294B (de) 1960-07-19 1963-11-14 Siemens Ag Durch Dauermagneten polarisierter Schaltmagnet (Sperrmagnet)

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100424801C (zh) * 2005-06-09 2008-10-08 厦门宏发电声有限公司 一种具有高灵敏度的极化继电器
CN100429732C (zh) * 2005-06-09 2008-10-29 厦门宏发电声有限公司 衔铁定位可靠且更换方便的双工作气隙的极化继电器
JP2007172934A (ja) * 2005-12-20 2007-07-05 Matsushita Electric Works Ltd 高周波リレーおよびそれを用いるテレビジョンチューナ
JP2011077141A (ja) * 2009-09-29 2011-04-14 Panasonic Electric Works Co Ltd 電磁石装置、およびこれを用いた電磁リレー
CN102208305A (zh) * 2011-05-19 2011-10-05 厦门宏发电声股份有限公司 一种极化继电器的磁路结构
CN202094053U (zh) * 2011-05-19 2011-12-28 厦门宏发电声股份有限公司 极化继电器的磁路结构

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110085484A (zh) * 2019-04-30 2019-08-02 厦门宏发电声股份有限公司 一种低高度的电磁继电器
CN110085484B (zh) * 2019-04-30 2023-12-15 厦门宏发电声股份有限公司 一种低高度的电磁继电器
CN110335788A (zh) * 2019-07-09 2019-10-15 厦门宏发电声股份有限公司 一种小型化大功率磁保持继电器

Also Published As

Publication number Publication date
DE112012002161B4 (de) 2021-08-12
DE112012002161T5 (de) 2014-02-20

Similar Documents

Publication Publication Date Title
WO2020228229A1 (zh) 一种平衡振动系统
CN109068244B (zh) 电磁激励器以及屏幕发声装置
WO2017028410A1 (zh) 一种振动马达和电子设备
CN101941478A (zh) 电磁永磁双激励爬壁机器人吸附机构
WO2012155829A1 (zh) 一种极化继电器的磁路结构
CN102035345B (zh) 扁平线性振动器
US8712092B2 (en) Magnetic circuit and speaker using same
CN210093433U (zh) 电磁激励器
CN102208305B (zh) 一种极化继电器的磁路结构
US20150303017A1 (en) Novel-structure electromagnetic relay containing permanent magnet
WO2018171060A1 (zh) 线性振动马达
WO2013000429A1 (zh) 一种电磁驱动装置及电磁镜头驱动装置
CN112243188A (zh) 换能器磁路结构、换能器及其电子设备
CN101923995A (zh) 一种低压电器的脱扣电磁铁装置
CN212850206U (zh) 一种线性振动马达
CN202094053U (zh) 极化继电器的磁路结构
CN108016980A (zh) 一种钢板防划伤用起重电磁铁
CN205230958U (zh) 直流操作接触器的电磁铁装置
CN201780942U (zh) 低压电器的脱扣电磁铁装置
CN220475584U (zh) 线性振动组件及振动马达
CN203118874U (zh) 一种接触器的电磁铁装置
CN114337176B (zh) 一种振动装置
CN213461487U (zh) 振动电机
JP3337568B2 (ja) 鋼材吊上装置
CN214041757U (zh) 一种双磁路传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12786383

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120120021614

Country of ref document: DE

Ref document number: 112012002161

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12786383

Country of ref document: EP

Kind code of ref document: A1