WO2012153770A1 - ガス分離用ゼオライト膜、その製造方法、ガス分離用ゼオライト膜エレメント、およびガス分離用ゼオライト膜モジュール - Google Patents

ガス分離用ゼオライト膜、その製造方法、ガス分離用ゼオライト膜エレメント、およびガス分離用ゼオライト膜モジュール Download PDF

Info

Publication number
WO2012153770A1
WO2012153770A1 PCT/JP2012/061894 JP2012061894W WO2012153770A1 WO 2012153770 A1 WO2012153770 A1 WO 2012153770A1 JP 2012061894 W JP2012061894 W JP 2012061894W WO 2012153770 A1 WO2012153770 A1 WO 2012153770A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
zeolite membrane
gas separation
membrane
gas
Prior art date
Application number
PCT/JP2012/061894
Other languages
English (en)
French (fr)
Inventor
健一 澤村
岳弘 清水
崇晴 八木
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Publication of WO2012153770A1 publication Critical patent/WO2012153770A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • B01D71/0281Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0051Inorganic membrane manufacture by controlled crystallisation, e,.g. hydrothermal growth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D2053/221Devices
    • B01D2053/223Devices with hollow tubes
    • B01D2053/224Devices with hollow tubes with hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/22Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0233Other waste gases from cement factories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/025Other waste gases from metallurgy plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a zeolite membrane for gas separation having excellent separation performance, a method for producing the same, a zeolite membrane element for gas separation comprising a zeolite membrane for gas separation, and a zeolite membrane module for gas separation comprising a zeolite membrane element for gas separation. It is about.
  • a membrane separation method using a zeolite membrane is capable of continuous operation and does not require regeneration of an absorbing solution or an adsorbent, and thus is expected as a highly efficient carbon dioxide recovery technology.
  • Patent Documents 1 and 2 an organic polymer film is used as a carbon dioxide facilitated transport film, and a coat is described.
  • carbon dioxide can be recovered with a high selectivity of carbon dioxide (CO 2 ) / (H 2 ) separation selectivity of 10 or more.
  • zeolite membranes are excellent in durability, and high-selective separation is expected due to molecular sieves derived from the pore structure of zeolite and unique adsorption characteristics.
  • Non-Patent Document 1 describes a high aluminum-containing zeolite membrane having an atomic ratio of silicon (Si) / aluminum (Al) of a zeolite skeleton of 10 or less, specifically, A-type zeolite (LTA). , Faujasite type zeolite (FAU), chabasite type zeolite (CHA) type and the like.
  • LTA A-type zeolite
  • FAU Faujasite type zeolite
  • CHA chabasite type zeolite
  • Non-Patent Document 2 discloses a palm porometry profile for gas permeation of a conventional FAU type zeolite membrane.
  • JP 2008-36463 A Japanese Patent No. 4264194 J. Caro et al., Sep. Purif. Technol., 66 (2009) 143-147. M. Noack et al., Micropor. Mesopor. Mater. 102 (2007) 1-20.
  • the organic polymer film has a problem in durability of the film, such as deterioration due to plasticization by high-pressure carbon dioxide.
  • Non-Patent Document 1 in the zeolite containing a large amount of aluminum (Al), the surface of the zeolite crystal is negatively charged, so that the negatively charged raw material (zeolite precursor) is a zeolite crystal. There was a problem that the grain boundary could not be repelled and entered, so that voids were likely to remain in the grain boundary and the gas separation selectivity was poor.
  • the object of the present invention is to solve the above-mentioned problems of the prior art, and for a high aluminum-containing zeolite membrane having an atomic ratio of silicon (Si) / aluminum (Al) of the zeolite skeleton of 10 or less, a high selection of gas such as carbon dioxide.
  • Gas separation zeolite membrane that is capable of mechanical separation and excellent in membrane durability, a method for producing the same, a zeolite membrane element for gas separation comprising a zeolite membrane for gas separation, and a zeolite membrane for gas separation
  • An object of the present invention is to provide a zeolite membrane module for gas separation provided with an element.
  • the present inventors did not apply a zeolite seed crystal that has been conventionally used to a porous substrate, but instead pulverized the raw material zeolite. Then, an amorphous zeolite precursor is prepared, and then the coating liquid in which the amorphous zeolite precursor is dispersed is applied to the porous substrate, and then subjected to a hydrothermal synthesis reaction, so that the The inventors have found that a high-aluminum-containing zeolite film having a small void and a silicon (Si) / aluminum (Al) atomic ratio of a zeolite skeleton of 10 or less can be synthesized, and the present invention has been completed.
  • the invention of the method for producing a zeolite membrane for gas separation according to claim 1 comprises preparing an amorphous zeolite precursor by pulverizing the zeolite base material, and then the amorphous zeolite precursor.
  • the coating liquid in which the body is dispersed is applied to the porous substrate, the amorphous zeolite precursor-coated porous substrate is immersed in a reaction solution for forming a zeolite film, and the zeolite is formed on the porous substrate by a hydrothermal synthesis reaction.
  • a high aluminum-containing zeolite membrane having a skeleton silicon (Si) / aluminum (Al) atomic ratio of 10 or less is formed.
  • the invention of claim 2 is the method for producing a zeolite membrane for gas separation according to claim 1, wherein the formed zeolite membrane is a faujasite (FAU) type zeolite membrane.
  • FAU faujasite
  • the invention of claim 3 is a zeolite membrane for gas separation produced by the method of producing a zeolite membrane according to claim 1 or 2, wherein in the palm porometry using water or n-hexane as the adsorption vapor, Kelvin
  • the gas permeability of air or helium at the vapor partial pressure corresponding to the Kelvin diameter of 0.8 to 2 nm calculated by the equation is 0 to 10% of the gas permeability at the time of drying.
  • the zeolite membrane for gas separation according to claims 1 to 3 is formed into a tubular shape, and one end of the zeolite membrane for gas separation is connected to a tube plate. A connecting pipe is attached.
  • the invention of a zeolite membrane module for gas separation according to claim 5 is a mixed gas comprising a plurality of the zeolite membrane elements for tubular gas separation according to claim 4 attached to a tube plate and containing carbon dioxide (CO 2 ) and the like. However, it is characterized in that it is supplied to the outside of each tubular gas separation zeolite membrane element so that a permeated gas such as carbon dioxide permeated through the zeolite membrane of each element is separated.
  • the zeolite base material is pulverized to prepare an amorphous zeolite precursor, and then the coating liquid in which the amorphous zeolite precursor is dispersed is porous.
  • the porous substrate coated with an amorphous zeolite precursor is immersed in a reaction solution for forming a zeolite film, and hydrothermal synthesis reaction is performed to form silicon (Si) / aluminum (zeolite skeleton) on the porous substrate.
  • a high-aluminum-containing zeolite film having an atomic ratio of Al) of 10 or less is formed.
  • a gas such as carbon dioxide can be highly selectively separated, and the durability of the membrane is excellent.
  • Invention of Claim 2 is a manufacturing method of the zeolite membrane for gas separation of Claim 1, Comprising:
  • the formed zeolite membrane is a faujasite (FAU) type zeolite membrane, Claim 2
  • FAU faujasite
  • species there exists an effect that high gas permeation separation performance, such as CO2 separation, is obtained.
  • the invention of claim 3 is a zeolite membrane for gas separation produced by the method of producing a zeolite membrane according to claim 1 or 2, wherein in the palm porometry using water or n-hexane as the adsorption vapor, Kelvin
  • the gas permeability of air or helium at the vapor partial pressure corresponding to the Kelvin diameter of 0.8 to 2 nm calculated by the equation is 0 to 10% of the gas permeability at the time of drying, According to invention of Claim 3, there exists an effect that the high separation performance by the separation field in a zeolite crystal pore is acquired.
  • the zeolite membrane for gas separation according to claims 1 to 3 is formed into a tubular shape, and one end of the zeolite membrane for gas separation is connected to a tube plate. According to the invention of claim 4, there is an effect that the membrane element can be easily attached to the membrane module without gas leakage.
  • the invention of the zeolite membrane module for gas separation according to claim 5 is characterized in that a plurality of gas separation zeolite membrane elements produced by the method for producing a zeolite membrane according to the present invention are attached to a tube plate, and carbon dioxide (CO 2 ) Are supplied to the outside of each tubular gas separation zeolite membrane element so that permeated gas such as carbon dioxide permeated through the zeolite membrane of each element is separated.
  • CO 2 carbon dioxide
  • Gas separation zeolite membrane element 2 Gas separation zeolite membrane 10: Gas separation zeolite membrane module
  • a zeolite base material is pulverized until it becomes amorphous to prepare an amorphous zeolite precursor, and then the amorphous zeolite precursor is dispersed.
  • the coating liquid is applied to the porous substrate, the amorphous zeolite precursor-coated porous substrate is immersed in a reaction solution for forming a zeolite film, and hydrothermal synthesis reaction is carried out to form zeolite skeleton silicon (Si ) / Aluminum (Al) atomic ratio of 10 or less to form a high aluminum content zeolite membrane.
  • the present inventors have not applied the zeolite seed crystals that have been generally used to the porous substrate, but instead made the zeolite amorphous.
  • Amorphous zeolite precursor prepared by pulverization until is coated on a porous substrate, and then the amorphous substrate coated with amorphous zeolite precursor is immersed in a reaction solution for forming a zeolite membrane and hydrothermally synthesized.
  • the inventors have found that a high aluminum-containing zeolite membrane having a silicon (Si) / aluminum (Al) atomic ratio of 10 or less in the zeolite skeleton with few voids at the grain boundaries can be synthesized, and the present invention has been completed. It is.
  • a high-aluminum-containing zeolite membrane having a zeolite (silicon) / aluminum (Al) atomic ratio of 10 or less is highly selective for gases such as carbon dioxide. Separation is possible, and the durability of the membrane is also excellent.
  • zeolite membranes are excellent in durability, and are expected to be highly selective separation due to molecular sieves derived from the pore structure of zeolite and unique adsorption characteristics. Even when the size of the molecule is smaller than the pore size of the zeolite, by selectively controlling the affinity between the zeolite and the molecule, a large molecule such as carbon dioxide can be selectively permeated from a small molecule such as hydrogen. It is possible to separate them.
  • carbon dioxide Since carbon dioxide has a strong quadrupole compared to gases such as hydrogen, it has a strong affinity based on electrostatic interactions with cations in zeolite.
  • a zeolite membrane for separating carbon dioxide from small molecules such as hydrogen, Li + , Na + , K + , Ag + , H + , (NH 4 ) + , which are selective adsorption sites for carbon dioxide, although it will not specifically limit if it contains many cation sites, such as Ca ⁇ 2+> , Sr ⁇ 2+> , Ba ⁇ 2+> , Cu ⁇ 2+> , Zn ⁇ 2+ >, As such zeolite, Si / Al ratio of a zeolite frame
  • skeleton is used. Is a high Al-containing zeolite having 10 or less, specifically, FAU type, LTA type, CHA type and the like.
  • Zeolite membranes are generally polycrystalline membranes, and their permeation performance largely depends not only on the physicochemical properties unique to zeolite, but also on the grain boundary structure of the crystals that compose them.
  • the molecules to be separated will permeate through the gap between the zeolite crystals, not within the zeolite crystal pores. This causes a problem that the separation function is not exhibited.
  • Non-Patent Document 1 in a zeolite containing a large amount of aluminum (Al), the surface of the zeolite crystal is negatively charged, so that the negatively charged raw material (zeolite precursor) is a zeolite crystal grain boundary. It is speculated that it cannot repel into the inside, so that voids are likely to remain in the grain boundaries.
  • the zeolite membrane produced by the method for producing a zeolite membrane for gas separation according to the present invention is preferably a faujasite (FAU) type zeolite membrane.
  • FAU faujasite
  • the zeolite membrane for gas separation according to the present invention may be either a tubular or a hollow fiber porous substrate formed with zeolite, but from the viewpoint of pressure resistance of the zeolite membrane element under high pressure conditions, it is tubular. Is preferred. Conversely, a hollow fiber membrane element can be used from the viewpoint of improving the membrane area per unit volume under low pressure conditions.
  • the zeolite species is not particularly limited, but for example, a dense FAU type zeolite membrane having a silicon (Si) / aluminum (Al) atomic ratio of 1 to 3 in a zeolite skeleton is preferable.
  • the zeolite membrane for gas separation produced by the method for producing a zeolite membrane according to the present invention corresponds to a Kelvin diameter of 0.8 to 2 nm calculated by the Kelvin equation in palm porometry using water or n-hexane as the adsorption vapor.
  • the gas permeability of air or helium at the time of the vapor partial pressure is 0 to 10% of the gas permeability at the time of drying. According to the zeolite membrane for gas separation of the present invention, there is an advantage that high separation performance can be obtained by the separation field in the zeolite crystal pores.
  • the zeolite membrane element for gas separation for separating carbon dioxide from the mixed gas containing carbon dioxide (CO 2 ) according to the present invention has the zeolite membrane for gas separation according to the present invention formed into a tube, and this zeolite for tubular gas separation A connecting pipe for connecting a tube plate is attached to one end of the membrane. According to the zeolite membrane element for gas separation of the present invention, the membrane element can be easily attached to the membrane module without gas leakage. There is an advantage.
  • FIG. 1 shows an example of a zeolite membrane element for gas separation according to the present invention.
  • a gas separation zeolite membrane element (1) is made of a ceramic or metal for connecting a tube plate to one end of a tubular gas separation zeolite membrane (2) produced by the method for producing a zeolite membrane of the present invention.
  • a connecting pipe is attached, and a ceramic or metal sealing member (3) for connecting the tube plate is attached to the other end of the zeolite membrane for gas separation (2).
  • carbon dioxide It is used as a zeolite membrane element for gas separation that separates carbon dioxide from a mixed gas containing (CO 2 ).
  • FIG. 2 shows an example of a zeolite membrane module for gas separation according to the present invention.
  • the zeolite membrane module (10) for gas separation according to the present invention is provided with a horizontal tube plate (12) near the top wall in the casing (11), and the tube plate (12) is connected to the above-mentioned FIG.
  • the required number of zeolite membrane elements (1) for gas separation according to the present invention are attached in a suspended and parallel manner.
  • a required number of baffle plates (13) are provided in parallel with the tube plate (12) below the tube plate (12) in the casing (11).
  • the number of baffle plates (13) to be attached is usually 2 to 30, although it depends on the size of the casing (11).
  • Each baffle plate (13) is provided with a plurality of openings, through which the zeolite membrane element (1) for tubular gas separation according to the present invention passes.
  • a processing fluid inlet (14) is provided in the upper part of the body wall of the casing (11), a processing fluid outlet (15) is provided in the lower part of the body wall, and a permeate gas discharge port ( 16).
  • the multi-tubular gas separation zeolite membrane module (10) for example, when separating a mixed fluid of hydrogen (H 2 ) and carbon dioxide (CO 2 ), from the processing fluid inlet (14).
  • a mixed fluid of hydrogen (H 2 ) and carbon dioxide (CO 2 ) is supplied into the casing (11).
  • the mixed fluid passes through the casing (11) in a zigzag manner as viewed from the front through the gap between the baffle plates (13) and the gap between the tubular zeolite membrane elements (1).
  • Carbon dioxide (CO 2 ) passing through each tubular membrane element (1) is discharged from the permeated gas discharge port (16), and hydrogen (H 2 ), which is a non-permeating fluid, flows into the baffle plate (13) and the tubular membrane. It passes through the gap between the elements (1) and the gap between the tubular membrane elements (1) and finally flows out from the outlet (15).
  • Example 1 A synthesis example of a dense FAU type zeolite membrane having an atomic ratio of, for example, silicon (Si) / aluminum (Al) in the zeolitic framework by the method for producing a zeolite membrane for gas separation according to the present invention will be shown below.
  • a FAU type zeolite base material (trade name: Y type zeolite, manufactured by Tosoh Corporation) was pulverized for about 120 hours using a ball mill until it became amorphous. Judgment whether it became amorphous or not was confirmed by the disappearance of the crystal peak attributed to the FAU type zeolite by X-ray diffraction (XRD) measurement.
  • XRD X-ray diffraction
  • the amorphous zeolite precursor powder was dispersed in water to prepare an amorphous zeolite precursor coating solution.
  • zeolite framework silicon A dense high-aluminum-containing zeolite membrane having a Si) / aluminum (Al) atomic ratio of 1 to 3 was synthesized.
  • FIG. 3 shows a conceptual diagram of palm porometry for explaining the grain boundary structure of the FAU type zeolite membrane.
  • water or other vapor is diluted to a predetermined partial pressure with a gas such as air or helium, and this is circulated to the supply side of the zeolite membrane to measure the gas permeability. Adsorption and capillary condensation occur according to the vapor partial pressure, so that the gas permeates through pores not blocked by water.
  • FIG. 4 is a graph for explaining the difference in palm porometry profile between the FAU type zeolite membrane of the present invention and the conventional FAU type zeolite membrane, and is a graph showing the gap between the Kelvin diameter and the gas permeation rate of the relative gas. .
  • FIG. 5 is a schematic diagram for explaining the difference between the FAU type zeolite membrane of the present invention and the conventional FAU type zeolite membrane.
  • the conventional FAU type zeolite membrane has many large voids between the zeolite crystals.
  • the FAU type zeolite membrane according to the present invention it is judged that there are almost no voids between the zeolite crystals.
  • FIG. 6 is a schematic diagram for explaining the difference between the FAU type zeolite membrane synthesis method according to the present invention and the conventional FAU type zeolite membrane synthesis method.
  • the amorphous zeolite precursor prepared by pulverizing the zeolite until it becomes amorphous is applied to the porous substrate, so that crystals are generated in the high concentration precursor layer.
  • the FAU type zeolite membrane was prepared in which the raw material (precursor) entered the crystal grain boundary and no voids remained in the crystal grain boundary because of crystal growth.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

【課題】ゼオライト骨格の珪素(Si)/アルミニウム(Al)の原子比が10以下の高アルミニウム含有ゼオライト膜について、二酸化炭素等のガスの高選択的分離が可能であり、しかも膜の耐久性にも優れている、ガス分離用ゼオライト膜、およびその製造方法、ガス分離用ゼオライト膜エレメント、並びにガス分離用ゼオライト膜モジュールを提供する。 【解決手段】ガス分離用ゼオライト膜の製造方法は、ゼオライト基材を粉砕して、非晶質ゼオライト前駆体を調製し、ついで、非晶質ゼオライト前駆体を分散させた塗布液を多孔質基体に塗付し、非晶質ゼオライト前駆体塗布多孔質基体を、ゼオライト膜形成用反応溶液に浸漬し、水熱合成反応によって、多孔質基体上にゼオライト骨格の珪素(Si)/アルミニウム(Al)の原子比が10以下の高アルミニウム含有ゼオライト膜を形成する。

Description

ガス分離用ゼオライト膜、その製造方法、ガス分離用ゼオライト膜エレメント、およびガス分離用ゼオライト膜モジュール
 本発明は、分離性能に優れるガス分離用ゼオライト膜、およびその製造方法、ガス分離用ゼオライト膜を具備するガス分離用ゼオライト膜エレメント、並びにガス分離用ゼオライト膜エレメントを具備するガス分離用ゼオライト膜モジュールに関するものである。
 近年、代表的な地球温暖化ガスである二酸化炭素は、発電所、セメントプラント、鉄鋼プラント、および化学プラントなどから排出されているが、地球温暖化防止の観点から、二酸化炭素の高効率回収技術の開発が急務となっている。
 従来、二酸化炭素の回収法としては、アミン吸収法などの化学吸収法、圧力スイング吸着法(PSA)などの物理吸着法などの技術が利用されているが、吸収液または吸着剤の再生に伴うエネルギー消費が大きく、より高効率な回収法の開発が期待されている。
 一方、ゼオライト膜を用いる膜分離法は、連続的操作が可能で、吸収液または吸着剤の再生が不要であることから、高効率な二酸化炭素回収技術として期待が高まっている。
 下記の特許文献1および2では、二酸化炭素促進輸送膜として、有機高分子膜が使用されコートが記載されている。このような有機高分子膜を用いることにより二酸化炭素(CO)/(H)分離選択性10以上と、高選択的に二酸化炭素を回収することができる。
 ところで、一般に、ゼオライト膜は耐久性に優れ、ゼオライトの細孔構造に由来する分子篩や、特異な吸着特性による高選択的な分離が期待されている。
 下記の非特許文献1には、ゼオライト骨格の珪素(Si)/アルミニウム(Al)の原子比が10以下の高アルミニウム含有ゼオライト膜が記載されており、具体的には、A型ゼオライト(LTA)、フォージャサイト型ゼオライト(FAU)、チャバサイト型ゼオライト(CHA)型などが挙げられている。
 また、下記の非特許文献2には、従来型のFAU型ゼオライト膜のガス透過について、パームポロメトリープロファイルが開示されている。
特開2008-36463号公報 特許第4264194号公報 J. Caro et al., Sep. Purif. Technol., 66 (2009) 143-147. M. Noack et al., Micropor. Mesopor. Mater. 102 (2007) 1-20.
 しかしながら、上記特許文献1および2に記載の従来法によれば、有機高分子膜が、高圧二酸化炭素による可塑化のために劣化するなど、膜の耐久性に課題を抱えている。
 また、上記非特許文献1によれば、アルミニウム(Al)を多く含むゼオライトにおいては、ゼオライト結晶表面が負に強く帯電しているため、負電荷を帯びている原料(ゼオライト前駆体)がゼオライト結晶粒界内には反発して進入できず、そのため結晶粒界に空隙が残りやすく、ガス分離選択性が劣るという問題があった。
 本発明の目的は、上記の従来技術の問題を解決し、ゼオライト骨格の珪素(Si)/アルミニウム(Al)の原子比が10以下の高アルミニウム含有ゼオライト膜について、二酸化炭素等のガスの高選択的分離が可能であり、しかも膜の耐久性にも優れている、ガス分離用ゼオライト膜、およびその製造方法、ガス分離用ゼオライト膜を具備するガス分離用ゼオライト膜エレメント、並びにガス分離用ゼオライト膜エレメントを具備するガス分離用ゼオライト膜モジュールを提供しようとすることにある。
 本発明者らは、上記の点に鑑み鋭意研究を重ねた結果、従来一般的に行われてきたゼオライト種結晶を多孔質基体に塗付するということは行わず、代わりに、原料ゼオライトを粉砕して、非晶質ゼオライト前駆体を調製し、ついで、非晶質ゼオライト前駆体を分散させた塗布液を多孔質基体に塗付し、その後、水熱合成反応することによって、結晶粒界における空隙の少ない、ゼオライト骨格の珪素(Si)/アルミニウム(Al)の原子比が10以下の高アルミニウム含有ゼオライト膜を合成できることを見出し、本発明を完成するに至ったものである。
 上記の目的を達成するために、請求項1のガス分離用ゼオライト膜の製造方法の発明は、ゼオライト基材を粉砕して、非晶質ゼオライト前駆体を調製し、ついで、非晶質ゼオライト前駆体を分散させた塗布液を多孔質基体に塗付し、非晶質ゼオライト前駆体塗布多孔質基体を、ゼオライト膜形成用反応溶液に浸漬し、水熱合成反応によって、多孔質基体上にゼオライト骨格の珪素(Si)/アルミニウム(Al)の原子比が10以下の高アルミニウム含有ゼオライト膜を形成することを特徴としている。
 請求項2の発明は、請求項1に記載のガス分離用ゼオライト膜の製造方法であって、製膜されたゼオライト膜が、フォージャサイト(FAU)型ゼオライト膜であることを特徴としている。
 請求項3の発明は、請求項1または2に記載のゼオライト膜の製造方法によって製造されたガス分離用ゼオライト膜であって、吸着蒸気に水またはn-ヘキサンを用いたパームポロメトリーにおいて、ケルビン式により算出されるケルビン直径0.8~2nmに相当する蒸気分圧時の空気またはヘリウムのガス透過率が、乾燥時のガス透過率の0~10%であることを特徴としている。
 請求項4のガス分離用ゼオライト膜エレメントの発明は、請求項1~3に記載のガス分離用ゼオライト膜が管状となされており、この管状ガス分離用ゼオライト膜の一端に、管板接続用の接続管が取り付けられていることを特徴としている。
 請求項5のガス分離用ゼオライト膜モジュールの発明は、請求項4に記載の管状ガス分離用ゼオライト膜エレメントが複数個、管板に取り付けられており、二酸化炭素(CO)等を含む混合ガスが、各管状ガス分離用ゼオライト膜エレメントの外側に供給されて、各エレメントのゼオライト膜を透過した二酸化炭素等の透過ガスが分離されるようになされていることを特徴としている。
 請求項1のガス分離用ゼオライト膜の製造方法の発明は、ゼオライト基材を粉砕して、非晶質ゼオライト前駆体を調製し、ついで、非晶質ゼオライト前駆体を分散させた塗布液を多孔質基体に塗付し、非晶質ゼオライト前駆体塗布多孔質基体を、ゼオライト膜形成用反応溶液に浸漬し、水熱合成反応によって、多孔質基体上にゼオライト骨格の珪素(Si)/アルミニウム(Al)の原子比が10以下の高アルミニウム含有ゼオライト膜を形成するもので、請求項1の発明によれば、ゼオライト骨格の珪素(Si)/アルミニウム(Al)の原子比が10以下の高アルミニウム含有ゼオライト膜について、二酸化炭素等のガスの高選択的分離が可能であり、しかも膜の耐久性にも優れているという効果を奏する。
 請求項2の発明は、請求項1に記載のガス分離用ゼオライト膜の製造方法であって、製膜されたゼオライト膜が、フォージャサイト(FAU)型ゼオライト膜であるもので、請求項2の発明によれば、他のゼオライト種と比較して、CO2分離など、高いガス透過分離性能が得られるという効果を奏する。
 請求項3の発明は、請求項1または2に記載のゼオライト膜の製造方法によって製造されたガス分離用ゼオライト膜であって、吸着蒸気に水またはn-ヘキサンを用いたパームポロメトリーにおいて、ケルビン式により算出されるケルビン直径0.8~2nmに相当する蒸気分圧時の空気またはヘリウムのガス透過率が、乾燥時のガス透過率の0~10%であることを特徴とするもので、請求項3の発明によれば、ゼオライト結晶細孔内の分離場による、高い分離性能が得られるという効果を奏する。
 請求項4のガス分離用ゼオライト膜エレメントの発明は、請求項1~3に記載のガス分離用ゼオライト膜が管状となされており、この管状ガス分離用ゼオライト膜の一端に、管板接続用の接続管が取り付けられているもので、請求項4の発明によれば、膜エレメントの膜モジュールへの取付けが、ガスの漏洩なく容易に行えるという効果を奏する。
 請求項5のガス分離用ゼオライト膜モジュールの発明は、本発明によるゼオライト膜の製造方法によって製造されたガス分離用ゼオライト膜エレメントが複数個、管板に取り付けられており、二酸化炭素(CO)等を含む混合ガスが、各管状ガス分離用ゼオライト膜エレメントの外側に供給されて、各エレメントのゼオライト膜を透過した二酸化炭素等の透過ガスが分離されるようになされているもので、請求項5の発明によれば、膜エレメントを省スペースで複数個具備できるという効果を奏する。
本発明によるガス分離用ゼオライト膜エレメントの一例を示す縦断面図である。 本発明によるガス分離用ゼオライト膜モジュールの一例を示す縦断面図である。 FAU型ゼオライト膜の結晶粒界構造を説明するためのパームポロメトリーの概念図である。 本発明のFAU型ゼオライト膜と従来のFAU型ゼオライト膜とのパームポロメトリープロファイルの違いを説明するためのもので、ケルビン直径と相対ガスのガス透過速度の間隙を示すグラフである。 本発明のFAU型ゼオライト膜と従来のFAU型ゼオライト膜との違いを説明する模式図である。 本発明によるFAU型ゼオライト膜の合成法と従来のFAU型ゼオライト膜の合成法との違いを説明する模式図である。
1:ガス分離用ゼオライト膜エレメント
2:ガス分離用ゼオライト膜
10:ガス分離用ゼオライト膜モジュール
 つぎに、本発明の実施の形態を、図面を参照して説明するが、本発明はこれらに限定されるものではない。
 本発明によるガス分離用ゼオライト膜の製造方法は、ゼオライト基材を非晶質状になるまで粉砕して、非晶質ゼオライト前駆体を調製し、ついで、非晶質ゼオライト前駆体を分散させた塗布液を多孔質基体に塗付し、非晶質ゼオライト前駆体塗布多孔質基体を、ゼオライト膜形成用反応溶液に浸漬し、水熱合成反応によって、多孔質基体上にゼオライト骨格の珪素(Si)/アルミニウム(Al)の原子比が10以下の高アルミニウム含有ゼオライト膜を形成するものである。
 すなわち、本発明者らは、鋭意研究を重ねた結果、従来一般的に行われてきたゼオライト種結晶を多孔質基体に塗付するということは行わず、代わりに、ゼオライトを非晶質状になるまで粉砕して調製した非晶質ゼオライト前駆体を多孔質基体に塗付し、その後、非晶質ゼオライト前駆体塗布多孔質基体を、ゼオライト膜形成用反応溶液に浸漬し、水熱合成することによって、結晶粒界における空隙の少ない、ゼオライト骨格の珪素(Si)/アルミニウム(Al)の原子比が10以下の高アルミニウム含有ゼオライト膜を合成できることを見出し、本発明を完成するに至ったものである。
 本発明によるガス分離用ゼオライト膜の製造方法によれば、ゼオライト骨格の珪素(Si)/アルミニウム(Al)の原子比が10以下の高アルミニウム含有ゼオライト膜について、二酸化炭素等のガスの高選択的分離が可能であり、しかも膜の耐久性にも優れている。
 また、一般に、ゼオライト膜は耐久性に優れ、ゼオライトの細孔構造に由来する分子篩や、特異な吸着特性による高選択的な分離が期待されている。分子の大きさがゼオライトの細孔径よりも小さい場合であっても、ゼオライトと分子の親和力を制御することによって、例えば水素のような小分子から、二酸化炭素のような大きい分子を選択的に透過分離させることが可能である。
 二酸化炭素は、水素などのガスと比較して強い四重極子を持っているため、ゼオライト中のカチオンと静電的な相互作用に基づく、強い親和力を持つ。
 従って、二酸化炭素を水素などの小分子から分離するためのゼオライト膜としては、二酸化炭素の選択的吸着サイトとなるLi、Na、K、Ag、H、(NH、Ca2+、Sr2+、Ba2+、Cu2+、Zn2+などのカチオンサイトを多く含むようなものであれば、特に限定されるものではないが、このようなゼオライトとして、ゼオライト骨格のSi/Al比が10以下の高Al含有ゼオライト、具体的にはFAU型、LTA型、CHA型などが挙げられる。
 一方で、上記ゼオライトのようにAlを多く含むゼオライトを製膜する場合、結晶間のナノレベルの空隙を埋めるのは困難であり、全体の膜透過に対し結晶間の空隙経由の透過量を小さくするが困難であるというのが実情である。
 ゼオライト膜は一般に多結晶膜であるため、その透過分離性能はゼオライト固有の物理化学的特性だけでなく、それを構成する結晶の粒界構造に大きく依存する。
 例えば、ゼオライト膜を構成するゼオライト結晶間の空隙が大きくなると、分離対象分子はゼオライト結晶細孔内ではなくゼオライト結晶間空隙を透過することになるため、ゼオライト細孔内の吸着特性に由来する本来の分離機能が発揮されないという問題が生じる。
 上記の非特許文献1によると、アルミニウム(Al)を多く含むゼオライトにおいては、ゼオライト結晶表面が負に強く帯電しているため、負電荷を帯びている原料(ゼオライト前駆体)がゼオライト結晶粒界内には反発して進入できず、そのため結晶粒界に空隙が残りやすいと推察している。
 本発明によるガス分離用ゼオライト膜の製造方法により製膜されたゼオライト膜は、フォージャサイト(FAU)型ゼオライト膜であることが好ましい。
 本発明によるガス分離用ゼオライト膜は、管状または中空糸状多孔質基体上にゼオライトを製膜させたもののどちらも用いることができるが、高圧条件であればゼオライト膜エレメントの耐圧性の観点から、管状の方が好ましい。逆に、低圧条件では単位体積当りの膜面積向上といった観点から、中空糸状の膜エレメントを用いることもできる。またゼオライト種としては特に限定されるものではないが、例えばゼオライト骨格の珪素(Si)/アルミニウム(Al)の原子比が1~3の緻密なFAU型ゼオライト膜が好ましい。
 本発明によるゼオライト膜の製造方法によって製造されたガス分離用ゼオライト膜は、吸着蒸気に水またはn-ヘキサンを用いたパームポロメトリーにおいて、ケルビン式により算出されるケルビン直径0.8~2nmに相当する蒸気分圧時の空気またはヘリウムのガス透過率が、乾燥時のガス透過率の0~10%であるものである。本発明のガス分離用ゼオライト膜によれば、ゼオライト結晶細孔内の分離場による、高い分離性能が得られるという利点がある。
 また、本発明による二酸化炭素(CO)を含む混合ガスから二酸化炭素を分離するガス分離用ゼオライト膜エレメントは、本発明によるガス分離用ゼオライト膜が管状となされており、この管状ガス分離用ゼオライト膜の一端に、管板接続用の接続管が取り付けられているもので、本発明のガス分離用ゼオライト膜エレメントによれば、膜エレメントの膜モジュールへの取付けが、ガスの漏洩なく容易に行えるという利点がある。
 図1に、本発明によるガス分離用ゼオライト膜エレメントの一例を示す。
 同図において、ガス分離用ゼオライト膜エレメント(1)は、本発明のゼオライト膜の製造方法によって製造された管状のガス分離用ゼオライト膜(2)の一端に、管板接続用のセラミック製または金属製接続管が取り付けられ、同ガス分離用ゼオライト膜(2)の他端に、管板接続用のセラミック製または金属製封止部材(3)が取り付けられているものであり、例えば、二酸化炭素(CO)を含む混合ガスから二酸化炭素を分離するガス分離用ゼオライト膜エレメントして用いられるものである。
 図2に、本発明によるガス分離用ゼオライト膜モジュールの一例を示す。
 同図において、本発明によるガス分離用ゼオライト膜モジュール(10)は、ケーシング(11)内の頂壁近くに水平状管板(12)が設けられ、この管板(12)に、上記図1に示す本発明による管状ガス分離用ゼオライト膜エレメント(1)が所要数、吊下状かつ並列状に取り付けられている。ケーシング(11)内において管板(12)の下方には、所要数のバッフル板(13)が管板(12)と平行状に設けられている。バッフル板(13)の取付数は、ケーシング(11)の大きさにもよるが、通常、2~30枚である。各バッフル板(13)には複数の開口部が設けられており、これらの開口部を本発明による管状ガス分離用ゼオライト膜エレメント(1)が貫通している。また、バッフル板(13)はケーシング(11)の内面に気密に係合している。ケーシング(11)の胴壁上部に処理流体入口(14)が設けられ、胴壁下部には処理流体出口(15)が設けられ、ケーシング(11)の頂壁中央部には透過ガス排出口(16)が設けられている。
 上記本発明による多管式のガス分離ゼオライト膜モジュール(10)の実施形態において、例えば、水素(H)と二酸化炭素(CO)の混合流体を分離する場合、処理流体入口(14)からケーシング(11)内に、水素(H)と二酸化炭素(CO)の混合流体を供給する。混合流体は、バッフル板(13)同士の間の間隙および管状ゼオライト膜エレメント(1)同士の間の間隙を、正面よりみてジグザグ状に蛇行してケーシング(11)内を通過する。各管状膜エレメント(1)を透過してくる二酸化炭素(CO)が透過ガス排出口(16)より排出され、非透過流体である水素(H)は、バッフル板(13)と管状膜エレメント(1)同士の間の間隙および管状膜エレメント(1)同士の間の間隙を通過して、最終的に排出口(15)から流出する。
 つぎに、本発明の実施例を比較例と共に説明するが、本発明は、これらの実施例に限定されるものではない。
実施例1
 本発明によるガス分離用ゼオライト膜の製造方法により、例えばゼオライト骨格の珪素(Si)/アルミニウム(Al)の原子比が1~3である緻密なFAU型ゼオライト膜の合成例を以下に示す。
(緻密なFAU型ゼオライト膜合成)
 まず、FAU型ゼオライト基材(商品名Y型ゼオライト、東ソー社製)を、非晶質状になるまでボールミルを用いて約120時間粉砕した。非晶質状になったかどうかの判断は、X線回折(XRD)測定にてFAU型ゼオライトに起因する結晶ピークが消失したことにより確認した。
 つぎに、非晶質状ゼオライト前駆体の粉末を水に分散させ、非晶質ゼオライト前駆体塗布液を調製した。次いで調製した非晶質ゼオライト前駆体を、多孔質α-アルミナ管(日立造船社製)にディップコートにより塗付した。乾燥後、非晶質ゼオライト前駆体塗布多孔質α-アルミナ管基体を、モル組成HO/NaO=57.4、NaO/SiO=1.3、SiO/Al=12.8を有するゼオライト膜形成用反応溶液に浸漬し、温度100℃で、4時間45分間水熱処理し、水熱合成反応によって、多孔質α-アルミナ管基体上にゼオライト骨格の珪素(Si)/アルミニウム(Al)の原子比が1~3である緻密な高アルミニウム含有ゼオライト膜を合成した。
(ゼオライト膜の結晶粒界構造解析)
 合成後のFAU型ゼオライト膜の結晶粒界構造は、パームポロメトリーにより評価した。
 図3に、FAU型ゼオライト膜の結晶粒界構造を説明するためのパームポロメトリーの概念図を示す。
 このパームポロメトリーによる評価方法では、水などの蒸気を空気、ヘリウムなどのガスにより所定の分圧まで希釈し、これをゼオライト膜の供給側に流通させ、ガスの透過度を測定する。蒸気分圧に応じて吸着、毛管凝縮が起きるため、ガスは水によってブロックされていない細孔を通じて透過することになる。
 従って、ガス透過度の蒸気分圧依存性を測定すると、ゼオライト膜を貫通している細孔径の分布が評価できる。各分圧に対応する細孔径の推定には定法である以下のケルビン式が用いられる。
  Ln(P/Ps)=-4γV/(R・T・d
 式中、P/Psは相対圧、γは表面張力、Vはモル体積、Rはガス定数、Tは温度、dはケルビン直径を表す。
 また本実施例のパームポロメトリーでは、以下の条件にて測定を行った。
 前処理: 温度300C、時間・1時間
 測定温度:40
 ガス:空気
 蒸気:水
 ゼオライト膜面積:10cm
(ガス分離試験)
 本発明によるガス分離用ゼオライト膜の製造方法により合成したゼオライト膜の透過分離能の評価は、上記図1に示す管状ガス分離用ゼオライト膜エレメント(1)を作製し、これを上記図2に示すステンレス鋼製の実験用多管式ガス分離ゼオライト膜モジュール(10)に取り付けて行った。
 管状ガス分離用ゼオライト膜エレメント(1)の外側に二酸化炭素(CO)-水素(H)の混合ガスを供給し、膜透過ガスの流量および組成を測定することによって、二酸化炭素(CO)および水素(H)のゼオライト膜透過度を算出した。二酸化炭素(CO)/水素(H)の分離試験を行った際の詳細条件を以下に示す。
・供給ガス組成:二酸化炭素(50%)/水素(50%)
・供給ガス全圧(絶対圧):4atm
・供給ガス露点:-40C以下
・透過側全圧:大気圧
・有効膜面積:1.2m
・分離試験温度:40℃
 図4は、本発明のFAU型ゼオライト膜と従来のFAU型ゼオライト膜とのパームポロメトリープロファイルの違いを説明するためのもので、ケルビン直径と相対ガスのガス透過速度の間隙を示すグラフである。
 同図において、従来のFAU型ゼオライト膜では、例えばケルビン直径2nm程度のときの相対ガス透過度は約45%であり、これはケルビン直径2nm以下の細孔経由のガス透過の寄与は全ガス透過の100-45=55%程度であると判断される。
 一方で、本発明のFAU型ゼオライト膜においては、ケルビン直径0.8~2nmのときの相対ガス透過度は約2%であり、これはケルビン直径2nm(0.8nm)以下の細孔経由のガス透過の寄与は全ガス透過の100-2=98%程度であると判断される。
 図5は、本発明のFAU型ゼオライト膜と従来のFAU型ゼオライト膜との違いを説明する模式図である。
 同図を参照すると、上記の結果と、FAU型ゼオライトの細孔径が0.74nm程度であることを踏まえると、従来のFAU型ゼオライト膜ではゼオライト結晶間に大きな空隙が多く存在しているのに対し、本発明によるFAU型ゼオライト膜ではゼオライト結晶間に空隙がほとんど存在していないと判断される。
 図6は、本発明によるFAU型ゼオライト膜の合成法と従来のFAU型ゼオライト膜の合成法との違いを説明する模式図である。
 同図を参照すると、本発明によるガス分離用ゼオライト膜の製造方法において、このように緻密なFAU型ゼオライト膜が合成できた理由としては、ゼオライト膜の合成法に違いがあったと推察している。
 すなわち、従来のゼオライト膜合成法では原料(ゼオライト前駆体)が負電荷を帯びているため、強い負電荷を帯びた結晶粒界内には反発して進入できず、そのため結晶粒界に原料が供給されないため空隙が残ったと推察される。
 一方、本発明の合成方法では、ゼオライトを非晶質状になるまで粉砕して調製した非晶質ゼオライト前駆体を多孔質基体に塗付したことで、高濃度の前駆体層中で結晶発生・結晶成長するため、結晶粒界内にも原料(前駆体)が進入し、結晶粒界に空隙が残らないFAU型ゼオライト膜が調製できたものと推察することができる。
 また、上記のように、本発明によるガス分離用ゼオライト膜の製造方法により合成した緻密なFAU型膜を用いて、二酸化炭素(CO)/水素(H)の分離試験を行った結果、二酸化炭素(CO)/水素(H)の分離選択性が10を超える、高選択的分離が可能であることが分かった。

Claims (5)

  1.  ゼオライト基材を粉砕して、非晶質ゼオライト前駆体を調製し、ついで、非晶質ゼオライト前駆体を分散させた塗布液を多孔質基体に塗付し、非晶質ゼオライト前駆体塗布多孔質基体を、ゼオライト膜形成用反応溶液に浸漬し、水熱合成反応によって、多孔質基体上にゼオライト骨格の珪素(Si)/アルミニウム(Al)の原子比が10以下の高アルミニウム含有ゼオライト膜を形成することを特徴とする、ガス分離用ゼオライト膜の製造方法。
  2.  製膜されたゼオライト膜が、フォージャサイト(FAU)型ゼオライト膜であることを特徴とする、請求項1に記載のガス分離用ゼオライト膜の製造方法。
  3.  請求項1または2に記載のゼオライト膜の製造方法によって製造されたガス分離用ゼオライト膜であって、吸着蒸気に水またはn-ヘキサンを用いたパームポロメトリーにおいて、ケルビン式により算出されるケルビン直径0.8~2nmに相当する蒸気分圧時の空気またはヘリウムのガス透過率が、乾燥時のガス透過率の0~10%であることを特徴とする、ガス分離用ゼオライト膜。
  4.  請求項3に記載のガス分離用ゼオライト膜が管状となされており、この管状ガス分離用ゼオライト膜の一端に、管板接続用の接続管が取り付けられていることを特徴とする、ガス分離用ゼオライト膜エレメント。
  5.  請求項4に記載の管状ガス分離用ゼオライト膜エレメントが複数個、管板に取り付けられており、二酸化炭素(CO)等を含む混合ガスが、各管状ガス分離用ゼオライト膜エレメントの外側に供給されて、各エレメントのゼオライト膜を透過した二酸化炭素等の透過ガスが分離されるようになされていることを特徴とする、ガス分離用ゼオライト膜モジュール。
PCT/JP2012/061894 2011-05-10 2012-05-09 ガス分離用ゼオライト膜、その製造方法、ガス分離用ゼオライト膜エレメント、およびガス分離用ゼオライト膜モジュール WO2012153770A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-105450 2011-05-10
JP2011105450A JP2014140781A (ja) 2011-05-10 2011-05-10 ガス分離用ゼオライト膜、その製造方法、ガス分離用ゼオライト膜エレメント、およびガス分離用ゼオライト膜モジュール

Publications (1)

Publication Number Publication Date
WO2012153770A1 true WO2012153770A1 (ja) 2012-11-15

Family

ID=47139246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061894 WO2012153770A1 (ja) 2011-05-10 2012-05-09 ガス分離用ゼオライト膜、その製造方法、ガス分離用ゼオライト膜エレメント、およびガス分離用ゼオライト膜モジュール

Country Status (2)

Country Link
JP (1) JP2014140781A (ja)
WO (1) WO2012153770A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014113584A (ja) * 2012-11-15 2014-06-26 Hitachi Zosen Corp パラフィンとオレフィンの混合物からのオレフィンの分離・回収装置および方法
JP2015101506A (ja) * 2013-11-25 2015-06-04 日揮触媒化成株式会社 チャバサイト型ゼオライトの合成方法
CN109761639A (zh) * 2019-03-05 2019-05-17 南京理工大学 纳米多孔硅铝酸盐薄膜材料及其制备方法
CN111902203A (zh) * 2018-03-30 2020-11-06 日本碍子株式会社 沸石膜复合体、沸石膜复合体的制造方法以及分离方法
CN112587958A (zh) * 2020-10-15 2021-04-02 江苏达诺尔科技股份有限公司 一种液体或气体物料脱水管及其脱水装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7129362B2 (ja) * 2018-03-23 2022-09-01 日本碍子株式会社 種結晶、種結晶の製造方法、種結晶付着支持体の製造方法およびゼオライト膜複合体の製造方法
JP2020163344A (ja) * 2019-03-29 2020-10-08 東ソー株式会社 硫化水素の分離方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002346350A (ja) * 2001-05-25 2002-12-03 Toyoda Gosei Co Ltd 膜状ゼオライトの製造方法
JP2005074382A (ja) * 2003-09-03 2005-03-24 Mitsui Eng & Shipbuild Co Ltd 混合物分離膜、混合物分離方法
JP2007222820A (ja) * 2006-02-24 2007-09-06 Bussan Nanotech Research Institute Inc ゼオライト分離膜の製造方法
JP2009011980A (ja) * 2007-07-06 2009-01-22 Research Institute Of Innovative Technology For The Earth ガス分離用ゼオライト膜複合体の製造方法
JP2011016114A (ja) * 2009-07-10 2011-01-27 Mitsui Eng & Shipbuild Co Ltd 一端封止型ゼオライト膜用基体管

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002346350A (ja) * 2001-05-25 2002-12-03 Toyoda Gosei Co Ltd 膜状ゼオライトの製造方法
JP2005074382A (ja) * 2003-09-03 2005-03-24 Mitsui Eng & Shipbuild Co Ltd 混合物分離膜、混合物分離方法
JP2007222820A (ja) * 2006-02-24 2007-09-06 Bussan Nanotech Research Institute Inc ゼオライト分離膜の製造方法
JP2009011980A (ja) * 2007-07-06 2009-01-22 Research Institute Of Innovative Technology For The Earth ガス分離用ゼオライト膜複合体の製造方法
JP2011016114A (ja) * 2009-07-10 2011-01-27 Mitsui Eng & Shipbuild Co Ltd 一端封止型ゼオライト膜用基体管

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014113584A (ja) * 2012-11-15 2014-06-26 Hitachi Zosen Corp パラフィンとオレフィンの混合物からのオレフィンの分離・回収装置および方法
JP2015101506A (ja) * 2013-11-25 2015-06-04 日揮触媒化成株式会社 チャバサイト型ゼオライトの合成方法
CN111902203A (zh) * 2018-03-30 2020-11-06 日本碍子株式会社 沸石膜复合体、沸石膜复合体的制造方法以及分离方法
CN111902203B (zh) * 2018-03-30 2022-07-15 日本碍子株式会社 沸石膜复合体、沸石膜复合体的制造方法以及分离方法
CN109761639A (zh) * 2019-03-05 2019-05-17 南京理工大学 纳米多孔硅铝酸盐薄膜材料及其制备方法
CN109761639B (zh) * 2019-03-05 2021-10-08 南京理工大学 纳米多孔硅铝酸盐薄膜材料及其制备方法
CN112587958A (zh) * 2020-10-15 2021-04-02 江苏达诺尔科技股份有限公司 一种液体或气体物料脱水管及其脱水装置
CN112587958B (zh) * 2020-10-15 2022-07-01 江苏达诺尔科技股份有限公司 一种液体或气体物料脱水管及其脱水装置

Also Published As

Publication number Publication date
JP2014140781A (ja) 2014-08-07

Similar Documents

Publication Publication Date Title
WO2012153770A1 (ja) ガス分離用ゼオライト膜、その製造方法、ガス分離用ゼオライト膜エレメント、およびガス分離用ゼオライト膜モジュール
Kosinov et al. High flux high-silica SSZ-13 membrane for CO 2 separation
Yu et al. Highly permeable and selective tubular zeolite CHA membranes
Mei et al. High-flux CHA zeolite membranes for H2 separations
Ping et al. Seeded-gel synthesis of SAPO-34 single channel and monolith membranes, for CO2/CH4 separations
US8377838B2 (en) Method for production of DDR type zeolite membrane
JP2022093397A (ja) 多孔質支持体-ゼオライト膜複合体及び多孔質支持体-ゼオライト膜複合体の製造方法
US9205417B2 (en) Zeolite membrane regeneration method
Algieri et al. A novel seeding procedure for preparing tubular NaY zeolite membranes
JP6861273B2 (ja) ゼオライト膜複合体、および、ゼオライト膜複合体の製造方法
Hasegawa et al. Preparation of novel chabazite (CHA)-type zeolite layer on porous α-Al2O3 tube using template-free solution
Mirfendereski et al. CO2 and CH4 permeation through T-type zeolite membranes: Effect of synthesis parameters and feed pressure
JP5800566B2 (ja) ゼオライト複合膜
US11110403B2 (en) Method for producing separation membrane using MFI-type zeolite (silicalite)
Huang et al. Steam-stable hydrophobic ITQ-29 molecular sieve membrane with H 2 selectivity prepared by secondary growth using Kryptofix 222 as SDA
US20110094380A1 (en) Ultra-thin co2 selective zeolite membrane for co2 separation from post-combustion flue gas
Yu et al. High performance fluoride MFI membranes for efficient CO2/H2 separation
EA020789B1 (ru) Способ получения газоразделительной мембраны с молекулярным ситом
CN112499642A (zh) 一种多通道ssz-13分子筛膜的制备方法
Korelskiy et al. A study of CO 2/CO separation by sub-micron b-oriented MFI membranes
US20190070568A1 (en) Permeation membrane and method for producing a permeation membrane
Li et al. NF/RO faujasite zeolite membrane-ammonia absorption solvent hybrid system for potential post-combustion CO2 capture application
Mirfendereski et al. Effect of synthesis parameters on single gas permeation through T-type zeolite membranes
Mirfendereski Synthesis and application of high-permeable zeolite MER membrane for separation of carbon dioxide from methane
Das et al. The growth of SAPO 34 membrane layer on support surface for gas permeation application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12781726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12781726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP