WO2012155800A1 - 一种基于柱面透镜发光管的立体大屏幕 - Google Patents

一种基于柱面透镜发光管的立体大屏幕 Download PDF

Info

Publication number
WO2012155800A1
WO2012155800A1 PCT/CN2012/075205 CN2012075205W WO2012155800A1 WO 2012155800 A1 WO2012155800 A1 WO 2012155800A1 CN 2012075205 W CN2012075205 W CN 2012075205W WO 2012155800 A1 WO2012155800 A1 WO 2012155800A1
Authority
WO
WIPO (PCT)
Prior art keywords
illuminating
cylindrical lens
light
eye image
pixel
Prior art date
Application number
PCT/CN2012/075205
Other languages
English (en)
French (fr)
Inventor
李超
时大鑫
康献斌
熊彬
李书政
Original Assignee
Li Chao
Shi Daxin
Kang Xianbin
Xiong Bin
Li Shuzheng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2011201516264U external-priority patent/CN202049292U/zh
Priority claimed from CN201110122809.8A external-priority patent/CN102183845B/zh
Application filed by Li Chao, Shi Daxin, Kang Xianbin, Xiong Bin, Li Shuzheng filed Critical Li Chao
Priority to EP12785276.2A priority Critical patent/EP2708936B1/en
Priority to PCT/CN2012/075205 priority patent/WO2012155800A1/zh
Priority to JP2014509594A priority patent/JP5676821B2/ja
Priority to KR1020137032844A priority patent/KR101622819B1/ko
Publication of WO2012155800A1 publication Critical patent/WO2012155800A1/zh
Priority to US14/078,556 priority patent/US20140071185A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the invention relates to an LED stereoscopic large screen, in particular to a stereoscopic large screen based on a cylindrical lens luminous tube.
  • Shutter stereo glasses are generally used in the prior art, and the shortcoming is that the images are quickly switched to the left and right eyes, resulting in serious visual flicker, visual fatigue on the eyes, and stereo display/planar display are not fully compatible.
  • a cylindrical lens can be used in front of the screen to achieve naked-eye stereoscopic display. If this principle is directly applied to LED stereoscopic large screen, in LED stereo A cylindrical lens plate is added to the front of the large screen. Such a lens plate will cause a significant reduction in the contrast and saturation of the display due to severe reflection.
  • the object of the present invention is to provide a three-dimensional large screen based on a cylindrical lens light-emitting tube, which overcomes the deficiencies in the prior art.
  • a cylindrical lens is provided on one side of the light-emitting point or the illuminating pixel, and a large screen made of the light-emitting point or the luminescent pixel is used.
  • the left and right images are respectively emitted, and the left and right eye images respectively enter the corresponding left and right eyes.
  • the left and right eye images are visually poor, and finally the final stereoscopic image is formed in the human brain.
  • the naked eye stereoscopic large screen display is realized.
  • Three-dimensional large screen based on cylindrical lens tube a controller and a display screen, wherein a plurality of illuminating pixels are disposed on the display screen, and the illuminating pixel is controlled by the controller; a cylindrical lens is respectively disposed on the illuminating pixel, and the left and right eye images are formed according to the principle of cylindrical illumination Visual difference .
  • the illuminating pixel is an illuminating tube, and includes a cylindrical lens, a package body, a lead and a light emitting chip.
  • the light emitting chip is disposed in the package body, the cylindrical lens is disposed on the package body, and the pin is connected to the light emitting chip.
  • the longitudinal side lens side of the illuminating pixel is a straight line, Convex or concave.
  • the illuminating pixel includes two light emitting chips, one for displaying left eye image information and one for displaying right eye image information.
  • the illuminating pixel is split into two parts that are bilaterally symmetrical. The left eye image and the right eye image are displayed separately.
  • the illuminating pixel is of the SMD chip type, the lens is a cylindrical lens, or a cylindrical lens cover is disposed on the illuminating surface of the SMD chip type illuminating pixel package.
  • the illuminating pixel including the left eye image and the illuminating pixel displaying the right eye image, the illuminating pixel displaying the left eye image and the illuminating pixel displaying the right eye image each containing three primary colors RGB .
  • the illuminating pixels are split into two symmetrical sides, and the left eye image and the right eye image are respectively displayed.
  • the illuminating pixel of the present invention uses a light-emitting tube with a lens as a cylinder or an SMD chip-type light-emitting tube, or a cylindrical lens cover is provided on the light-emitting surface of the package of the SMD patch, and the light-emitting tube is monochromatic (one of RGB)
  • the SMD chip type can be a single-color light-emitting device or a three-primary color light-emitting device (including three kinds of RGB).
  • the light-emitting tube or the SMD chip-type light-emitting chip can simultaneously display the left eye image information and the right eye image information.
  • the present invention provides a cylindrical lens or a cylindrical lens cover on the illuminating pixel, which solves the problem of the LED in the prior art.
  • a cylindrical lens plate is installed in front of the large screen. Such a lens plate will cause a serious decrease in the contrast and color saturation of the display screen due to severe reflection; the large-screen illuminating pixels or light-emitting points of the present invention can be Forming a complete pixel of high-definition display, so that the resolution, contrast, and color saturation of the system are not reduced.
  • the stereo display is compatible with the flat display, and the operation is simple and the definition is high.
  • the present invention provides a cylindrical lens on a light-emitting point or a luminescent pixel, and a large screen made of the light-emitting point or the luminescent pixel
  • the left and right images are respectively emitted, and the left and right eye images respectively enter the corresponding left and right eyes.
  • the left and right eye images are visually poor, and finally the final stereoscopic image is formed in the human brain.
  • the naked eye stereoscopic large screen display is realized.
  • the present invention is at each light emitting point or illuminating pixel
  • Various forms of black matrix treatment are still used in the periphery, such as, but not limited to, using a black plastic frame to increase contrast and color saturation.
  • the illuminating pixel of the present invention can simultaneously display left and right eye images to form a complete pixel of high definition display. This makes the system resolution, contrast, and color saturation not reduced, the stereo display is compatible with the flat display, the operation is simple, and the definition is high.
  • Figure 1 is a basic schematic diagram of a stereoscopic display of a general liquid crystal cylindrical lens
  • Figure 2 is a schematic view of a cylindrical lens plate
  • FIG. 4 is a schematic view of a cylindrical lens light-emitting tube with a straight-cut lens side straight
  • FIG. 5 is a schematic view of a convex cylindrical lens light-emitting tube
  • 6 is a schematic view showing a basic shape of an ellipsoidal lens light-emitting tube
  • FIG. 8 is a schematic view showing a basic shape of a spherical lens light-emitting tube
  • FIG. 1 is a basic schematic diagram of a stereoscopic display of a general liquid crystal cylindrical lens
  • Figure 2 is a schematic view of a cylindrical lens plate
  • FIG. 4 is a schematic view of a cylindrical lens light
  • FIG. 10 is a schematic view of the four-pin embodiment of the light-emitting tube in the middle of the present invention
  • FIG. 11 is a schematic view of the three-pin embodiment of the light-emitting tube with the lead in the middle
  • FIG. 12 FIG. 13 is a schematic view showing a four-pin embodiment of the light-emitting tube supporting pin on the outer side
  • FIG. 14 is a top view of FIG. 13
  • FIG. 16 is a top view of FIG. 15;
  • FIG. 15 is a schematic view of the four-pin embodiment of the light-emitting tube in the middle of the present invention
  • FIG. 11 is a schematic view of the three-pin embodiment of the light-emitting tube with the lead in the middle
  • FIG. 14 is a top view of FIG. 13
  • FIG. 17 is a schematic view showing the arrangement of the light-emitting tube circuit board of the present invention.
  • the schematic diagram of the high-density arrangement of the LED circuit board of the present invention is an example of dividing the light-emitting tube with the supporting pin in the middle into two;
  • FIG. 19 is an example of dividing the light-emitting tube with the supporting pin in the middle into two;
  • FIG. Another example of splitting the light-emitting tube with the support pin on the outer side is another example of the present invention;
  • FIG. 21 is a schematic view showing the two lens cylinder light-emitting tubes divided into two on the circuit board according to the present invention;
  • FIG. 22 For the purpose of the present invention, six light-emitting tubes (two each of RGB) are divided into two on the circuit board;
  • FIG. 23 A schematic diagram of fabricating two three-in-one patch type cylindrical lens illuminating pixels according to the present invention and repacking the cylindrical lens on the original pixel package;
  • FIG. 24 is a top view of FIG. 23;
  • FIG. 26 is a schematic plan view of FIG. 25;
  • FIG. 28 is a schematic top view of FIG. 27;
  • FIG. 30 is a top view of FIG. 29;
  • the schematic diagram of two independent three-in-one patch type cylindrical lens illuminating pixels mounted on a circuit board according to the present invention FIG. 32 is a top view of FIG. 31;
  • FIG. 33 is a two-color patch type cylindrical lens illuminating according to the present invention;
  • FIG. 34 is a schematic plan view of FIG. 33;
  • FIG. 35 is a schematic view of an independent monochrome patch type cylindrical lens light pipe according to the present invention;
  • FIG. 38 is a top view of FIG.
  • the invention includes The controller and the display screen are provided with a plurality of illuminating pixels (or illuminating points) on the display screen, and the illuminating pixels are controlled by the controller; a cylindrical lens is respectively disposed on the illuminating pixels, and a large screen made of such illuminating pixels is used.
  • the left and right eye images are respectively sent into the corresponding left and right eyes. According to the principle of cylindrical lens illumination, the left and right eye images are visually poor, and finally the final stereoscopic image is formed in the human brain. No need to wear any stereo glasses, the naked eye stereo large screen display.
  • black matrix processing are still used around the illuminating pixel, such as, but not limited to, using a black plastic frame or the like to increase contrast and color saturation.
  • the illuminating pixel of the present invention may be
  • the light-emitting tube comprises a cylindrical lens 4, a package body 1, a lead 3 and a light-emitting chip 2, the light-emitting chip 2 is disposed in the package body 1, the cylindrical lens 4 is disposed on the side of the package body 1, and the lead is disposed in the package On the other side of the body 1, the pin 3 is connected to the light-emitting chip 2.
  • Figure 3 shows the origin of the cylindrical lens name.
  • the cylinder of the light-emitting tube or the illuminating pixel is obtained by taking one of the columns in the cylindrical lens plate shown in Fig. 2.
  • the basic shape of the obtained cylindrical lens illuminating pixel is as shown in Fig. 4.
  • Cylindrical lens on package 1 4 The corresponding surface of the cylinder may be cylindrical or concave or convex, and the corresponding features of the SMD patch type are the same.
  • the longitudinal side lens side of the arc tube or the illuminating pixel of the present invention may be a straight line, as shown in FIG. 4, or may be convex, as shown in FIG. 5. As shown, or concave, as shown in Figure 6, Figure 5, Figure 6 is Figure 4.
  • the traditional ellipsoidal or spherical lens illuminating pixels can also be deformed according to this principle, and the two illuminating tubes are combined and manufactured as shown in Fig. 7 and Fig. 8, and Fig. 8 is actually a figure.
  • FIG. 4 which is a straight line on the side of the longitudinal section lens, is described as a basic shape
  • FIG. 5, FIG. 6, and FIG. Figure 8 The outer convex or concave shape, or the ellipsoidal or spherical lens tube or the illuminating pixel shown can also be completed according to the following detailed description, regardless of the lens shape of the individual components, after being mounted on the large screen, The macroscopic vertical direction still shows the cylindrical profile on the basic shape.
  • the illuminating tube of the ellipsoidal lens can also be modified, and the two cylindrical lenses which are combined into one and the illuminating lens is changed into a cylindrical lens and its radial convex surface or radial concave surface, as shown in FIG. 7
  • two light-emitting tubes can also be combined to form a spherical lens light-emitting tube, as shown in FIG. Figure 4 to Figure 8
  • the light-emitting tube or illuminating pixel of the shape shown on the circuit board is mounted on the circuit board, regardless of the shape of the lens of the single component, after being mounted on the large screen, the macroscopic vertical large screen direction is still outside the cylinder on the basic shape. Profile.
  • the illuminating pixel is a cylindrical lens monochromatic light-emitting tube including two light-emitting chips, one for displaying left-eye image information, one for displaying right-eye image information, and the single color refers to three primary colors RGB one of the.
  • the illuminating pixels may be integrated, the two illuminating chips are in a package, and the cylindrical lens portion is in a complete cylindrical shape; the illuminating pixels may also be split into two parts by a complete illuminating pixel, respectively Manufacturing, The left eye image and the right eye image are respectively displayed, as shown in FIG. 19 and FIG. 20, and FIG. 21 and FIG.
  • the illuminating pixel of the present invention may also be an SMD patch type illuminating pixel, and the lens thereof is a cylindrical lens 4, as shown in FIGS. 23 and 24.
  • Two three-in-one patch type cylindrical lens illuminating pixels are fabricated together, and the cylindrical lens cover 5 is further packaged on the original pixel package.
  • two three-in-one that is, including three primary colors RGB
  • the chip type cylindrical lens illuminating pixels are fabricated together, and the cylindrical lens 4 is directly packaged on the package 1.
  • a cylindrical lens cover 5 is disposed on the light-emitting surface of the chip-type OLED package 1 while maintaining its original structure.
  • the illuminating pixels are divided into two parts which are bilaterally symmetrical. , The left eye image and the right eye image are displayed separately. These two parts can be produced separately and installed together when the board is fabricated, as shown in Figure 31 - Figure 34.
  • the SMD SMD type illuminating pixel can be a monochrome SMD type cylindrical lens tube or two independent ones.
  • Monochrome patch-type cylindrical lens tubes are mounted together, as shown in Figures 37 and 38, to form a complete cylindrical lens.
  • FIG. 1 As shown in the figure, for a liquid crystal or plasma display screen, a cylindrical lens can be used to realize a naked-eye stereoscopic display in front of the screen.
  • the cylindrical lens is shown in FIG. 1, and the left and right eye images are illuminated by the pixel 1 and the cylindrical lens 2 in FIG. Composition. Since the principle of liquid crystal or plasma display is different from that of large screen display, if this principle is applied to the LED large screen, a cylindrical lens plate will be installed in front of the LED screen, as shown in Figure 2. As shown, such a lens plate will cause a significant reduction in contrast and color saturation of the display screen due to severe reflection.
  • the invention includes The controller and the display screen are provided with a plurality of illuminating pixels (or illuminating points) on the display screen, and the illuminating pixels are controlled by the controller; a cylindrical lens is respectively disposed on the illuminating pixels, and a large screen made of such illuminating pixels is used.
  • the left and right eye images are respectively sent into the corresponding left and right eyes. According to the principle of cylindrical lens illumination, the left and right eye images are visually poor, and finally the final stereoscopic image is formed in the human brain. No need to wear any stereo glasses, the naked eye stereo large screen display.
  • black matrix processing are still used around the illuminating pixel, such as, but not limited to, using a black plastic frame or the like to increase contrast and color saturation.
  • the illuminating pixel of the present invention may be
  • the light-emitting tube comprises a cylindrical lens 4, a package body 1, a lead 3 and a light-emitting chip 2, the light-emitting chip 2 is disposed in the package body 1, the cylindrical lens 4 is disposed on the side of the package body 1, and the lead is disposed in the package On the other side of the body 1, the pin 3 is connected to the light-emitting chip 2.
  • Figure 3 shows the origin of the cylindrical lens name.
  • the cylinder of the light-emitting tube or the illuminating pixel is obtained by taking one of the columns in the cylindrical lens plate shown in Fig. 2.
  • the basic shape of the obtained cylindrical lens illuminating pixel is as shown in Fig. 4.
  • Cylindrical lens on package 1 4 The corresponding surface of the cylinder may be cylindrical or concave or convex, and the corresponding features of the SMD patch type are the same.
  • the longitudinal side lens side of the arc tube or the illuminating pixel of the present invention may be a straight line, as shown in FIG. 4, or may be convex, as shown in FIG. 5. As shown, or concave, as shown in Figure 6, Figure 5, Figure 6 is Figure 4.
  • the traditional ellipsoidal or spherical lens illuminating pixels can also be deformed according to this principle, and the two illuminating tubes are combined and manufactured as shown in Fig. 7 and Fig. 8, and Fig. 8 is actually a figure.
  • FIG. 4 which is a straight line on the side of the longitudinal section lens, is described as a basic shape
  • FIG. 5, FIG. 6, and FIG. Figure 8 The outer convex or concave shape, or the ellipsoidal or spherical lens tube or the illuminating pixel shown can also be completed according to the following detailed description, regardless of the lens shape of the individual components, after being mounted on the large screen, The macroscopic vertical direction still shows the cylindrical profile on the basic shape.
  • the illuminating tube of the ellipsoidal lens can also be modified, and the two cylindrical lenses which are combined into one and the illuminating lens is changed into a cylindrical lens and its radial convex surface or radial concave surface, as shown in FIG. 7
  • two light-emitting tubes can also be combined to form a spherical lens light-emitting tube, as shown in FIG. Figure 4 to Figure 8
  • the light-emitting tube or illuminating pixel of the shape shown on the circuit board is mounted on the circuit board, regardless of the shape of the lens of the single component, after being mounted on the large screen, the macroscopic vertical large screen direction is still outside the cylinder on the basic shape. Profile.
  • the illuminating pixel is a cylindrical lens monochromatic light-emitting tube including two light-emitting chips, one for displaying left-eye image information, one for displaying right-eye image information, and the single color refers to three primary colors RGB one of the.
  • the illuminating pixels may be integrated, the two illuminating chips are in a package, and the cylindrical lens portion is in a complete cylindrical shape; the illuminating pixels may also be split into two parts by a complete illuminating pixel, respectively Manufacturing, The left eye image and the right eye image are respectively displayed, as shown in FIG. 19 and FIG. 20, and FIG. 21 and FIG.
  • the illuminating pixel of the present invention may also be an SMD patch type illuminating pixel, and the lens thereof is a cylindrical lens 4, as shown in FIGS. 23 and 24.
  • Two three-in-one patch type cylindrical lens illuminating pixels are fabricated together, and the cylindrical lens cover 5 is further packaged on the original pixel package.
  • two three-in-one that is, including three primary colors RGB
  • the chip type cylindrical lens illuminating pixels are fabricated together, and the cylindrical lens 4 is directly packaged on the package 1.
  • a cylindrical lens cover 5 is disposed on the light-emitting surface of the chip-type OLED package 1 while maintaining its original structure.
  • the illuminating pixels are divided into two parts which are bilaterally symmetrical. , The left eye image and the right eye image are displayed separately. These two parts can be produced separately and installed together when the board is fabricated, as shown in Figure 31 - Figure 34.
  • the SMD SMD type illuminating pixel can be a monochrome SMD type cylindrical lens tube or two independent ones.
  • Monochrome patch-type cylindrical lens tubes are mounted together, as shown in Figures 37 and 38, to form a complete cylindrical lens.
  • the present invention provides a cylindrical lens on one side of a light-emitting point or a light-emitting pixel, and a large screen made of the light-emitting point or the light-emitting pixel
  • the left and right images are respectively emitted, and the left and right eye images respectively enter the corresponding left and right eyes.
  • the left and right eye images are visually poor, and finally the final stereoscopic image is formed in the human brain.
  • the naked eye stereoscopic large screen display With industrial applicability.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Theoretical Computer Science (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

一种基于 柱面透镜发光管的立体大屏幕 技术领域
本发明涉及一种 LED 立体大屏幕 ,具体为 一种基于 柱面透镜发光管的立体大屏幕。
背景技术
现有的技术中一般采用快门式立体眼镜,其缺点为图像快速的左右眼切换,导致视觉闪烁感严重,对眼睛易产生视觉疲劳等,而且 立体显示/平面显示不能完全兼容 。 对于液晶或者等离子显示屏,可以在屏前面采用柱面透镜实现裸眼立体显示,如果将此原理直接应用于 LED 立体 大屏幕,在 LED 立体 大屏幕前面就要加装类似柱面透镜板,这样的透镜板由于产生严重反射,将会造成显示屏的对比度和饱和度的大幅度降低。
技术问题
本发明的目的是提供 一种基于 柱面透镜发光管的立体大屏幕 ,克服了现有技术中的不足,在 发光点或者发光像素 的一面设置柱面透镜, 使用该发光点或者发光像素 制成的大屏幕 分别发出左、右图像的光,左、右眼图像分别进入相对应的左、右眼中,根据柱面透镜发光原理,形成左右眼图像视觉差,最终在人脑中形成最终立体图像,在观看时人们无需戴任何立体眼镜,实现了裸眼立体大屏幕显示。
技术解决方案
为了实现上述目的,本发明采用以下技术方案:
一种基于 柱面透镜发光管的立体大屏幕 ,包括控制器和显示屏,其中,在显示屏上设置多个发光像素,由控制器控制发光像素发光;在所述发光像素上分别设置柱面透镜,根据柱面发光原理, 形成左右眼图像视觉差 。
进一步,所述发光像素为发光管,包括柱面透镜、封装体、引脚和发光芯片,所述发光芯片设置在封装体内,柱面透镜设置在封装体上,引脚与发光芯片连接。所述发光像素的纵切面透镜侧为直线、 外凸或内凹。 所述发光像素 包括两个发光芯片,一个用于显示左眼图像信息,一个用于显示右眼图像信息 。 所述发光像素拆分为左右对称的两部分, 分别显示左眼图像和右眼图像 。所述发光像素为SMD贴片型,其透镜为柱面透镜,或在SMD贴片型发光像素封装体发光面上设置一个柱面透镜罩。所述发光像素 包括显示左眼图像的发光像素和显示右眼图像的发光像素,所述显示左眼图像的发光像素和显示右眼图像的发光像素均包含三基色 RGB 。所述发光像素拆分为左右对称的两个,分别显示左眼图像和右眼图像。
本发明的发光像素使用透镜为柱面的发光管或SMD贴片型发光管,或在SMD贴片的封装体发光面设置一个柱面透镜罩,发光管为单色发光(RGB中的一种),SMD贴片型可为单色发光,也可为三基色发光(包含RGB三种),发光管或SMD贴片型内的发光芯片均可同时显示左眼图像信息和右眼图像信息,柱面透镜或柱面透镜罩的设置, 根据柱面透镜发光原理,形成左右眼图像视觉差,最终在人脑中形成最终立体图像,在观看时人们无需戴任何立体眼镜,实现了裸眼立体大屏幕显示。
而且本发明在发光像素上设置柱面透镜或柱面透镜罩,解决了现有技术中在 LED 立体 大屏幕前面加装类似柱面透镜板,这样的透镜板由于产生严重反射,将会造成显示屏的对比度和色饱和度的大幅度降低的问题;本发明的大屏幕的发光像素或发光点可以 形成一个高清晰度显示的完整像素, 这样使得系统分辨率、对比度、色饱和度没有任何降低,立体显示与平面显示兼容,操作简单,清晰度高。
有益效果
本发明 在 发光点或者发光像素 上设置柱面透镜, 使用该发光点或者发光像素 制成的大屏幕 分别发出左、右图像的光,左、右眼图像分别进入相对应的左、右眼中,根据柱面透镜发光原理,形成左右眼图像视觉差,最终在人脑中形成最终立体图像,在观看时人们无需戴任何立体眼镜,实现了裸眼立体大屏幕显示。本发明在各发光点或者发光像素 周边仍然采用各种形式的黑底处理,比如但不限于使用黑色塑框等,以增大对比度和色饱和度。
本发明的发光像素 可以同时显示左右眼图像,形成一个高清晰度显示的完整像素, 这样使得系统分辨率、对比度、色饱和度没有任何降低,立体显示与平面显示兼容,操作简单,清晰度高。
本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书或者附图中所特别指出的结构来实现和获得。
附图说明
图 1 为一般液晶柱面透镜立体显示的基本原理图;图 2 为柱面透镜板的示意图;图 3 为从柱面透镜板上截取出作为柱面透镜发光管的示意图;图 4 为纵切面透镜侧为直线的柱面透镜发光管示意图;图 5 为外凸形的柱面透镜发光管示意图;图 6 为内凹形的柱面透镜发光管示意图;图 7 为椭球面透镜 发光管基本形状示意图;图 8 为球面透镜发光管基本形状示意图;图 9 为本发明发光管衬托引脚在中间的四引脚实施例的示意图;图 10 为图 9 的俯视示意图;图 11 为本发明发光管衬托引脚在中间的三引脚实施例的示意图 ;图 12 为图 11 的俯视 示意图 ; 图 13 为本发明发光管衬托引脚在外侧的四引脚实施例的示意图;图 14 为图 13 的俯视示意图;图 15 为本发明发光管衬托引脚在外侧的三引脚实施例的示意图;图 16 为图 15 的俯视示意图;图 17 为本发明发光管电路板排列示意图;图 18 为本发明发光管电路板高密度排列示意图;图 19 为本发明将衬托引脚在中间的发光管一分为二的实例;图 20 为本发明将衬托引脚在外侧的发光管一分为二的另一实例;图 21 为本发明将两个一分为二的柱面透镜发光管在电路板上合并安装的示意图;图 22 为本发明将六个一分为二的发光管( RGB 各二个)在电路板上合并安装的示意图;图 23 为本发明两个三合一贴片型柱面透镜发光像素制作在一起、在原像素封装基础上再封装柱面透镜的示意图;图 24 是图 23 的俯视示意图;图 25 为本发明两个三合一贴片型柱面透镜发光像素制作在一起、在发光芯片上直接封装柱面透镜的示意图;图 26 为图 25 的俯视示意图;图 27 为本发明独立三合一贴片型柱面透镜发光像素二次封装的示意图;图 28 是图 27 的俯视示意图;图 29 为本发明独立三合一贴片型柱面透镜发光像素直接封装的示意图;图 30 为图 29 的俯视图;图 31 为本发明两个独立三合一贴片型柱面透镜发光像素在电路板上安装的示意图;图 32 为图 31 的俯视示意图;图 33 为本发明两个单色贴片型柱面透镜发光 管制作在一起的示意图 ;图 34 为图 33 的俯视示意图;图 35 为本发明独立单色贴片型柱面透镜发光 管的示意图 ;图 36 为图 35 的俯视示意图;图 37 为本发明两个独立单色贴片型柱面透镜发光 管 在电路板上安装的 示意图 ;图 38 为图 37 的俯视示意图 。
本发明的最佳实施方式
本发明包括 控制器和显示屏,在显示屏上设置多个发光像素(或称发光点),由控制器控制发光像素发光;在发光像素上分别设置柱面透镜, 使用此类 发光像素制成的大屏幕 分别发出左右图像的光,左、右眼图像分别进入相对应的左、右眼中,根据柱面透镜发光原理,形成左右眼图像视觉差,最终在人脑中形成最终立体图像,在观看时人们无需戴任何立体眼镜,实现了裸眼立体大屏幕显示。在各 发光像素周边仍然采用各种形式的黑底处理,比如但不限于使用黑色塑框等,以增大对比度和色饱和度。
如图 9 -图 22 所示,本发明的发光像素可以是 发光管,包括柱面透镜4、封装体1、引脚3和发光芯片2,发光芯片2设置在封装体1内,柱面透镜4设置在封装体1一侧,引脚设3置在封装体1另一侧,引脚3与发光芯片2连接。图3所示为柱面透镜名称的由来, 所谓 发光管或发光像素的柱面是取图 2 所示柱面透镜板中的一列之中的一个薄片而得,得到的柱面透镜发光像素的基本形状如图 4 所示。在封装体 1 上柱面透镜 4 的对应面,可以为柱面,也可以为柱面内凹或外凸, SMD 贴片型的相应特征与此相同。
本发明的发光管或发光像素的纵切面透镜侧可以为直线,如图 4 所示,也可以为外凸形,如图 5 所示,或为内凹形,如图 6 所示,图 5 、图 6 为图 4 发光管柱面透镜的两种变形。传统的椭球面或者球面透镜发光像素也可以据此原理加以变形,照此将两个发光管合二而一制造,如图 7 和图 8 所示,图 8 实际上是图 7 的水平半径和垂直半径相等的一个特例,图 7 和图 8 所示形状的发光像素在电路板上安装后,其垂直方向上仍然呈基本形体上的柱面外廓。这里以纵切面透镜侧为直线的图 4 作为基本形状加以详述,图 5 、图 6 、图 7 、图 8 所示的外凸形或内凹形、或者椭球面或者球面透镜发光管或发光像素全部也都可以按照以下详述完成制作,无论其单个元器件的透镜外形如何,安装在大屏幕后,其宏观的垂直方向上均仍然呈基本形体上的柱面外廓。
椭球面透镜的发光管也可以改型设计,将两个合为一个而将发光透镜改为柱面透镜及其径向凸面或径向凹面的变形的柱面透镜,如图 7 所示;作为椭球面透镜的一个极端情况,也可将两个发光管合起来制成一个球面透镜的发光管,如图 8 所示。图 4 至图 8 所示形状的发光管或发光像素在电路板上安装后,无论其单个元器件的透镜外形如何,安装在大屏幕后,其宏观的垂直大屏幕方向上均仍然呈基本形体上的柱面外廓。
如图 9 -图 18 所示,发光像素为包括两个发光芯片的柱面透镜单色发光管,一个用于显示左眼图像信息,一个用于显示右眼图像信息,所述的单色是指三基色 RGB 中的一个。发光像素可以是一体式的,两个发光芯片在一个封装体内,其柱面透镜部分为完整的柱面形状;发光像素也可以是由一个完整的发光像素拆分为左右对称的两部分,分别加工制造, 分别显示左眼图像和右眼图像,如图19、图20所示,图21、图22所示为两个 拆分为两部分的发光像素安装在一起的示意图,其两部分可以在电路板制作时再安装在一起。
本发明的发光像素也可以为 SMD 贴片型发光像素,其透镜为柱面透镜4,如图23、24所示, 两个三合一贴片型柱面透镜发光像素制作在一起、在原像素封装基础上再封装柱面透镜罩 5 。 如图25、图26所示, 两个三合一(即包含三基色 RGB ) 贴片型柱面透镜发光像素制作在一起、在封装体 1 上直接封装柱面透镜 4 。也可以是在 SMD 贴片型发光像素封装体1的发光面上设置一个柱面透镜罩5,而保持其原有其它结构不变, 如图 27 -图 30 所示, 将 发光像素拆分为左右对称的两部分, 分别显示左眼图像和右眼图像, 这两部分可以单独生产,在电路板制作时再安装在一起,如图 31 -图 34 所示。
如图35、36所示,SMD贴片型发光像素可以为一个 单色贴片型柱面透镜发光 管,也可以为两个独立的 单色贴片型柱面透镜发光 管安装在一起,如图 37 、 38 所示,形成一个完整的柱面透镜。
本发明的实施方式
下面通过具体实施方式并结合附图对本发明做进一步的详细描述:
如图 1 、图 2 所示,对于液晶或者等离子显示屏,可以在屏前面采用柱面透镜实现裸眼立体显示,这种柱面透镜如图 1 所示,图 1 中由左右眼图像发光像素 1 和柱面透镜 2 组成。由于液晶或者等离子显示屏与大屏幕显示原理的不同,如果将此原理应用于 LED 大屏幕,在 LED 屏幕前面就要加装类似柱面透镜板,如图 2 所示,这样的透镜板由于产生严重反射,将会造成显示屏的对比度和色饱和度的大幅度降低。
本发明包括 控制器和显示屏,在显示屏上设置多个发光像素(或称发光点),由控制器控制发光像素发光;在发光像素上分别设置柱面透镜, 使用此类 发光像素制成的大屏幕 分别发出左右图像的光,左、右眼图像分别进入相对应的左、右眼中,根据柱面透镜发光原理,形成左右眼图像视觉差,最终在人脑中形成最终立体图像,在观看时人们无需戴任何立体眼镜,实现了裸眼立体大屏幕显示。在各 发光像素周边仍然采用各种形式的黑底处理,比如但不限于使用黑色塑框等,以增大对比度和色饱和度。
如图 9 -图 22 所示,本发明的发光像素可以是 发光管,包括柱面透镜4、封装体1、引脚3和发光芯片2,发光芯片2设置在封装体1内,柱面透镜4设置在封装体1一侧,引脚设3置在封装体1另一侧,引脚3与发光芯片2连接。图3所示为柱面透镜名称的由来, 所谓 发光管或发光像素的柱面是取图 2 所示柱面透镜板中的一列之中的一个薄片而得,得到的柱面透镜发光像素的基本形状如图 4 所示。在封装体 1 上柱面透镜 4 的对应面,可以为柱面,也可以为柱面内凹或外凸, SMD 贴片型的相应特征与此相同。
本发明的发光管或发光像素的纵切面透镜侧可以为直线,如图 4 所示,也可以为外凸形,如图 5 所示,或为内凹形,如图 6 所示,图 5 、图 6 为图 4 发光管柱面透镜的两种变形。传统的椭球面或者球面透镜发光像素也可以据此原理加以变形,照此将两个发光管合二而一制造,如图 7 和图 8 所示,图 8 实际上是图 7 的水平半径和垂直半径相等的一个特例,图 7 和图 8 所示形状的发光像素在电路板上安装后,其垂直方向上仍然呈基本形体上的柱面外廓。这里以纵切面透镜侧为直线的图 4 作为基本形状加以详述,图 5 、图 6 、图 7 、图 8 所示的外凸形或内凹形、或者椭球面或者球面透镜发光管或发光像素全部也都可以按照以下详述完成制作,无论其单个元器件的透镜外形如何,安装在大屏幕后,其宏观的垂直方向上均仍然呈基本形体上的柱面外廓。
椭球面透镜的发光管也可以改型设计,将两个合为一个而将发光透镜改为柱面透镜及其径向凸面或径向凹面的变形的柱面透镜,如图 7 所示;作为椭球面透镜的一个极端情况,也可将两个发光管合起来制成一个球面透镜的发光管,如图 8 所示。图 4 至图 8 所示形状的发光管或发光像素在电路板上安装后,无论其单个元器件的透镜外形如何,安装在大屏幕后,其宏观的垂直大屏幕方向上均仍然呈基本形体上的柱面外廓。
如图 9 -图 18 所示,发光像素为包括两个发光芯片的柱面透镜单色发光管,一个用于显示左眼图像信息,一个用于显示右眼图像信息,所述的单色是指三基色 RGB 中的一个。发光像素可以是一体式的,两个发光芯片在一个封装体内,其柱面透镜部分为完整的柱面形状;发光像素也可以是由一个完整的发光像素拆分为左右对称的两部分,分别加工制造, 分别显示左眼图像和右眼图像,如图19、图20所示,图21、图22所示为两个 拆分为两部分的发光像素安装在一起的示意图,其两部分可以在电路板制作时再安装在一起。
本发明的发光像素也可以为 SMD 贴片型发光像素,其透镜为柱面透镜4,如图23、24所示, 两个三合一贴片型柱面透镜发光像素制作在一起、在原像素封装基础上再封装柱面透镜罩 5 。 如图25、图26所示, 两个三合一(即包含三基色 RGB ) 贴片型柱面透镜发光像素制作在一起、在封装体 1 上直接封装柱面透镜 4 。也可以是在 SMD 贴片型发光像素封装体1的发光面上设置一个柱面透镜罩5,而保持其原有其它结构不变, 如图 27 -图 30 所示, 将 发光像素拆分为左右对称的两部分, 分别显示左眼图像和右眼图像, 这两部分可以单独生产,在电路板制作时再安装在一起,如图 31 -图 34 所示。
如图35、36所示,SMD贴片型发光像素可以为一个 单色贴片型柱面透镜发光 管,也可以为两个独立的 单色贴片型柱面透镜发光 管安装在一起,如图 37 、 38 所示,形成一个完整的柱面透镜。
以上实施例仅用于说明本发明的优选实施方式,但本发明并不限于上述实施方式,在所述领域普通技术人员所具备的知识范围内,本发明的精神和原则之内所作的任何修改、等同替代和改进等,其均应涵盖在本发明请求保护的技术方案范围之内。
工业实用性
本发明 在 发光点或者发光像素 的一面设置柱面透镜, 使用该发光点或者发光像素 制成的大屏幕 分别发出左、右图像的光,左、右眼图像分别进入相对应的左、右眼中,根据柱面透镜发光原理,形成左右眼图像视觉差,最终在人脑中形成最终立体图像,在观看时人们无需戴任何立体眼镜,实现了裸眼立体大屏显示 ,具备工业实用性。

Claims (6)

  1. 一种基于 柱面透镜发光管的立体大屏幕 ,包括控制器和显示屏,其特征在于:在显示屏上设置多个发光像素,由控制器控制发光像素发光;在所述发光像素上分别设置柱面透镜,根据柱面发光原理,形成左右眼图像视觉差 ;所述发光像素为发光管或SMD贴片型,所述发光管包括柱面透镜、封装体、引脚和发光芯片,所述发光芯片设置在封装体内,柱面透镜设置在封装体上,引脚与发光芯片连接;所述SMD贴片型,其透镜为柱面透镜,或在SMD贴片型发光像素封装体发光面上设置一个柱面透镜罩。
  2. 根据权利要求1所述的基于柱面透镜发光管的立体大屏幕,其特征在于:所述发光像素的纵切面透镜侧为直线、外凸或内凹。
  3. 根据权利要求所述1或2的基于柱面透镜发光管的立体大屏幕,其特征在于:所述发光像素包括两个发光芯片,一个用于显示左眼图像信息,一个用于显示右眼图像信息。
  4. 根据权利要求3所述的基于柱面透镜发光管的立体大屏幕,其特征在于:所述发光像素拆分为左右对称的两部分,分别显示左眼图像和右眼图像。
  5. 根据权利要求4所述的基于柱面透镜发光管的立体大屏幕,其特征在于:所述发光像素包括显示左眼图像的发光像素和显示右眼图像的发光像素,所述显示左眼图像的发光像素和显示右眼图像的发光像素均包含三基色RGB。
  6. 根据权利要求5所述的基于柱面透镜发光管的立体大屏幕,其特征在于:所述发光像素拆分为左右对称的两个,分别显示左眼图像和右眼图像。
PCT/CN2012/075205 2011-05-13 2012-05-08 一种基于柱面透镜发光管的立体大屏幕 WO2012155800A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12785276.2A EP2708936B1 (en) 2011-05-13 2012-05-08 Large 3d screen based on light tubes with cylindrical lens
PCT/CN2012/075205 WO2012155800A1 (zh) 2011-05-13 2012-05-08 一种基于柱面透镜发光管的立体大屏幕
JP2014509594A JP5676821B2 (ja) 2011-05-13 2012-05-08 円柱レンズ発光管をベースとする立体ビッグスクリーン
KR1020137032844A KR101622819B1 (ko) 2011-05-13 2012-05-08 실린더 렌즈 발광관에 기반한 입체 대형 스크린
US14/078,556 US20140071185A1 (en) 2011-05-13 2013-11-13 Stereoscopic screen

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CN201120151626.4 2011-05-13
CN2011201516264U CN202049292U (zh) 2011-05-13 2011-05-13 一种基于柱面透镜发光管的立体大屏幕
CN201110122809.8A CN102183845B (zh) 2011-05-13 2011-05-13 一种基于柱面透镜发光管的立体大屏幕
CN201110122809.8 2011-05-13
PCT/CN2012/075205 WO2012155800A1 (zh) 2011-05-13 2012-05-08 一种基于柱面透镜发光管的立体大屏幕

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/078,556 Continuation-In-Part US20140071185A1 (en) 2011-05-13 2013-11-13 Stereoscopic screen

Publications (1)

Publication Number Publication Date
WO2012155800A1 true WO2012155800A1 (zh) 2012-11-22

Family

ID=47176305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/075205 WO2012155800A1 (zh) 2011-05-13 2012-05-08 一种基于柱面透镜发光管的立体大屏幕

Country Status (5)

Country Link
US (1) US20140071185A1 (zh)
EP (1) EP2708936B1 (zh)
JP (1) JP5676821B2 (zh)
KR (1) KR101622819B1 (zh)
WO (1) WO2012155800A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017163778A1 (ja) * 2016-03-23 2017-09-28 株式会社エンプラス マーカ

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5528420A (en) * 1993-09-09 1996-06-18 Sony Corporation Method of and apparatus for outputting images
US20020075566A1 (en) * 2000-12-18 2002-06-20 Tutt Lee W. 3D or multiview light emitting display
JP2004020684A (ja) * 2002-06-13 2004-01-22 Tatsuo Uchida 3次元表示装置
JP2005326610A (ja) * 2004-05-14 2005-11-24 Matsushita Electric Ind Co Ltd 三次元画像再生装置
CN101546500A (zh) * 2008-03-24 2009-09-30 富士迈半导体精密工业(上海)有限公司 发光二极管立体显示装置
US7820954B2 (en) * 2004-01-28 2010-10-26 Siemens Aktiengesellschaft Device for generating a view of a three-dimensional object
WO2011006835A1 (de) * 2009-07-13 2011-01-20 Osram Opto Semiconductors Gmbh Leuchtdiodenbauteil, leuchtdiodenmodul und anzeigevorrichtung
CN102183845A (zh) * 2011-05-13 2011-09-14 郑州中原显示技术有限公司 一种基于柱面透镜发光管的立体大屏幕
CN202049292U (zh) * 2011-05-13 2011-11-23 郑州中原显示技术有限公司 一种基于柱面透镜发光管的立体大屏幕

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100220364B1 (ko) 1996-05-17 1999-09-15 김충환 대화면의 입체영상 장치
AU2002354681A1 (en) * 2001-07-13 2003-01-29 Mems Optical, Inc. Autosteroscopic display with rotated microlens-array and method of displaying multidimensional images, especially color images
US6583447B2 (en) * 2001-08-27 2003-06-24 Harvatek Corp. Multiple LED chip package
US6974216B2 (en) * 2003-01-29 2005-12-13 Mems Optical, Inc. Autostereoscopic 3-D display
KR100685844B1 (ko) * 2005-08-26 2007-02-22 삼성에스디아이 주식회사 양면발광 유기 전계발광 표시장치 및 그의 구동방법
US7907133B2 (en) * 2006-04-13 2011-03-15 Daktronics, Inc. Pixel interleaving configurations for use in high definition electronic sign displays
WO2007095476A2 (en) * 2006-02-10 2007-08-23 Colorlink, Inc. Multi-functional active matrix liquid crystal displays
EP1969957B1 (en) * 2007-03-12 2012-08-01 Texco Hook & Eye Tape Ltd Method of manufacturing connector comprising an array of fasteners and connector for a clothing or textile item
US8770815B2 (en) * 2009-05-18 2014-07-08 Sony Corporation Active bezel edge lighting with diffuser layer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5528420A (en) * 1993-09-09 1996-06-18 Sony Corporation Method of and apparatus for outputting images
US20020075566A1 (en) * 2000-12-18 2002-06-20 Tutt Lee W. 3D or multiview light emitting display
JP2004020684A (ja) * 2002-06-13 2004-01-22 Tatsuo Uchida 3次元表示装置
US7820954B2 (en) * 2004-01-28 2010-10-26 Siemens Aktiengesellschaft Device for generating a view of a three-dimensional object
JP2005326610A (ja) * 2004-05-14 2005-11-24 Matsushita Electric Ind Co Ltd 三次元画像再生装置
CN101546500A (zh) * 2008-03-24 2009-09-30 富士迈半导体精密工业(上海)有限公司 发光二极管立体显示装置
WO2011006835A1 (de) * 2009-07-13 2011-01-20 Osram Opto Semiconductors Gmbh Leuchtdiodenbauteil, leuchtdiodenmodul und anzeigevorrichtung
CN102183845A (zh) * 2011-05-13 2011-09-14 郑州中原显示技术有限公司 一种基于柱面透镜发光管的立体大屏幕
CN202049292U (zh) * 2011-05-13 2011-11-23 郑州中原显示技术有限公司 一种基于柱面透镜发光管的立体大屏幕

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2708936A4 *

Also Published As

Publication number Publication date
JP2014520280A (ja) 2014-08-21
KR101622819B1 (ko) 2016-05-19
EP2708936A4 (en) 2014-10-29
EP2708936A1 (en) 2014-03-19
JP5676821B2 (ja) 2015-02-25
US20140071185A1 (en) 2014-03-13
EP2708936B1 (en) 2021-07-07
KR20140009561A (ko) 2014-01-22

Similar Documents

Publication Publication Date Title
WO2021082765A1 (zh) 显示装置及其显示方法
US7997748B2 (en) Stereoscopic display device
EP2584555A1 (en) Display panel and display device
CN103197428B (zh) 基于弧形背光与透镜的裸眼立体影像显示光学装置
TWI446315B (zh) 立體顯示裝置
KR20110031461A (ko) 픽셀화된 조명 기구를 갖는 무안경 입체 디스플레이
CN109073905B (zh) 三维显示设备、三维成像设备、以及显示三维图像的方法
CN205404970U (zh) 一种2d/3d切换显示装置
WO2016150126A1 (zh) 显示驱动方法及显示驱动装置
CN112987295B (zh) 近眼显示装置和虚拟/增强现实设备
WO2016074337A1 (zh) 一种新型3d液晶显示器
WO2017092397A1 (zh) 一种三维显示装置及其驱动方法
CN104125451A (zh) 一种高亮度的集成成像3d显示装置
CN102116939B (zh) 一种三维显示方法、led显示装置及三维显示系统
CN111638600A (zh) 一种近眼显示的方法、装置及可穿戴设备
WO2017118047A1 (zh) 2d/3d可切换显示装置
WO2012155800A1 (zh) 一种基于柱面透镜发光管的立体大屏幕
CN206876971U (zh) 一种裸眼3d显示装置
CN102183845B (zh) 一种基于柱面透镜发光管的立体大屏幕
CN102682674A (zh) 一种基于oled-led的高亮度裸眼3d显示屏
WO2018170960A1 (zh) 一种裸眼三维显示装置
WO2012155799A1 (zh) 一种椭球面透镜发光管
CN202794718U (zh) 3d光栅显示屏
TWI403759B (zh) 發光二極體立體顯示裝置
CN104200757A (zh) 多视点3d显示led灯珠及立体电子大屏幕

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12785276

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014509594

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012785276

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137032844

Country of ref document: KR

Kind code of ref document: A