WO2012155438A1 - 天线装置 - Google Patents

天线装置 Download PDF

Info

Publication number
WO2012155438A1
WO2012155438A1 PCT/CN2011/080496 CN2011080496W WO2012155438A1 WO 2012155438 A1 WO2012155438 A1 WO 2012155438A1 CN 2011080496 W CN2011080496 W CN 2011080496W WO 2012155438 A1 WO2012155438 A1 WO 2012155438A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
pattern
antenna device
array
complementary
Prior art date
Application number
PCT/CN2011/080496
Other languages
English (en)
French (fr)
Inventor
刘若鹏
徐冠雄
杨松涛
李岳峰
Original Assignee
深圳光启高等理工研究院
深圳光启创新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光启高等理工研究院, 深圳光启创新技术有限公司 filed Critical 深圳光启高等理工研究院
Priority to US13/522,022 priority Critical patent/US9236653B2/en
Priority to EP11855239.7A priority patent/EP2712028B1/en
Publication of WO2012155438A1 publication Critical patent/WO2012155438A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/42Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more imbricated arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means

Definitions

  • the present invention relates to an antenna device.
  • the RF module mainly includes main components such as mixing, power amplifier, filtering, RF signal transmission, matching network and antenna.
  • the antenna acts as the radiating unit and receiving device of the final RF signal, and its working characteristics will directly affect the working performance of the entire electronic system.
  • important dimensions such as antenna size, bandwidth, and gain are limited by basic physical principles (gain limit at fixed size, bandwidth limit, etc.). The basic principle of the limits of these indicators makes the antenna miniaturization technology far more difficult than other devices, and due to the complexity of the electromagnetic field analysis of RF devices, approaching these limits has become a huge technical challenge.
  • the demand for multi-mode services is becoming more and more important in systems such as wireless communications, wireless access, satellite communications, and wireless data networks.
  • the demand for multimode services further increases the complexity of miniaturized antenna multimode designs.
  • multimode impedance matching of antennas has become a bottleneck in antenna technology.
  • MIMO multi-input and multi-output systems
  • conventional terminal communication antennas are mainly designed based on the radiation principle of electric monopoles or dipoles, such as the most commonly used planar anti-F antenna (PIFA).
  • PIFA planar anti-F antenna
  • the radiated operating frequency of a conventional antenna is directly related to the size of the antenna, and the bandwidth is positively correlated with the area of the antenna, so that the design of the antenna usually requires a physical length of half a wavelength.
  • additional impedance matching network design is required before feeding the antenna.
  • the impedance matching network additionally increases the feeder design of the electronic system and increases the RF.
  • the system's area matching network also introduces a lot of energy loss, which is difficult to meet the low-power system design requirements. Especially in the design of indoor directional antenna gain can not meet the needs of people, and the orientation is not strong enough.
  • the technical problem to be solved by the present invention is to provide an antenna device that is small in size and directionally receives or transmits electromagnetic waves in view of the above-mentioned deficiencies of the prior art.
  • an antenna device including an array antenna, a power divider, a reflection unit, and a dielectric substrate.
  • the array antenna includes a plurality of antenna elements, each of which includes a conductive sheet engraved with a groove topology, a conductive feed point, and a feed line.
  • the power splitter is configured to divide the baseband signal into signals of multiple weight values, and then transmit the signals of the respective weight values to the respective antenna elements arranged in the array through the respective conductive feed points.
  • the reflecting unit is for reflecting backward electromagnetic waves of the plurality of antenna elements.
  • the dielectric substrate is insulated by any one of a ceramic material, a high molecular material, a ferroelectric material, a ferrite material, or a ferromagnetic material.
  • Each of the antenna units further includes a grounding unit that is attached to a surface on the dielectric substrate in an array.
  • the feeding mode of the feeder is capacitive coupling or inductive coupling.
  • the slot topology is an axisymmetric pattern.
  • the slot topology is a complementary open resonant ring pattern, an open spiral ring pattern, an open spiral ring pattern, or a structure derived from one of the above structures, wherein the plurality of structures are combined or one of the structures is arrayed.
  • the obtained axisymmetric composite pattern is a complementary open resonant ring pattern, an open spiral ring pattern, an open spiral ring pattern, or a structure derived from one of the above structures, wherein the plurality of structures are combined or one of the structures is arrayed.
  • the groove topology pattern is an axis asymmetric pattern.
  • the groove topographic pattern is a complementary spiral pattern, a complementary bent line pattern, or an axis asymmetry obtained by one of the above structures, wherein the plurality of structures are composited or one of the structural arrays is obtained pattern.
  • the polymer material is polytetrafluoroethylene, F4B or FR4.
  • the antenna device includes an array antenna and a power divider.
  • the array antenna includes a plurality of antenna elements, each of which includes a conductive sheet engraved with a groove topology, a conductive feed point, and a feed line.
  • the power splitter is configured to divide the baseband signal into signals of multiple weight values, and then transmit the signals of the weighted values to the respective antenna elements arranged in the array through the respective conductive feed points.
  • the array antenna further includes an insulating dielectric substrate, and each of the antenna units further includes a grounding unit, wherein the plurality of antenna units are arrayed and attached to a surface of the dielectric substrate.
  • the dielectric substrate is made of any one of a ceramic material, a polymer material, a ferroelectric material, a ferrite material, or a ferromagnetic material.
  • the polymer material is polytetrafluoroethylene, F4B or FR4.
  • the slot topology is an axisymmetric pattern.
  • the slot topology is a complementary open resonant ring pattern, an open spiral ring pattern, an open spiral ring pattern, or a structure derived from one of the above structures, wherein the plurality of structures are combined or one of the structures is arrayed.
  • the obtained axisymmetric composite pattern is a complementary open resonant ring pattern, an open spiral ring pattern, an open spiral ring pattern, or a structure derived from one of the above structures, wherein the plurality of structures are combined or one of the structures is arrayed.
  • the obtained axisymmetric composite pattern is a complementary open resonant ring pattern, an open spiral ring pattern, an open spiral ring pattern, or a structure derived from one of the above structures, wherein the plurality of structures are combined or one of the structures is arrayed.
  • the groove topology pattern is an axis asymmetric pattern.
  • the groove topographic pattern is a complementary spiral pattern, a complementary bent line pattern, or an axis asymmetry obtained by one of the above structures, wherein the plurality of structures are composited or one of the structural arrays is obtained pattern.
  • the array antenna further includes a reflection unit for reflecting the backward radiated electromagnetic waves of the plurality of antenna units.
  • the method of beamforming uses the phase superposition between the antenna elements to make the directionality of the antennas as needed, and then adding a reflective metal plate on the back of the antenna to compress the back lobes of the antenna.
  • the small antenna array achieves a highly directional function, thereby replacing the functions of most indoor indoor highly directional antennas.
  • the invention can be applied in the following wireless device environments through corresponding wireless interfaces:
  • Wireless LAN (802.11a/b/g/n/y).
  • the devices that can be applied include: wireless routers, indoor mobile terminal wireless receivers, such as computers, personal digital assistants (Personal digital assistant, PDA), wireless access device (AP), etc.
  • wireless routers indoor mobile terminal wireless receivers, such as computers, personal digital assistants (Personal digital assistant, PDA), wireless access device (AP), etc.
  • PDA Personal digital assistant
  • AP wireless access device
  • the devices that can be applied include: Personal Digital Cellular (PDC), Global Systems for Mobile Communications (GSM) [can be applied to various frequencies of GSM, such as 400 MHz, 450 MHz, 850 MHz, 900 MHz, 1800 MHz, 1900 MHz], IS-95 (Code Division Multiple Access, CDMA), IS-2000 (CDMA2000), Generalized Packet Relay Service (GPRS), Wide Code Division Multiple Access (WCDMA), Time Division- Synchronous Code Division Multiple Access (TD-SCDMA), Universal Mobile Telecommunications System (UMTS), High Speed OFDM Packet Access (HSOPA), High-Speed Uplink Packet Access (HSUPA), High-Speed Downlink Packet Access (HSDPA), Worldwide Interoperability for Microwave Access (WiMax) ), UMTS Long Term Evolution (LTE) and MIMO.
  • PDC Personal Digital Cellular
  • GSM Global Systems for Mobile Communications
  • the present invention can be widely applied to various types of cellular network communication terminals, including various types of second, third and fourth generation wireless terminals.
  • the present invention can be applied not only to various types of mobile receiving terminals in cellular communication, but also to transmitting terminals such as base station antennas for second, third and fourth generation wireless communication systems.
  • GPS Global Positioning System
  • Ultra-wideband communication (Ultra-wideband, UWB, within 13m).
  • Devices that can be applied include all wireless electronic devices that use UWB technology.
  • Bluetooth wireless device (IEEE802.15.1).
  • the devices that can be applied include all wireless electronic devices under the IEEE802.15.1 protocol definition.
  • Wireless communication devices within the ZigBee (IEEE 802.15.4) protocol such as industrial monitoring, sensor networks, home networks, security systems, in-vehicle electronic systems, servo actuators, and the like. Since the IEEE 802.15.4 defined wireless communication devices are all power limited devices, low power consumption is required. The small antenna proposed by the present invention can greatly reduce the hardware size while saving hardware power consumption. Therefore, the small antenna proposed here is very suitable for any wireless electronic device under the IEEE802.15.4 protocol.
  • Medical electronic wireless devices include: medical ventilation equipment, electric shock generators, patient monitoring equipment in acute hospitals, home health equipment, medical imaging equipment such as nuclear magnetic resonance imaging (MRI).
  • MRI nuclear magnetic resonance imaging
  • the total spectrum used by IEEE 1073 is 14 MHz, which was reserved for the medical wireless application by the Federal Communications Commission (FCC) in October 2002.
  • the FCC plans to extract spectrum from the three frequency bands 608-614, 1395-1400 and 1427-1432MHz to provide interference-free spectrum space for medical devices.
  • the small antenna proposed in this patent is fully applicable to these three frequency bands. Therefore, the small antenna proposed in this patent can be widely applied to all medical electronic wireless devices included in the IEEE 1073 standard.
  • the chip's small antenna can be used as a radiating element in a radar system.
  • RFID RF tag and identification
  • wireless entertainment consumer electronic devices such as wireless HiFi headsets (2.4GHz-2.48GHz and 433MHz-434MHz), wireless mobile hard drives, printers, wireless gamepads, wireless mice (27.085MHz and 27.135MHz), keyboard (27.185MHz) Small electronic devices such as 27.035MHz), and all electronic devices that use Bluetooth antennas.
  • Multi-mode RF design for the application of various types of wireless technologies mentioned above.
  • FIG. 1 is a plan view showing an antenna device according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing an antenna unit in the antenna device shown in FIG. 1;
  • FIG. 3 is a schematic view showing a pattern of a complementary open resonant ring formed on a conductive sheet
  • Figure 4 is a complementary spiral pattern formed on a conductive sheet
  • Figure 5 is a conductive foil forming an open spiral ring pattern
  • Figure 6 is a double-open spiral ring pattern formed on the conductive sheet
  • Figure 7 is a pattern of complementary bend lines formed on a conductive sheet
  • Figure 8 is a composite pattern in which an axis is formed asymmetrically on a conductive sheet
  • Figure 9 is a composite pattern of axial symmetry formed on a conductive sheet
  • Figure 10 is a topographical geometry derivative pattern formed on a conductive sheet
  • Figure 11 is a topographically-extended derivative pattern formed on a conductive sheet.
  • the metamaterial antenna is based on the theoretical design of an artificial electromagnetic material, which refers to a topographic metal structure in which a metal sheet is etched into a specific shape, and the topological metal structure of the specific shape is set to a certain dielectric constant and permeability.
  • the equivalent special electromagnetic material processed and manufactured on the substrate whose performance parameters mainly depend on the topological metal structure of the specific shape of its sub-wavelength.
  • artificial electromagnetic materials In the resonant frequency band, artificial electromagnetic materials generally exhibit a high degree of dispersion characteristics. In other words, the impedance, capacitance, equivalent dielectric constant, and magnetic permeability of the antenna vary drastically with frequency. Therefore, the basic characteristics of the above antenna can be modified by the artificial electromagnetic material technology, so that the metal structure and the attached dielectric substrate are equivalently composed of a high-dispersion special electromagnetic material, thereby realizing a novel antenna with rich radiation characteristics.
  • the present invention utilizes the above principles to design an antenna device that operates in multiple modes. It attaches a conductive sheet to the dielectric substrate and then engraves the conductive sheet to form a specific shape. Due to the high dispersion characteristics of the conductive foil of a particular shape, the antenna has a rich radiation characteristic, thereby eliminating the design of the impedance matching network to achieve antenna miniaturization and multi-mode operation.
  • the antenna device 5 includes an array antenna 8, a reflection unit 9 disposed on the side of the array antenna 8, and a power divider 7.
  • the array antenna 8 includes a plurality of antenna elements 10.
  • the reflection unit 9 is configured to reflect the backward radiated electromagnetic waves of the respective antenna units 10 such that the rear lobes formed by the antenna device 1 are compressed to improve the emission efficiency of the antenna device.
  • the power splitter 7 is configured to divide the baseband signal into signals of multiple weight values, and then distribute the signals of the respective weight values to the respective antenna elements 10 arranged in the array, according to beam forming techniques.
  • the array antenna 8 produces an electromagnetic wave directed radiation range.
  • the power splitter 7 uses a six-power splitter.
  • the antenna unit 10 includes an insulating dielectric substrate 100 having a conductive sheet 13a attached to a surface 101 of the dielectric substrate 100, and a groove top pattern 12a is engraved on the conductive sheet 13a.
  • the conductive sheet 13 a is made of a metal copper sheet, and an axially symmetric groove top pattern 12a is engraved on the metal copper sheet.
  • the trough topography pattern 12a is an axisymmetric pattern.
  • a conductive feed point 14 and a feed line 11 electrically connected to the conductive feed point 14, a grounding unit 15a and a ground line 16 are also formed on the first surface 101.
  • the conductive sheet 13a is connected to the ground unit 15a via the ground line 16.
  • the feed line 11 is associated with the conductive sheet 13a by magnetoelectric coupling.
  • the feed line 11 and the ground line 16 can be generally regarded as two pins of the antenna, fed with a standard 50 ohm impedance, but the feed mode of the feed line 11 and the grounding manner of the ground line 16 can be capacitive.
  • the coupling may also be inductive coupling.
  • the feeding mode of the feeding line 11 and the access mode of the grounding line 16 have four combinations, namely: feeder inductance feeding, grounding wire inductance grounding; feeder inductance feeding, grounding line Capacitor grounding; Feeder capacitor feeding, grounding wire inductance grounding; Feeder capacitor feeding, grounding wire capacitor grounding.
  • the topology and size of the antenna elements 10 on the array antenna 8 may be the same or different, thereby performing a hybrid design.
  • the antenna device 5 of the present invention can adjust the feed coupling mode of the feed line 11, the grounding mode of the ground line 16, the topology and size of the antenna unit 10, and the short of the feeder 11 and the ground line 16 and the antenna unit 10.
  • the contact locations are tuned to allow the antenna to form a multimode operation.
  • FIG. 3 is a pattern of a complementary open resonant ring formed on a conductive sheet
  • FIG. 4 is a complementary spiral pattern formed on the conductive sheet
  • FIG. 5 is a conductive sheet forming an open spiral ring pattern
  • FIG. 6 is a conductive pattern.
  • a double-open spiral ring pattern is formed on the sheet
  • FIG. 7 is a complementary bending line pattern formed on the conductive sheet
  • FIG. 8 is a composite pattern in which an axis is formed asymmetrically on the conductive sheet
  • FIG. 9 is a shaft pair formed on the conductive sheet. Weigh the composite pattern.
  • the groove topography pattern 12a is an axisymmetric pattern, including the complementary open resonant ring pattern shown in FIG. 3, the open spiral ring pattern shown in FIG. 5, the open spiral ring pattern shown in FIG. 6, and FIG. 9 is an axisymmetric shape on the conductive sheet.
  • the composite pattern; the groove topology pattern 12a is an axisymmetric pattern, including but not limited to the complementary spiral pattern shown in FIG. 3, the complementary curved line pattern shown in FIG. 7, and the axis-symmetrical composite pattern shown in FIG.
  • the groove top pattern 12a can also be formed by derivatization as shown in FIG. 10 and FIG. 11 to form more derivative patterns, wherein FIG. 10 is a schematic diagram of the geometric derivative mode, and the geometric shape derivative refers to the conductive sheet 13a in the present invention.
  • the shape is not limited to a rectangle, but may be any planar geometric figure, such as a circle, a triangle, a polygon, etc.;
  • FIG. 11 is a schematic diagram of the extended derivative mode; the extended derivative means that the original characteristic of the original conductive sheet 13a is not changed, A portion of the conductive sheets can be arbitrarily engraved to extend the pattern of symmetry or asymmetry.
  • the wavelength of the electromagnetic wave corresponding to the low frequency is long.
  • the increase of the physical length is a necessary choice.
  • increasing the physical length cannot necessarily meet the requirements for antenna miniaturization.
  • increasing the distributed capacitance can effectively reduce the antenna operating frequency so that the electrical length can be kept constant without increasing the physical length. This makes it possible to design an antenna that operates at very low operating frequencies in a very small space.
  • the material of the dielectric substrate 100 of the present invention may be ceramic, polymer material, ferroelectric material, ferrite material or ferromagnetic material; wherein the polymer material is preferably polytetrafluoroethylene, F4B or FR4.
  • various manufacturing methods can be employed as long as the design principle of the present invention is satisfied. The most common method is to use various types of printed circuit board (PCB) manufacturing methods, metalized through-holes, and double-sided copper-clad PCB fabrication to meet the processing requirements of the present invention.
  • PCB printed circuit board
  • RFID is the abbreviation of Radio Frequency Identification, that is, radio frequency identification technology, commonly known as electronic label
  • the processing method of conductive silver paste ink various types can be The flexible PCB processing of the deformation device, the processing method of the iron piece antenna, and the processing method of the combination of the iron piece and the PCB.
  • the combination of iron sheet and PCB processing means that the core is precisely processed to complete the core.
  • the processing of the microstructured portion of the sheet uses iron sheets to complete other auxiliary parts.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

天线装置
【技术领域】
本发明涉及一种天线装置。
【背景技术】
随着半导体工艺的高度发展, 对当今的电子系统集成度提出了越来越高的 要求, 器件的小型化成为了整个产业非常关注的技术问题。 然而, 不同于 IC芯 片遵循 "摩尔定律" 的发展, 作为电子系统的另外重要组成一一射频模块, 却 面临着器件小型化的高难度技术挑战。射频模块主要包括了混频、功放、 滤波、 射频信号传输、 匹配网络与天线等主要器件。 其中, 天线作为最终射频信号的 辐射单元和接收器件, 其工作特性将直接影响整个电子系统的工作性能。 然而 天线的尺寸、 带宽、 增益等重要指标却受到了基本物理原理的限制 (固定尺寸 下的增益极限、 带宽极限等)。 这些指标极限的基本原理使得天线的小型化技术 难度远远超过了其它器件, 而由于射频器件的电磁场分析的复杂性, 逼近这些 极限值都成为了巨大的技术挑战。
同时, 随着现代电子系统的复杂化, 多模服务的需求在无线通信、 无线接 入、 卫星通信、 无线数据网络等系统中变得越来越重要。 而多模服务的需求进 一步增大了小型化天线多模设计的复杂度。 除去小型化的技术挑战, 天线的多 模阻抗匹配也成为了天线技术的瓶颈。 另一方面, 多输入多输出系统( MIMO ) 在无线通信、 无线数据服务领域的高速发展更进一步苛刻地要求了天线尺寸的 小型化并同时保证良好的隔离度、 辐射性能以及抗干扰能力。 然而, 传统的终 端通信天线主要基于电单极子或偶极子的辐射原理进行设计, 比如最常用的平 面反 F天线 (PIFA)。 传统天线的辐射工作频率直接和天线的尺寸正相关, 带宽 和天线的面积正相关, 使得天线的设计通常需要半波长的物理长度。 在一些更 为复杂的电子系统中, 天线需要多模工作, 就需要在馈入天线前额外的阻抗匹 配网络设计。 但阻抗匹配网络额外的增加了电子系统的馈线设计、 增大了射频 系统的面积同时匹配网络还引入了不少的能量损耗, 很难满足低功耗的系统设 计要求。 尤其在设计室内定向天线增益不能很好满足人们需求, 而且定向性不 够强。
【发明内容】
本发明所要解决的技术问题在于, 针对现有技术的上述不足, 提供一种小 型化且定向接收或者发送电磁波的天线装置。
为解决上述问题, 本发明釆用的一个技术方案是: 提供一种天线装置, 该 天线装置包括阵列式天线、 功分器、 反射单元及介质基板。 阵列式天线包括多 个天线单元, 该每一天线单元包括镂刻有一槽拓朴图案的导电薄片、 导电馈点 及馈线。 功分器用于将基带信号划分多路加权值的信号, 然后将各路加权值的 信号通过各个导电馈点分别传送给该呈阵列排布的各个天线单元。 反射单元用 于反射该多个天线单元的向后辐射电磁波。 介质基板绝缘, 由陶瓷材料、 高分 子材料、 铁电材料、 铁氧材料或铁磁材料中的任意一种制得。 该每个天线单元 还包括接地单元,该多个天线单元呈阵列式附着于介质基板上一表面上。其中, 该馈线的馈入方式为容性耦合或感性耦合。
其中, 该槽拓朴图案为轴对称图案。
其中, 该槽拓朴图案为互补式开口谐振环图案、 开口螺旋环图案、 开口螺 旋环图案或是通过上述几种结构的其中一种结构衍生、 其中多种结构复合或其 中一种结构组阵得到的轴对称复合图案。
其中, 该槽拓朴图案为轴非对称图案。
其中, 该槽拓朴图案为互补式螺旋线图案、 互补式弯折线图案或是通过上 述几种结构的其中一种结构衍生、 其中多种结构复合或其中一种结构组阵得到 的轴非对称图案。
其中, 该高分子材料为聚四氟乙烯、 F4B或 FR4。
为解决上述问题, 本发明釆用的另一个技术方案是: 提供一种天线装置, 该天线装置包括阵列式天线及功分器。 阵列式天线包括多个天线单元, 该每一 天线单元包括镂刻有一槽拓朴图案的导电薄片、 导电馈点及馈线。 功分器用于 将基带信号划分多路加权值的信号, 然后将各路加权值的信号通过各个导电馈 点分别传送给该呈阵列排布的各个天线单元。
其中, 该阵列式天线还包括一绝缘的介质基板, 该每个天线单元还包括接 地单元, 该多个天线单元呈阵列式附着于介质基板上一表面上。
其中, 该介质基板由陶瓷材料、 高分子材料、 铁电材料、 铁氧材料或铁磁 材料中的任意一种制得。
其中, 该高分子材料为聚四氟乙烯、 F4B或 FR4。
其中, 该槽拓朴图案为轴对称图案。
其中, 该槽拓朴图案为互补式开口谐振环图案、 开口螺旋环图案、 开口螺 旋环图案或是通过上述几种结构的其中一种结构衍生、 其中多种结构复合或其 中一种结构组阵得到的轴对称复合图案。。
其中, 该槽拓朴图案为轴非对称图案。
其中, 该槽拓朴图案为互补式螺旋线图案、 互补式弯折线图案或是通过上 述几种结构的其中一种结构衍生、 其中多种结构复合或其中一种结构组阵得到 的轴非对称图案。
其中, 该阵列式天线还包括反射单元, 用于反射该多个天线单元的向后辐 射电磁波。
通过将天线单元进行组阵, 釆取波束赋形的方法利用天线单元间的相位叠 加使得天线的方向性按需要进行设计, 然后在天线的背面加上反射的金属板使 得天线的后瓣得到压缩, 从而小天线阵列实现高定向性的功能, 从而可以代替 现在大多数的室内高定向性天线的功能。
本发明可以通过相应的无线接口在以下无线设备环境中应用:
1 )无线局域网 (802.11a/b/g/n/y)。 可以应用到的设备包括: 无线路由器, 室内移动终端无线接收器, 如电脑, 个人数字助理(Personal digital assistant , PDA ), 无线接入设备(AP )等。
2 )蜂窝网通信。可以应用到的设备包括:个人数字蜂窝系统(Personal Digital Cellular , PDC ), Global Systems for Mobile Communications (GSM) [可以应用到 GSM的各种频率, 如 400 MHz、 450 MHz、 850MHz、 900 MHz、 1800 MHz、 1900 MHz] , IS-95 (Code Division Multiple Access, CDMA), IS-2000 (CDMA2000), Generalized Packet Relay Service (GPRS) , Wide Code Division Multiple Access ( WCDMA ) , Time Division- Synchronous Code Division Multiple Access (TD-SCDMA), Universal Mobile Telecommunications System (UMTS), High Speed OFDM Packet Access (HSOPA), High-Speed Uplink Packet Access (HSUPA), High-Speed Downlink Packet Access (HSDPA), Worldwide Interoperability for Microwave Access (WiMax), UMTS Long Term Evolution (LTE)以及 MIMO。 即本 发明可以广泛地应用到各类蜂窝网通信终端中, 其中包括各类第二代、 第三代 以及第四代的无线终端。 本发明不仅可以应用在蜂窝网通信中的各类移动接收 终端中, 而且还可以应用在发射端, 如针对于第二代、 第三代以及第四代无线 通信系统的基站天线等。
3 )全球定位系统( Global Positioning System, GPS )终端天线。
4 )超短距离通信(Ultra-wideband, UWB , 13m以内)。 可以应用的设备包 括使用 UWB技术的所有无线电子设备。
5 )蓝牙无线设备 ( IEEE802.15.1 )。 可以应用的设备包括 IEEE802.15.1协议 定义下的所有无线电子设备。
6 )ZigBee(IEEE802.15.4)协议内的无线通信设备,如工业监控、传感器网络、 家庭网络、 安全系统、 车载电子系统、 伺服执行机构等。 由于 IEEE802.15.4定 义的无线通信设备均为功率受限设备, 因此要求低功耗。 本发明提出的小型天 线在大大缩小硬件尺寸的同时也节省了硬件的功耗, 因此这里提出的小天线将 非常适合 IEEE802.15.4协议下的任何无线电子设备。
7 )无有线基础设施支持的移动网络。 如传感器网络( Sensor Networks )躯 域传感器网络 (Body Sensor Network)与 Ad Hoc网络。 由于此类网络对无线终端 尺寸要求很高, 希望无线终端越小越好, 因此这里所设计的小型天线将有效的 解决此类无线网络的技术瓶颈。
8 ) 医用电子无线设备(IEEE 1073 )。 包括: 医用通风设备、 电震发生器、 急性病医院中的病人监视设备、 家庭保健设备、 医用成像设备, 如核磁共振成 像( MRI )等。 IEEE 1073使用的总频谱为 14MHz,该频谱是联邦通信委员会( FCC ) 于 2002年 10月份专门为医疗无线应用留出的。 FCC计划从 608-614, 1395-1400 和 1427-1432MHz三种频段中提取频谱,为医疗设备提供无干扰的频谱空间。本 专利中提出的小型天线完全适用于这三种频段。 因此, 本专利中提出的小型天 线可以广泛应用到 IEEE 1073标准包括的所有医用电子无线设备中。
9 )各类卫星通信的发射接收装置。 对于高增益要求的卫星天线可釆取基于 本发明的射频芯片小天线的阵列天线系统。
10 )各类雷达与微波探测系统, 如车载雷达、 气象雷达以及海事雷达等。 该芯片小天线可作为雷达系统中的辐射单元。
11 )射频标签与识别 (RFID ) 的芯片天线与读写天线。
12 )各类无线娱乐消费电子设备, 如无线 HiFi耳机( 2.4GHz-2.48GHz和 433MHz-434MHz )、无线移动硬盘、打印机、无线游戏手柄、无线鼠标( 27.085MHz 和 27.135MHz ), 键盘 (27.185MHz和 27.035MHz)等小型电子设备, 以及所有应 用蓝牙天线的电子设备。
13 ) 以上提到的各类无线技术之间应用的多模式射频设计。
【附图说明】
图 1是本发明中一实施例的天线装置的平面示意图;
图 2是图 1所示天线装置中一天线单元的平面示意图;
图 3是导电薄片上形成互补式开口谐振环图案的示意图;
图 4是导电薄片上形成互补式螺旋线图案; 图 5是是导电薄片形成开口螺旋环图案;
图 6是导电薄片上形成双开口螺旋环图案;
图 7是导电薄片上形成互补式弯折线图案;
图 8是导电薄片上形成轴非对称的复合图案;
图 9是导电薄片上形成轴对称的复合图案;
图 10是导电薄片上形成的拓朴结构几何形状衍生图案;
图 11是导电薄片上形成的拓朴结构扩展衍生图案。
【具体实施方式】
超材料天线是基于人工电磁材料理论设计, 人工电磁材料技术是指将金属 片镂刻成特定形状的拓朴金属结构, 并将所述特定形状的拓朴金属结构设置于 一定介电常数和磁导率基材上而加工制造的等效特种电磁材料, 其性能参数主 要取决于其亚波长的特定形状的拓朴金属结构。 在谐振频段, 人工电磁材料通 常体现出高度的色散特性, 换言之, 天线的阻抗、 容感性、 等效的介电常数和 磁导率随着频率会发生剧烈的变化。 因而可釆用人工电磁材料技术对上述天线 的基本特性进行改造, 使得金属结构与其依附的介质基板等效地组成了一个高 度色散的特种电磁材料, 从而实现辐射特性丰富的新型天线。
本发明利用上述原理, 设计一种多模式工作的天线装置。 其将导电薄片附 着于介质基板上, 然后将导电薄片镂刻掉部分导电薄片以形成特定形状。 由于 特定形状导电薄片的高度色散特性使得天线具有丰富的辐射特性从而省去了阻 抗匹配网络的设计以实现天线小型化和多模化工作模式。
请参阅图 1 , 是本发明中一实施例的天线装置的平面示意图。 天线装置 5包 括一阵列式天线 8、 设置在阵列式天线 8—侧的反射单元 9及功分器 7。 所述阵 列式天线 8包括多个天线单元 10。 当所述天线装置 5发送电磁波时, 所述反射 单元 9用于反射各个天线单元 10的向后辐射电磁波, 使得上述天线装置 1形成 的后瓣得到压缩, 以提高天线装置的发射效率。 功分器 7 用于将基带信号划分多路加权值的信号, 然后将各路加权值的信 号分别分配给所述呈阵列排布的各个天线单元 10,根据波束赋形( beam forming ) 技术使所阵列式天线 8产生电磁波定向辐射范围。 在本实施方式中, 所述功分 器 7釆用一六功分器。
图 2为图 1所示天线装置中一天线单元平面示意图。 天线单元 10包括一绝 缘的介质基板 100, 所述介质基板 100的一表面 101附着有导电薄片 13 a, 在将 导电薄片 13a镂刻有一槽拓朴图案 12a。在本实施方式中,导电薄片 13 a釆用金 属铜片, 在金属铜片镂刻有一轴对称的槽拓朴图案 12a。 在其他实施方式中, 槽 拓朴图案 12a为轴非对称图案。
在第一表面 101上还形成一导电馈点 14和与导电馈点 14电连接的馈线 11、 一接地单元 15a及接地线 16。 在本实施方式中, 所述导电薄片 13 a通过接地线 16连接接地单元 15a。 所述馈线 11通过磁电耦合与导电薄片 13 a相关联。 在其 他实施方式中, 馈线 11和接地线 16—般可以视为天线的两个引脚, 以标准 50 欧姆阻抗馈入, 但馈线 11 的馈入方式与接地线 16的接地方式可以是容性耦合 也可以是感性耦合, 具体来说, 馈线 11 的馈入方式与接地线 16的接入方式共 有四种组合, 分别是: 馈线电感馈入, 接地线电感接地; 馈线电感馈入, 接地 线电容接地; 馈线电容馈入, 接地线电感接地; 馈线电容馈入, 接地线电容接 地。 在阵列式天线 8上的天线单元 10的拓朴微结构与尺寸可以相同, 也可以不 同, 从而进行混合设计。
本发明中天线装置 5 , 可通过调整馈线 11的馈入耦合方式、接地线 16的接 地方式、 天线单元 10的拓朴结构与尺寸大小、 以及馈线 11与接地线 16与天线 单元 10的可短接点位置来进行调谐, 从而使天线形成多模工作。
请参阅图 3-图 9, 图 3是导电薄片上形成互补式开口谐振环图案, 图 4是导 电薄片上形成互补式螺旋线图案, 图 5 是导电薄片形成开口螺旋环图案, 图 6 是导电薄片上形成双开口螺旋环图案, 图 7是导电薄片上形成互补式弯折线图 案; 图 8是导电薄片上形成轴非对称的复合图案, 图 9是导电薄片上形成轴对 称的复合图案。
槽拓朴图案 12a为轴对称图案, 包括图 3所示互补式开口谐振环图案、 图 5 所示开口螺旋环图案、 图 6所示开口螺旋环图案及图 9是导电薄片上形成轴对 称的复合图案; 槽拓朴图案 12a为轴非对称图案, 包括但不限于图 3所示互补 式螺旋线图案、 图 7所示互补式弯折线图案及图 8所示轴非对称的复合图案。
上述槽拓朴图案 12a还可以通过如图 10与图 11所示衍生方式以形成更多的 衍生图案, 其中图 10为几何形状衍生方式示意图, 几何形状衍生是指在本发明 中导电薄片 13a 中的形状不仅仅局限于长方形, 也可以为任意平面几何图形, 如圓形、 三角形、 多边形等; 图 11为扩展衍生方式示意图; 扩展衍生是指在不 改变原有导电薄片 13a本质特性前提下, 可以任意镂刻掉部分导电片从而扩展 衍生出对称或者不对称的图案来。
由天线原理可知, 电长度是描述电磁波波形变化频繁程度的物理量, 电长 度=物理长度 /波长。 当天线工作于低频时, 低频对应的电磁波波长较长, 在需要 保持电长度不变的前提下, 增长物理长度就是必要的选择。 然而增大物理长度 必然不能满足天线小型化的要求。 根据公式 f =1/(2TTVLC)可知, 增大分布电容 能有效降低天线工作频率使得在不增加物理长度的前提下就可保持电长度不变。 这样就可以在极小的空间内设计出工作在极低工作频率下的天线。
本发明的介质基板 100 的材质可选用陶瓷、 高分子材料、 铁电材料、 铁氧 材料或铁磁材料; 其中高分子材料优选聚四氟乙烯、 F4B或 FR4。 在本发明中, 关于天线的加工制造, 只要满足本发明的设计原理, 可以釆用各种制造方式。 最普通的方法是使用各类印刷电路板(PCB )的制造方法, 金属化的通孔, 双面 覆铜的 PCB制造均可满足本发明的加工要求。 除此加工方式, 还可以根据实际 的需要引入其它加工手段, 比如 RFID ( RFID是 Radio Frequency Identification 的缩写, 即射频识别技术,俗称电子标签)中所使用的导电银浆油墨加工方式、 各类可形变器件的柔性 PCB加工、铁片天线的加工方式以及铁片与 PCB组合的 加工方式。 其中,铁片与 PCB组合加工方式是指利用 PCB的精确加工来完成芯 片微结构部分的加工, 用铁片来完成其它辅助部分。
上面结合附图对本发明的实施例进行了描述, 但是本发明并不局限于上述 的具体实施方式, 上述的具体实施方式仅仅是示意性的, 而不是限制性的, 本 领域的普通技术人员在本发明的启示下, 在不脱离本发明宗旨和权利要求所保 护的范围情况下, 还可做出很多形式, 这些均属于本发明的保护之内。

Claims

权 利 要求
1、 一种天线装置, 其特征在于, 所述天线装置包括:
一阵列式天线, 包括多个天线单元; 所述每一天线单元包括镂刻有一 ½. 朴图案的导电薄片、 导电馈点及馈线;
一功分器, 用于将基带信号划分多路加权值的信号, 然后将各路加权值的 一反射单元, 用于反射所述多个天线单元的向后辐射电磁波; 及
一介质基板, 由陶瓷材料、 高分子材料、 铁电材料、 铁氧材料或铁磁材料 中的任意一种制得, 所述每个天线单元还包括接地单元, 所述多个天线单元呈 阵列式附着于介质基板上一表面上;
其中, 所述馈线的馈入方式为容性耦合或感性耦合。
2、 根据权利要求 1所述的天线装置, 其特征在于, 所述槽拓朴图案为轴对 称图案。
3、 根据权利要求 2所述的天线装置, 其特征在于, 所述槽拓朴图案为互补 式开口谐振环图案、 开口螺旋环图案、 开口螺旋环图案或是通过上述几种结构 的其中一种结构衍生、 其中多种结构复合或其中一种结构组阵得到的轴对称复 合图案。
4、 根据权利要求 1所述的天线装置, 其特征在于, 所述槽拓朴图案为轴非 对称图案。
5、 根据权利要求 4所述的天线装置, 其特征在于, 所述槽拓朴图案为互补 式螺旋线图案、 互补式弯折线图案或是通过上述几种结构的其中一种结构衍生、 其中多种结构复合或其中一种结构组阵得到的轴非对称图案。
6、 根据权利要求 1所述的天线装置, 其特征在于, 所述高分子材料优选聚 四氟乙烯、 F4B或 FR4。
7、 一种天线装置, 其特征在于, 所述天线装置包括: 一阵列式天线, 包括多个天线单元; 所述每一天线单元包括镂刻有一 ½. 朴图案的导电薄片、 导电馈点及馈线;
一功分器, 用于将基带信号划分多路加权值的信号, 然后将各路加权值的
8、 根据权利要求 7所述的天线装置, 其特征在于, 所述阵列式天线还包括 一绝缘的介质基板, 所述每个天线单元还包括接地单元, 所述多个天线单元呈 阵列式附着于介质基板上一表面上。
9、 根据权利要求 8所述的天线装置, 其特征在于, 所述介质基板由陶瓷材 料、 高分子材料、 铁电材料、 铁氧材料或铁磁材料中的任意一种制得。
10、 根据权利要求 9 所述的天线装置, 其特征在于, 所述高分子材料为聚 四氟乙烯、 F4B或 FR4。
11、 根据权利要求 8 所述的天线装置, 其特征在于, 所述槽拓朴图案为轴 对称图案。
12、 根据权利要求 11所述的天线装置, 其特征在于, 所述槽拓朴图案为互 补式开口谐振环图案、 开口螺旋环图案、 开口螺旋环图案或是通过上述几种结 构的其中一种结构衍生、 其中多种结构复合或其中一种结构组阵得到的轴对称 复合图案。
13、 根据权利要求 8 所述的天线装置, 其特征在于, 所述槽拓朴图案为轴 非对称图案。
14、 根据权利要求 13所述的天线装置, 其特征在于, 所述槽拓朴图案为互 补式螺旋线图案、 互补式弯折线图案或是通过上述几种结构的其中一种结构衍 生、 其中多种结构复合或其中一种结构组阵得到的轴非对称图案。
15、 根据权利要求 7 所述的天线装置, 其特征在于, 所述天线装置还包括 一反射单元, 用于反射所述多个天线单元的向后辐射电磁波。
PCT/CN2011/080496 2011-05-17 2011-09-30 天线装置 WO2012155438A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/522,022 US9236653B2 (en) 2011-05-17 2011-09-30 Antenna device
EP11855239.7A EP2712028B1 (en) 2011-05-17 2011-09-30 Antenna device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110127677.8A CN102790261B (zh) 2011-05-17 2011-05-17 天线装置
CN201110127677.8 2011-05-17

Publications (1)

Publication Number Publication Date
WO2012155438A1 true WO2012155438A1 (zh) 2012-11-22

Family

ID=47155599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080496 WO2012155438A1 (zh) 2011-05-17 2011-09-30 天线装置

Country Status (4)

Country Link
EP (1) EP2712028B1 (zh)
CN (1) CN102790261B (zh)
TW (1) TWI517498B (zh)
WO (1) WO2012155438A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111856409A (zh) * 2019-10-31 2020-10-30 上海保隆汽车科技股份有限公司 一种车载mimo雷达天线布局结构
CN115377680A (zh) * 2022-08-31 2022-11-22 重庆邮电大学 一种基于叉形枝节与金属柱复合结构的滤波介质谐振器天线

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2629366A4 (en) * 2011-06-29 2015-01-07 Kuang Chi Innovative Tech Ltd ANTENNA AND WIRELESS COMMUNICATION DEVICE
CN104242485B (zh) * 2014-09-25 2016-03-16 江南大学 电表的无线供电装置
CN105243705A (zh) * 2015-08-29 2016-01-13 广东名门锁业有限公司 设有定向蓝牙天线的智能锁具
CN105356069B (zh) * 2015-11-28 2018-12-04 成都安智杰科技有限公司 一种提高车载雷达测量角度无模糊范围的方法和天线结构
CN106255060A (zh) * 2016-07-28 2016-12-21 汪强 一种蓝牙定位首饰及使用该首饰进行定位跟踪的方法
US10230169B2 (en) * 2017-08-04 2019-03-12 Palo Alto Research Center Incorporated Meta-antenna
CN111164830B (zh) * 2017-10-13 2021-05-11 劲通开曼有限公司 用于高架和阻碍部署的蜂窝天线
CN107681274B (zh) * 2017-11-20 2023-11-21 河南师范大学 一种应用于无线通信的电小天线
KR102467935B1 (ko) 2018-04-18 2022-11-17 삼성전자 주식회사 유전체를 포함하는 안테나 모듈 및 이를 포함하는 전자 장치
CN111370858B (zh) * 2018-12-25 2022-11-01 杭州海康威视数字技术股份有限公司 定向uhf天线及电子设备
CN111725617B (zh) * 2020-06-11 2022-09-16 北京小米移动软件有限公司 一种天线模组、终端设备和天线模组的制作方法
CN113932699A (zh) * 2021-09-23 2022-01-14 浦江荣达量具有限公司 一种数显卡尺容栅传感器制造工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6249251B1 (en) * 1999-07-12 2001-06-19 Electronics And Telecommunications Research Institute Hardware-efficient demodulator for CDMA adaptive antenna array systems
CN101271510A (zh) * 2008-03-04 2008-09-24 天津大学 一种基于空分多址的防冲突射频识别方法
CN101359947A (zh) * 2007-07-30 2009-02-04 大唐移动通信设备有限公司 多天线阵列系统的广播波束赋形方法及装置
CN102077483A (zh) * 2008-06-26 2011-05-25 京瓷株式会社 信号转换器、无线信号发送系统及无线信号接收系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7719385B2 (en) * 2006-09-28 2010-05-18 Sunwoo Communication Co., Ltd Method and divider for dividing power for array antenna and antenna device using the divider
WO2010027751A1 (en) * 2008-09-05 2010-03-11 Rayspan Corporation Frequency-tunable metamaterial antenna apparatus
CN101740862B (zh) * 2008-11-20 2014-04-30 深圳光启创新技术有限公司 一种射频芯片小天线
CN101505004B (zh) * 2009-03-05 2012-07-04 四川大学 一种基于左手材料的高增益缝隙阵列天线
CN101888016A (zh) * 2010-06-21 2010-11-17 哈尔滨工程大学 带有陷波特性的超宽带天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6249251B1 (en) * 1999-07-12 2001-06-19 Electronics And Telecommunications Research Institute Hardware-efficient demodulator for CDMA adaptive antenna array systems
CN101359947A (zh) * 2007-07-30 2009-02-04 大唐移动通信设备有限公司 多天线阵列系统的广播波束赋形方法及装置
CN101271510A (zh) * 2008-03-04 2008-09-24 天津大学 一种基于空分多址的防冲突射频识别方法
CN102077483A (zh) * 2008-06-26 2011-05-25 京瓷株式会社 信号转换器、无线信号发送系统及无线信号接收系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111856409A (zh) * 2019-10-31 2020-10-30 上海保隆汽车科技股份有限公司 一种车载mimo雷达天线布局结构
CN115377680A (zh) * 2022-08-31 2022-11-22 重庆邮电大学 一种基于叉形枝节与金属柱复合结构的滤波介质谐振器天线

Also Published As

Publication number Publication date
EP2712028B1 (en) 2018-05-16
TW201248997A (en) 2012-12-01
EP2712028A1 (en) 2014-03-26
EP2712028A4 (en) 2014-11-05
CN102790261A (zh) 2012-11-21
CN102790261B (zh) 2015-07-29
TWI517498B (zh) 2016-01-11

Similar Documents

Publication Publication Date Title
TWI517498B (zh) 天線裝置
CN201490337U (zh) 一种单级射频天线
CN101740862B (zh) 一种射频芯片小天线
US9236653B2 (en) Antenna device
EP2660933B1 (en) Array antenna of mobile terminal and implementing method thereof
CN101667680A (zh) 一种单级射频天线
CN1126195C (zh) 一种无线电通信设备和天线系统
TWI515968B (zh) 單極、雙極、混合mimo天線
TWI502807B (zh) 天線裝置
CN201611683U (zh) 一种射频芯片小天线
CN214203965U (zh) 电子设备
TWI517492B (zh) 天線及無線通訊裝置
CN112993547A (zh) 电子设备及其天线结构的制作方法
Joseph et al. Design and Performance Analysis of a Miniaturized Circular Arc Slotted Patch Antenna for Ultra-Wideband Applications
CN221447480U (zh) 全向低副瓣天线
TWI515959B (zh) 天線及具有該天線的mimo天線
CN103022650B (zh) 2.4GHz/5.8GHz双频无线通讯装置
CN202159765U (zh) 一种天线及具有该天线的mimo天线
CN202127092U (zh) 一种天线及具有该天线的mimo天线
TWI517491B (zh) 一種天線及具有該天線的mimo天線
WO2013020321A1 (zh) 双频天线、MIMO天线装置及2.4GHz/5.8GHz双频无线通讯装置
TWI511373B (zh) 一種射頻天線
TWI523320B (zh) 一種天線及具有該天線的mimo天線
CN202094291U (zh) 一种天线及具有该天线的mimo天线
CN202127093U (zh) 一种天线及具有该天线的mimo天线

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13522022

Country of ref document: US

Ref document number: 2011855239

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE