WO2012155626A1 - 一种物理随机接入信道的传输方法和系统 - Google Patents

一种物理随机接入信道的传输方法和系统 Download PDF

Info

Publication number
WO2012155626A1
WO2012155626A1 PCT/CN2012/072333 CN2012072333W WO2012155626A1 WO 2012155626 A1 WO2012155626 A1 WO 2012155626A1 CN 2012072333 W CN2012072333 W CN 2012072333W WO 2012155626 A1 WO2012155626 A1 WO 2012155626A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
serving cell
downlink control
rnti
access channel
Prior art date
Application number
PCT/CN2012/072333
Other languages
English (en)
French (fr)
Inventor
吴欣
戴博
喻斌
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US14/118,351 priority Critical patent/US20140105152A1/en
Priority to EP12785079.0A priority patent/EP2712259B1/en
Publication of WO2012155626A1 publication Critical patent/WO2012155626A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to a transmission method and system for a physical random access channel. Background technique
  • Radio frame (RF) in the Long Term Evolution (LTE) system includes a frame structure of a Frequency Division Duplex (FDD) mode and a Time Division Duplex (TDD) mode.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • FIG. 1 is a schematic diagram of a frame structure of an FDD mode in the prior art.
  • a 10 millisecond (ms) radio frame is composed of twenty slots (lengths) of 0.5 ms and numbers 0-19.
  • the slots 2i and 2i+1 form a subframe (frame) i of length lms.
  • FIG. 2 is a schematic diagram of a frame structure of a TDD mode in the prior art.
  • a 10 ms radio frame is composed of two half frames of 5 ms length, and one field includes 5 sub-lengths of lms.
  • Frame, subframe i is defined as two slots 2i and 2i+1 that are 0.5 ms long.
  • a time slot contains 7 symbols with a length of 66.7 microseconds ( ⁇ ⁇ ), wherein the CP length of the first symbol is 5.21 ⁇ ⁇ , and the CP length of the remaining 6 symbols is 4.69 ⁇ ⁇ ;
  • the prefix Extended Cyclic Prefix
  • a time slot contains 6 symbols, and the CP length of all symbols is 16.67 ⁇ ⁇ .
  • Random Access is the access process of the User Equipment (UE) before starting to communicate with the network. Random access can be divided into two types: synchronous random access and asynchronous random access. When the UE has obtained uplink synchronization with the system, the random access procedure of the UE is called synchronous random access; when the UE has not obtained uplink synchronization with the system or lost uplink synchronization The random access procedure of the UE is called asynchronous random access.
  • synchronous random access When the UE has obtained uplink synchronization with the system, the random access procedure of the UE is called synchronous random access; when the UE has not obtained uplink synchronization with the system or lost uplink synchronization
  • the random access procedure of the UE is called asynchronous random access.
  • a random access channel For a physical random access channel (PRACH), which may also be called a random access Opportunity or a random access resource, a random access channel corresponds to A random access preamble, the random access preamble consists of a cyclic prefix (CP, Cyclic Prefix) and a sequence (Sequence).
  • CP cyclic prefix
  • Sequence a sequence
  • Different random access preamble formats mean different CP and / or Sequence lengths.
  • the types of preamble formats supported by the TDD mode in the current LTE system are as follows:
  • r cp represents the CP length
  • r sEQ represents the sequence length
  • preamble format 0-3 is transmitted in a normal uplink subframe
  • preamble format 4 is transmitted in an Uplink Pilot Time Slot (UpPTS).
  • the transmission mode is as follows: preamble format 0 is transmitted in a normal uplink subframe; preamble format 1 and 2 are transmitted in two normal uplink subframes; preamble format 3 is transmitted in three normal uplink subframes; preamble format 4 is in UpPTS transmission.
  • a random access preamble occupies a bandwidth corresponding to six resource blocks (RBs), that is, 72 resource elements (RE, Resource Element), and each RE has a bandwidth of 15 kHz.
  • RBs resource blocks
  • RE resource elements
  • RE Resource Element
  • PCFICH Physical Downlink Control Format Indicator Channel
  • PHICH Physical Hybrid Automatic Retransmission Request Indicator Channel
  • PDCCH Physical Downlink Control Channel
  • the PDCCH is used to carry downlink control information (DCI, Downlink Control Information), and includes: uplink and downlink scheduling information, and uplink power control information.
  • DCI format DCI format
  • the DCI format is divided into the following types: DCI format 0, DCI format 1, DCI format 1A, DCI format 1B, DCI format 1C, DCI format 1D, DCI format 2, DCI format 2A, DCI format 3, and DCI Format 3A, etc.;
  • DCI format 0 is used to indicate scheduling of a Physical Uplink Shared Channel (PUSCH);
  • DCI format 1 is used for different modes of codeword scheduling of a physical downlink shared channel (PDSCH);
  • PDSCH physical downlink shared channel
  • DCI format 2 DCI format 2A, DCI format 2B is used for different modes of space division multiplexing;
  • DCI format 3 DCI format 3 A is used for physical uplink control channel (PUCCH, Physical
  • Uplink Control Channel Uplink Control Channel
  • PUSCH power control commands are different modes.
  • the physical resources of the PDCCH are transmitted in units of Control Channel Elements (CCEs).
  • the size of one CCE is 9 Resource Element Groups (REGs), that is, 36 REs.
  • One PDCCH may occupy 1, 2 , 4 or 8 CCEs.
  • a tree-like aggregation is used for the four PDCCH sizes occupying 1, 2, 4, and 8 CCEs. Aggregation, that is, the PDCCH occupying 1 CCE may start from any CCE position; the PDCCH occupying 2 CCEs starts from an even CCE position; the PDCCH occupying 4 CCEs starts from an CCE position of an integral multiple of 4; occupy 8
  • the PDCCH of the CCE starts from an CCE position that is an integer multiple of 8.
  • Each aggregation level defines a search space, including a common search space and a UE-specific search space.
  • the number of CCEs in the entire search space is determined by the number of orthogonal frequency division multiplexing (OFDM, Orthogonal Frequency Division Multiplexing) symbols and the number of PHICH groups occupied by the control region indicated by the PCFICH in each downlink subframe.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the UE blindly detects all possible PDCCH code rates in the search space according to the DCI format of the transmission mode.
  • the base station transmits information such as a Preamble Index and a PRACH Mask Index through DCI format 1A. If the UE is configured by the upper layer to perform PDCCH decoding using a Random Access Radio Network Temporary Identifier (CRC), the UE should perform PDCCH decoding.
  • the PDCCH and all associated PDSCHs are decoded according to the respective combinations defined in Table 2 below:
  • the UE shall decode the PDCCH and all correlations according to the corresponding combination defined in Table 3 below.
  • PDSCH Under the UE
  • DCI format C-RNTI defined transmission port 7 and port 8 2B UE specific (port 7 and 8); or single antenna port, port 7 or 8 if the number of PBCH antenna ports is
  • DCI format C-RNTI defines up to 8 layers of transmission (up to 8 layer 2C UE specific transmission), port 7-port 14 Table 3
  • LTE-Advanced In the LTE-Advanced (LTE-Advance) system, since the LTE-Advanced network needs to be able to access LTE users, its operating band needs to cover the current LTE band. However, there is no available 100 MHz spectrum bandwidth allocated in the current LTE frequency band. Therefore, one technical problem that LTE-Advanced needs to solve is: several consecutive component carriers (spectrums) distributed in different frequency bands (Component Carrier)
  • the carrier aggregation (CA, Carrier Aggregation) technology is used to form a 100 MHz bandwidth that can be used by LTE-Advanced. That is, for the aggregated spectrum, it is divided into n component carriers (spectrum), and the spectrum in each component carrier (spectrum) is continuous.
  • a schematic diagram of carrier aggregation in the LTE-A system is shown in FIG.
  • component carriers may also be called a serving cell (serving cell), and the primary component carrier may be referred to the primary serving cell (Pcell, primary serving cell), a secondary component carrier can be called a secondary Scell, Secondary Serving Cell 0
  • the main purpose of the present invention is to provide a method and system for transmitting a physical random access channel to solve the problem of transmitting a physical random access channel on a secondary serving cell in a scenario of carrier aggregation.
  • the present invention provides a method for transmitting a physical random access channel, the method includes: in a scenario of carrier aggregation, the base station sends a random access trigger message to the user equipment (UE) through the primary serving cell or the secondary serving cell;
  • the base station sends a random access procedure message to the UE on the primary serving cell or the secondary serving cell.
  • the base station sends a random access trigger message to the UE by using the primary serving cell, where the base station sends a random access trigger message to the UE by using the high layer signaling or the downlink control channel information on the primary serving cell, where The high-level signaling or downlink control channel information includes an uplink serving cell index where the physical random access channel is located.
  • the uplink serving cell index where the physical random access channel is located is located at:
  • the downlink control channel information further includes:
  • Preamble index and physical random access channel mask index are preamble index and physical random access channel mask index.
  • the UE transmits a physical random access channel on the secondary serving cell, specifically:
  • the UE sends the physical random access channel on a serving cell indicated by an uplink serving cell index where the physical random access channel is located.
  • the base station sends a random access trigger message to the UE by using the secondary serving cell, where the base station sends the random access trigger cancellation by using the secondary service channel information on the secondary service channel Information to the UE.
  • the UE transmits a physical random access channel on the secondary serving cell, specifically:
  • the UE sends the physical random access channel on an uplink serving cell of a downlink secondary serving cell SIBX link that receives a random access trigger message.
  • the base station sends a random access procedure message to the UE on the primary serving cell, where: the UE detects downlink control information sent by the base station on the primary serving cell; the UE is configured according to the downlink control information and sent by Detecting, by the preamble index corresponding to the physical random access channel, the random access procedure message;
  • the UE detects the random access procedure message according to the downlink control information, a preamble index corresponding to the sent physical random access channel, and a temporary cell radio network temporary identifier (Temporary C-RNTI), where the The Temporary C-RNTI is set to a cell radio network temporary identifier (C-RNTI);
  • the UE detects the random access procedure message according to the downlink control information, a preamble index corresponding to the sent physical random access channel, and a configured C-RNTI.
  • the UE detects downlink control information sent by the base station on the primary serving cell, specifically: the UE detects downlink control information according to the configured random access radio network temporary identifier (RA-RNTI), where each serving cell is configured RA-RNTI is different;
  • RA-RNTI random access radio network temporary identifier
  • the UE detects downlink control information according to the configured RA-RNTI, where the RA-RNTI configured by each serving cell is the same;
  • the UE detects downlink control information according to the configured C-RNTI.
  • the secondary serving cell that the base station sends the random access procedure message is: the downlink serving cell corresponding to the uplink serving cell that sends the random access channel.
  • the base station sends a random access procedure message to the UE on the secondary serving cell, where specifically: the UE detects downlink control information sent by the base station; The UE detects the random access procedure message according to the downlink control information and a preamble index corresponding to the sent physical random access channel on the secondary serving cell;
  • the UE detects the random access procedure message according to the downlink control information, the preamble index corresponding to the sent physical random access channel, and the Temporary C-RNTI, where the Temporary C is located on the secondary serving cell, where the Temporary C is detected.
  • - RNTI is set to C-RNTI;
  • the UE detects the random access procedure message according to the downlink control information, the preamble index corresponding to the sent physical random access channel, and the configured C-RNTI on the secondary serving cell.
  • the UE detects downlink control information sent by the base station, specifically:
  • the UE detects downlink control information sent by the base station according to the configured RA-RNTI on the secondary serving cell;
  • the UE detects downlink control information according to the configured RA-RNTI on the primary serving cell, where the RA-RNTI configured by each serving cell is different;
  • the UE detects downlink control information according to the configured RA-RNTI on the primary serving cell, where the RA-RNTI configured by each serving cell is the same;
  • the UE detects downlink control information according to the configured C-RNTI on the primary serving cell;
  • the UE detects downlink control information including a carrier indication domain according to the configured RA-RNTI on the primary serving cell, where the RA-RNTI configured by each serving cell is the same.
  • the UE detects downlink control information sent by the base station on the secondary serving cell, specifically: detecting, in one subframe, downlink control information of the public search space and downlink control of the user-specific search space on the secondary serving cell Information
  • the UE detects only downlink control information of the public search space in one subframe on the secondary serving cell, and detects downlink control information of the dedicated search space of the secondary serving cell in another subframe.
  • the UE detects downlink control information on the primary serving cell, specifically:
  • the UE detects downlink control information of the public search space on the primary serving cell;
  • the UE detects downlink control information of the public search space on the primary serving cell and the secondary serving cell.
  • the method further includes:
  • the UE sends a random access procedure message 3 to the base station on the primary serving cell or the secondary serving cell.
  • the UE sends a random access procedure message 3 to the base station on the secondary serving cell, specifically: the UE sends a random access procedure message 3 to the base station on the secondary serving cell that sends the physical random access channel.
  • the present invention also provides a transmission system for a physical random access channel, the system comprising: a base station and a UE, where
  • the base station is configured to send, by using a primary serving cell or a secondary service cell, a random access trigger message to the UE in a scenario of carrier aggregation;
  • the UE is configured to transmit a physical random access channel on the secondary serving cell
  • the base station is further configured to send a random access procedure message to the UE on the primary serving cell or the secondary serving cell.
  • the base station is further configured to: send, by using the high layer signaling or the downlink control channel information on the primary serving cell, a random access trigger message to the UE, where the high layer signaling or the downlink control channel information includes the physical random The uplink serving cell index where the access channel is located.
  • the uplink serving cell index where the physical random access channel is located is located at:
  • the downlink control channel information further includes:
  • Preamble index and physical random access channel mask index are preamble index and physical random access channel mask index.
  • the UE is further configured to send the physical random access channel on a serving cell indicated by an uplink serving cell index where the physical random access channel is located.
  • the base station is further configured to send a random access trigger message to the UE by using downlink control channel information on the secondary serving cell.
  • the UE is further configured to send the physical random access channel on an uplink serving cell that is connected by a downlink secondary serving cell SIBX that receives a random access trigger message.
  • the UE is further configured to: detect, on the primary serving cell, a downlink control message sent by the base station, to detect the random access procedure message according to the downlink control information and a preamble index corresponding to the sent physical random access channel; or And detecting the random access procedure message according to the downlink control information, the preamble index corresponding to the sent physical random access channel, and the Temporary C-RNTI, where the Temporary C-RNTI is set to C-RNTI; or And detecting the random access procedure message according to the downlink control information, a preamble index corresponding to the sent physical random access channel, and a configured C-RNTI.
  • the UE is further used,
  • the downlink control information is detected according to the configured C-RNTI.
  • the secondary serving cell that the base station sends the random access procedure message is: the downlink serving cell corresponding to the uplink serving cell that sends the random access channel.
  • the UE is further configured to: detect downlink control information sent by the base station;
  • C-RNTI For C-RNTI;
  • the random access procedure message is detected according to the downlink control information, a preamble index corresponding to the sent physical random access channel, and a configured C-RNTI.
  • the UE is further used,
  • detecting downlink control information according to the configured C-RNTI on the primary serving cell or detecting downlink control information including a carrier indication domain according to the configured RA-RNTI on the primary serving cell, where each The RA-RNTI configured in the serving cell is the same.
  • the UE is further used,
  • the UE detects downlink control information of the public search space and downlink control information of the user-specific search space on the secondary serving cell;
  • the UE detects only downlink control information of the public search space in one subframe on the secondary serving cell, and detects downlink control information of the dedicated search space of the secondary serving cell in another subframe.
  • the UE is further used, In one subframe, the UE detects downlink control information of the public search space on the primary serving cell;
  • the UE detects downlink control information of the public search space on the primary serving cell and the secondary serving cell.
  • the UE is further configured to: after the base station sends a random access procedure message to the UE, the UE sends a random access procedure message 3 to the base station on the primary serving cell or the secondary serving cell.
  • the UE is further configured to send a random access procedure message 3 to the base station on the secondary serving cell that sends the physical random access channel.
  • the present invention provides a method and system for transmitting a physical random access channel.
  • the base station sends a random access trigger message to the UE through the primary serving cell or the secondary serving cell; the UE transmits on the secondary serving cell.
  • a physical random access channel ; the base station sends a random access procedure message to the UE on the primary serving cell or the secondary serving cell.
  • a physical random access channel is transmitted on a secondary serving cell in a scenario of carrier aggregation.
  • FIG. 1 is a schematic diagram of a frame structure of an FDD mode in the prior art
  • FIG. 2 is a schematic diagram of a frame structure of a TDD mode in the prior art
  • FIG. 3 is a schematic diagram of carrier aggregation of an LTE-A system in the prior art
  • FIG. 4 is a flow chart of a method for transmitting a physical random access channel according to the present invention. detailed description
  • a method for transmitting a physical random access channel provided by the present invention mainly includes the following steps:
  • Step 401 In a scenario of carrier aggregation, the base station sends a random access trigger message to the UE by using the primary serving cell or the secondary serving cell.
  • the base station sends a random access trigger message to the UE by using the primary serving cell, where the base station sends a random access trigger message to the UE by using the high layer signaling or the downlink control channel information of the primary serving cell, where the high layer signaling Or the downlink control channel information includes an uplink serving cell index where the physical random access channel is located.
  • the uplink serving cell index where the physical random access channel is located may be located in a carrier indication field (CIF) added in the downlink control channel information; or in the downlink control signaling in the downlink control channel information.
  • CIF carrier indication field
  • the downlink control channel information may further include: a Preamble Index and a PRACH Mask Index.
  • the base station sends a random access trigger message to the UE through the secondary serving cell, where the base station sends a random access trigger message to the UE by using the secondary service channel information of the secondary service and the area.
  • Step 402 The UE transmits a physical random access channel on the secondary serving cell.
  • the base station sends a random access trigger message to the UE corresponding to the UE through the primary serving cell, and the UE may send the physical random access channel on the service cell indicated by the uplink serving cell index where the physical random access channel is located.
  • the UE may send the physical random access channel on the uplink serving cell of the downlink secondary serving cell SIBX link that receives the random access trigger message.
  • a preferred value for X is 2.
  • Step 403 The base station sends a random access procedure message (for example, a random access response (RAR)) to the UE on the primary serving cell or the secondary serving cell.
  • a random access procedure message for example, a random access response (RAR)
  • the base station sends a random access procedure message to the UE on the primary serving cell, where the UE detects the downlink control information sent by the base station on the primary serving cell.
  • the UE detects the random access procedure message according to the downlink control information and the preamble index corresponding to the sent physical random access channel;
  • the UE receives the leading cable corresponding to the downlink random control channel according to the downlink control information.
  • a temporary cell radio network temporary identifier Temporary C-RNTI
  • C-RNTI cell radio network temporary identifier
  • the UE detects the random access procedure message according to the downlink control information, the preamble index corresponding to the sent physical random access channel, and the configured C-RNTI.
  • the UE detects downlink control information sent by the base station on the primary serving cell, specifically:
  • the UE detects the downlink control information according to the configured random access radio network temporary identifier (RA-RNTI), where the RA-RNTI configured by each serving cell is different;
  • RA-RNTI random access radio network temporary identifier
  • the UE detects downlink control information according to the configured RA-RNTI, where the RA-RNTI configured by each serving cell is the same;
  • the UE detects downlink control information according to the configured C-RNTI.
  • the base station sends a random access procedure message to the UE on the secondary serving cell, where the secondary serving cell may be: a downlink serving cell corresponding to the uplink serving cell that sends the random access channel.
  • the base station sends a random access procedure message to the UE on the secondary serving cell, specifically:
  • the UE detects downlink control information sent by the base station
  • the UE detects, on the secondary serving cell, the random access procedure message according to the downlink control information and the preamble index corresponding to the sent physical random access channel;
  • the UE detects the random access procedure message according to the downlink control information, the preamble index corresponding to the sent physical random access channel, and the Temporary C-RNTI on the secondary serving cell, where the Temporary C-RNTH is set to C-RNTI ;
  • the UE detects the random access procedure message according to the downlink control information, the preamble index corresponding to the sent physical random access channel, and the configured C-RNTI on the secondary serving cell.
  • the UE detects downlink control information sent by the base station, specifically:
  • the UE detects downlink control information sent by the base station according to the configured RA-RNTI on the secondary serving cell;
  • the UE detects the downlink control information according to the configured RA-RNTI on the primary serving cell.
  • the RA-RNTI configured in each serving cell is different;
  • the UE detects the downlink control information according to the configured RA-RNTI on the primary serving cell, where the RA-RNTI configured by each serving cell is the same;
  • the UE detects downlink control information according to the configured C-RNTI on the primary serving cell; or, the UE detects downlink control information including the carrier indication domain according to the configured RA-RNTI on the primary serving cell, where each serving cell The configured RA-RNTI is the same.
  • the UE detects the downlink control information sent by the base station on the secondary serving cell, and specifically: the UE detects the downlink control information of the public search space and the downlink control information of the user-specific search space on the secondary serving cell in one subframe;
  • the UE detects only the downlink control information of the public search space in one of the subframes on the secondary serving cell, and detects only the downlink control information of the private search space of the secondary serving cell in the other subframe.
  • the UE detects downlink control information on the primary serving cell, specifically:
  • the UE detects the downlink control information of the public search space on the primary serving cell. In one subframe, the UE detects the downlink control information of the public search space on the primary serving cell and the secondary serving cell.
  • the method may further include:
  • the UE sends a random access procedure message 3 to the base station on the primary serving cell or the secondary serving cell. Specifically, the UE may send a random access procedure message 3 to the base station on the secondary serving cell that sends the physical random access channel.
  • the random access procedure message in the embodiment of the present invention mainly refers to the random access procedure message 2.
  • the method for transmitting the above physical random access channel is further detailed in conjunction with the specific embodiments. Explain in detail.
  • the base station sends a random access trigger message to the UE through the high layer signaling or the downlink control channel information to trigger a random access procedure, where the high layer signaling or the downlink control channel is used.
  • the information includes an uplink serving cell index where the physical random access channel is located.
  • the random access trigger message also referred to as random access procedure message 0.
  • the process of triggering random access is as follows:
  • the UE detects downlink control channel information sent by the base station to the UE on the primary serving cell to trigger a random access procedure.
  • the downlink control channel information needs to be one of the following configurations: Configuration 1: Add a CIF to the downlink control channel information to indicate the serving cell.
  • the downlink control channel information sent by the base station to the secondary serving cell is detected by the UE on the primary serving cell.
  • the UE when the UE is set to detect downlink control information including CIF, it only needs to detect the user-specific search space.
  • the downlink control information is carried by the DCI format 1A.
  • the base station transmits the Preamble Index and the PRACH Mask Index through the DCI format 1A. Give the UE.
  • the UE obtains the uplink serving cell that triggers the random access procedure by using the downlink control information in the detected DCI format 1A, and the downlink control information includes the value of the CIF, the Preamble Index, and the PRACH Mask Index, and the UE is in the uplink.
  • a physical random access channel is transmitted on the serving cell.
  • the serving cell is indicated by the control signaling in the downlink control information.
  • the downlink control channel information sent by the base station to the secondary serving cell is detected by the UE on the primary serving cell.
  • the downlink control information is carried by the DCI format 1A.
  • the base station sends the Preamble Index and the PRACH Mask Index to the UE through the DCI format 1 A.
  • n bits are used to indicate the uplink serving cell index in which the physical random access channel is located.
  • the preferred value of n is 3.
  • the serving cell index may be indicated by several states reserved in the resource allocation information bits in DCI format 1A.
  • the UE learns the uplink serving cell that triggers the random access procedure by using the downlink control information in the detected DCI format 1A, where the downlink control information includes control signaling, a Preamble Index, and a PRACH Mask Index, which are used to indicate the uplink serving cell index. And the UE sends a physical random access channel on the uplink serving cell.
  • the physical random access channel is also referred to as a physical random access message 1.
  • the base station After the UE sends the physical random access channel, the base station sends a random access procedure message to the UE through the high layer signaling or the downlink control channel information, where the random access procedure message is called message N (Message N ).
  • the N is a positive integer, and the preferred value is 2, 4 or 5.
  • the UE detects, on the primary serving cell, downlink control channel information that is sent by the base station to the UE to indicate Message N.
  • the specific detection process can be as follows:
  • Method 1 Configure one RA-RNTI for each serving cell.
  • the UE On the primary serving cell, when the UE is set to the PDCCH for RA-RNTI scrambling to perform PDCCH decoding, the UE should follow the corresponding combination defined in Table 2. To decode the PDCCH and all associated PDSCHs.
  • the UE detects the Message N according to the configured RA-RNTI and the preamble index corresponding to the sent physical random access channel, where the RA-RNTI configured by each serving cell is different.
  • Method 2 According to the configured RA-RNTI, the UE performs PDCCH decoding on the primary serving cell when the UE is set to the CRC scrambled by the RA-RNTI, and the UE should follow Table 2 A corresponding combination of definitions is used to decode the PDCCH and all associated PDSCHs.
  • the RA-RNTI configured in each serving cell is the same.
  • Method 3 The UE detects downlink control information according to the configured C-RNTI, and does not need the RA-RNTI for detection.
  • the UE After detecting the downlink control information on the primary serving cell, the UE detects the random access procedure message Message N according to the downlink control information and the leading channel I corresponding to the sent physical random access channel;
  • the UE detects the random access procedure message according to the downlink control information, the preamble index corresponding to the sent physical random access channel, and the Temporary C-RNTI, where the temporary cell radio network temporary identifier ( Temporary C- RNTI) is set as a cell radio network temporary identifier (C-RNTI);
  • the UE detects the random access procedure message according to the downlink control information, a preamble index corresponding to the sent physical random access channel, and a configured C-RNTI.
  • the base station may further send downlink control channel information to the UE, where the downlink control channel information is used to transmit the Preamble Index and the PRACH Mask Index; and send high layer signaling to transmit the Message N to the UE.
  • the base station sends a random access trigger message to the UE through the high layer signaling or the downlink control channel information to trigger a random access procedure, where the high layer signaling or the downlink control channel is used.
  • the information includes an uplink serving cell index where the physical random access channel is located.
  • the random access trigger message also referred to as random access procedure message 0.
  • the trigger random access procedure is as follows:
  • the UE detects downlink control channel information sent by the base station to the UE on the primary serving cell to trigger a random access procedure.
  • Configuration 1 Add a CIF to the downlink control channel information to indicate the serving cell.
  • the downlink control channel information sent by the base station to the secondary serving cell is detected by the UE on the primary serving cell.
  • the UE when the UE is set to detect downlink control information including CIF, it only needs to detect the user-specific search space.
  • the downlink control information is carried by the DCI format 1A.
  • the base station sends the Preamble Index and the PRACH Mask Index to the UE through the DCI format 1A.
  • the UE obtains the uplink serving cell that triggers the random access procedure by using the downlink control information in the detected DCI format 1A, and the downlink control information includes the value of the CIF, the Preamble Index, and the PRACH Mask Index, and the UE is in the uplink.
  • a physical random access channel is transmitted on the serving cell.
  • the serving cell is indicated by the control signaling in the downlink control information.
  • the downlink control channel information sent by the base station to the secondary serving cell is detected by the UE on the primary serving cell.
  • the downlink control information is carried by the DCI format 1A.
  • the base station sends the Preamble Index and the PRACH Mask Index to the UE through the DCI format 1 A.
  • n bits are used to indicate the uplink serving cell index in which the physical random access channel is located.
  • the preferred value of n is 3.
  • the serving cell index may be indicated by several states reserved in the resource allocation information bits in DCI format 1A.
  • the UE learns the uplink serving cell that triggers the random access procedure by using the downlink control information in the detected DCI format 1A, where the downlink control information includes control signaling, a Preamble Index, and a PRACH Mask Index, which are used to indicate the uplink serving cell index. And The UE transmits a physical random access channel on the uplink serving cell.
  • the physical random access channel is also referred to as a physical random access message 1.
  • the base station After the UE sends the physical random access channel, the base station sends a random access procedure message to the UE through the high layer signaling or the downlink control channel information, where the random access procedure message is called message N (Message N ).
  • the N is a positive integer, and the preferred value is 2, 4 or 5.
  • the secondary serving cell is a downlink serving cell corresponding to an uplink serving cell that sends a random access channel.
  • the UE detects, on the secondary serving cell, downlink control channel information that is sent by the base station to the UE to indicate Message N.
  • the specific detection process can be as follows:
  • Method 1 The UE performs PDCCH decoding on the secondary serving cell according to the configured RA-RNTI.
  • the UE When the UE is configured by the upper layer to perform PDCCH decoding with the RA-RNTI scrambled CRC, the UE should decode the PDCCH according to the corresponding combination defined in Table 2. And all related PDSCH.
  • the RA-RNTI configured in each service cell is the same; specifically:
  • Configuration 1 In a certain subframe, the UE needs to detect the downlink control information of the public search space and the downlink control information of the user-specific search space on the secondary serving cell.
  • the UE detects the DCI format1A or the DCI format 1C in the public search space on the secondary serving cell, and is configured to receive the Message N sent by the base station, and detect the corresponding DCI format in the user-specific search space, and receive the scheduling indicating the other downlink data. information.
  • the UE is set by the upper layer to perform PDCCH decoding using the RA-RNTI scrambled CRC, and the UE should decode the PDCCH and all related PDSCH according to the corresponding combination defined in Table 2.
  • the UE is also set by the upper layer to perform PDCCH decoding using the CRC scrambled by the C-RNTI, and the UE also decodes the PDCCH and all related PDSCHs according to the corresponding combination defined in Table 3.
  • the UE In a certain subframe, the UE detects only the downlink control information of the public search space on the secondary serving cell.
  • the UE detects the DCI formatlA or DCI only in the public search space on the secondary serving cell.
  • Format 1C used to receive the Message N sent by the base station.
  • the downlink control information of the proprietary search space is then detected on another subframe.
  • the UE is set by the upper layer to perform PDCCH decoding using the RA-RNTI scrambled CRC, and the UE should decode the PDCCH and all related PDSCH according to the corresponding combination defined in Table 2.
  • Method 2 The UE detects downlink control information according to the configured RA-RNTI on the primary serving cell, where the RA-RNTI configured by each serving cell is different.
  • the UE detects downlink control information according to the configured RA-RNTI on the primary serving cell, where the RA-RNTI configured by each serving cell is the same;
  • the UE detects downlink control information according to the configured C-RNTI on the primary serving cell;
  • the UE detects downlink control information including a carrier indication domain (CIF) according to the configured RA-RNTI on the primary serving cell, where the RA-RNTI configured by each serving cell is the same.
  • CIF carrier indication domain
  • the UE detects downlink control information of the public search space on the primary serving cell;
  • the UE detects downlink control information of the public search space on the primary serving cell and the secondary serving cell.
  • the UE After detecting the downlink control information on the primary serving cell or the secondary serving cell, the UE detects the random access procedure message Message N according to the downlink control information and a preamble index corresponding to the sent physical random access channel. ;
  • the UE detects the random access procedure message according to the downlink control information, the preamble index corresponding to the sent physical random access channel, and the Temporary C-RNTI, where the temporary cell radio network temporary identifier ( Temporary C- RNTI) is set to temporary for cellular wireless networks Identification (C-RNTI);
  • the UE detects the random access procedure message according to the downlink control information, a preamble index corresponding to the sent physical random access channel, and a configured C-RNTI.
  • the base station sends a random access trigger message to the UE through the high layer signaling or the downlink control channel information to trigger a random access procedure, where the high layer signaling or the downlink control channel is used.
  • the information includes an uplink serving cell index where the physical random access channel is located.
  • the random access trigger message also referred to as random access procedure message 0.
  • the trigger random access procedure is as follows:
  • the UE detects the downlink control channel information sent by the base station to the UE on the secondary serving cell to trigger the random access procedure.
  • the downlink control information sent by the base station to the UE is detected by the UE on the secondary serving cell.
  • the downlink control information is carried by the DCI format 1A.
  • the base station sends the Preamble Index and the PRACH Mask Index to the UE through the DCI format 1 A.
  • the UE obtains a random access trigger message by using the downlink control information included in the DCI format 1A detected by the secondary serving cell, and the UE is in the uplink serving cell of the downlink secondary serving cell SIBX link that receives the random access trigger message. Transmitting the physical random access channel; the preferred value of X is 2.
  • the physical random access channel is also referred to as a physical random access message 1.
  • the base station After the UE sends the physical random access channel, the base station sends a random access procedure message to the UE through the high layer signaling or the downlink control channel information, where the random access procedure message is called message N (Message N ).
  • the N is a positive integer, and the preferred value is 2, 4 or 5.
  • the UE detects, on the primary serving cell, downlink control channel information that is sent by the base station to the UE for indicating Message N.
  • the specific detection process can be as follows: Method 1: Configure one RA-RNTI for each serving cell. On the primary serving cell, when the UE is set to the CRC for the CRC scrambled by the RA-RNTI, the UE should follow the corresponding combination defined in Table 2. To decode the PDCCH and all associated PDSCHs.
  • the UE detects the Message N according to the configured RA-RNTI and the preamble index corresponding to the sent physical random access channel, where the RA-RNTI configured by each serving cell is different.
  • Method 2 The UE performs PDCCH decoding on the primary serving cell according to the configured RA-RNTI.
  • the UE When the UE is set to a CRC that is scrambled by the RA-RNTI, the UE should decode the PDCCH according to the corresponding combination defined in Table 2. And all related PDSCH.
  • the RA-RNTI configured in each service cell is the same.
  • Method 3 The UE detects downlink control information according to the configured C-RNTI, and does not need the RA-RNTI for detection.
  • the UE After detecting the downlink control information on the primary serving cell, the UE detects the random access procedure message Message N according to the downlink control information and the leading channel I corresponding to the sent physical random access channel;
  • the UE detects the random access procedure message according to the downlink control information, the preamble index corresponding to the sent physical random access channel, and the Temporary C-RNTI, where the temporary cell radio network temporary identifier ( Temporary C- RNTI) is set as a cell radio network temporary identifier (C-RNTI);
  • the UE detects the random access procedure message according to the downlink control information, a preamble index corresponding to the transmitted physical random access channel, and a configured C-RNTI.
  • the base station sends a random access trigger message to the UE through the high layer signaling or the downlink control channel information to trigger a random access procedure, where the high layer signaling or the downlink control channel is used.
  • the information includes an uplink serving cell index where the physical random access channel is located.
  • the random access trigger message also referred to as random access procedure message 0.
  • the trigger random access procedure is as follows:
  • the UE detects the downlink control channel information sent by the base station to the UE on the secondary serving cell to trigger the random access procedure.
  • the downlink control information sent by the base station to the UE is detected by the UE on the secondary serving cell.
  • the downlink control information is carried by the DCI format 1A.
  • the base station sends the Preamble Index and the PRACH Mask Index to the UE through the DCI format 1 A.
  • the UE obtains a random access trigger message by using the downlink control information included in the DCI format 1A detected by the secondary serving cell, and the UE is in the uplink serving cell of the downlink secondary serving cell SIBX link that receives the random access trigger message. Transmitting the physical random access channel; the preferred value of X is 2.
  • the physical random access channel is also referred to as a physical random access message 1.
  • the base station After the UE sends the physical random access channel, the base station sends a random access procedure message to the UE through the high layer signaling or the downlink control channel information, where the random access procedure message is called message N (Message N ).
  • the N is a positive integer, and the preferred value is 2, 4 or 5.
  • the secondary serving cell is a downlink serving cell corresponding to an uplink serving cell that sends a random access channel.
  • the UE detects, on the secondary serving cell, downlink control channel information that is sent by the base station to the UE to indicate Message N.
  • the specific detection process can be as follows:
  • Method 1 The UE performs PDCCH decoding on the secondary serving cell according to the configured RA-RNTI.
  • the UE When the UE is configured by the upper layer to perform PDCCH decoding with the RA-RNTI scrambled CRC, the UE should decode the PDCCH according to the corresponding combination defined in Table 2. And all related PDSCH.
  • the RA-RNTI configured in each service cell is the same; specifically:
  • Configuration 1 In a certain subframe, the UE needs to detect the downlink control information of the public search space and the downlink control information of the user-specific search space on the secondary serving cell.
  • the UE detects the DCI formatlA or DCI in the public search space on the secondary serving cell.
  • the format 1C is configured to receive the Message N sent by the base station, and detect the corresponding DCI format in the user-specific search space, and receive scheduling information indicating other downlink data.
  • the UE is set by the upper layer to perform PDCCH decoding using the RA-RNTI scrambled CRC, and the UE should decode the PDCCH and all related PDSCH according to the corresponding combination defined in Table 2.
  • the UE is also set by the upper layer to perform PDCCH decoding using the CRC scrambled by the C-RNTI, and the UE also decodes the PDCCH and all related PDSCHs according to the corresponding combination defined in Table 3.
  • the UE In a certain subframe, the UE detects only the downlink control information of the public search space on the secondary serving cell.
  • the UE detects DCI format1A or DCI format 1C in the public search space only on the secondary serving cell, and is used to receive the Message N sent by the base station.
  • the downlink control information of the proprietary search space is then detected on another subframe.
  • the UE is set by the upper layer to perform PDCCH decoding using the RA-RNTI scrambled CRC, and the UE should decode the PDCCH and all related PDSCH according to the corresponding combination defined in Table 2.
  • Method 2 The UE detects downlink control information according to the configured RA-RNTI on the primary serving cell, where the RA-RNTI configured by each serving cell is different.
  • the UE detects downlink control information according to the configured RA-RNTI on the primary serving cell, where the RA-RNTI configured by each serving cell is the same;
  • the UE detects downlink control information according to the configured C-RNTI on the primary serving cell;
  • the UE detects downlink control information including a carrier indication domain (CIF) according to the configured RA-RNTI on the primary serving cell, where the RA-RNTI configured by each serving cell is the same.
  • CIF carrier indication domain
  • the UE detects downlink control information of the public search space on the primary serving cell;
  • the UE detects downlink control information of the public search space on the primary serving cell and the secondary serving cell.
  • the UE After detecting the downlink control information on the primary serving cell or the secondary serving cell, the UE detects the random access procedure message Message N according to the downlink control information and a preamble index corresponding to the sent physical random access channel. ;
  • the UE detects the random access procedure message according to the downlink control information, the preamble index corresponding to the sent physical random access channel, and the Temporary C-RNTI, where the temporary cell radio network temporary identifier ( Temporary C- RNTI) is set as a cell radio network temporary identifier (C-RNTI);
  • the UE detects the random access procedure message according to the downlink control information, a preamble index corresponding to the sent physical random access channel, and a configured C-RNTI.
  • the physical random access channel is transmitted on the secondary serving cell, and the UE feeds back a message M (Message M) to the base station on the serving cell X, and the Message M serves as feedback to the Message N.
  • the M is a positive integer, and the preferred value is 3.
  • the UE may send the Message M on the serving cell X by using the following method:
  • Method 1 The UE sends the Message M in the Pcell.
  • Method 2 The UE sends the message on a serving cell that transmits a physical random access channel.
  • the present invention further provides a transmission system for a physical random access channel, including: a base station and a UE.
  • the base station is configured to send a random access trigger message to the UE by using the primary serving cell or the secondary serving cell in a scenario of carrier aggregation;
  • the UE is configured to transmit a physical random access channel on the secondary serving cell;
  • the base station is further configured to send a random access procedure message to the primary serving cell or the secondary serving cell to
  • the base station is further configured to send a random access trigger message to the UE by using the high layer signaling or the downlink control channel information on the primary serving cell, where the high layer signaling or the downlink control channel information includes the physical random access channel. Upstream serving cell index.
  • the uplink serving cell index where the physical random access channel is located may be located at:
  • the downlink control channel information may further include: a preamble index and a physical random access channel mask index.
  • the UE is further configured to send the physical random access channel on the serving cell indicated by the uplink serving cell index where the physical random access channel is located.
  • the base station is further configured to send a random access trigger message to the UE by using downlink control channel information on the secondary serving cell.
  • the UE is further configured to send the physical random access channel on the uplink serving cell of the downlink secondary serving cell SIBX link that receives the random access trigger message.
  • a preferred value for X is 2.
  • the UE is further configured to: detect downlink control information sent by the base station on the primary serving cell; detect the random access procedure message according to the downlink control information and the preamble index corresponding to the sent physical random access channel; or send, according to the downlink control information,
  • the preamble index corresponding to the physical random access channel and the Temporary C-RNTI are used to detect the random access procedure message, where the Temporary C-RNTI is set to the C-RNTI; or, according to the downlink control information, the corresponding physical random access channel is sent.
  • the preamble index and the configured C-RNTI are used to detect random access procedure messages.
  • the UE is further configured to: detect downlink control information according to the configured RA-RNTI, where the RA-RNTI configured by each serving cell is different; or, according to the configured RA-RNTI, detect The row control information, where the RA-RNTI configured by each serving cell is the same; or, the downlink control information is detected according to the configured C-RNTI.
  • the secondary serving cell that the base station sends the random access procedure message may be: a downlink serving cell corresponding to the uplink serving cell that sends the random access channel.
  • the UE is further configured to: detect downlink control information sent by the base station;
  • the random access procedure message is detected according to the downlink control information, the preamble index corresponding to the sent physical random access channel, and the Temporary C-RNTI, where the Temporary C-RNTH is set to C-RNTI;
  • the random access procedure message is detected according to the downlink control information, the preamble index corresponding to the sent physical random access channel, and the configured C-RNTI.
  • the UE is further configured to: detect, on the secondary serving cell, downlink control information sent by the base station according to the configured RA-RNTI;
  • the UE is further configured to: in one subframe, the UE detects downlink control information of the public search space and downlink control information of the user-specific search space on the secondary serving cell;
  • the UE detects only the downlink control information of the public search space in one of the subframes on the secondary serving cell, and detects only the private search space of the secondary serving cell in another subframe. Line control information.
  • the UE is further configured to: in one subframe, the UE detects downlink control information of the public search space on the primary serving cell;
  • the UE detects downlink control information of the public search space on the primary serving cell and the secondary serving cell.
  • the UE is further configured to: after the base station sends the random access procedure message to the UE, send the random access procedure message 3 to the base station on the primary serving cell or the secondary serving cell.
  • the random access procedure message 3 may be sent to the base station on the secondary serving cell that sends the physical random access channel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种物理随机接入信道的传输方法和系统 技术领域
本发明涉及移动通信领域, 尤其涉及一种物理随机接入信道的传输方 法和系统。 背景技术
长期演进(LTE, Long Term Evolution ) 系统中的无线帧 (RF, Radio Frame ) 包括频分双工(FDD, Frequency Division Duplex )模式和时分双工 ( TDD , Time Division Duplex )模式的帧结构。
如图 1所示, 图 1是现有技术中 FDD模式的帧结构示意图, 一个 10 毫秒( ms )的无线帧由二十个长度为 0.5ms、编号 0~19的时隙( slot )组成, 时隙 2i和 2i+l组成长度为 lms的子帧 ( subframe ) i。
如图 2所示,图 2是现有技术中 TDD模式的帧结构示意图,一个 10ms 的无线帧由两个长为 5ms的半帧 ( half frame )组成, 一个半帧包括 5长度 为 lms的子帧, 子帧 i定义为两个长为 0.5ms的时隙 2i和 2i+l。
在上述两种帧结构里, 对于标准循环前缀(Normal CP, Normal Cyclic
Prefix ), 一个时隙包含 7个长度为 66.7微秒(μδ ) 的符号, 其中, 第一个 符号的 CP长度为 5.21μδ, 其余 6个符号的 CP长度为 4.69μδ; 对于扩展循 环前缀( Extended CP, Extended Cyclic Prefix ), 一个时隙包含 6个符号, 所有符号的 CP长度均为 16.67μδ
随机接入 ( Random Access )是用户设备(UE, User Equipment )在开 始与网络通信之前的接入过程。 随机接入可以分为两种类型: 同步随机接 入和非同步随机接入。 当 UE已经与系统取得上行同步时, UE的随机接入 过程称为同步随机接入;当 UE尚未与系统取得上行同步或丟失了上行同步 时, UE的随机接入过程称为非同步随机接入。
对于 LTE系统中的物理随机接入信道( PRACH, Physical Random Access Channel, 也可以称为随机接入机会( Random Access Opportunity )或随机接 入资源 ( Random Access Resource ) ), 一个随机接入信道对应于一个随机接 入前导(Random Access Preamble ), 随机接入前导由循环前缀( CP, Cyclic Prefix )和序列( Sequence )两部分组成。不同的随机接入前导格式( Preamble Format )意味着不同的 CP和 /或 Sequence长度。 目前 LTE系统中 TDD模 式所支持的前导格式的种类如下表 1所示:
Figure imgf000004_0001
表 1
上述表 1 中的 rcp表示 CP长度, rsEQ表示 Sequence长度, 7:的取值为
T = 1/(15000x2048)秒。在表 1所示的随机接入前导格式中, preamble format 0-3 在普通上行子帧内传输, 而 preamble format 4 在上行链路导频时隙 ( UpPTS, Uplink Pilot Time Slot ) 内传输, 具体传输方式如下: preamble format 0在一个普通上行子帧内传输; preamble format 1、 2在两个普通上行 子帧内传输; preamble format 3在三个普通上行子帧内传输; preamble format 4在 UpPTS内传输。 在频域, 一个随机接入前导占 6个资源块( RB, Resource Block )所对 应的带宽, 即 72个资源元素 (RE, Resource Element ), 每个 RE的带宽为 15kHz。 时域位置相同的 PRACH信道通过频域进行区分。
LTE 中定义了如下三种下行物理控制信道: 物理下行控制格式指示信 道 ( PCFICH, Physical Control Format Indicator Channel )、 物理混合自动重 传请求指示信道 ( PHICH , Physical Hybrid Automatic Retransmission Request Indicator Channel )、物理下行控制信道 ( PDCCH, Physical Downlink Control Channel )。
PDCCH用于承载下行控制信息( DCI, Downlink Control Information ), 包括:上、下行调度信息,以及上行功率控制信息。 DCI的格式( DCI format ) 分为以下几种: DCI format 0、 DCI format 1、 DCI format 1A、 DCI format 1B、 DCI format 1C、 DCI format 1D、 DCI format 2、 DCI format 2A、 DCI format 3 和 DCI format 3A等; 其中:
DCI format 0 用于指示物理上行共享信道(PUSCH, Physical Uplink Shared Channel ) 的调度;
DCI format 1、 DCI format 1A、 DCI format IB、 DCI format 1C、 DCI format ID用于一个物理下行共享信道( PDSCH, Physical Downlink Shared Channel ) 码字调度的不同模式;
DCI format 2、 DCI format 2A、 DCI format 2B用于空分复用的不同模式; DCI format 3、 DCI format 3 A用于物理上行控制信道( PUCCH , Physical
Uplink Control Channel )和 PUSCH的功率控制指令的不同模式。
PDCCH 传输的物理资源以控制信道元素 ( CCE , Control Channel Element ) 为单位, 一个 CCE 的大小为 9 个资源元素组(REG, Resource Element Group )、 即 36个 RE, —个 PDCCH可能占用 1、 2、 4或者 8个 CCE。 对于占用 1、 2、 4、 8个 CCE的这四种 PDCCH大小, 采用树状的聚 合( Aggregation ), 即占用 1个 CCE的 PDCCH可以从任意 CCE位置开始; 占用 2个 CCE的 PDCCH从偶数 CCE位置开始; 占用 4个 CCE的 PDCCH 从 4的整数倍的 CCE位置开始; 占用 8个 CCE的 PDCCH从 8的整数倍的 CCE位置开始。
每个聚合级别 ( Aggregation level )定义一个搜索空间 ( Search space ), 包括公共(common ) 的搜索空间和 UE专有 ( UE- Specific ) 的搜索空间。 整个搜索空间的 CCE数目由每个下行子帧中 PCFICH指示的控制区所占用 的正交频分复用 ( OFDM, Orthogonal Frequency Division Multiplexing )符 号数和 PHICH的组数确定。 UE在搜索空间内按所处传输模式的 DCI format 对所有可能的 PDCCH码率进行盲检测。
在非竟争的随机接入过程中,基站通过 DCI format 1A来发送前导索引 ( Preamble Index )和物理随机接入信道掩码索引 ( PRACH Mask Index )等 信息。 如果 UE被高层设置为用随机接入无线网络临时标识(RA-RNTI, Random Access Radio Network Temporary Identifier )力口扰的循环冗余校验 ( CRC , Cyclical Redundancy Check )来进行 PDCCH解码, 则 UE应当按 照下表 2中定义的相应组合来解码 PDCCH和所有相关的 PDSCH:
Figure imgf000006_0001
表 2
如果 UE被高层设置为用小区无线网络临时标识(C-RNTI, Cell Radio Network Temporary Identifier )加扰的 CRC来进行 PDCCH解码, 则 UE应 当按照下表 3中定义的相应组合来解码 PDCCH和所有相关的 PDSCH: UE下
行传输 DCI格式 搜索空间 PDCCH相应 PDSCH传输方案 模式
DCI format Common和 C-RNTI
单天线端口, 端口 0 1A 定义的 UE specific
模式 1
DCI format C-RNTI定义的
单天线端口, 端口 0 1 UE specific
DCI format Common和 C-RNTI
传输分集
1A 定义的 UE specific
模式 2
DCI format C-RNTI定义的
传输分集
1 UE specific
DCI format Common和 C-RNTI
传输分集
1A 定义的 UE specific
模式 3
DCI format C-RNTI定义的
开环空间复用或传输分集 2A UE specific
DCI format Common和 C-RNTI
传输分集
1A 定义的 UE specific
模式 4
DCI format C-RNTI定义的
闭环空间复用或传输分集 2 UE specific
DCI format Common和 C-RNTI
传输分集
1A 定义的 UE specific
模式 5
DCI format C-RNTI定义的
ID 多用户多输入多输出
UE specific
DCI format Common和 C-RNTI
传输分集
1A 定义的 UE specific
模式 6 闭环 Rank=l预编码
DCI format C-RNTI定义的
( Closed-loop Rank=l IB UE specific
precoding ) 如果 PBCH天线端口的数目为
DCI format Common和 C-RNTI
1 , 用单天线端口, 端口 0, 否 1A 定义的 UE specific
模式 7 则传输分集
DCI format C-RNTI定义的
单天线端口; 端口 5 1 UE specific
如果 PBCH天线端口的数目为
DCI format Common和 C-RNTI
模式 8 1 , 用单天线端口, 端口 0, 否
1A 定义的 UE specific
则传输分集 双层传输 ( dual-layer
DCI format C-RNTI定义的 transmission ), 端口 7和端口 8 2B UE specific ( port 7 and 8 ); 或者单天线端 口, 端口 7或者 8 如果 PBCH天线端口的数目为
DCI format Common和 C-RNTI
1 , 用单天线端口, 端口 0, 否 1A 定义的 UE specific
模式 9 则传输分集
DCI format C-RNTI定义的 最多 8层传输( up to 8 layer 2C UE specific transmission ), 端口 7-端口 14 表 3
在高级 LTE ( LTE-Advance ) 的系统中, 由于 LTE-Advanced网络需要 能够接入 LTE用户, 因此其操作频带需要覆盖目前的 LTE频带。 而在目前 的 LTE 频带上已经不存在可分配的连续 100MHz 的频谱带宽了, 所以 LTE-Advanced需要解决的一个技术问题就是: 将几个分布在不同频段上的 连续分量载波(频谱)(Component Carrier )采用载波聚合( CA, Carrier Aggregation )技术聚合起来,形成 LTE-Advanced可以使用的 100MHz带宽。 即对于聚集后的频谱,被划分为 n个分量载波(频谱),且每个分量载波(频 谱) 内的频谱都是连续的。 LTE-A系统载波聚合的示意图如图 3所示。
在现有技术中, CA场景下, 如果多个分量载波出现聚合, 那么就需要 将其中一个分量载波定义为主分量载波( PCC, Primary Component Carrier ), 剩下的分量载波定义为辅分量载波( SCC, Secondary Component Carrier )0 另外, 分量载波还可以称之为服务小区 (Serving Cell ), 而主分量载波可以 称之为主服务小区 (Pcell, Primary Serving Cell ), 辅分量载波可以称之为 辅服务小区 (Scell, Secondary Serving Cell )0
由于带宽内 ( inter-band ) TDD CA场景的应用, 以至于将在多个场景 下使用远程无线头( RRH, Remote Radio Heads )和连发器( Repeater ), 那 么如何在辅服务 d、区上发送物理随机接入信道, 以及与其相关的一系列技 术改进将是一个 待解决的问题。 发明内容
有鉴于此, 本发明的主要目的在于提供一种物理随机接入信道的传输 方法和系统, 以解决在载波聚合的场景下, 在辅服务小区上发送物理随机 接入信道的问题。
为达到上述目的, 本发明的技术方案是这样实现的:
本发明提供了一种物理随机接入信道的传输方法, 该方法包括: 在载波聚合的场景下, 基站通过主服务小区或者辅服务小区发送随机 接入触发消息给用户设备 ( UE );
所述 UE在辅服务小区上传输物理随机接入信道;
所述基站在主服务小区或者辅服务小区上发送随机接入过程消息给所 述 UE。
其中,所述基站通过主服务小区发送随机接入触发消息给 UE,具体为: 所述基站通过主服务小区上的高层信令或者下行控制信道信息发送随 机接入触发消息给 UE, 其中, 所述高层信令或者下行控制信道信息中包括 所述物理随机接入信道所在的上行服务小区索引。
所述物理随机接入信道所在的上行服务小区索引位于:
所述下行控制信道信息中添加的载波指示域( CIF ) 中;
或者 , 所述下行控制信道信息中的下行控制信令中。
所述下行控制信道信息中还包括:
前导索引和物理随机接入信道掩码索引。
所述 UE在辅服务小区上传输物理随机接入信道, 具体为:
所述 UE在所述物理随机接入信道所在的上行服务小区索引所指示的 服务小区上发送所述物理随机接入信道。
所述基站通过辅服务小区发送随机接入触发消息给 UE, 具体为: 所述基站通过辅服务'』、区上的下行控制信道信息发送随机接入触发消 息给 UE。
所述 UE在辅服务小区上传输物理随机接入信道, 具体为:
所述 UE在接收到随机接入触发消息的下行辅服务小区 SIBX链接的上 行服务小区上, 发送所述物理随机接入信道。
所述 X的取值为 2。
所述基站在主服务小区上发送随机接入过程消息给 UE, 具体为: 所述 UE在所述主服务小区上检测基站发送的下行控制信息; 所述 UE根据所述下行控制信息和发送的物理随机接入信道对应的前 导索引来检测所述随机接入过程消息;
或者,所述 UE根据所述下行控制信息、发送的物理随机接入信道对应 的前导索引和临时小区无线网络临时标识( Temporary C-RNTI ) 来检测所 述随机接入过程消息, 其中, 所述 Temporary C-RNTI设置为小区无线网络 临时标识(C-RNTI );
或者,所述 UE根据所述下行控制信息、发送的物理随机接入信道对应 的前导索引和配置的 C-RNTI来检测所述随机接入过程消息。
所述 UE在主服务小区上检测基站发送的下行控制信息, 具体为: 所述 UE根据配置的随机接入无线网络临时标识( RA-RNTI )来检测下 行控制信息, 其中每个服务小区配置的 RA-RNTI不同;
或者, 所述 UE根据配置的 RA-RNTI来检测下行控制信息, 其中每个 服务小区配置的 RA-RNTI相同;
或者, 所述 UE根据配置的 C-RNTI来检测下行控制信息。
基站发送随机接入过程消息的辅服务小区为: 发送随机接入信道的上 行服务小区对应的下行服务小区。
所述基站在辅服务小区上发送随机接入过程消息给 UE, 具体为: 所述 UE检测基站发送的下行控制信息; 所述 UE在辅服务小区上,根据所述下行控制信息和发送的物理随机接 入信道对应的前导索引来检测所述随机接入过程消息;
或者, 所述 UE在辅服务小区上, 根据所述下行控制信息、发送的物理 随机接入信道对应的前导索引和 Temporary C-RNTI来检测所述随机接入过 程消息, 其中, 所述 Temporary C-RNTI设置为 C-RNTI;
或者, 所述 UE在辅服务小区上, 根据所述下行控制信息、发送的物理 随机接入信道对应的前导索引和配置的 C-RNTI 来检测所述随机接入过程 消息。
所述 UE检测基站发送的下行控制信息, 具体为:
所述 UE在所述辅服务小区上根据配置的 RA-RNTI来检测基站发送的 下行控制信息;
或者, 所述 UE在所述主服务小区上根据配置的 RA-RNTI来检测下行 控制信息, 其中每个服务小区配置的 RA-RNTI不同;
或者, 所述 UE在所述主服务小区上根据配置的 RA-RNTI来检测下行 控制信息, 其中每个服务小区配置的 RA-RNTI相同;
或者,所述 UE在所述主服务小区上根据配置的 C-RNTI来检测下行控 制信息;
或者, 所述 UE在所述主服务小区上根据配置的 RA-RNTI来检测含有 载波指示域的下行控制信息, 其中每个服务小区配置的 RA-RNTI相同。
所述 UE在辅服务小区上检测基站发送的下行控制信息, 具体为: 在一个子帧上,所述 UE在辅服务小区上检测公有搜索空间的下行控制 信息和用户专有搜索空间的下行控制信息;
或者,所述 UE在辅服务小区上在其中一个子帧上只检测公有搜索空间 的下行控制信息, 在另一个子帧上只检测所述辅服务小区的专有搜索空间 的下行控制信息。 所述 UE在主服务小区上检测下行控制信息, 具体为:
在一个子帧上,所述 UE在主服务小区上检测公有搜索空间的下行控制 信息;
或者,在一个子帧上, 所述 UE在主服务小区和辅服务小区上检测公有 搜索空间的下行控制信息。
在所述基站在主服务小区或者辅服务小区上发送随机接入过程消息给 UE之后, 该方法还包括:
所述 UE在主服务小区或者辅服务小区上发送随机接入过程消息 3给基 站。
所述 UE在辅服务小区上发送随机接入过程消息 3给基站, 具体为; 所述 UE在所述发送物理随机接入信道的辅服务小区上发送随机接入 过程消息 3给基站。
本发明还提供了一种物理随机接入信道的传输系统, 该系统包括: 基 站和 UE, 其中,
所述基站, 用于在载波聚合的场景下, 通过主服务小区或者辅服务小 区发送随机接入触发消息给所述 UE;
所述 UE, 用于在辅服务小区上传输物理随机接入信道;
所述基站还用于, 在主服务小区或者辅服务小区上发送随机接入过程 消息给所述 UE。
其中, 所述基站进一步用于, 通过主服务小区上的高层信令或者下行 控制信道信息发送随机接入触发消息给 UE, 其中, 所述高层信令或者下行 控制信道信息中包括所述物理随机接入信道所在的上行服务小区索引。
所述物理随机接入信道所在的上行服务小区索引位于:
所述下行控制信道信息中添加的 CIF中;
或者, 所述下行控制信道信息中的下行控制信令中。 所述下行控制信道信息中还包括:
前导索引和物理随机接入信道掩码索引。
所述 UE进一步用于,在所述物理随机接入信道所在的上行服务小区索 引所指示的服务小区上发送所述物理随机接入信道。
所述基站进一步用于, 通过辅服务小区上的下行控制信道信息发送随 机接入触发消息给 UE。
所述 UE 进一步用于, 在接收到随机接入触发消息的下行辅服务小区 SIBX链接的上行服务小区上, 发送所述物理随机接入信道。
所述 X的取值为 2。
所述 UE进一步用于,在所述主服务小区上检测基站发送的下行控制信 根据所述下行控制信息和发送的物理随机接入信道对应的前导索引来 检测所述随机接入过程消息; 或者, 根据所述下行控制信息、 发送的物理 随机接入信道对应的前导索引和 Temporary C-RNTI来检测所述随机接入过 程消息, 其中, 所述 Temporary C-RNTI设置为 C-RNTI; 或者, 根据所述 下行控制信息、发送的物理随机接入信道对应的前导索引和配置的 C-RNTI 来检测所述随机接入过程消息。
所述 UE进一步用于,
根据配置的 RA-RNTI来检测下行控制信息, 其中每个服务小区配置的 RA-RNTI不同;
或者, 根据配置的 RA-RNTI来检测下行控制信息, 其中每个服务小区 配置的 RA-RNTI相同;
或者, 根据配置的 C-RNTI来检测下行控制信息。
基站发送随机接入过程消息的辅服务小区为: 发送随机接入信道的上 行服务小区对应的下行服务小区。 所述 UE进一步用于, 检测基站发送的下行控制信息;
在辅服务小区上, 根据所述下行控制信息和发送的物理随机接入信道 对应的前导索引来检测所述随机接入过程消息;
或者, 在辅服务小区上, 根据所述下行控制信息、 发送的物理随机接 入信道对应的前导索引和 Temporary C-RNTI 来检测所述随机接入过程消 息, 其中, 所述 Temporary C-RNTI设置为 C-RNTI;
或者, 在辅服务小区上, 根据所述下行控制信息、 发送的物理随机接 入信道对应的前导索引和配置的 C-RNTI来检测所述随机接入过程消息。
所述 UE进一步用于,
在所述辅服务小区上根据配置的 RA-RNTI来检测基站发送的下行控制 信息;
或者,在所述主服务小区上根据配置的 RA-RNTI来检测下行控制信息, 其中每个服务小区配置的 RA-RNTI不同;
或者,在所述主服务小区上根据配置的 RA-RNTI来检测下行控制信息, 其中每个服务小区配置的 RA-RNTI相同;
或者, 在所述主服务小区上根据配置的 C-RNTI来检测下行控制信息; 或者, 在所述主服务小区上根据配置的 RA-RNTI来检测含有载波指示 域的下行控制信息, 其中每个服务小区配置的 RA-RNTI相同。
所述 UE进一步用于,
在一个子帧上,所述 UE在辅服务小区上检测公有搜索空间的下行控制 信息和用户专有搜索空间的下行控制信息;
或者,所述 UE在辅服务小区上在其中一个子帧上只检测公有搜索空间 的下行控制信息, 在另一个子帧上只检测所述辅服务小区的专有搜索空间 的下行控制信息。
所述 UE进一步用于, 在一个子帧上,所述 UE在主服务小区上检测公有搜索空间的下行控制 信息;
或者,在一个子帧上, 所述 UE在主服务小区和辅服务小区上检测公有 搜索空间的下行控制信息。
所述 UE进一步用于, 在所述基站发送随机接入过程消息给 UE之后, 所述 UE在主服务小区或者辅服务小区上发送随机接入过程消息 3给基站。
所述 UE进一步用于,在所述发送物理随机接入信道的辅服务小区上发 送随机接入过程消息 3给基站。
本发明所提供的一种物理随机接入信道的传输方法和系统, 在载波聚 合的场景下, 基站通过主服务小区或者辅服务小区发送随机接入触发消息 给 UE; UE在辅服务小区上传输物理随机接入信道; 基站在主服务小区或 者辅服务小区上发送随机接入过程消息给 UE。 通过本发明, 实现了在载波 聚合的场景下, 在辅服务小区上发送物理随机接入信道。 附图说明
图 1为现有技术中 FDD模式的帧结构示意图;
图 2为现有技术中 TDD模式的帧结构示意图;
图 3为现有技术中 LTE-A系统载波聚合示意图;
图 4为本发明一种物理随机接入信道的传输方法的流程图。 具体实施方式
下面结合附图和具体实施例对本发明的技术方案进一步详细阐述。 本发明所提供的一种物理随机接入信道的传输方法, 如图 4所示, 主 要包括以下步驟:
步驟 401 ,在载波聚合的场景下,基站通过主服务小区或者辅服务小区 发送随机接入触发消息给 UE。 其中,所述基站通过主服务小区发送随机接入触发消息给 UE,具体为: 基站通过主服务小区上的高层信令或者下行控制信道信息发送随机接入触 发消息给 UE, 其中, 高层信令或者下行控制信道信息中包括物理随机接入 信道所在的上行服务小区索引。
所述物理随机接入信道所在的上行服务小区索引可以位于: 下行控制 信道信息中添加的载波指示域(CIF ) 中; 或者, 下行控制信道信息中的下 行控制信令中。
下行控制信道信息中还可以包括: 前导索引 ( Preamble Index )和物理 随机接入信道掩码索引 ( PRACH Mask Index )。
其中,所述基站通过辅服务小区发送随机接入触发消息给 UE,具体为: 基站通过辅服务'〗、区上的下行控制信道信息发送随机接入触发消息给 UE。
步驟 402, UE在辅服务小区上传输物理随机接入信道。
与步驟 401中基站通过主服务小区发送随机接入触发消息给 UE相对应 的, UE可以在物理随机接入信道所在的上行服务小区索引所指示的服务小 区上发送物理随机接入信道。
与步驟 402中基站通过辅服务小区发送随机接入触发消息给 UE相对应 的, UE可以在接收到随机接入触发消息的下行辅服务小区 SIBX链接的上 行服务小区上, 发送物理随机接入信道。 X的优选值为 2。
步驟 403,基站在主服务小区或者辅服务小区上发送随机接入过程消息 (例如随机接入响应 (RAR, Random Access Response ) )给 UE。
其中, 基站在主服务小区上发送随机接入过程消息给 UE, 具体为: 所述 UE在所述主服务小区上检测基站发送的下行控制信息;
UE 根据下行控制信息和发送的物理随机接入信道对应的前导索引来 检测随机接入过程消息;
或者, UE根据下行控制信息、 发送的物理随机接入信道对应的前导索 ? I和临时小区无线网络临时标识 ( Temporary C-RNTI )来检测随机接入过 程消息,其中, Temporary C-RNTI设置为小区无线网络临时标识(C-RNTI );
或者, UE根据下行控制信息、 发送的物理随机接入信道对应的前导索 引和配置的 C-RNTI来检测随机接入过程消息。
所述 UE在主服务小区上检测基站发送的下行控制信息, 具体为:
UE根据配置的随机接入无线网络临时标识( RA-RNTI )来检测下行控 制信息, 其中每个服务小区配置的 RA-RNTI不同;
或者, UE根据配置的 RA-RNTI来检测下行控制信息, 其中每个服务 小区配置的 RA-RNTI相同;
或者, UE根据配置的 C-RNTI来检测下行控制信息。
其中, 基站在辅服务小区上发送随机接入过程消息给 UE, 所述辅服务 小区可以为: 发送随机接入信道的上行服务小区对应的下行服务小区。
所述基站在辅服务小区上发送随机接入过程消息给 UE, 具体为:
UE检测基站发送的下行控制信息;
UE在辅服务小区上,根据下行控制信息和发送的物理随机接入信道对 应的前导索引来检测随机接入过程消息;
或者, UE在辅服务小区上, 根据下行控制信息、 发送的物理随机接入 信道对应的前导索引和 Temporary C-RNTI来检测随机接入过程消息,其中, Temporary C-RNTH殳置为 C-RNTI;
或者, UE在辅服务小区上, 根据下行控制信息、 发送的物理随机接入 信道对应的前导索引和配置的 C-RNTI来检测随机接入过程消息。
所述 UE检测基站发送的下行控制信息, 具体为:
UE在辅服务小区上根据配置的 RA-RNTI来检测基站发送的下行控制 信息;
或者, UE在主服务小区上根据配置的 RA-RNTI来检测下行控制信息, 其中每个服务小区配置的 RA-RNTI不同;
或者, UE在主服务小区上根据配置的 RA-RNTI来检测下行控制信息, 其中每个服务小区配置的 RA-RNTI相同;
或者, UE在主服务小区上根据配置的 C-RNTI来检测下行控制信息; 或者, UE在主服务小区上根据配置的 RA-RNTI来检测含有载波指示 域的下行控制信息, 其中每个服务小区配置的 RA-RNTI相同。
所述 UE在辅服务小区上检测基站发送的下行控制信息, 具体为: 在一个子帧上, UE在辅服务小区上检测公有搜索空间的下行控制信息 和用户专有搜索空间的下行控制信息;
或者, UE在辅服务小区上在其中一个子帧上只检测公有搜索空间的下 行控制信息, 在另一个子帧上只检测辅服务小区的专有搜索空间的下行控 制信息。
所述 UE在主服务小区上检测下行控制信息, 具体为:
在一个子帧上, UE 在主服务小区上检测公有搜索空间的下行控制信 或者, 在一个子帧上, UE在主服务小区和辅服务小区上检测公有搜索 空间的下行控制信息。
进一步的, 在所述基站在主服务小区或者辅服务小区上发送随机接入 过程消息给 UE之后, 该方法还可以包括:
UE在主服务小区或者辅服务小区上发送随机接入过程消息 3给基站。 具体的, UE可以在发送物理随机接入信道的辅服务小区上发送随机接 入过程消息 3给基站。
还需要说明的是, 本发明实施例中的随机接入过程消息, 主要是指随 机接入过程消息 2。
下面再结合具体实施例对上述物理随机接入信道的传输方法进一步详 细阐述。
实施例一
在载波聚合的场景下, 基站在辅服务小区上, 通过高层信令或者下行 控制信道信息发送随机接入触发消息给 UE, 来触发随机接入过程, 其中, 所述高层信令或者下行控制信道信息中包括所述物理随机接入信道所在的 上行服务小区索引。
所述随机接入触发消息, 也称为随机接入过程消息 0。其触发随机接入 过程如下:
UE在主服务小区上检测基站发送给 UE的下行控制信道信息, 来触发 随机接入过程。 其中, 下行控制信道信息中需要进行以下配置的其中一种: 配置一: 在下行控制信道信息中添加 CIF来指示服务小区。
基站发送给辅服务小区的下行控制信道信息,由 UE在主服务小区上进 行检测。所述下行控制信息中添加 CIF, 来指示所述物理随机接入信道所在 的上行服务小区索引, 所述 CIF有如下特点: CIF包含 n比特, 用于指示下 行控制信息对应的服务小区, 所述 n的优选值为 3。
需要说明的是, 当 UE被设置为检测含有 CIF的下行控制信息时,其只 需要检测用户专有搜索空间。
所述下行控制信息通过 DCI format 1A来承载, 当 DCI format 1A用于 随机接入过程并且用下行控制信道顺序(PDCCH order )来初始化时, 基站 将通过 DCI format 1A来发送 Preamble Index和 PRACH Mask Index给 UE。
UE通过检测到的 DCI format 1A中的下行控制信息来获知触发随机接 入过程的上行服务小区,那么所述下行控制信息包括 CIF的取值、 Preamble Index和 PRACH Mask Index, 且 UE在所述上行服务小区上发送物理随机 接入信道。
配置二: 通过下行控制信息中的控制信令来指示服务小区。 基站发送给辅服务小区的下行控制信道信息,由 UE在主服务小区上进 行检测。 所述下行控制信息通过 DCI format 1A来承载, 当 DCI format 1A 用于随机接入过程并且用 PDCCH order来初始化时 ,基站将通过 DCI format 1 A来发送 Preamble Index和 PRACH Mask Index给 UE。
在 DCI format 1A中,采用 n比特来指示所述物理随机接入信道所在的 上行服务小区索引。 所述 n的优选值为 3。
可以通过 DCI format 1A中, 资源分配信息比特中预留的几个状态, 来 指示服务小区索引。
UE通过检测到的 DCI format 1A中的下行控制信息来获知触发随机接 入过程的上行服务小区, 所述下行控制信息包括用于指示上行服务小区索 引的控制信令、 Preamble Index和 PRACH Mask Index, 且 UE在所述上行 服务小区上发送物理随机接入信道。
所述物理随机接入信道, 也称为物理随机接入消息 1。
在 UE发送物理随机接入信道后,基站通过高层信令或者下行控制信道 信息发送随机接入过程消息给 UE , 所述随机接入过程消息称为消息 N ( Message N )。 所述 N为正整数, 优选值为 2、 4或 5。
UE在主服务小区上检测基站发送给 UE的用于指示 Message N的下行 控制信道信息。 具体的检测过程可以采用如下的方法:
方法一: 为每个服务小区配置一个 RA-RNTI , 在主服务小区上, 当 UE 被高层设置为用 RA-RNTI加扰的 CRC来进行 PDCCH解码时, UE应当按 照表 2中定义的相应组合来解码 PDCCH和所有相关的 PDSCH。
UE根据配置的 RA-RNTI和发送的物理随机接入信道对应的前导索引 来检测 Message N, 其中每个服务小区配置的 RA-RNTI不同。
方法二: UE根据配置的 RA-RNTI , 在主服务小区上, 当 UE被高层设 置为用 RA-RNTI加扰的 CRC来进行 PDCCH解码时, UE应当按照表 2中 定义的相应组合来解码 PDCCH和所有相关的 PDSCH。 其中, 每个服务小 区配置的 RA-RNTI相同。
方法三: UE根据配置的 C-RNTI来检测下行控制信息,不需要 RA-RNTI 来进行检测。
当 UE在主服务小区上检测到下行控制信息后,所述 UE根据所述下行 控制信息和发送的物理随机接入信道对应的前导索 I来检测所述随机接入 过程消息 Message N;
或者,所述 UE根据所述下行控制信息、发送的物理随机接入信道对应 的前导索引和 Temporary C-RNTI来检测所述随机接入过程消息, 其中, 临 时小区无线网络临时标识( Temporary C-RNTI )设置为小区无线网络临时 标识(C-RNTI );
或者,所述 UE根据所述下行控制信息、发送的物理随机接入信道对应 的前导索引和配置的 C-RNTI来检测所述随机接入过程消息。
另外, 基站还可以发送下行控制信道信息给 UE, 所述下行控制信道信 息用于传输 Preamble Index和 PRACH Mask Index; 并发送高层信令, 来传 输 Message N给 UE。
实施例二
在载波聚合的场景下, 基站在辅服务小区上, 通过高层信令或者下行 控制信道信息发送随机接入触发消息给 UE, 来触发随机接入过程, 其中, 所述高层信令或者下行控制信道信息中包括物理随机接入信道所在的上行 服务小区索引。
所述随机接入触发消息, 也称为随机接入过程消息 0。
其触发随机接入过程如下:
UE在主服务小区上检测基站发送给 UE的下行控制信道信息, 来触发 随机接入过程。 其中, 下行控制信道信息中需要进行以下配置的其中一种: 配置一: 在下行控制信道信息中添加 CIF来指示服务小区。 基站发送给辅服务小区的下行控制信道信息,由 UE在主服务小区上进 行检测。所述下行控制信息中添加 CIF, 来指示所述物理随机接入信道所在 的上行服务小区索引, 所述 CIF有如下特点: CIF包含 n比特, 用于指示下 行控制信息对应的服务小区, 所述 n的优选值为 3。
需要说明的是, 当 UE被设置为检测含有 CIF的下行控制信息时,其只 需要检测用户专有搜索空间。
所述下行控制信息通过 DCI format 1A来承载, 当 DCI format 1A用于 随机接入过程并且用 PDCCH order来初始化时, 基站将通过 DCI format 1A 来发送 Preamble Index和 PRACH Mask Index给 UE。
UE通过检测到的 DCI format 1A中的下行控制信息来获知触发随机接 入过程的上行服务小区,那么所述下行控制信息包括 CIF的取值、 Preamble Index和 PRACH Mask Index, 且 UE在所述上行服务小区上发送物理随机 接入信道。
配置二: 通过下行控制信息中的控制信令来指示服务小区。
基站发送给辅服务小区的下行控制信道信息,由 UE在主服务小区上进 行检测。 所述下行控制信息通过 DCI format 1A来承载, 当 DCI format 1A 用于随机接入过程并且用 PDCCH order来初始化时 ,基站将通过 DCI format 1 A来发送 Preamble Index和 PRACH Mask Index给 UE。
在 DCI format 1A中,采用 n比特来指示所述物理随机接入信道所在的 上行服务小区索引。 所述 n的优选值为 3。
可以通过 DCI format 1A中, 资源分配信息比特中预留的几个状态, 来 指示服务小区索引。 UE通过检测到的 DCI format 1A中的下行控制信息来 获知触发随机接入过程的上行服务小区, 所述下行控制信息包括用于指示 上行服务小区索引的控制信令、 Preamble Index和 PRACH Mask Index, 且 UE在所述上行服务小区上发送物理随机接入信道。
所述物理随机接入信道, 也称为物理随机接入消息 1。
在 UE发送物理随机接入信道后,基站通过高层信令或者下行控制信道 信息发送随机接入过程消息给 UE , 所述随机接入过程消息称为消息 N ( Message N )。 所述 N为正整数, 优选值为 2、 4或 5。 所述辅服务小区为 发送随机接入信道的上行服务小区对应的下行服务小区。
UE在辅服务小区上检测基站发送给 UE的用于指示 Message N的下行 控制信道信息。 具体的检测过程可以采用如下的方法:
方法一: UE根据配置的 RA-RNTI, 在辅服务小区上, 当 UE被高层设 置为用 RA-RNTI加扰的 CRC来进行 PDCCH解码时, UE应当按照表 2中 定义的相应组合来解码 PDCCH和所有相关的 PDSCH。 其中, 每个服务小 区配置的 RA-RNTI相同; 具体地:
配置一: 在某一子帧上, UE在辅服务小区上既要检测公有搜索空间的 下行控制信息, 也要检测用户专有搜索空间的下行控制信息。
UE 在辅服务小区上, 在公有搜索空间检测 DCI formatlA 或者 DCI format 1C, 用于接收基站发送的 Message N, 同时在用户专有搜索空间检测 相应的 DCI format, 用于接收指示其他下行数据的调度信息。
相应的, UE被高层设置为用 RA-RNTI加扰的 CRC来进行 PDCCH解 码, UE 应当按照表 2 中定义的相应组合来解码 PDCCH 和所有相关的 PDSCH。 同时, UE也被高层设置为用 C-RNTI加扰的 CRC来进行 PDCCH 解码, UE也会按照表 3 中定义的相应组合来解码 PDCCH和所有相关的 PDSCH。
配置二: 在某一子帧上, UE在辅服务小区上只检测公有搜索空间的下 行控制信息。
UE在辅服务小区上, 只在公有搜索空间检测 DCI formatlA或者 DCI format 1C, 用于接收基站发送的 Message N。 然后在另一个子帧上检测专有 搜索空间的下行控制信息。
相应的, UE被高层设置为用 RA-RNTI加扰的 CRC来进行 PDCCH解 码, UE应当按照表 2 中定义的相应组合来解码 PDCCH 和所有相关的 PDSCH。
方法二: 所述 UE在所述主服务小区上根据配置的 RA-RNTI来检测下 行控制信息, 其中每个服务小区配置的 RA-RNTI不同;
或者, 所述 UE在所述主服务小区上根据配置的 RA-RNTI、 来检测下 行控制信息, 其中每个服务小区配置的 RA-RNTI相同;
或者,所述 UE在所述主服务小区上根据配置的 C-RNTI来检测下行控 制信息;
或者, 所述 UE在所述主服务小区上根据配置的 RA-RNTI来检测含有 载波指示域(CIF ) 的下行控制信息, 其中每个服务小区配置的 RA-RNTI 相同。
具体地:
在一个子帧上,所述 UE在主服务小区上检测公有搜索空间的下行控制 信息;
或者,在一个子帧上, 所述 UE在主服务小区和辅服务小区上检测公有 搜索空间的下行控制信息。
当 UE在主服务小区或者辅服务小区上检测到下行控制信息后, 所述 UE根据所述下行控制信息和发送的物理随机接入信道对应的前导索引来 检测所述随机接入过程消息 Message N;
或者,所述 UE根据所述下行控制信息、发送的物理随机接入信道对应 的前导索引和 Temporary C-RNTI来检测所述随机接入过程消息, 其中, 临 时小区无线网络临时标识( Temporary C-RNTI )设置为小区无线网络临时 标识(C-RNTI );
或者,所述 UE根据所述下行控制信息、发送的物理随机接入信道对应 的前导索引和配置的 C-RNTI来检测所述随机接入过程消息。
实施例三
在载波聚合的场景下, 基站在辅服务小区上, 通过高层信令或者下行 控制信道信息发送随机接入触发消息给 UE , 来触发随机接入过程, 其中, 所述高层信令或者下行控制信道信息中包括物理随机接入信道所在的上行 服务小区索引。
所述随机接入触发消息, 也称为随机接入过程消息 0。
其触发随机接入过程如下:
UE在辅服务小区上检测基站发送给 UE的下行控制信道信息, 来触发 随机接入过程。 基站发送给 UE的下行控制信息, 由 UE在辅服务小区上进 行检测。 所述下行控制信息通过 DCI format 1A来承载, 当 DCI format 1A 用于随机接入过程并且用 PDCCH order来初始化时 ,基站将通过 DCI format 1 A来发送 Preamble Index和 PRACH Mask Index给 UE。
UE通过在辅服务小区上检测到的 DCI format 1A中包含的下行控制信 息, 来获得随机接入触发消息, UE在所述接收到随机接入触发消息的下行 辅服务小区 SIBX链接的上行服务小区上发送所述物理随机接入信道;所述 X的优选值为 2。
所述物理随机接入信道, 也称为物理随机接入消息 1。
在 UE发送物理随机接入信道后,基站通过高层信令或者下行控制信道 信息发送随机接入过程消息给 UE , 所述随机接入过程消息称为消息 N ( Message N )。 所述 N为正整数, 优选值为 2、 4或 5。
UE在主服务小区上检测基站发送给 UE的用于指示 Message N的下行 控制信道信息。 具体的检测过程可以采用如下的方法: 方法一: 为每个服务小区配置一个 RA-RNTI, 在主服务小区上, 当 UE 被高层设置为用 RA-RNTI加扰的 CRC来进行 PDCCH解码,则 UE应当按 照表 2中定义的相应组合来解码 PDCCH和所有相关的 PDSCH。
UE根据配置的 RA-RNTI和发送的物理随机接入信道对应的前导索引 来检测 Message N, 其中每个服务小区配置的 RA-RNTI不同。
方法二: UE根据配置的 RA-RNTI, 在主服务小区上, 当 UE被高层设 置为用 RA-RNTI加扰的 CRC来进行 PDCCH解码,则 UE应当按照表 2中 定义的相应组合来解码 PDCCH和所有相关的 PDSCH。 其中, 每个服务小 区配置的 RA-RNTI相同。
方法三: UE根据配置的 C-RNTI来检测下行控制信息,不需要 RA-RNTI 来进行检测。
当 UE在主服务小区上检测到下行控制信息后,所述 UE根据所述下行 控制信息和发送的物理随机接入信道对应的前导索 I来检测所述随机接入 过程消息 Message N;
或者,所述 UE根据所述下行控制信息、发送的物理随机接入信道对应 的前导索引和 Temporary C-RNTI来检测所述随机接入过程消息, 其中, 临 时小区无线网络临时标识( Temporary C-RNTI )设置为小区无线网络临时 标识(C-RNTI );
或者, 所述 UE根据所述下行控制信息、发送的物理随机接入信道对应 的前导索引和配置的 C-RNTI来检测所述随机接入过程消息。
实施例四
在载波聚合的场景下, 基站在辅服务小区上, 通过高层信令或者下行 控制信道信息发送随机接入触发消息给 UE, 来触发随机接入过程, 其中, 所述高层信令或者下行控制信道信息中包括所述物理随机接入信道所在的 上行服务小区索引。 所述随机接入触发消息, 也称为随机接入过程消息 0。
其触发随机接入过程如下:
UE在辅服务小区上检测基站发送给 UE的下行控制信道信息, 来触发 随机接入过程。 基站发送给 UE的下行控制信息, 由 UE在辅服务小区上进 行检测。 所述下行控制信息通过 DCI format 1A来承载, 当 DCI format 1A 用于随机接入过程并且用 PDCCH order来初始化时 ,基站将通过 DCI format 1 A来发送 Preamble Index和 PRACH Mask Index给 UE。
UE通过在辅服务小区上检测到的 DCI format 1A中包含的下行控制信 息, 来获得随机接入触发消息, UE在所述接收到随机接入触发消息的下行 辅服务小区 SIBX链接的上行服务小区上发送所述物理随机接入信道;所述 X的优选值为 2。
所述物理随机接入信道, 也称为物理随机接入消息 1。
在 UE发送物理随机接入信道后,基站通过高层信令或者下行控制信道 信息发送随机接入过程消息给 UE , 所述随机接入过程消息称为消息 N ( Message N )。 所述 N为正整数, 优选值为 2、 4或 5。 所述辅服务小区为 发送随机接入信道的上行服务小区对应的下行服务小区。
UE在辅服务小区上检测基站发送给 UE的用于指示 Message N的下行 控制信道信息。 具体的检测过程可以采用如下的方法:
方法一: UE根据配置的 RA-RNTI, 在辅服务小区上, 当 UE被高层设 置为用 RA-RNTI加扰的 CRC来进行 PDCCH解码时, UE应当按照表 2中 定义的相应组合来解码 PDCCH和所有相关的 PDSCH。 其中, 每个服务小 区配置的 RA-RNTI相同; 具体地:
配置一: 在某一子帧上, UE在辅服务小区上既要检测公有搜索空间的 下行控制信息, 也要检测用户专有搜索空间的下行控制信息。
UE 在辅服务小区上, 在公有搜索空间检测 DCI formatlA 或者 DCI format 1C, 用于接收基站发送的 Message N, 同时在用户专有搜索空间检测 相应的 DCI format, 用于接收指示其他下行数据的调度信息。
相应的, UE被高层设置为用 RA-RNTI加扰的 CRC来进行 PDCCH解 码, UE 应当按照表 2 中定义的相应组合来解码 PDCCH 和所有相关的 PDSCH。 同时, UE也被高层设置为用 C-RNTI加扰的 CRC来进行 PDCCH 解码, UE也会按照表 3 中定义的相应组合来解码 PDCCH和所有相关的 PDSCH。
配置二: 在某一子帧上, UE在辅服务小区上只检测公有搜索空间的下 行控制信息。
UE在辅服务小区上, 只在公有搜索空间检测 DCI formatlA或者 DCI format 1C, 用于接收基站发送的 Message N。 然后在另一个子帧上检测专有 搜索空间的下行控制信息。
相应的, UE被高层设置为用 RA-RNTI加扰的 CRC来进行 PDCCH解 码, UE应当按照表 2 中定义的相应组合来解码 PDCCH 和所有相关的 PDSCH。
方法二: 所述 UE在所述主服务小区上根据配置的 RA-RNTI来检测下 行控制信息, 其中每个服务小区配置的 RA-RNTI不同;
或者, 所述 UE在所述主服务小区上根据配置的 RA-RNTI、 来检测下 行控制信息, 其中每个服务小区配置的 RA-RNTI相同;
或者,所述 UE在所述主服务小区上根据配置的 C-RNTI来检测下行控 制信息;
或者, 所述 UE在所述主服务小区上根据配置的 RA-RNTI来检测含有 载波指示域(CIF ) 的下行控制信息, 其中每个服务小区配置的 RA-RNTI 相同。
具体地: 在一个子帧上,所述 UE在主服务小区上检测公有搜索空间的下行控制 信息;
或者,在一个子帧上, 所述 UE在主服务小区和辅服务小区上检测公有 搜索空间的下行控制信息。
当 UE在主服务小区或者辅服务小区上检测到下行控制信息后, 所述 UE根据所述下行控制信息和发送的物理随机接入信道对应的前导索引来 检测所述随机接入过程消息 Message N;
或者,所述 UE根据所述下行控制信息、发送的物理随机接入信道对应 的前导索引和 Temporary C-RNTI来检测所述随机接入过程消息, 其中, 临 时小区无线网络临时标识( Temporary C-RNTI )设置为小区无线网络临时 标识(C-RNTI );
或者,所述 UE根据所述下行控制信息、发送的物理随机接入信道对应 的前导索引和配置的 C-RNTI来检测所述随机接入过程消息。
实施例五
在载波聚合的场景下, 在辅服务小区上传输物理随机接入信道, UE在 服务小区 X上反馈发送消息 M ( Message M )给基站, 所述 Message M作 为对 Message N的反馈。 所述 M为正整数, 优选值为 3。 所述 UE在服务 小区 X上发送 Message M可以采用如下方法:
方法一: UE在 Pcell发送所述 Message M。
方法二: UE在传输物理随机接入信道的服务小区上发送所述 Message
M。
对应上述物理随机接入信道的传输方法, 本发明还提供了一种物理随 机接入信道的传输系统, 包括: 基站和 UE。
其中, 基站用于在载波聚合的场景下, 通过主服务小区或者辅服务小 区发送随机接入触发消息给 UE; UE用于在辅服务小区上传输物理随机接入信道;
基站还用于在主服务小区或者辅服务小区上发送随机接入过程消息给
UE。
较佳的, 基站进一步用于, 通过主服务小区上的高层信令或者下行控 制信道信息发送随机接入触发消息给 UE, 其中, 高层信令或者下行控制信 道信息中包括物理随机接入信道所在的上行服务小区索引。
所述物理随机接入信道所在的上行服务小区索引可以位于:
下行控制信道信息中添加的 CIF中;
或者, 下行控制信道信息中的下行控制信令中。
下行控制信道信息中还可以包括: 前导索引和物理随机接入信道掩码 索引。
较佳的, UE进一步用于, 在物理随机接入信道所在的上行服务小区索 引所指示的服务小区上发送所述物理随机接入信道。
基站进一步用于, 通过辅服务小区上的下行控制信道信息发送随机接 入触发消息给 UE。
UE进一步用于, 在接收到随机接入触发消息的下行辅服务小区 SIBX 链接的上行服务小区上, 发送物理随机接入信道。 X的优选值为 2。
UE进一步用于, 在主服务小区上检测基站发送的下行控制信息; 根据下行控制信息和发送的物理随机接入信道对应的前导索引来检测 随机接入过程消息; 或者, 根据下行控制信息、 发送的物理随机接入信道 对应的前导索引和 Temporary C-RNTI 来检测随机接入过程消息, 其中, Temporary C-RNTI设置为 C-RNTI; 或者, 根据下行控制信息、发送的物理 随机接入信道对应的前导索引和配置的 C-RNTI来检测随机接入过程消息。
UE进一步用于, 根据配置的 RA-RNTI来检测下行控制信息, 其中每 个服务小区配置的 RA-RNTI不同; 或者, 根据配置的 RA-RNTI来检测下 行控制信息, 其中每个服务小区配置的 RA-RNTI相同; 或者, 根据配置的 C-RNTI来检测下行控制信息。
较佳的, 基站发送随机接入过程消息的辅服务小区可以为: 发送随机 接入信道的上行服务小区对应的下行服务小区。
UE进一步用于, 检测基站发送的下行控制信息;
在辅服务小区上, 根据下行控制信息和发送的物理随机接入信道对应 的前导索引来检测随机接入过程消息;
或者, 在辅服务小区上, 根据下行控制信息、 发送的物理随机接入信 道对应的前导索引和 Temporary C-RNTI来检测随机接入过程消息, 其中, Temporary C-RNTH殳置为 C-RNTI;
或者, 在辅服务小区上, 根据下行控制信息、 发送的物理随机接入信 道对应的前导索引和配置的 C-RNTI来检测随机接入过程消息。
UE进一步用于, 在辅服务小区上根据配置的 RA-RNTI来检测基站发 送的下行控制信息;
或者, 在主服务小区上根据配置的 RA-RNTI来检测下行控制信息, 其 中每个服务小区配置的 RA-RNTI不同;
或者, 在主服务小区上根据配置的 RA-RNTI来检测下行控制信息, 其 中每个服务小区配置的 RA-RNTI相同;
或者, 在主服务小区上根据配置的 C-RNTI来检测下行控制信息; 或者, 在主服务小区上根据配置的 RA-RNTI来检测含有载波指示域的 下行控制信息, 其中每个服务小区配置的 RA-RNTI相同。
UE进一步用于, 在一个子帧上, UE在辅服务小区上检测公有搜索空 间的下行控制信息和用户专有搜索空间的下行控制信息;
或者, UE在辅服务小区上在其中一个子帧上只检测公有搜索空间的下 行控制信息, 在另一个子帧上只检测所述辅服务小区的专有搜索空间的下 行控制信息。
UE进一步用于, 在一个子帧上, UE在主服务小区上检测公有搜索空 间的下行控制信息;
或者, 在一个子帧上, UE在主服务小区和辅服务小区上检测公有搜索 空间的下行控制信息。
UE进一步用于, 在基站发送随机接入过程消息给 UE之后, 在主服务 小区或者辅服务小区上发送随机接入过程消息 3给基站。 具体的, 可以在 发送物理随机接入信道的辅服务小区上发送随机接入过程消息 3给基站。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种物理随机接入信道的传输方法, 该方法包括:
在载波聚合的场景下, 基站通过主服务小区或者辅服务小区发送随 机接入触发消息给用户设备 UE;
所述 UE在辅服务小区上传输物理随机接入信道;
所述基站在主服务小区或者辅服务小区上发送随机接入过程消息给 所述 UE。
2、 根据权利要求 1所述物理随机接入信道的传输方法, 其中, 所述 基站通过主服务小区发送随机接入触发消息给 UE, 具体为:
所述基站通过主服务小区上的高层信令或者下行控制信道信息发送 随机接入触发消息给 UE, 其中, 所述高层信令或者下行控制信道信息中 包括所述物理随机接入信道所在的上行服务小区索引。
3、 根据权利要求 2所述物理随机接入信道的传输方法, 其中, 所述 物理随机接入信道所在的上行服务' j、区索引位于:
所述下行控制信道信息中添加的载波指示域 CIF中;
或者 , 所述下行控制信道信息中的下行控制信令中。
4、 根据权利要求 3所述物理随机接入信道的传输方法, 其中, 所述 下行控制信道信息中还包括:
前导索引和物理随机接入信道掩码索引。
5、 根据权利要求 2所述物理随机接入信道的传输方法, 其中, 所述 UE在辅服务小区上传输物理随机接入信道, 具体为:
所述 UE在所述物理随机接入信道所在的上行服务小区索引所指示 的服务小区上发送所述物理随机接入信道。
6、 根据权利要求 1所述物理随机接入信道的传输方法, 其中, 所述 基站通过辅服务小区发送随机接入触发消息给 UE, 具体为: 所述基站通过辅服务小区上的下行控制信道信息发送随机接入触发 消息给 UE。
7、 根据权利要求 6所述物理随机接入信道的传输方法, 其中, 所述 UE在辅服务小区上传输物理随机接入信道, 具体为:
所述 UE在接收到随机接入触发消息的下行辅服务小区 SIBX链接的 上行服务小区上, 发送所述物理随机接入信道。
8、 根据权利要求 7所述物理随机接入信道的传输方法, 其中, 所述 X的取值为 2。
9、 根据权利要求 1至 8任一项所述物理随机接入信道的传输方法, 其中, 所述基站在主服务小区上发送随机接入过程消息给 UE, 具体为: 所述 UE在所述主服务小区上检测基站发送的下行控制信息; 所述 UE根据所述下行控制信息和发送的物理随机接入信道对应的 前导索引来检测所述随机接入过程消息;
或者, 所述 UE根据所述下行控制信息、发送的物理随机接入信道对 应的前导索引和临时小区无线网络临时标识 Temporary C-RNTI来检测所 述随机接入过程消息, 其中, 所述 Temporary C-RNTI设置为小区无线网 络临时标识 C-RNTI;
或者, 所述 UE根据所述下行控制信息、发送的物理随机接入信道对 应的前导索引和配置的 C-RNTI来检测所述随机接入过程消息。
10、 根据权利要求 9 所述物理随机接入信道的传输方法, 其中, 所 述 UE在主服务小区上检测基站发送的下行控制信息, 具体为:
所述 UE根据配置的随机接入无线网络临时标识 RA-RNTI来检测下 行控制信息, 其中每个服务小区配置的 RA-RNTI不同;
或者, 所述 UE根据配置的 RA-RNTI来检测下行控制信息, 其中每 个服务小区配置的 RA-RNTI相同; 或者, 所述 UE根据配置的 C-RNTI来检测下行控制信息。
11、 根据权利要求 1至 8任一项所述物理随机接入信道的传输方法, 其中, 基站发送随机接入过程消息的辅服务小区为: 发送随机接入信道 的上行服务小区对应的下行服务小区。
12、 根据权利要求 11所述物理随机接入信道的传输方法, 其中, 所 述基站在辅服务小区上发送随机接入过程消息给 UE, 具体为:
所述 UE检测基站发送的下行控制信息;
所述 UE在辅服务小区上,根据所述下行控制信息和发送的物理随机 接入信道对应的前导索 I来检测所述随机接入过程消息;
或者, 所述 UE在辅服务小区上, 根据所述下行控制信息、 发送的物 理随机接入信道对应的前导索引和 Temporary C-RNTI来检测所述随机接 入过程消息, 其中, 所述 Temporary C-RNTI设置为 C-RNTI;
或者, 所述 UE在辅服务小区上, 根据所述下行控制信息、 发送的物 理随机接入信道对应的前导索引和配置的 C-RNTI 来检测所述随机接入 过程消息。
13、 根据权利要求 12所述物理随机接入信道的传输方法, 其中, 所 述 UE检测基站发送的下行控制信息, 具体为:
所述 UE在所述辅服务小区上根据配置的 RA-RNTI来检测基站发送 的下行控制信息;
或者, 所述 UE在所述主服务小区上根据配置的 RA-RNTI来检测下 行控制信息, 其中每个服务小区配置的 RA-RNTI不同;
或者, 所述 UE在所述主服务小区上根据配置的 RA-RNTI来检测下 行控制信息, 其中每个服务小区配置的 RA-RNTI相同;
或者, 所述 UE在所述主服务小区上根据配置的 C-RNTI来检测下行 控制信息; 或者, 所述 UE在所述主服务小区上根据配置的 RA-RNTI来检测含 有载波指示域的下行控制信息,其中每个服务小区配置的 RA-RNTI相同。
14、 根据权利要求 13所述物理随机接入信道的传输方法, 其中, 所 述 UE在辅服务小区上检测基站发送的下行控制信息 , 具体为:
在一个子帧上,所述 UE在辅服务小区上检测公有搜索空间的下行控 制信息和用户专有搜索空间的下行控制信息;
或者,所述 UE在辅服务小区上在其中一个子帧上只检测公有搜索空 间的下行控制信息, 在另一个子帧上只检测所述辅服务小区的专有搜索 空间的下行控制信息。
15、 根据权利要求 13所述物理随机接入信道的传输方法, 其中, 所 述 UE在主服务小区上检测下行控制信息, 具体为:
在一个子帧上,所述 UE在主服务小区上检测公有搜索空间的下行控 制信息;
或者,在一个子帧上, 所述 UE在主服务小区和辅服务小区上检测公 有搜索空间的下行控制信息。
16、 根据权利要求 1 所述物理随机接入信道的传输方法, 其中, 在 所述基站在主服务小区或者辅服务小区上发送随机接入过程消息给 UE 之后, 该方法还包括:
所述 UE在主服务小区或者辅服务小区上发送随机接入过程消息 3给 基站。
17、 根据权利要求 16所述物理随机接入信道的传输方法, 其中, 所 述 UE在辅服务小区上发送随机接入过程消息 3给基站, 具体为;
所述 UE在所述发送物理随机接入信道的辅服务小区上发送随机接 入过程消息 3给基站。
18、 一种物理随机接入信道的传输系统, 该系统包括: 基站和 UE, 其中,
所述基站, 用于在载波聚合的场景下, 通过主服务小区或者辅服务 小区发送随机接入触发消息给所述 UE;
所述 UE, 用于在辅服务小区上传输物理随机接入信道;
所述基站还用于, 在主服务小区或者辅服务小区上发送随机接入过 程消息给所述 UE。
19、 根据权利要求 18所述物理随机接入信道的传输系统, 其中, 所 述基站进一步用于 , 通过主服务小区上的高层信令或者下行控制信道信 息发送随机接入触发消息给 UE, 其中, 所述高层信令或者下行控制信道 信息中包括所述物理随机接入信道所在的上行服务小区索引。
20、 根据权利要求 19所述物理随机接入信道的传输系统, 其中, 所 述物理随机接入信道所在的上行服务小区索引位于:
所述下行控制信道信息中添加的 CIF中;
或者 , 所述下行控制信道信息中的下行控制信令中。
21、 根据权利要求 20所述物理随机接入信道的传输系统, 其中, 所 述下行控制信道信息中还包括:
前导索引和物理随机接入信道掩码索引。
22、 根据权利要求 19所述物理随机接入信道的传输系统, 其中, 所 述 UE进一步用于,在所述物理随机接入信道所在的上行服务小区索引所 指示的服务小区上发送所述物理随机接入信道。
23、 根据权利要求 18所述物理随机接入信道的传输系统, 其中, 所 述基站进一步用于, 通过辅服务小区上的下行控制信道信息发送随机接 入触发消息给 UE。
24、 根据权利要求 23所述物理随机接入信道的传输系统, 其中, 所 述 UE进一步用于, 在接收到随机接入触发消息的下行辅服务小区 SIBX 链接的上行服务小区上, 发送所述物理随机接入信道。
25、 根据权利要求 24所述物理随机接入信道的传输系统, 其中, 所 述 X的取值为 2。
26、 根据权利要求 18至 25任一项所述物理随机接入信道的传输系 统, 其中, 所述 UE进一步用于, 在所述主服务小区上检测基站发送的下 行控制信息;
根据所述下行控制信息和发送的物理随机接入信道对应的前导索引 来检测所述随机接入过程消息; 或者, 根据所述下行控制信息、 发送的 物理随机接入信道对应的前导索引和 Temporary C-RNTI来检测所述随机 接入过程消息, 其中, 所述 Temporary C-RNTI设置为 C-RNTI; 或者, 根据所述下行控制信息、 发送的物理随机接入信道对应的前导索引和配 置的 C-RNTI来检测所述随机接入过程消息。
27、 根据权利要求 26所述物理随机接入信道的传输系统, 其中, 所 述 UE进一步用于,
根据配置的 RA-RNTI来检测下行控制信息, 其中每个服务小区配置 的 RA-RNTI不同;
或者, 根据配置的 RA-RNTI来检测下行控制信息, 其中每个服务小 区配置的 RA-RNTI相同;
或者, 根据配置的 C-RNTI来检测下行控制信息。
28、 根据权利要求 18至 25任一项所述物理随机接入信道的传输系 统, 其中, 基站发送随机接入过程消息的辅服务小区为: 发送随机接入 信道的上行服务小区对应的下行服务小区。
29、 根据权利要求 28所述物理随机接入信道的传输系统, 其中, 所 述 UE进一步用于, 检测基站发送的下行控制信息;
在辅服务小区上, 根据所述下行控制信息和发送的物理随机接入信 道对应的前导索引来检测所述随机接入过程消息;
或者, 在辅服务小区上, 根据所述下行控制信息、 发送的物理随机 接入信道对应的前导索引和 Temporary C-RNTI来检测所述随机接入过程 消息, 其中, 所述 Temporary C-RNTI设置为 C-RNTI;
或者, 在辅服务小区上, 根据所述下行控制信息、 发送的物理随机 接入信道对应的前导索引和配置的 C-RNTI 来检测所述随机接入过程消
30、 根据权利要求 29所述物理随机接入信道的传输系统, 其中, 所 述 UE进一步用于,
在所述辅服务小区上根据配置的 RA-RNTI来检测基站发送的下行控 制信息;
或者, 在所述主服务小区上根据配置的 RA-RNTI来检测下行控制信 息, 其中每个服务小区配置的 RA-RNTI不同;
或者, 在所述主服务小区上根据配置的 RA-RNTI来检测下行控制信 息, 其中每个服务小区配置的 RA-RNTI相同;
或者, 在所述主服务小区上根据配置的 C-RNTI 来检测下行控制信 或者, 在所述主服务小区上根据配置的 RA-RNTI来检测含有载波指 示域的下行控制信息, 其中每个服务小区配置的 RA-RNTI相同。
31、 根据权利要求 30所述物理随机接入信道的传输系统, 其中, 所 述 UE进一步用于,
在一个子帧上,所述 UE在辅服务小区上检测公有搜索空间的下行控 制信息和用户专有搜索空间的下行控制信息;
或者,所述 UE在辅服务小区上在其中一个子帧上只检测公有搜索空 间的下行控制信息, 在另一个子帧上只检测所述辅服务小区的专有搜索 空间的下行控制信息。
32、 根据权利要求 30所述物理随机接入信道的传输系统, 其中, 所 述 UE进一步用于,
在一个子帧上,所述 UE在主服务小区上检测公有搜索空间的下行控 制信息;
或者,在一个子帧上, 所述 UE在主服务小区和辅服务小区上检测公 有搜索空间的下行控制信息。
33、 根据权利要求 18所述物理随机接入信道的传输系统, 其中, 所 述 UE进一步用于, 在所述基站发送随机接入过程消息给 UE之后, 所述 UE在主服务小区或者辅服务小区上发送随机接入过程消息 3给基站。
34、 根据权利要求 33所述物理随机接入信道的传输系统, 其中, 所 述 UE进一步用于,在所述发送物理随机接入信道的辅服务小区上发送随 机接入过程消息 3给基站。
PCT/CN2012/072333 2011-05-18 2012-03-14 一种物理随机接入信道的传输方法和系统 WO2012155626A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/118,351 US20140105152A1 (en) 2011-05-18 2012-03-14 Method and system for transmitting physical random access channel
EP12785079.0A EP2712259B1 (en) 2011-05-18 2012-03-14 Transmission method and system of physical random access channel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110129255.4 2011-05-18
CN201110129255.4A CN102202415B (zh) 2011-05-18 2011-05-18 一种物理随机接入信道的传输方法和系统

Publications (1)

Publication Number Publication Date
WO2012155626A1 true WO2012155626A1 (zh) 2012-11-22

Family

ID=44662716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072333 WO2012155626A1 (zh) 2011-05-18 2012-03-14 一种物理随机接入信道的传输方法和系统

Country Status (4)

Country Link
US (1) US20140105152A1 (zh)
EP (1) EP2712259B1 (zh)
CN (1) CN102202415B (zh)
WO (1) WO2012155626A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102202415B (zh) * 2011-05-18 2019-01-22 中兴通讯股份有限公司 一种物理随机接入信道的传输方法和系统
CN102264150B (zh) * 2011-08-01 2018-01-02 中兴通讯股份有限公司 载波聚合中的prach传输方法及装置
CN105873205B (zh) 2011-10-09 2020-04-03 华为技术有限公司 上行发送功率确定方法及用户设备
CN103228053A (zh) * 2012-01-29 2013-07-31 中兴通讯股份有限公司 一种多载波系统随机接入方法及基站及移动终端及系统
CN103228026A (zh) * 2012-01-29 2013-07-31 中兴通讯股份有限公司 一种载波聚合系统中的随机接入方法及终端及基站及系统
EP3809621B1 (en) * 2012-01-30 2023-03-01 Huawei Technologies Co., Ltd. Methods and apparatuses for wireless communications
CN103716897B (zh) * 2012-09-29 2018-07-31 南京中兴软件有限责任公司 基于载波聚合的信息传输方法及装置
BR112015020577B1 (pt) 2013-02-27 2019-05-14 Huawei Technologies Co., Ltd. Método de otimização de rádio localização e nó de rede de acesso
CN104349460B (zh) * 2013-07-25 2019-09-24 中兴通讯股份有限公司 上下行配置信息通知、获取方法以及基站和用户设备
CN111491305B (zh) 2014-01-29 2023-04-28 三星电子株式会社 移动通信系统中的随机接入方法和设备
CN104837209A (zh) * 2014-02-11 2015-08-12 上海朗帛通信技术有限公司 一种双连接通信中的随机接入方法和装置
US20160050667A1 (en) 2014-08-18 2016-02-18 Samsung Electronics Co., Ltd. Communication on licensed and unlicensed bands
JP6595497B2 (ja) * 2014-11-06 2019-10-23 株式会社Nttドコモ ユーザ端末、無線基地局、無線通信システムおよび無線通信方法
CN112492685A (zh) * 2015-08-14 2021-03-12 华为技术有限公司 一种信息的传输方法和基站以及用户设备
CN106900072B (zh) * 2015-12-18 2020-02-14 华为技术有限公司 一种无线帧的传输方法及无线网络设备
JP2019054311A (ja) * 2016-01-29 2019-04-04 シャープ株式会社 端末装置、基地局装置および通信方法
CN107734684B (zh) * 2016-08-12 2023-06-30 华为技术有限公司 一种系统信息发送方法及装置
US10397947B2 (en) * 2016-08-12 2019-08-27 Qualcomm Incorporated Adaptive waveform selection in wireless communications
US11290987B2 (en) * 2017-08-04 2022-03-29 Qualcomm Incorporated Slot structure linkage in wireless systems
CN111698063B (zh) * 2019-03-14 2022-02-01 大唐移动通信设备有限公司 一种非竞争前导码索引生成方法及基站
CN111294960B (zh) * 2020-02-12 2023-04-21 北京紫光展锐通信技术有限公司 识别下行控制信息的方法及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101400150A (zh) * 2007-09-25 2009-04-01 中兴通讯股份有限公司 多载波td-scdma系统的随机接入方法
CN101835273A (zh) * 2009-03-13 2010-09-15 中兴通讯股份有限公司 随机接入方法以及终端
CN102036411A (zh) * 2010-12-02 2011-04-27 大唐移动通信设备有限公司 一种进行随机接入的方法及装置
CN102202415A (zh) * 2011-05-18 2011-09-28 中兴通讯股份有限公司 一种物理随机接入信道的传输方法和系统

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE051663T2 (hu) * 2005-09-30 2021-03-29 Optis Wireless Technology Llc Rádió átviteli berendezés és rádió átviteli eljárás
EP3373491B1 (en) * 2008-01-04 2020-05-13 Godo Kaisha IP Bridge 1 Radio transmitting device and radio transmitting method
US20090175253A1 (en) * 2008-01-08 2009-07-09 Sunplus Mmobile Inc. Frame format for random access response of wireless communication transmission
CN101646251B (zh) * 2008-08-07 2012-07-18 中兴通讯股份有限公司 随机接入过程和测量间隙冲突的处理方法
KR100939722B1 (ko) * 2008-08-11 2010-02-01 엘지전자 주식회사 데이터 전송 방법 및 이를 위한 사용자 기기
CN101873711B (zh) * 2009-04-21 2014-10-15 电信科学技术研究院 一种发送随机接入响应的方法、基站和用户终端
ES2458344T3 (es) * 2009-04-27 2014-05-05 Telefonaktiebolaget Lm Ericsson (Publ) Métodos y aparatos para la asignación de recursos para acceso aleatorio en sistemas de telecomunicación inalámbricos con agregación de portadoras
CN102369773B (zh) * 2009-04-27 2014-03-12 华为技术有限公司 一种随机接入竞争解决的判断方法、装置和系统
WO2011005163A1 (en) * 2009-07-07 2011-01-13 Telefonaktiebolaget L M Ericsson (Publ) Random access procedure utilizing cyclic shift of demodulation reference signal
JP4999893B2 (ja) * 2009-08-06 2012-08-15 シャープ株式会社 無線通信システム、基地局装置、移動局装置および無線通信方法
BR112012006948B1 (pt) * 2009-09-28 2021-04-27 Samsung Electronics., Ltd Método para estender uma região de pdcch e aparelho de ue para receber informação de dci
CN201967138U (zh) * 2009-11-19 2011-09-07 交互数字专利控股公司 无线发射/接收单元
KR101688263B1 (ko) * 2010-01-08 2016-12-20 인터디지탈 패튼 홀딩스, 인크 다수의 업링크 캐리어와의 시간 정렬 유지
EP2362708B1 (en) * 2010-02-15 2012-09-19 Alcatel Lucent Method for performing a random access procedure by a relay node in a wireless or radio communication network, corresponding relay node
TWI459839B (zh) * 2010-04-02 2014-11-01 Mediatek Inc 管理多成分載波、緩存器狀態報告以及功率餘裕回報方法
KR20110113897A (ko) * 2010-04-12 2011-10-19 주식회사 팬택 다수의 요소 반송파를 운영하는 무선 통신 시스템에서 업링크 타이밍 그룹에 대한 정보를 송수신하는 방법 및 장치
CN102948246B (zh) * 2010-06-10 2016-04-20 诺基亚技术有限公司 执行基于竞争的随机访问的方法和装置
US9686770B2 (en) * 2010-06-15 2017-06-20 Mediatek Inc. Methods to support MBMS service continuity and counting and localized MBMS service
ES2605979T3 (es) * 2010-09-13 2017-03-17 Nokia Siemens and Networks Oy Conectividad de control de recursos de radio reducida
US9237489B2 (en) * 2010-11-02 2016-01-12 Innovative Sonic Corporation Method and apparatus for secondary cell release during handover in a wireless communication system
US20120113827A1 (en) * 2010-11-08 2012-05-10 Sharp Laboratories Of America, Inc. Dynamic simultaneous pucch and pusch switching for lte-a
US9369994B2 (en) * 2010-11-11 2016-06-14 Lg Electronics Inc. Uplink control information transmitting/receiving method and device in a wireless communication system
EP2675237B1 (en) * 2011-02-10 2018-04-18 Fujitsu Limited Wireless communication system, receiving device, transmitting device and method of wireless communication
CN102123516B (zh) * 2011-03-31 2013-11-06 电信科学技术研究院 一种基于多个上行定时提前量的随机接入方法和设备
US20120250578A1 (en) * 2011-04-01 2012-10-04 Interdigital Patent Holdings, Inc. Multi-cell operation in non-cell_dch states
US8837304B2 (en) * 2011-04-08 2014-09-16 Sharp Kabushiki Kaisha Devices for multi-group communications
US8705467B2 (en) * 2011-04-29 2014-04-22 Nokia Corporation Cross-carrier preamble responses
CN106027218B (zh) * 2011-05-02 2019-06-21 瑞典爱立信有限公司 在无线通信系统中新激活的辅助小区上禁止探测参考信号传输的方法和装置
US20120300714A1 (en) * 2011-05-06 2012-11-29 Samsung Electronics Co., Ltd. Methods and apparatus for random access procedures with carrier aggregation for lte-advanced systems
TWI574532B (zh) * 2011-05-10 2017-03-11 內數位專利控股公司 獲得次胞元上鏈定時校準方法及裝置
WO2012154105A1 (en) * 2011-05-11 2012-11-15 Telefonaktiebolaget L M Ericsson (Publ) Radio node, positioning node, and methods therein
US9642161B2 (en) * 2011-05-11 2017-05-02 Nokia Solutions And Networks Oy Cross-scheduling for random access response

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101400150A (zh) * 2007-09-25 2009-04-01 中兴通讯股份有限公司 多载波td-scdma系统的随机接入方法
CN101835273A (zh) * 2009-03-13 2010-09-15 中兴通讯股份有限公司 随机接入方法以及终端
CN102036411A (zh) * 2010-12-02 2011-04-27 大唐移动通信设备有限公司 一种进行随机接入的方法及装置
CN102202415A (zh) * 2011-05-18 2011-09-28 中兴通讯股份有限公司 一种物理随机接入信道的传输方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2712259A4 *

Also Published As

Publication number Publication date
EP2712259A4 (en) 2014-11-19
US20140105152A1 (en) 2014-04-17
EP2712259A1 (en) 2014-03-26
CN102202415A (zh) 2011-09-28
CN102202415B (zh) 2019-01-22
EP2712259B1 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
WO2012155626A1 (zh) 一种物理随机接入信道的传输方法和系统
JP6679764B2 (ja) 下りリンク信号受信方法及び使用者器機と、下りリンク信号送信方法及び基地局
CN106576343B (zh) 在无线通信系统中收发无线信号的方法及其设备
JP6434043B2 (ja) 無線通信システムにおいて信号を送受信する方法及びそのための装置
US10917904B2 (en) Communication apparatus, communication method, and recording medium
US9736819B2 (en) Relay node device for receiving control information from a base station and method therefor
US11432288B2 (en) Communication device, communication method, and program for selectively switching between a first physical uplink channel and a second physical uplink channel
JP6163554B2 (ja) 端末装置、基地局装置、および通信方法
US11729847B2 (en) Communication device, communication method, and program
JP6162244B2 (ja) 端末装置、基地局装置、および通信方法
CN110024440B (zh) 通信设备、通信方法和程序
US11196495B2 (en) Communication device, communication method, and program
CN109565708B (zh) 通信装置、通信方法和记录介质
WO2012173432A2 (ko) 무선 접속 시스템에서 하향링크 제어 정보 수신 방법 및 이를 위한 단말
WO2012146095A1 (zh) 下行控制信息的传输方法及系统
WO2014148796A1 (ko) 무선 통신 시스템에서 단말이 신호를 송수신하는 방법 및 이를 위한 장치
WO2012173445A2 (ko) 무선 접속 시스템에서 데이터 송수신 방법 및 이를 위한 단말
WO2011157038A1 (zh) 载波聚合场景下下行控制信息的检测方法和用户设备
WO2014173334A1 (zh) 上下行配置信息通知、获取方法以及基站和用户设备
CN109565709B (zh) 通信设备、通信方法和记录介质
EP3334233B1 (en) Terminal device, communication method, and integrated circuit
WO2014003407A1 (ko) 브로드캐스트/멀티캐스트 서비스 수신 방법 및 사용자기기와 브로드캐스트/멀티캐스트 서비스 전송 방법 및 기지국
WO2012155693A1 (zh) 载波聚合中的prach传输方法及装置
WO2015152583A1 (ko) 무선 통신 시스템에서 단말 간 통신을 위한 신호 송수신 방법 및 이를 위한 장치
EP2690808B1 (en) Method wherein a base station transmits and receives tdd configuration information regarding a plurality of ccs in a wireless communication system supporting a plurality of the ccs, and apparatus for same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12785079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14118351

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012785079

Country of ref document: EP