WO2012155536A1 - 风力发电设备 - Google Patents
风力发电设备 Download PDFInfo
- Publication number
- WO2012155536A1 WO2012155536A1 PCT/CN2012/000675 CN2012000675W WO2012155536A1 WO 2012155536 A1 WO2012155536 A1 WO 2012155536A1 CN 2012000675 W CN2012000675 W CN 2012000675W WO 2012155536 A1 WO2012155536 A1 WO 2012155536A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tower
- wind power
- generator
- axle
- shaft
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D13/00—Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
- F03D13/20—Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D80/00—Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
- F03D80/30—Lightning protection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/007—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations the wind motor being combined with means for converting solar radiation into useful energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/10—Combinations of wind motors with apparatus storing energy
- F03D9/12—Combinations of wind motors with apparatus storing energy storing kinetic energy, e.g. using flywheels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/20—Wind motors characterised by the driven apparatus
- F03D9/25—Wind motors characterised by the driven apparatus the apparatus being an electrical generator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/04—Wind motors with rotation axis substantially parallel to the air flow entering the rotor having stationary wind-guiding means, e.g. with shrouds or channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/10—Stators
- F05B2240/13—Stators to collect or cause flow towards or away from turbines
- F05B2240/131—Stators to collect or cause flow towards or away from turbines by means of vertical structures, i.e. chimneys
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/21—Rotors for wind turbines
- F05B2240/211—Rotors for wind turbines with vertical axis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/728—Onshore wind turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/16—Mechanical energy storage, e.g. flywheels or pressurised fluids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
Definitions
- the invention relates to a new energy technology, in particular to a wind power generation device.
- Wind is a clean and renewable natural resource with great potential, and it is receiving more and more attention from all countries in the world.
- the conversion mode the kinetic energy of the wind is converted into mechanical energy, and then the mechanical energy is converted into electrical energy, and the conversion rate reaches 60%, but it is far from meeting the increasing demand for electricity.
- the present invention is directed to the above-mentioned deficiencies, and is a wind power generation facility that comprehensively utilizes energy provided by nature, improves mechanical structure, and fully utilizes limited resources to increase conversion rate.
- a wind power generation device a soot-shaped wind power generation tower having a bottom inner diameter larger than a top inner diameter, a generator at a top outlet of the tower, a wind-permeable rain cover at the top of the tower, and a wind power generation tower running vertically from the bottom of the tower or the tower to the top of the tower.
- the axle of the axle is connected to the generator shaft at the top of the axle, and the flywheel is arranged at the bottom of the axle.
- the bottom of the tower is arranged with an air inlet upward along the tower wall, and the bottom of the axle shaft is provided with a spirally spiraling upwardly rotating shaft vane.
- the spacing between the axle blades from bottom to top is from large to small.
- the distance from the bottom of the shaft to the top of the shaft is 0. 001 ⁇ Lmm.
- a semi-circular solar concentrating plate is arranged below the bottom of the tower.
- the illuminating plate reflects the electric heating radiator with a temperature-controlled power switch disposed at the center of the tower.
- the electric heating radiator is located between the flywheel and the air inlet.
- the inner wall of the wind power tower is smooth, the inner diameter is gently and evenly contracted from the bottom of the tower to the top of the tower, and the inner wall is provided with a rising stepped thread which coincides with the rotation path of the shaft vane.
- the axle running through the tower can be installed from the bottom of the tower to the top of the tower.
- a generator can be installed at the top of the tower. It can also be inserted from any position in the tower to the top of the tower.
- a generator can be installed at the top of the tower. It can also be segmented in the tower.
- a plurality of axles are installed, and a generator is respectively installed at the top of each axle. Each generator transmits power to the power distribution room through a conveyor line, and a part of the power is connected to the electric heating radiator from the power distribution room.
- the wind power tower combination can be sleeved up and down, that is, the top part of the first tower of the second tower bottom sleeve, and the bottom of the tower tower is separated from the tower top of the first tower by a fully enclosed, generator at the top of the first tower
- a second electric heating radiator with a temperature-controlled power switch is arranged at the upper part, and the second tower is transparent from the bottom of the tower to the second electric heating radiator, and a second semi-circular solar concentrating panel is arranged around the transparent tower body.
- the concentrating plate reflects the focusing point to the electric heating radiator with the temperature-controlled power switch disposed at the center of the second tower bottom, and the second generator is disposed at the top outlet of the second tower;
- the top of the tower is provided with a ventilated rain cover.
- the windshield cover on the top of the top of the tower is equipped with lightning protection equipment.
- the wind power tower runs vertically from the bottom of the tower to the top of the tower, and the flywheel is arranged at the bottom of the spiral axle.
- the speed of the axle is stable, and it is not affected by the external environment. It accumulates a certain potential energy and provides a guarantee for the balanced operation of the equipment.
- the top is provided with a spirally circulated shaft vane, and the shaft vane is rotated by the wind flowing from the bottom to the upper part of the tower.
- the upwardly rotating shaft vane acts as a supercharging and speed increasing mechanism for the conversion of mechanical energy to electric energy.
- the energy loss of the conversion mode of the blade rotating from the bottom to the circumference of the axis is utilized, the wind energy is fully utilized, the conversion rate is increased, and the conversion rate is more than 85%;
- the bottom of the tower is arranged upwardly around the tower wall, Tilting the tangential air inlets to concentrate the wind and flow in the same direction as the shaft vanes, and positionally work on the shaft blades that are also obliquely tangential, making full use of the limited wind.
- a solar semi-circular concentrating plate is arranged below the bottom of the tower.
- the concentrating plate reflects the focusing point and is arranged with an electric heating radiator with a temperature-controlled power switch disposed at the center of the tower.
- the electric heating radiator is below the flywheel, above the air inlet, and the bottom of the heating tower flows in.
- the air becomes a wind source, and the air at the bottom of the tower is heated according to the principle of airflow and air pressure, and the hot air flows upward.
- the inner diameter of the bottom of the wind power tower is larger than the inner diameter of the top to generate a suction force, so that the hot air is rapidly pulled upward.
- the inner wall of the wind power tower is smooth, and the inner diameter is gently and evenly contracted from the bottom of the tower to the top of the tower, which reduces the resistance of hot air running; the inner wall has a thread fully integrated with the shaft vane, and the thread is up-stepped and the pitch is from bottom to top.
- the proportion of the axle vanes is the same, so that the air can not flow back under the pressure increase, increasing the strength and speed of the hot air.
- Figure 1 is a schematic view showing the structure of the present invention.
- a wind power generation device a soot-shaped wind power generation tower 7 having a bottom inner diameter larger than a top inner diameter, a generator 2 at the top of the tower, a wind-permeable rain cover 1 at the top of the tower, and a wind power tower 7 from the bottom or the tower to the tower
- the top and rear axles 3 are vertically connected, the top end of the axle is connected to the generator shaft, the bottom of the axle is provided with a flywheel 4, the bottom of the tower is arranged with an air inlet 8 upwardly around the tower wall, and the shaft bottom 31 is spirally upwardly arranged at the bottom of the axle.
- the spacing of the axle vanes from bottom to top is from large to small. 001 ⁇
- the diameter of the shaft of the shaft from the bottom to the top of the shaft is 0. 001 hidden.
- a semi-circular solar concentrating plate 6 is disposed below the bottom of the tower, and the concentrating plate 6 reflects an electric heating radiator 5 with a temperature-controlled power switch disposed at the center of the tower.
- the electric heating radiator 5 is located below the flywheel 4 and above the air inlet 8. between.
- the inner wall of the wind power generation tower 7 is smooth, the inner diameter is gently and evenly contracted from the bottom of the tower to the top of the tower, and the inner wall is provided with a rising step-like thread which coincides with the rotation path of the shaft vane 31.
- the axle 3 running along the tower may be from the bottom of the tower to the top of the tower, or from any position in the tower to the top of the tower, and a generator 2 is installed at the top of the tower; the axle 3 may also be installed in sections of the tower, the top of each axle A generator 2 is separately installed, and each generator 2 delivers electric energy to the distribution room 9 through a conveyor line, and a part of the electric energy is connected to the electric heater 5 from the distribution room 9.
- the top of the tower is provided with a wind-permeable rain cover 1 , and the wind power generation tower 7 is vertically connected from the bottom of the tower or the tower to the top of the tower.
- the top of the axle is connected to the generator shaft, and the bottom of the axle is provided with a flywheel 4, and the bottom of the tower is arranged upward along the tower wall.
- the air inlet 8 is provided with a spirally upwardly spiraling shaft vane 31 to the top of the axle bottom.
- the spacing of the axle vanes from bottom to top is from large to small.
- the diameter of the shaft vanes from bottom to top is from large to small, and the distance between the edges of the shaft vanes and the tower wall is lmm.
- the wind power tower 7 can be sleeved up and down, that is, a part of the top of the first tower of the second tower bottom sleeve, The bottom of the second tower is spaced from the top of the first tower by a fully enclosed, generator at the top of the first tower
- the second is equipped with a second electric heating radiator 5 with a temperature-controlled power switch.
- the second tower is transparent from the bottom of the tower to the second electric heating radiator.
- the second semi-circular shape is arranged on the periphery of the transparent tower.
- the solar concentrating plate 6, the concentrating plate 6 reflects the focus point and is arranged with the electric heating radiator 5 with the temperature control power switch, the second generator 2 is arranged at the top outlet of the second tower; the shaft leaf 31 is from the bottom to the top The distance from the edge of the shaft to the tower wall is 0. 05
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Wind Motors (AREA)
Description
说 明 书 风力发电设备
技术领域
本发明涉及一种新能源技术, 尤其涉及一种风力发电设备。
背景技术
风是一种潜力很大的清洁可再生自然资源, 越来越受到世界各国的重 视。 利用开发的方式也很多, 如本人申报的 201 0201841 00. 1 "一种热 风力发电设备", 利用了自然界的太阳能为热源的一部分, 塔底的空气受热 根据气流学原理和气压作用, 热空气向上流动, 二是热风发电塔底部内径 大于顶部内径会产生抽吸力, 使热空气迅速向上拉伸, 发电机叶片垂直悬 挂于塔顶出口处, 即叶片由下向上围绕其轴心圆周旋转的转换方式, 风的 动能转变成机械能, 再把机械能转化为电能, 其转化率达到了 60%, 但还 远远满足不了日益增长的用电需求。
发明内容
本发明针对上述不足, 是综合利用自然界提供的能源, 改善机械结构, 充分利用有限资源, 提高转化率的风力发电设备。
下面通过结构来进一步地阐述:
一种风力发电设备, 底部内径大于顶部内径的烟囟形风力发电塔, 塔 顶出口处设置发电机, 塔顶设置透风遮雨盖, 风力发电塔从塔底或塔中至 塔顶竖向贯穿的轮轴, 轮轴顶端连接发电机转轴, 轮轴底设置飞轮, 塔底 沿塔壁周围向上设置进风口, 轮轴底向顶部设置螺旋向上盘旋的轴轮叶。
为了更好的效果: 轴轮叶之间从下往上设置的间距由大至小。
轴轮叶从下往上的直径由大至小,轴轮叶边缘离塔壁的间距为 0. 001 ~
lmm。
塔底部下方设置半圆形太阳能聚光板, 聚光板反射聚焦点对准塔中心 设置的带温控电源开关的电加热散热器, 电加热散热器位于飞轮下方与进 风口上方之间。
风力发电塔内壁平滑, 内径平缓均匀地从塔底收缩至塔顶, 内壁设有 与轴轮叶旋转路径吻合的呈上升阶梯状的螺紋。
沿塔贯穿的轮轴可以从塔底到塔顶, 在塔顶安装一台发电机; 也可以 从塔中任意位置向塔顶贯穿, 在塔顶安装一台发电机; 还可以在塔中分段 安装多个轮轴, 每个轮轴顶端分别安装一台发电机, 每台发电机通过输送 线将电能输送至配电室, 一部分电能从配电室连接电加热散热器。
风力发电塔组合可以上下套接, 即第二塔底套第一塔的部分顶部, 第 二塔的塔底与第一塔的塔顶相距的间隔为全封闭, 在第一塔顶的发电机上 部设置第二个带温控电源开关的电加热散热器, 第二塔从塔底至第二个电 加热散热器阶段塔身透明, 透明的塔身外围设置第二个半圆形太阳能聚光 板, 聚光板反射聚焦点对准第二塔底中心设置的带温控电源开关的电加热 散热器, 第二塔的塔顶出口处设置第二个发电机; 同理可多层上下套接组 合, 其最顶部的塔顶设置透风遮雨盖。
最顶部塔顶的透风遮雨盖设置避雷设备。
风力发电塔从塔底至塔顶竖向贯穿螺旋轮轴,螺旋轮轴底部设置飞轮, 会使轮轴转速稳定, 不受外界环境影响, 蓄积一定的势能, 为设备的平衡 运行提供了保证; 轮轴底向顶部设置螺旋向上盘旋的轴轮叶, 轴轮叶受塔 内空气由下向上流动的风力作用旋转运动,盘旋向上的轴轮叶起到了增压、 增速的作用, 为机械能向电能的转化提供了速度和力量; 空气由下向上流
动过程中可全面作用于贯穿其中的轴轮叶, 增加了空气流动的受力面积而 加强了作用力; 轮轴顶端连接发电机转轴, 由轴轴相连机械转动的原理, 减少了敞开式的风作动力源使叶片由下向上围绕其轴心圆周旋转的转换方 式的能量损耗, 充分利用了风能, 提高转化率, 使转化率达到了 85%以上; 塔底沿塔壁周围向上设置进风口, 倾斜切向的进风口, 使风力集中并且和 轴轮叶同向流动, 位置适宜地作功于同样倾斜切向的轴轮叶上, 充分地利 用了有限的风力。
充分利用力学设计的轴轮叶从下往上的间距由大至小, 轴轮叶从下往 上的直径由大至小, 轴轮叶边缘离塔壁的间距为 0. 001 ~ lmm, 间隙小使风 力在每一旋转层充分作功减少了风力的损失。
塔底部下方设置太阳能半圆形聚光板, 聚光板反射聚焦点对准塔中心 设置的带温控电源开关的电加热散热器, 电加热散热器在飞轮下方, 进风 口上方, 加热塔底流入的空气成为风源, 塔底的空气受热根据气流学原理 和气压作用, 热空气向上流动, 二是风力发电塔底部内径大于顶部内径会 产生一个抽吸力, 使热空气迅速向上拉伸。
风力发电塔内壁平滑, 内径平缓均匀地从塔底收缩至塔顶, 减少了热 空气运行的阻力; 内壁有与轴轮叶充分结合的螺紋, 螺紋呈上升阶梯状上 旋且间距由下向上同轴轮叶比例一致, 使空气在压强加大的情况下无法向 下回流, 增加热空气上行的强度和速度。
附图说明
下面结合附图及实施例对本发明作进一步地详述:
图 1为本发明一结构示意图。
具体实施方式
实施例一
一种风力发电设备, 底部内径大于顶部内径的烟囟形风力发电塔 7, 塔顶出口处设置发电机 2, 塔顶设置透风遮雨盖 1, 风力发电塔 7从塔底或 塔中至塔顶竖向贯穿的轮轴 3, 轮轴顶端连接发电机转轴, 轮轴底设置飞 轮 4 , 塔底沿塔壁周围向上设置进风口 8, 轮轴底向顶部设置螺旋向上盘旋 的轴轮叶 31。 轴轮叶从下往上设置的间距由大至小。 轴轮叶从下往上的直 径由大至小, 轴轮叶边缘离塔壁的间距为 0. 001隱。
塔底部下方设置半圆形太阳能聚光板 6, 聚光板 6反射聚焦点对准塔 中心设置的带温控电源开关的电加热散热器 5 ,电加热散热器 5位于飞轮 4 下方与进风口 8上方之间。 风力发电塔 7内壁平滑, 内径平缓均匀地从塔 底收缩至塔顶, 内壁设有与轴轮叶 31 旋转路径吻合的呈上升阶梯状的螺 紋。
实施例二
沿塔贯穿的轮轴 3可以从塔底到塔顶,或从塔中任意位置向塔顶贯穿, 在塔顶安装一台发电机 2; 还可以在塔中分段安装轮轴 3, 每个轮轴顶端分 别安装一台发电机 2, 每台发电机 2通过输送线将电能输送至配电室 9, 一 部分电能从配电室 9连接电加热器 5。 塔顶设置透风遮雨盖 1 , 风力发电塔 7从塔底或塔中至塔顶竖向贯穿的轮轴 3, 轮轴顶端连接发电机转轴, 轮轴 底设置飞轮 4, 塔底沿塔壁周围向上设置进风口 8, 轮轴底向顶部设置螺旋 向上盘旋的轴轮叶 31。 轴轮叶从下往上设置的间距由大至小。 轴轮叶从下 往上的直径由大至小, 轴轮叶边缘离塔壁的间距为 lmm。
实施例三
风力发电塔 7可以上下套接组合, 即第二塔底套第一塔的部分塔顶,
第二塔的塔底与第一塔的塔顶相距的间隔为全封闭, 在第一塔顶的发电机
2上部设置第二个带温控电源开关的电加热散热器 5,第二塔从塔底至第二 个电加热散热器 5阶段塔身透明, 透明的塔身外围设置第二个半圆形太阳 能聚光板 6, 聚光板 6反射聚焦点对准设置带温控电源开关的电加热散热 器 5 , 第二塔的塔顶出口处设置第二个发电机 2; 轴轮叶 31从下往上的直 径由大至小, 轴轮叶边缘离塔壁的间距为 0. 05
同理可多层上下套接组合, 其最顶部的塔顶设置带避雷设备的透风遮 雨盖 1
Claims
1、 一种风力发电设备, 底部内径大于顶部内径的烟囟形风力发电塔 (7), 塔顶出口处设置发电机(2), 塔顶设置透风遮雨盖 (1), 其特征在 于: 风力发电塔(7)从塔底或塔中至塔顶竖向贯穿的轮轴(3), 轮轴(3) 顶端连接发电机转轴, 轮轴(3)底设置飞轮(4), 塔底沿塔壁周围向上设 置进风口 (8), 轮轴 (3)底向顶部设置螺旋向上盘旋的轴轮叶(31)。
2、 如权利要求 1所述的风力发电设备, 其特征在于: 轴轮叶(31)之 间从下往上设置的间距由大至小。
3、 如权利要求 1所述的风力发电设备, 其特征在于: 轴轮叶(31)从 下往上的直径由大至小, 轴轮叶(31)边缘离塔壁的间距为 0.001~lmm。
4、 如权利要求 1所述的风力发电设备, 其特征在于: 塔底部下方设置 半圆形太阳能聚光板(6), 聚光板(6)反射聚焦点对准塔中心设置的带温 控电源开关的电加热散热器(5), 电加热散热器(5)位于飞轮 (4) 下方 与进风口 (8)上方之间。
5、 如权利要求 1所述的风力发电设备, 其特征在于: 风力发电塔(7) 内壁平滑, 内径平缓均匀地从塔底收缩至塔顶, 内壁设有与轴轮叶(31 ) 旋转路径吻合的呈上升阶梯状的螺紋。
6、 如权利要求 1所述的风力发电设备, 其特征在于: 沿塔贯穿的轮轴 ( 3)可以从塔底到塔顶, 在塔顶安装一台发电机(2); 也可以从塔中任意 位置向塔顶贯穿, 在塔顶安装一台发电机(2); 还可以在塔中分段安装多 个轮轴(3), 每个轮轴(3)顶端分别安装一台发电机(2),每台发电机(2) 通过输送线将电能输送至配电室(9), 一部分电能从配电室(9)连接电加 热散热器( 5 )。
7、 如权利要求 1、 2、 3、 4、 5、 6所述的风力发电设备, 其特征在于: 风力发电塔(7)组合可以上下套接, 即第二塔底套第一塔的部分顶部, 第 二塔的塔底与第一塔的塔顶相距的间隔为全封闭,在第一塔顶的发电机(2) 上部设置第二个带温控电源开关的电加热散热器(5), 第二塔从塔底至第 二个电加热散热器(5)阶段塔身透明, 透明的塔身外围设置第二个半圆形 太阳能聚光板(6), 聚光板(6)反射聚焦点对准第二塔底中心设置的带温 控电源开关的电加热散热器(5), 第二塔的塔顶出口处设置第二个发电机
(2); 同理可多层上下套接组合, 其最顶部的塔顶设置透风遮雨盖(1)。
8、 如权利要求 7所述的风力发电设备, 其特征在于: 最顶部塔顶的透 风遮雨盖( 1 )设置避雷设备。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/125,948 US20140203566A1 (en) | 2011-05-18 | 2012-05-16 | Wind turbine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110148490.6 | 2011-05-18 | ||
CN2011101484906A CN102465842A (zh) | 2011-05-18 | 2011-05-18 | 风力发电设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012155536A1 true WO2012155536A1 (zh) | 2012-11-22 |
Family
ID=46069854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/000675 WO2012155536A1 (zh) | 2011-05-18 | 2012-05-16 | 风力发电设备 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20140203566A1 (zh) |
CN (1) | CN102465842A (zh) |
WO (1) | WO2012155536A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9874006B1 (en) * | 2016-08-01 | 2018-01-23 | Inhabit Solar, Llc | Modular roof mounting system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101852179A (zh) * | 2009-11-09 | 2010-10-06 | 卢国骥 | 多级叶轮风力发电机 |
CN201730755U (zh) * | 2010-05-07 | 2011-02-02 | 袁宏 | 一种热风力发电设备 |
CN202117840U (zh) * | 2011-05-18 | 2012-01-18 | 袁宏 | 风力发电设备 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3048006A (en) * | 1960-12-27 | 1962-08-07 | Alexander J E Beard | Thermal current driven power generating apparatus |
US3137125A (en) * | 1962-02-26 | 1964-06-16 | Kyryluk William Frederick | Solar motor |
US4002032A (en) * | 1975-11-28 | 1977-01-11 | Bash D Arle G | Solar heated device |
US4353003A (en) * | 1980-11-17 | 1982-10-05 | Dale Sommers | Solar electric generator |
US4935639A (en) * | 1988-08-23 | 1990-06-19 | Yeh Dong An | Revolving power tower |
US5300817A (en) * | 1993-04-16 | 1994-04-05 | Baird William R | Solar venturi turbine |
US6016015A (en) * | 1997-09-05 | 2000-01-18 | Willard, Jr.; Bruce L. | Solar-wind turbine |
JPH11107907A (ja) * | 1997-10-04 | 1999-04-20 | Yoshiro Nakamatsu | 対流エネルギ装置 |
US5983634A (en) * | 1998-03-18 | 1999-11-16 | Drucker; Ernest R. | Solar energy powerplant with mobile reflector walls |
US6772593B2 (en) * | 2001-05-07 | 2004-08-10 | Michael A. Dunn | Solar vortex electric power generator |
CN1405448A (zh) * | 2001-08-16 | 2003-03-26 | 苗伯霖 | 烟囱式风力发电设备 |
JP2007533950A (ja) * | 2004-04-23 | 2007-11-22 | エムエスシー・パワー・(エス)・ピーティーイー・リミテッド | 電気を生成して水を脱塩するためのマルチシステムを使用した構造並びに方法 |
CN1293301C (zh) * | 2005-10-20 | 2007-01-03 | 河北农业大学 | 太阳能风能发电装置 |
US7856974B2 (en) * | 2007-01-03 | 2010-12-28 | Pitaya Yangpichit | Solar chimney with internal solar collector |
CN104533721A (zh) * | 2008-02-06 | 2015-04-22 | 株式会社Ihi | 高温放热物体储存堆场发电装置 |
US7821151B2 (en) * | 2008-02-23 | 2010-10-26 | Le John O | Hybrid solar thermal chimney |
US20110021134A1 (en) * | 2009-07-23 | 2011-01-27 | Arthur Louis Zwern | Multi-function ventilation and electrical system |
US8338977B2 (en) * | 2010-03-04 | 2012-12-25 | William Edward Lee | Hybrid vertical axis energy apparatus |
-
2011
- 2011-05-18 CN CN2011101484906A patent/CN102465842A/zh active Pending
-
2012
- 2012-05-16 US US14/125,948 patent/US20140203566A1/en not_active Abandoned
- 2012-05-16 WO PCT/CN2012/000675 patent/WO2012155536A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101852179A (zh) * | 2009-11-09 | 2010-10-06 | 卢国骥 | 多级叶轮风力发电机 |
CN201730755U (zh) * | 2010-05-07 | 2011-02-02 | 袁宏 | 一种热风力发电设备 |
CN202117840U (zh) * | 2011-05-18 | 2012-01-18 | 袁宏 | 风力发电设备 |
Also Published As
Publication number | Publication date |
---|---|
US20140203566A1 (en) | 2014-07-24 |
CN102465842A (zh) | 2012-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101196168A (zh) | 偏低风速风能-太阳能互补发电装置 | |
Zuo et al. | The effect of different structural parameters on wind supercharged solar chimney power plant combined with seawater desalination | |
CN101240779A (zh) | 用于太阳能热风发电系统的集热器 | |
RU106309U1 (ru) | Гибридная альтернативная энергетическая установка | |
CN105909298A (zh) | 隧道通风装置 | |
AU672701B2 (en) | Solar venturi turbine | |
WO2012155536A1 (zh) | 风力发电设备 | |
CN202300853U (zh) | 风光兼备辅助热力成机制太阳塔式电力输出优化集成系统 | |
WO2016008179A1 (zh) | 自造风风力发电系统 | |
CN103644075B (zh) | 利用太阳能调速的风力发电系统 | |
CN201810495U (zh) | 太阳能风力发电机 | |
CN205895505U (zh) | 一种联合太阳能烟囱、通风机和风力机的发电装置 | |
CN101975145A (zh) | 太阳能风力发电机 | |
KR20130062007A (ko) | 풍력발전기용 블레이드의 아이싱 방지장치 및 방지방법 | |
CN103410668A (zh) | 垂直轴风力热水器 | |
CN203939628U (zh) | 自造风风力发电系统 | |
CN102022274A (zh) | 可控式太阳能储热的热气流结合风力发电系统 | |
CN202117840U (zh) | 风力发电设备 | |
CN103527415B (zh) | 建筑分布复合式风力发电机组 | |
CN203248313U (zh) | 一种新型的风力发电机 | |
CN102410141A (zh) | 风光兼备辅助热力成机制太阳塔式电力输出优化集成系统 | |
CN103147927B (zh) | 可控旋式菲涅尔透镜阵列真空磁悬浮风电系统 | |
WO2019206102A1 (zh) | 一种高效风力发电装置 | |
CN101315065A (zh) | 太阳能集成引风发电装置 | |
CN105179169A (zh) | 一种利用余热或燃烧植物秸秆产生热风进行发电的装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12786010 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14125948 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12786010 Country of ref document: EP Kind code of ref document: A1 |