WO2012153660A1 - Nucleating agent, and crystalline polymer composition containing said nucleating agent - Google Patents

Nucleating agent, and crystalline polymer composition containing said nucleating agent Download PDF

Info

Publication number
WO2012153660A1
WO2012153660A1 PCT/JP2012/061416 JP2012061416W WO2012153660A1 WO 2012153660 A1 WO2012153660 A1 WO 2012153660A1 JP 2012061416 W JP2012061416 W JP 2012061416W WO 2012153660 A1 WO2012153660 A1 WO 2012153660A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystalline polymer
xylan
nucleating agent
polymer composition
temperature
Prior art date
Application number
PCT/JP2012/061416
Other languages
French (fr)
Japanese (ja)
Inventor
忠久 岩田
ノリーン フンダドル
有希子 ロジャース
冬樹 相田
Original Assignee
国立大学法人東京大学
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, Jx日鉱日石エネルギー株式会社 filed Critical 国立大学法人東京大学
Priority to JP2013513984A priority Critical patent/JPWO2012153660A1/en
Publication of WO2012153660A1 publication Critical patent/WO2012153660A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0057Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Xylans, i.e. xylosaccharide, e.g. arabinoxylan, arabinofuronan, pentosans; (beta-1,3)(beta-1,4)-D-Xylans, e.g. rhodymenans; Hemicellulose; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00

Definitions

  • the present invention relates to a nucleating agent and a crystalline polymer composition containing the nucleating agent, and the crystalline polymer composition is used as a molding material for industrial parts, containers, packaging materials and the like.
  • Olefin-based polymer compounds containing ⁇ -olefins such as polyethylene and polypropylene, polyester-based polymer compounds containing aromatic carboxylic acids such as terephthalic acid, and biodegradable polyesters containing biodegradable aliphatic carboxylic acids
  • a polymer has a slow crystallization rate after heat molding (crystallization does not start unless the temperature is low), and there are problems of prolonged molding cycle during processing and deformation due to crystallization after molding.
  • nucleating agent that rapidly generates fine crystals.
  • existing typical nucleating agents include sodium benzoate, 4-tert-butylbenzoic acid aluminum salt, carboxylic acid metal salts such as sodium adipate, sodium bis (4-tert-butylphenyl) phosphate, sodium-2 Phosphate metal salts such as 2,2'-methylenebis (4,6-ditert-butylphenyl) phosphate, polyhydric alcohol derivatives such as dibenzylidene sorbitol, bis (methylbenzylidene) sorbitol, bis (dimethylbenzylidene) sorbitol, etc.
  • the nucleating agent is also preferably composed of a biomass-derived material.
  • the present invention is a biomass-derived nucleating agent in which the problems of dispersibility, compatibility, and bleed-out resistance are suppressed, and a crystalline polymer excellent in moldability comprising the nucleating agent.
  • An object is to provide a composition.
  • the present inventors have made extensive studies and as a result, obtained the following findings. That is, the inventors have found that xylan and a derivative having a specific structure of xylan have an excellent function as a nucleating agent, and have completed the present invention.
  • the present invention is based on the above findings by the present inventors, and means for solving the above problems are as follows. That is, ⁇ 1> A derivative obtained by esterification or etherification of xylan having a repeating structural unit represented by the following structural formula (1), and having a polystyrene-reduced number average molecular weight of 3, measured by gel permeation chromatography A crystalline polymer nucleating agent characterized by being in the range of 000 to 150,000.
  • ⁇ 2> A derivative obtained by esterification of xylan having a repeating structural unit represented by the following structural formula (1), and having a polystyrene equivalent number average molecular weight of 3,000 to 150 measured by gel permeation chromatography It is a crystalline polymer nucleating agent characterized by being in the range of 1,000.
  • ⁇ 3> A derivative obtained by esterifying xylan having a repeating structural unit represented by the following structural formula (1) with an alkanoyl group having 2 to 12 carbon atoms, and converted to polystyrene as measured by gel permeation chromatography
  • ⁇ 4> A crystalline polymer composition comprising the crystalline polymer nucleating agent according to any one of ⁇ 1> to ⁇ 3>.
  • ⁇ 5> The crystalline polymer composition according to ⁇ 4>, wherein the crystalline polymer is a biodegradable polyester polymer.
  • ⁇ 6> The crystalline polymer composition according to ⁇ 4>, wherein the crystalline polymer is a polylactic acid polymer.
  • ⁇ 7> The crystalline polymer composition according to ⁇ 4>, wherein the crystalline polymer is a microorganism-produced polyester polymer.
  • ⁇ 8> The crystalline polymer composition according to ⁇ 4>, wherein the crystalline polymer is a polyolefin polymer.
  • ⁇ 9> The crystalline polymer composition according to ⁇ 4>, wherein the crystalline polymer is a polypropylene resin.
  • a crystalline polymer composition comprising the xylan derivative precursor according to any one of ⁇ 1> to ⁇ 3>.
  • the crystalline polymer composition according to ⁇ 10>, wherein the crystalline polymer is a polylactic acid polymer.
  • ⁇ 13> The crystalline polymer composition according to ⁇ 10>, wherein the crystalline polymer is a microorganism-produced polyester polymer.
  • ⁇ 14> The crystalline polymer composition according to ⁇ 10>, wherein the crystalline polymer is a polyolefin polymer.
  • ⁇ 15> The crystalline polymer composition according to ⁇ 10>, wherein the crystalline polymer is a polypropylene resin.
  • the above-mentioned problems can be solved and the object can be achieved, and the crystalline polymer molding cycle can be shortened by improving the crystallization temperature of the crystalline polymer, and the stability of the molded product. It is possible to provide a nucleating agent having an excellent improvement effect and a crystalline polymer composition containing the nucleating agent.
  • FIG. 1 is a diagram showing the 1 H-NMR spectrum of xylan acetate.
  • FIG. 2 is a diagram showing a 1 H-NMR spectrum of xylampropionate.
  • FIG. 3 shows the 1 H-NMR spectrum of xylan hexanoate.
  • FIG. 4 shows the 1 H-NMR spectrum of xylan decanoate.
  • FIG. 5 is a diagram showing a 1 H-NMR spectrum of xylan laurate.
  • FIG. 6 shows the 1 H-NMR spectrum of xylan butyrate.
  • FIG. 7 is a diagram showing a 1 H-NMR spectrum of xylan valerate.
  • FIG. 1 is a diagram showing the 1 H-NMR spectrum of xylan acetate.
  • FIG. 2 is a diagram showing a 1 H-NMR spectrum of xylampropionate.
  • FIG. 3 shows the 1 H-NMR spectrum of xylan hexanoate.
  • FIG. 8A is a diagram showing an example of a DSC curve at the time of the second temperature increase of a mixture (film) of poly-L-lactic acid (PLLA) and a xylan derivative or a film made only of PLLA.
  • the vertical axis represents the direction of heat generation, and the horizontal axis represents temperature (° C.).
  • FIG. 8B is a diagram showing an example of a DSC curve at the time of the second temperature increase of a mixture (film) of poly-D-lactic acid (PDLA) and a xylan derivative or a film made only of PDLA.
  • the vertical axis represents the direction of heat generation, and the horizontal axis represents temperature (° C.).
  • FIG. 9A is a diagram showing an example of a DSC curve at the time of a second temperature increase of a mixture (film) of PLLA and a xylan derivative (xylampropionate) or a film made only of PLLA.
  • the vertical axis represents the direction of heat generation, and the horizontal axis represents temperature (° C.).
  • FIG. 9B is a diagram showing an example of a DSC curve at the time of a second temperature increase of a mixture (film) of PLLA and a xylan derivative (xylan butyrate) or a film made only of PLLA.
  • the vertical axis represents the direction of heat generation, and the horizontal axis represents temperature (° C.).
  • FIG. 9A is a diagram showing an example of a DSC curve at the time of a second temperature increase of a mixture (film) of PLLA and a xylan derivative (xylan butyrate) or a film made only of PLLA.
  • FIG. 10A is a diagram showing an example of a DSC curve when the temperature (temperature) of a mixture (film) of PLLA and a xylan derivative (xylampropionate) is lowered.
  • the vertical axis represents the direction of heat generation, and the horizontal axis represents temperature (° C.).
  • FIG. 10B is a diagram showing an example of a DSC curve when the temperature of the mixture (film) of PLLA and a xylan derivative (xylan butyrate) is lowered.
  • the vertical axis represents the direction of heat generation, and the horizontal axis represents temperature (° C.).
  • FIG. 10C is a diagram showing an example of a DSC curve when the temperature of a film made only of PLLA is lowered.
  • FIG. 10D is a diagram showing an example of a DSC curve when the temperature (temperature) of a mixture (film) of PDLA and a xylan derivative (xylampropionate) is lowered.
  • the vertical axis represents the direction of heat generation, and the horizontal axis represents temperature (° C.).
  • FIG. 10E is a diagram showing an example of a DSC curve at the time of cooling of a mixture (film) of PDLA and a xylan derivative (xylan butyrate).
  • the vertical axis represents the direction of heat generation, and the horizontal axis represents temperature (° C.).
  • FIG. 10F is a diagram showing an example of a DSC curve when the temperature of a film made only of PDLA is lowered.
  • the vertical axis represents the direction of heat generation, and the horizontal axis represents temperature (° C.).
  • FIG. 11A is a diagram obtained by observing a mixture (film) of PLLA and a xylan derivative or a film made only of PLLA with a polarizing microscope.
  • the scale bar represents 100 ⁇ m.
  • FIG. 11B is a diagram in which a mixture (film) of PDLA and a xylan derivative or a film made only of PDLA is observed with a polarizing microscope.
  • the scale bar represents 100 ⁇ m.
  • FIG. 12 is a graph showing an example of the relationship between the annealing time and the crystallinity of a mixture (film) of PLLA and a xylan derivative at an annealing temperature of 100 ° C. or a film made only of PLLA.
  • the vertical axis represents crystallinity (%), and the horizontal axis represents annealing time (minutes).
  • FIG. 13 is a graph showing an example of the relationship between the annealing time and haze value of a mixture (film) of PLLA and a xylan derivative at an annealing temperature of 100 ° C. or a film made only of PLLA.
  • FIG. 14 is a photograph showing an example of the appearance of a mixture (film) of PLLA and a xylan derivative or a film made only of PLLA.
  • FIG. 15 is a graph showing an example of the relationship between the annealing time and the coefficient of thermal expansion of a mixture (film) of PLLA and a xylan derivative at an annealing temperature of 100 ° C. or a film made only of PLLA.
  • the vertical axis represents the coefficient of thermal expansion (%), and the horizontal axis represents the annealing time (minutes).
  • the nucleating agent of the present invention is obtained by esterification or etherification of xylan having a repeating structural unit represented by the following structural formula (1) (hereinafter sometimes referred to as “precursor of xylan derivative”). It is a derivative and has a polystyrene (PS) equivalent number average molecular weight in the range of 3,000 to 150,000 measured by gel permeation chromatography (GPC) using an organic solvent.
  • PS polystyrene
  • the precursor of the xylan derivative may be produced using xylose, but it is present in large quantities in the natural world, for example, biomass such as wood, herbs, straw, bamboo, etc. Is preferred. Hereinafter, utilization of these biomass will be described using wood as an example.
  • Alkali extraction process The wood is cut in advance and extracted with an aqueous sodium hydroxide solution of 5% by mass or more, preferably 16% by mass or more.
  • the extraction time is preferably 10 hours or more, and more preferably 16 hours or more.
  • the amount of the alkaline solution used is preferably 20 to 400 parts by mass, more preferably 100 to 320 parts by mass with respect to 100 parts by mass of the raw material.
  • the pH of the reaction solution is adjusted.
  • the pH is preferably 5 to 8, and more preferably 6 to 7.
  • acids such as hydrochloric acid, acetic acid and formic acid are preferable.
  • Precipitation process After the pH adjustment step, a precipitation step is performed as necessary. This is to improve the recovery rate.
  • a lower alcohol such as ethanol or methanol is preferably added in a volume of 2 to 10 times, preferably 5 to 10 times the volume of the alkaline extract. Is more preferable.
  • ⁇ Cleaning process After the precipitation step, the obtained precipitate is washed with an organic solvent that can be easily removed, such as ethanol and methanol, as necessary, to remove unnecessary substances. Furthermore, removing unnecessary substances by filtration, centrifugation, etc. is effective from the viewpoint of avoiding the formation of by-products during the subsequent esterification reaction and etherification reaction.
  • the precipitate obtained in the precipitation step or the washed precipitate obtained in the washing step is preferably dried in the drying step.
  • the “xylan derivative precursor” can be obtained by the above method.
  • a xylan derivative precursor itself (xylan) is used as a nucleating agent.
  • a precursor of a xylan derivative is esterified or etherified, that is, an ester derivative or an ether derivative is used as a nucleating agent. Esterification or etherification improves the affinity with crystalline polymer by converting the hydroxyl group in “precursor of xylan derivative” to ester group or ether group, and is good in crystalline polymer material.
  • the degree of esterification and etherification is arbitrary, but at least until “the precursor of xylan derivative” which is insoluble in the organic solvent is dissolved in the organic solvent. Specifically, the molecular weight can be measured by gel permeation chromatography using an organic solvent. Alternatively, etherification or esterification is performed until the hydroxyl group absorption intensity in the “precursor of xylan derivative” decreases by 50% or more with reference to the hydroxyl group absorption intensity of the IR spectrum.
  • a hydroxyl group in the “precursor of xylan derivative” has the same reactivity as a simple alcohol in the same manner as a hydroxyl group in xylose or a hydroxyl group in a sugar chain.
  • the hydroxyl group of the “precursor of xylan derivative” exists in the sugar chain, but esterification or etherification proceeds relatively easily. Therefore, it is arbitrarily selected from reactions widely used in the field of synthetic organic chemistry. It's okay.
  • the present inventors consider that the molecular weight of the “precursor of xylan derivative” is smaller than that of cellulose and the like, and that there are two hydroxyl groups and both are coordinated to equatorial. In comparison between esterification reaction and etherification reaction, esterification generally proceeds under mild conditions with respect to carboxylic acid (including carboxylic anhydride and carboxylic acid chloride) and phosphoric acid. Is more preferable.
  • ester group or ether group is not particularly limited, but from the viewpoint of easy reactivity with the “precursor of xylan derivative” and affinity with the crystalline polymer, a methyl group, an ethyl group, Alkyl groups such as propyl group, isopropyl group, butyl group, sec-butyl group, tert-butyl group; alkanoyl groups such as acetyl group, propionyl group, hexanoyl group, decanoyl group, lauryl group; phenyl group; including benzyl group A structure is preferred.
  • the molecular weight of the nucleating agent according to the present invention is a polystyrene-equivalent number average molecular weight measured by gel permeation chromatography (GPC), and is in the range of 3,000 to 150,000. If it is less than 3,000, there is a problem in stability in the crystalline polymer, and if it exceeds 150,000, there is a problem in dispersion in the crystalline polymer material.
  • the polystyrene-equivalent number average molecular weight measured by the GPC method is a value obtained by measurement under the following conditions.
  • the crystalline polymer composition according to the present invention includes a crystalline polymer and the above-described nucleating agent according to the present invention, so that a molding cycle at the time of processing accompanying an increase in the crystallization temperature during DSC temperature drop measurement It is a crystalline polymer composition that has been improved such as shortening.
  • the crystalline polymer composition containing at least the precursor of the xylan derivative and the crystalline polymer is also the crystalline polymer composition of the present invention.
  • crystalline polymers include low density polyethylene, linear low density polyethylene, high density polyethylene, polypropylene resins (propylene homopolymers, propylene block copolymers, propylene random copolymers, and among these Isotactic, syndiotactic, (co) polymers having different atactic stereoregularity), polybutene-1, poly-3-methyl-1-butene, poly-3-methyl-1-pentene, ⁇ -olefin polymers (polyolefin polymers) such as poly-4-methyl-1-pentene; aromatic polyester polymers such as polyethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate; polylactic acid polymers (for example, , Polylactic acid (poly-L-lactic acid, poly-D-lactic acid, stereo Complex polylactic acid), polycaprolactone, polyhydroxyalkanoate, etc.), polybutylene succinate and other biodegradable polyester
  • the nucleating agents can be used as necessary, and the amount of each nucleating agent used is the crystalline polymer 100.
  • the amount is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 10 parts by mass with respect to parts by mass. If the amount is less than 0.01 parts by mass, the effect may not be obtained. If the amount exceeds 20 parts by mass, the characteristics of the crystalline polymer material itself may be lost.
  • the method for adding the nucleating agent to the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the crystalline polymer and the nucleating agent are A method of mixing (dry blending) each in a solid state (pellet, powder, etc.) and directly melt-molding it with a molding machine, (2) Melting and mixing the nucleating agent and the crystalline polymer in advance, A method of producing a mixture (masterbatch) containing a nucleating agent at a concentration higher than the concentration of the final composition, and adding the masterbatch to the crystalline polymer; and (3) the crystalline polymer.
  • the nucleating agent are mixed in advance by melt-kneading so as to obtain a final concentration, and a composition is produced, followed by molding. Further, these may be dissolved in a solvent capable of dissolving the crystalline polymer and the nucleating agent, and molded (solvent casting method) from the obtained solution.
  • antioxidant, weathering agent, antistatic agent, flame retardant, inorganic filler, organic filler, amorphous polymer, Elastomer, rubber, etc. may coexist.
  • the reaction solution after esterification is cooled to room temperature (about 25 ° C.), and charged into 100 mass% cold methanol (4 ° C.) of 5 times the amount of the reaction solution (about 10 mL), at 0.5 ° C. for 0.5 hour. After standing, xylan acetate was obtained as a precipitate by filtering with filter paper (No. 1, manufactured by Advantech Toyo Co., Ltd.). The yield was 86% by mass.
  • FIG. 1 shows the 1 H-NMR spectrum of xylan acetate.
  • a peak derived from CH 3 appeared in the vicinity of 2 ppm, which is not present in xylan, and the presence of xylan acetate was confirmed.
  • the substitution degree (DS) was 2.0.
  • the 10% by mass thermal decomposition temperature determined from this TG curve was 304 ° C.
  • FIG. 2 shows the 1 H-NMR spectrum of xylampropionate. From FIG. 2, the presence of xylampropionate was confirmed. Moreover, the substitution degree (DS) of hydrogen atoms of two hydroxyl groups present in xylan was 2.0. Further, the degree of polymerization (DP n ) in xylampropionate is 169, the weight average molecular weight (Mw) is 62,000, the number average molecular weight (Mn) is 41,300, and Mw / Mn Was 1.5, and the thermal decomposition temperature of 10% by mass was 296 ° C.
  • FIG. 3 shows the 1 H-NMR spectrum of xylan hexanoate. From FIG. 3, the presence of xylan hexanoate was confirmed. Moreover, the substitution degree (DS) of hydrogen atoms of two hydroxyl groups present in xylan was 2.0. The degree of polymerization (DP n ) in xylan hexanoate is 132, the weight average molecular weight (Mw) is 65,000, the number average molecular weight (Mn) is 43,300, and Mw / Mn Was 1.5, and the thermal decomposition temperature of 10% by mass was 314 ° C.
  • DP n degree of polymerization
  • Production Example 4 Synthesis of xylan decanoate
  • decanoic acid chloride was used in place of acetic anhydride
  • dimethylaminopyridine was used in place of pyridine
  • esterification reaction time was changed from 6 hours to 48 hours.
  • xylan decanoate was obtained.
  • the yield was 74% by mass.
  • the obtained xylan decanoate was identified, the degree of substitution was confirmed, the molecular weight was measured, and the 10% by mass pyrolysis temperature was measured in the same manner as in Production Example 1.
  • FIG. 4 shows the 1 H-NMR spectrum of xylan decanoate. From FIG. 4, the presence of xylan decanoate was confirmed. Moreover, the substitution degree (DS) of hydrogen atoms of two hydroxyl groups present in xylan was 2.0. The degree of polymerization (DP n ) in xylan decanoate is 143, the weight average molecular weight (Mw) is 101,000, the number average molecular weight (Mn) is 63,100, and Mw / Mn Was 1.6, and the 10% by mass thermal decomposition temperature was 305 ° C.
  • FIG. 5 shows a 1 H-NMR spectrum of xylan laurate. From FIG. 5, the presence of xylan laurate was confirmed. Moreover, the substitution degree (DS) of hydrogen atoms of two hydroxyl groups present in xylan was 2.0. The degree of polymerization (DP n ) in xylan laurate is 123, the weight average molecular weight (Mw) is 98,000, the number average molecular weight (Mn) is 61,200, and Mw / Mn is 1.6, and the thermal decomposition temperature of 10% by mass was 295 ° C.
  • DP n degree of polymerization
  • FIG. 6 shows the 1 H-NMR spectrum of xylan butyrate. From FIG. 6, the presence of xylan butyrate was confirmed. Moreover, the substitution degree (DS) of hydrogen atoms of two hydroxyl groups present in xylan was 2.0. The degree of polymerization (DP n ) in xylan butyrate is 170, the weight average molecular weight (Mw) is 73,000, the number average molecular weight (Mn) is 46,000, and Mw / Mn is 1.6, and the 10% by mass thermal decomposition temperature was 320 ° C.
  • FIG. 7 shows a 1 H-NMR spectrum of xylan valerate. From FIG. 7, the presence of xylan valerate was confirmed. Moreover, the substitution degree (DS) of hydrogen atoms of two hydroxyl groups present in xylan was 2.0. In addition, the degree of polymerization (DP n ) in xylan valerate is 156, the weight average molecular weight (Mw) is 77,000, the number average molecular weight (Mn) is 45,000, and Mw / Mn is 1.7, and the 10% by mass thermal decomposition temperature was 325 ° C.
  • Examples 1 to 26 Preparation of solvent cast films F1 to F26
  • Cast films F1 to F26 were produced.
  • 0.5 g of poly-L-lactic acid (trade name: Lacty, manufactured by Shimadzu Corporation) is dissolved in 50 mL of chloroform, and each xylan derivative of Production Examples 1 to 7 is added to 100 parts by mass of poly-L-lactic acid. , 0.1 parts by weight, 0.5 parts by weight, 1 part by weight, 3 parts by weight, 5 parts by weight, and 10 parts by weight, and a completely dissolved mixture was prepared.
  • Examples 27 to 33 Production of solvent cast films F28 to 34
  • PDLA poly-D-lactic acid
  • B structural formula (B) by the following method
  • Cast films F28 to F34 were produced.
  • PDLA manufactured by Teijin Limited
  • 0.5 g was dissolved in chloroform 50 mL, and 1 part by mass of each xylan derivative of Production Examples 1 to 7 was mixed with 100 parts by mass of PDLA to prepare a completely dissolved mixture. did.
  • FIG. 8A shows DSC curves at the second temperature rise of the solvent cast films F1, F5, F11, F15, F19, F23, and F27.
  • FIG. 8B shows the solvent cast films F28 to 32, F34, and F35.
  • the DSC curve at the time of a 2nd temperature rise is shown.
  • Table 2 below collectively shows the results of the exothermic peak (Tc) and crystallization energy ( ⁇ H) during the second temperature increase.
  • Tc exothermic peak
  • ⁇ H crystallization energy
  • the position of the exothermic peak (Tc) is shifted to 93 ° C. for xylampropionate, and the position of the exothermic peak (Tc) is shifted to 97 ° C. for xylan butyrate.
  • its function was excellent.
  • PLLA or PDLA was used as a polymer compound, and an effect as a nucleating agent for a xylan derivative was observed.
  • the xylan derivative has a function as a nucleating agent for both PLLA and PDLA. Therefore, it is inferred that the xylan derivative also functions as a nucleating agent for stereocomplex polylactic acid, which is a complex composed of PLLA and PDLA.
  • FIG. 9A shows a DSC curve during the second temperature rise of the solvent cast films F5 to 8 and F27
  • FIG. 9B shows a DSC curve during the second temperature rise of the solvent cast films F9 to 13 and F27.
  • 9A and 9B when the addition amount of the xylan derivative was changed, any addition amount had an excellent function as a nucleating agent. Moreover, it turned out that the outstanding nucleation effect
  • FIG. 10A shows a DSC curve when the solvent cast film F5 is lowered
  • FIG. 10B shows a DSC curve when the solvent cast film F11 is lowered
  • FIG. 10C shows a DSC curve when the solvent cast film F27 is lowered
  • FIG. 10D shows a solvent.
  • FIG. 10E shows the DSC curve when the solvent cast film F30 cools down
  • FIG. 10F shows the DSC curve when the solvent cast film F35 cools down.
  • Table 3 summarizes the results of the exothermic peak (Tc) and crystallization energy ( ⁇ H) when the temperature is lowered.
  • the crystallization of the polymer compound (here, PLLA or PDLA) by the isothermal crystallization method can be confirmed by the crystallization exothermic peak (Tc) during temperature holding, and the half crystallization time (t 1/2 ) Indicates that the crystallization is easier as the length is shorter.
  • the solvent cast films F5, F11, F29, and F30 to which the xylan derivative is added are compared with the solvent cast films F27 and F35 made of PLLA or PDLA. It was confirmed that the half crystallization time (t 1/2 ) was significantly shortened at any temperature.
  • FIG. 11A shows the results of observing the solvent cast films F5, F11, and F27 kept at 100 ° C. or 130 ° C.
  • FIG. 11B shows the solvent cast films F29, F30, and F35 kept at 100 ° C. or 130 ° C.
  • the result observed with the polarization microscope is shown. From FIG. 11A and FIG. 11B, it is clear that the solvent cast films F5, F11, F29, and F30 to which the xylan derivative is added have smaller crystals and more than the solvent cast films F27 and F35 made of PLLA or PDLA. Met. From these results, it was confirmed that the xylan derivative functions as a nucleating agent.
  • Figure 12 shows the results. From FIG. 12, the crystallization degree increased with time in any of the solvent cast films F5, F11, and F27, but the solvent cast film F5 to which the xylan derivative was added as compared with the solvent cast film F27 of PLLA alone. In F11 and F11, crystallization was promoted, and a higher crystallinity was reached in a short time.
  • FIG. 13 shows the results. From FIG. 13, the solvent cast films F5 and F11 to which the xylan derivative is added maintain high transparency even when the heat treatment time (annealing time) is long, that is, even when the crystallinity is high. It was.
  • FIG. 14 shows photographs of the solvent cast films F5, F11, and F27 after 10 minutes at 100 ° C. This is because the crystals are very small, as can be seen from the results in FIGS. 11A and 11B.
  • Fig. 15 shows the results. In all the samples not subjected to heat treatment, thermal expansion of 14% or more occurred at 100 ° C. However, when xylan derivative was added and heat treatment was performed for several minutes, thermal expansion was suppressed to about 1%.
  • Example 34 Production and thermal analysis of hot press film
  • Production example for 100 parts by mass (30 g) of polypropylene (PP) (density 0.90, melt flow rate (MFR) 1.0 at 230 ° C./2.16 kg load, trade name: PL300A, manufactured by Sun Allomer Co., Ltd.) 5 xylan laurate 0.03 parts by mass (0.08 g) and 1 part by mass (0.3 g) of dibutylhydroxytoluene (BHT) were mixed and melt kneaded at 230 ° C. for 1 minute in a plastograph melt kneader. .
  • the molten resin was scraped from the plastograph, and a hot press film F36 was produced using a hot press at 230 ° C.
  • the hot press film F36 was put into an aluminum pan of a differential thermal balance (ThermoPlus DSC8320, manufactured by Rigaku Corporation), and the temperature was raised from room temperature to 200 ° C. at a heating rate of 10 ° C./min to completely dissolve the hot press film F36. . After maintaining at 200 ° C. for 5 minutes, the temperature was decreased to 20 ° C. at a temperature decrease rate of 20 ° C./min. Further, the melting point (Tm) was determined from the crystal from the tangent line of the endothermic peak when the temperature was raised from 20 ° C. to 200 ° C. at 10 ° C./min. The endothermic peak was divided by the charged weight to determine the melting energy. The results are shown in Table 5 below.
  • Example 35 Production and thermal analysis of hot press film
  • Example 34 except that 0.03 parts by mass (0.08 g) of xylan of Preparation Example 1 was used instead of 0.03 parts by mass (0.08 g) of xylan laurate during the melt kneading of PP.
  • Example 34 (Comparative Example 3: Production and thermal analysis of hot press film)
  • Example 34 except that xylan laurate was not used in the melt-kneading of PP, a hot press film F38 was produced in the same manner as in Example 34, and thermal analysis was conducted in the same manner as in Example 34. Went. The results are shown in Table 5 below.

Abstract

A nucleating agent comprising a crystalline polymer, wherein the crystalline polymer is a derivative produced by the esterification or etherification of a xylan having a repeating structural unit represented by structural formula (1) and has a number average molecular weight ranging from 3,000 to 150,000 in terms of polystyrene as measured by a gel permeation chromatography method using an organic solvent.

Description

造核剤及び該造核剤を含有してなる結晶性高分子組成物Nucleating agent and crystalline polymer composition containing the nucleating agent
 本発明は、造核剤及び該造核剤を含有してなる結晶性高分子組成物に関し、この結晶性高分子組成物は、工業部品、容器、包装資材等の成形材料として用いられる。 The present invention relates to a nucleating agent and a crystalline polymer composition containing the nucleating agent, and the crystalline polymer composition is used as a molding material for industrial parts, containers, packaging materials and the like.
 ポリエチレン、ポリプロピレン等のα-オレフィンを含むオレフィン系高分子化合物、テレフタル酸等の芳香族カルボン酸を含むポリエステル系高分子化合物、生分解性を有する脂肪族カルボン酸を含む生分解性を有するポリエステル系高分子は、加熱成形後の結晶化速度が遅く(低温でないと結晶化が開始しないなど)、加工時の成形サイクルの長期化、成形後の結晶化による変形の問題がある。 Olefin-based polymer compounds containing α-olefins such as polyethylene and polypropylene, polyester-based polymer compounds containing aromatic carboxylic acids such as terephthalic acid, and biodegradable polyesters containing biodegradable aliphatic carboxylic acids A polymer has a slow crystallization rate after heat molding (crystallization does not start unless the temperature is low), and there are problems of prolonged molding cycle during processing and deformation due to crystallization after molding.
 これらの問題の解決手段としては、微細な結晶を急速に生成させる造核剤の添加が知られている。
 しかしながら、既存の代表的な造核剤は、ナトリウムベンゾエート、4-第三ブチル安息香酸アルミニウム塩、アジピン酸ナトリウム等のカルボン酸金属塩、ナトリウムビス(4-第三ブチルフェニル)ホスフェート、ナトリウム-2,2’-メチレンビス(4,6-ジ第三ブチルフェニル)ホスフェート等のリン酸エステル金属塩、ジベンジリデンソルビトール、ビス(メチルベンジリデン)ソルビトール、ビス(ジメチルベンジリデン)ソルビトール等の多価アルコール誘導体などの化合物であり、前記結晶性高分子との相溶性不足及び比較的低分子量であることから、分子間相互作用が不十分で造核効果に改良の余地があり、また、分散不足、易ブリードアウト等から、期待される添加効果を十分に示さない場合がある。
 また、生分解性脂肪族カルボン酸の生分解性を十分に発揮させるためには、造核剤も、バイオマス由来の材料から構成することが好ましい。
As means for solving these problems, addition of a nucleating agent that rapidly generates fine crystals is known.
However, existing typical nucleating agents include sodium benzoate, 4-tert-butylbenzoic acid aluminum salt, carboxylic acid metal salts such as sodium adipate, sodium bis (4-tert-butylphenyl) phosphate, sodium-2 Phosphate metal salts such as 2,2'-methylenebis (4,6-ditert-butylphenyl) phosphate, polyhydric alcohol derivatives such as dibenzylidene sorbitol, bis (methylbenzylidene) sorbitol, bis (dimethylbenzylidene) sorbitol, etc. This compound is incompatible with the crystalline polymer and has a relatively low molecular weight, so there is insufficient intermolecular interaction and there is room for improvement in the nucleation effect. For example, the expected addition effect may not be sufficiently exhibited.
In order to sufficiently exhibit the biodegradability of the biodegradable aliphatic carboxylic acid, the nucleating agent is also preferably composed of a biomass-derived material.
 上記問題を解決するには、従来の造核剤に比較して相溶性に富み、バイオマスを利用した造核剤の開発が必要である。 In order to solve the above problems, it is necessary to develop a nucleating agent that uses biomass and is more compatible than conventional nucleating agents.
 先行する類似技術としては、ポリ乳酸等にキチン、キトサンを添加した結晶性高分子組成物(特許文献1参照)がある。しかしながら、キチン、キトサンには、熱可塑性がなく、また、繰り返し単位がグルコサミン(あるいはそのアセチル誘導体)であることから、多くの極性基、即ち、アミノ基(又は、アセタミド基)、水酸基を有することから、分散性と相溶性に問題があり、その効果は未だ満足できるものではない。 As a similar prior art, there is a crystalline polymer composition in which chitin or chitosan is added to polylactic acid or the like (see Patent Document 1). However, chitin and chitosan have no thermoplasticity, and since the repeating unit is glucosamine (or an acetyl derivative thereof), it has many polar groups, that is, an amino group (or an acetamide group) and a hydroxyl group. Therefore, there is a problem in dispersibility and compatibility, and the effect is not yet satisfactory.
特開2007-77232号公報JP 2007-77232 A
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、分散性、相溶性、耐ブリードアウトの問題が抑制された、バイオマス由来の造核剤、及び、前記造核剤を含有してなる、成形性に優れた結晶性高分子組成物を提供することを目的とする。 This invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, the present invention is a biomass-derived nucleating agent in which the problems of dispersibility, compatibility, and bleed-out resistance are suppressed, and a crystalline polymer excellent in moldability comprising the nucleating agent. An object is to provide a composition.
 前記課題を解決するため、本発明者らは鋭意検討した結果、以下のような知見を得た。
 即ち、キシラン及びキシランの特定構造を有する誘導体が、優れた造核剤としての機能を有することを見出し、本発明の完成に至った。
In order to solve the above-mentioned problems, the present inventors have made extensive studies and as a result, obtained the following findings.
That is, the inventors have found that xylan and a derivative having a specific structure of xylan have an excellent function as a nucleating agent, and have completed the present invention.
 本発明は、本発明者らによる前記知見に基づくものであり、前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 下記構造式(1)で表される繰返し構造単位を有するキシランのエステル化又はエーテル化により得られる誘導体であり、ゲルパーミエーションクロマトグラフィー法で測定されるポリスチレン換算数平均分子量が3,000~150,000の範囲にあることを特徴とする結晶性高分子の造核剤である。
Figure JPOXMLDOC01-appb-C000004
 <2> 下記構造式(1)で表される繰返し構造単位を有するキシランのエステル化により得られる誘導体であり、ゲルパーミエーションクロマトグラフィー法で測定されるポリスチレン換算数平均分子量が3,000~150,000の範囲にあることを特徴とする結晶性高分子の造核剤である。
Figure JPOXMLDOC01-appb-C000005
 <3> 下記構造式(1)で表される繰返し構造単位を有するキシランを炭素数2~12のアルカノイル基によりエステル化して得られる誘導体であり、ゲルパーミエーションクロマトグラフィー法で測定されるポリスチレン換算数平均分子量が3,000~150,000の範囲にあることを特徴とする結晶性高分子の造核剤である。
Figure JPOXMLDOC01-appb-C000006
 <4> 前記<1>から<3>のいずれかに記載の結晶性高分子の造核剤を含有してなることを特徴とする結晶性高分子組成物である。
 <5> 結晶性高分子が、生分解性ポリエステル系高分子である前記<4>に記載の結晶性高分子組成物である。
 <6> 結晶性高分子が、ポリ乳酸系高分子である前記<4>に記載の結晶性高分子組成物である。
 <7> 結晶性高分子が、微生物産生ポリエステル系高分子である前記<4>に記載の結晶性高分子組成物である。
 <8> 結晶性高分子が、ポリオレフィン系高分子である前記<4>に記載の結晶性高分子組成物である。
 <9> 結晶性高分子が、ポリプロピレン系樹脂である前記<4>に記載の結晶性高分子組成物である。
 <10> 前記<1>から<3>のいずれかに記載のキシラン誘導体の前駆体を含有してなることを特徴とする結晶性高分子組成物である。
 <11> 結晶性高分子が、生分解性ポリエステル系高分子である前記<10>に記載の結晶性高分子組成物である。
 <12> 結晶性高分子が、ポリ乳酸系高分子である前記<10>に記載の結晶性高分子組成物である。
 <13> 結晶性高分子が、微生物産生ポリエステル系高分子である前記<10>に記載の結晶性高分子組成物である。
 <14> 結晶性高分子が、ポリオレフィン系高分子である前記<10>に記載の結晶性高分子組成物である。
 <15> 結晶性高分子が、ポリプロピレン系樹脂である前記<10>に記載の結晶性高分子組成物である。
The present invention is based on the above findings by the present inventors, and means for solving the above problems are as follows. That is,
<1> A derivative obtained by esterification or etherification of xylan having a repeating structural unit represented by the following structural formula (1), and having a polystyrene-reduced number average molecular weight of 3, measured by gel permeation chromatography A crystalline polymer nucleating agent characterized by being in the range of 000 to 150,000.
Figure JPOXMLDOC01-appb-C000004
<2> A derivative obtained by esterification of xylan having a repeating structural unit represented by the following structural formula (1), and having a polystyrene equivalent number average molecular weight of 3,000 to 150 measured by gel permeation chromatography It is a crystalline polymer nucleating agent characterized by being in the range of 1,000.
Figure JPOXMLDOC01-appb-C000005
<3> A derivative obtained by esterifying xylan having a repeating structural unit represented by the following structural formula (1) with an alkanoyl group having 2 to 12 carbon atoms, and converted to polystyrene as measured by gel permeation chromatography A crystalline polymer nucleating agent having a number average molecular weight in the range of 3,000 to 150,000.
Figure JPOXMLDOC01-appb-C000006
<4> A crystalline polymer composition comprising the crystalline polymer nucleating agent according to any one of <1> to <3>.
<5> The crystalline polymer composition according to <4>, wherein the crystalline polymer is a biodegradable polyester polymer.
<6> The crystalline polymer composition according to <4>, wherein the crystalline polymer is a polylactic acid polymer.
<7> The crystalline polymer composition according to <4>, wherein the crystalline polymer is a microorganism-produced polyester polymer.
<8> The crystalline polymer composition according to <4>, wherein the crystalline polymer is a polyolefin polymer.
<9> The crystalline polymer composition according to <4>, wherein the crystalline polymer is a polypropylene resin.
<10> A crystalline polymer composition comprising the xylan derivative precursor according to any one of <1> to <3>.
<11> The crystalline polymer composition according to <10>, wherein the crystalline polymer is a biodegradable polyester polymer.
<12> The crystalline polymer composition according to <10>, wherein the crystalline polymer is a polylactic acid polymer.
<13> The crystalline polymer composition according to <10>, wherein the crystalline polymer is a microorganism-produced polyester polymer.
<14> The crystalline polymer composition according to <10>, wherein the crystalline polymer is a polyolefin polymer.
<15> The crystalline polymer composition according to <10>, wherein the crystalline polymer is a polypropylene resin.
 本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、結晶性高分子の結晶化温度の向上等により結晶性高分子の成形サイクル短縮、成形品の安定性向上効果に優れた造核剤、及び該造核剤を含む結晶性高分子組成物を提供することができる。 According to the present invention, the above-mentioned problems can be solved and the object can be achieved, and the crystalline polymer molding cycle can be shortened by improving the crystallization temperature of the crystalline polymer, and the stability of the molded product. It is possible to provide a nucleating agent having an excellent improvement effect and a crystalline polymer composition containing the nucleating agent.
図1は、キシランアセテートのH-NMRスペクトルを示す図である。FIG. 1 is a diagram showing the 1 H-NMR spectrum of xylan acetate. 図2は、キシランプロピオネートのH-NMRスペクトルを示す図である。FIG. 2 is a diagram showing a 1 H-NMR spectrum of xylampropionate. 図3は、キシランヘキサノエートのH-NMRスペクトルを示す図である。FIG. 3 shows the 1 H-NMR spectrum of xylan hexanoate. 図4は、キシランデカノエートのH-NMRスペクトルを示す図である。FIG. 4 shows the 1 H-NMR spectrum of xylan decanoate. 図5は、キシランラウレートのH-NMRスペクトルを示す図である。FIG. 5 is a diagram showing a 1 H-NMR spectrum of xylan laurate. 図6は、キシランブチレートのH-NMRスペクトルを示す図である。FIG. 6 shows the 1 H-NMR spectrum of xylan butyrate. 図7は、キシランバレレートのH-NMRスペクトルを示す図である。FIG. 7 is a diagram showing a 1 H-NMR spectrum of xylan valerate. 図8Aは、ポリ-L-乳酸(PLLA)とキシラン誘導体との混合物(フィルム)又はPLLAのみからなるフィルムの第2の昇温の際のDSC曲線の一例を示す図である。縦軸は、発熱の方向、横軸は、温度(℃)を表す。FIG. 8A is a diagram showing an example of a DSC curve at the time of the second temperature increase of a mixture (film) of poly-L-lactic acid (PLLA) and a xylan derivative or a film made only of PLLA. The vertical axis represents the direction of heat generation, and the horizontal axis represents temperature (° C.). 図8Bはポリ-D-乳酸(PDLA)とキシラン誘導体との混合物(フィルム)又はPDLAのみからなるフィルムの第2の昇温の際のDSC曲線の一例を示す図である。縦軸は、発熱の方向、横軸は、温度(℃)を表す。FIG. 8B is a diagram showing an example of a DSC curve at the time of the second temperature increase of a mixture (film) of poly-D-lactic acid (PDLA) and a xylan derivative or a film made only of PDLA. The vertical axis represents the direction of heat generation, and the horizontal axis represents temperature (° C.). 図9Aは、PLLAとキシラン誘導体(キシランプロピオネート)との混合物(フィルム)又はPLLAのみからなるフィルムの第2の昇温の際のDSC曲線の一例を示す図である。縦軸は、発熱の方向、横軸は、温度(℃)を表す。FIG. 9A is a diagram showing an example of a DSC curve at the time of a second temperature increase of a mixture (film) of PLLA and a xylan derivative (xylampropionate) or a film made only of PLLA. The vertical axis represents the direction of heat generation, and the horizontal axis represents temperature (° C.). 図9Bは、PLLAとキシラン誘導体(キシランブチレート)との混合物(フィルム)又はPLLAのみからなるフィルムの第2の昇温の際のDSC曲線の一例を示す図である。縦軸は、発熱の方向、横軸は、温度(℃)を表す。FIG. 9B is a diagram showing an example of a DSC curve at the time of a second temperature increase of a mixture (film) of PLLA and a xylan derivative (xylan butyrate) or a film made only of PLLA. The vertical axis represents the direction of heat generation, and the horizontal axis represents temperature (° C.). 図10Aは、PLLAとキシラン誘導体(キシランプロピオネート)との混合物(フィルム)の降温の際のDSC曲線の一例を示す図である。縦軸は、発熱の方向、横軸は、温度(℃)を表す。FIG. 10A is a diagram showing an example of a DSC curve when the temperature (temperature) of a mixture (film) of PLLA and a xylan derivative (xylampropionate) is lowered. The vertical axis represents the direction of heat generation, and the horizontal axis represents temperature (° C.). 図10Bは、PLLAとキシラン誘導体(キシランブチレート)との混合物(フィルム)の降温の際のDSC曲線の一例を示す図である。縦軸は、発熱の方向、横軸は、温度(℃)を表す。FIG. 10B is a diagram showing an example of a DSC curve when the temperature of the mixture (film) of PLLA and a xylan derivative (xylan butyrate) is lowered. The vertical axis represents the direction of heat generation, and the horizontal axis represents temperature (° C.). 図10Cは、PLLAのみからなるフィルムの降温の際のDSC曲線の一例を示す図である。縦軸は、発熱の方向、横軸は、温度(℃)を表す。FIG. 10C is a diagram showing an example of a DSC curve when the temperature of a film made only of PLLA is lowered. The vertical axis represents the direction of heat generation, and the horizontal axis represents temperature (° C.). 図10Dは、PDLAとキシラン誘導体(キシランプロピオネート)との混合物(フィルム)の降温の際のDSC曲線の一例を示す図である。縦軸は、発熱の方向、横軸は、温度(℃)を表す。FIG. 10D is a diagram showing an example of a DSC curve when the temperature (temperature) of a mixture (film) of PDLA and a xylan derivative (xylampropionate) is lowered. The vertical axis represents the direction of heat generation, and the horizontal axis represents temperature (° C.). 図10Eは、PDLAとキシラン誘導体(キシランブチレート)との混合物(フィルム)の降温の際のDSC曲線の一例を示す図である。縦軸は、発熱の方向、横軸は、温度(℃)を表す。FIG. 10E is a diagram showing an example of a DSC curve at the time of cooling of a mixture (film) of PDLA and a xylan derivative (xylan butyrate). The vertical axis represents the direction of heat generation, and the horizontal axis represents temperature (° C.). 図10Fは、PDLAのみからなるフィルムの降温の際のDSC曲線の一例を示す図である。縦軸は、発熱の方向、横軸は、温度(℃)を表す。FIG. 10F is a diagram showing an example of a DSC curve when the temperature of a film made only of PDLA is lowered. The vertical axis represents the direction of heat generation, and the horizontal axis represents temperature (° C.). 図11Aは、PLLAとキシラン誘導体との混合物(フィルム)又はPLLAのみからなるフィルムを偏光顕微鏡で観察した図である。スケールバーは、100μmを表す。FIG. 11A is a diagram obtained by observing a mixture (film) of PLLA and a xylan derivative or a film made only of PLLA with a polarizing microscope. The scale bar represents 100 μm. 図11Bは、PDLAとキシラン誘導体との混合物(フィルム)又はPDLAのみからなるフィルムを偏光顕微鏡で観察した図である。スケールバーは、100μmを表す。FIG. 11B is a diagram in which a mixture (film) of PDLA and a xylan derivative or a film made only of PDLA is observed with a polarizing microscope. The scale bar represents 100 μm. 図12は、アニーリング温度100℃におけるPLLAとキシラン誘導体との混合物(フィルム)又はPLLAのみからなるフィルムのアニーリング時間と結晶化度との関係の一例を示すグラフである。縦軸は、結晶化度(%)、横軸は、アニーリング時間(分間)を表す。FIG. 12 is a graph showing an example of the relationship between the annealing time and the crystallinity of a mixture (film) of PLLA and a xylan derivative at an annealing temperature of 100 ° C. or a film made only of PLLA. The vertical axis represents crystallinity (%), and the horizontal axis represents annealing time (minutes). 図13は、アニーリング温度100℃におけるPLLAとキシラン誘導体との混合物(フィルム)又はPLLAのみからなるフィルムのアニーリング時間とヘイズ値との関係の一例を示すグラフである。縦軸は、ヘイズ値(%)、横軸は、アニーリング時間(分間)を表す。FIG. 13 is a graph showing an example of the relationship between the annealing time and haze value of a mixture (film) of PLLA and a xylan derivative at an annealing temperature of 100 ° C. or a film made only of PLLA. The vertical axis represents haze value (%), and the horizontal axis represents annealing time (minutes). 図14は、PLLAとキシラン誘導体との混合物(フィルム)又はPLLAのみからなるフィルムの外観の一例を示す写真である。FIG. 14 is a photograph showing an example of the appearance of a mixture (film) of PLLA and a xylan derivative or a film made only of PLLA. 図15は、アニーリング温度100℃におけるPLLAとキシラン誘導体との混合物(フィルム)又はPLLAのみからなるフィルムのアニーリング時間と熱膨張率との関係の一例を示すグラフである。縦軸は、熱膨張率(%)、横軸は、アニーリング時間(分間)を表す。FIG. 15 is a graph showing an example of the relationship between the annealing time and the coefficient of thermal expansion of a mixture (film) of PLLA and a xylan derivative at an annealing temperature of 100 ° C. or a film made only of PLLA. The vertical axis represents the coefficient of thermal expansion (%), and the horizontal axis represents the annealing time (minutes).
 以下、本発明の好ましい実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail.
(造核剤)
 本発明の造核剤は、下記構造式(1)で表される繰返し構造単位を有するキシラン(以下、「キシラン誘導体の前駆体」と称することがある。)のエステル化又はエーテル化により得られる誘導体であり、有機溶剤を使用するゲルパーミエーションクロマトグラフィー(GPC)法で測定されるポリスチレン(PS)換算数平均分子量が3,000~150,000の範囲にある。
Figure JPOXMLDOC01-appb-C000007
(Nucleating agent)
The nucleating agent of the present invention is obtained by esterification or etherification of xylan having a repeating structural unit represented by the following structural formula (1) (hereinafter sometimes referred to as “precursor of xylan derivative”). It is a derivative and has a polystyrene (PS) equivalent number average molecular weight in the range of 3,000 to 150,000 measured by gel permeation chromatography (GPC) using an organic solvent.
Figure JPOXMLDOC01-appb-C000007
<キシラン誘導体の前駆体の原料>
 前記キシラン誘導体の前駆体は、キシロースを利用して製造してもよいが、自然界、例えば、木材、草本類、ワラ、竹等のバイオマス中に大量に存在しているので、これらを利用することが好ましい。以下、これらのバイオマスの利用を、木材を例に記載する。
<Raw material of precursor of xylan derivative>
The precursor of the xylan derivative may be produced using xylose, but it is present in large quantities in the natural world, for example, biomass such as wood, herbs, straw, bamboo, etc. Is preferred. Hereinafter, utilization of these biomass will be described using wood as an example.
<<アルカリ抽出工程>>
 木材を予め裁断し、5質量%以上、好ましくは、16質量%以上の水酸化ナトリウム水溶液で抽出する。抽出時間は、10時間以上が好ましく、16時間以上がより好ましい。アルカリ溶液の使用量は、原料100質量部に対して、20質量部~400質量部が好ましく、100質量部~320質量部がより好ましい。
<< Alkali extraction process >>
The wood is cut in advance and extracted with an aqueous sodium hydroxide solution of 5% by mass or more, preferably 16% by mass or more. The extraction time is preferably 10 hours or more, and more preferably 16 hours or more. The amount of the alkaline solution used is preferably 20 to 400 parts by mass, more preferably 100 to 320 parts by mass with respect to 100 parts by mass of the raw material.
<<pH調整工程>>
 前記アルカリ抽出工程後は、反応液のpH調整を行う。pHとしては、5~8が好ましく、6~7がより好ましい。pH調整に用いる試薬としては、塩酸、酢酸、ギ酸等の酸が好ましい。
<< pH adjustment process >>
After the alkali extraction step, the pH of the reaction solution is adjusted. The pH is preferably 5 to 8, and more preferably 6 to 7. As a reagent used for pH adjustment, acids such as hydrochloric acid, acetic acid and formic acid are preferable.
<<沈殿工程>>
 前記pH調整工程後は、必要に応じて、沈殿工程を行う。回収率の向上を行うためである。沈殿を促進させるためには、例えば、エタノール、メタノール等の低級アルコールを、前記アルカリ抽出物に対して、2倍容量~10倍容量添加することが好ましく、5倍容量~10倍容量添加することがより好ましい。
<< Precipitation process >>
After the pH adjustment step, a precipitation step is performed as necessary. This is to improve the recovery rate. In order to promote precipitation, for example, a lower alcohol such as ethanol or methanol is preferably added in a volume of 2 to 10 times, preferably 5 to 10 times the volume of the alkaline extract. Is more preferable.
<<洗浄工程>>
 前記沈殿工程後、得られた沈殿物を、必要に応じて、エタノール、メタノールなど、除去が容易な有機溶剤で洗浄し、不要物を除去する。更に、ろ過、遠心分離等で不要物を除去することは、その後のエステル化反応、エーテル化反応時の副生成物の生成を回避する点から有効である。
<< Cleaning process >>
After the precipitation step, the obtained precipitate is washed with an organic solvent that can be easily removed, such as ethanol and methanol, as necessary, to remove unnecessary substances. Furthermore, removing unnecessary substances by filtration, centrifugation, etc. is effective from the viewpoint of avoiding the formation of by-products during the subsequent esterification reaction and etherification reaction.
<<乾燥工程>>
 前記沈殿工程で得られた沈殿物、あるいは、前記洗浄工程で得られた洗浄後の沈殿物は、乾燥工程において乾燥させることが好ましい。前記乾燥工程としては、特に制限はなく、凍結乾燥法、温風乾燥法、噴霧乾燥法、流動層乾燥法で行う。
<< Drying process >>
The precipitate obtained in the precipitation step or the washed precipitate obtained in the washing step is preferably dried in the drying step. There is no restriction | limiting in particular as said drying process, It performs by a freeze-drying method, a warm air drying method, a spray drying method, and a fluidized-bed drying method.
 上記手法で、「キシラン誘導体の前駆体」を得ることができる。 The “xylan derivative precursor” can be obtained by the above method.
<「キシラン誘導体の前駆体」のエステル誘導体、エーテル誘導体の製造>
<<造核剤の製造>>
-エステル化、エーテル化の目的と効果-
 本発明においては、「キシラン誘導体の前駆体」そのもの(キシラン)を造核剤とする。または、「キシラン誘導体の前駆体」を、エステル化又はエーテル化して、即ち、エステル誘導体又はエーテル誘導体として、造核剤とする。エステル化又はエーテル化は、「キシラン誘導体の前駆体」中の水酸基を、エステル基又はエーテル基に変換することにより、結晶性高分子との親和性を高め、結晶性高分子材料中での良好な分散を可能とし、優れた造核剤として機能を付与する目的で行う。
 エステル化、エーテル化の度合いは、任意であるが、少なくとも、有機溶剤には不溶である「キシラン誘導体の前駆体」が、有機溶剤に溶解するまで行う。具体的には、有機溶剤を使用するゲルパーミエーションクロマトグラフィー法で分子量測定が可能となるまでである。
 あるいは、IRスペクトルの水酸基吸収強度を基準に、「キシラン誘導体の前駆体」中の水酸基の吸収強度が50%以上低下するまで、エーテル化又はエステル化を行う。
<Manufacture of ester derivatives and ether derivatives of "precursor of xylan derivative">
<< Manufacture of nucleating agent >>
-Purpose and effect of esterification and etherification-
In the present invention, “a xylan derivative precursor” itself (xylan) is used as a nucleating agent. Alternatively, “a precursor of a xylan derivative” is esterified or etherified, that is, an ester derivative or an ether derivative is used as a nucleating agent. Esterification or etherification improves the affinity with crystalline polymer by converting the hydroxyl group in “precursor of xylan derivative” to ester group or ether group, and is good in crystalline polymer material. For the purpose of imparting a function as an excellent nucleating agent.
The degree of esterification and etherification is arbitrary, but at least until “the precursor of xylan derivative” which is insoluble in the organic solvent is dissolved in the organic solvent. Specifically, the molecular weight can be measured by gel permeation chromatography using an organic solvent.
Alternatively, etherification or esterification is performed until the hydroxyl group absorption intensity in the “precursor of xylan derivative” decreases by 50% or more with reference to the hydroxyl group absorption intensity of the IR spectrum.
-エステル化反応、エーテル化反応の方法-
 「キシラン誘導体の前駆体」中の水酸基は、キシロース中の水酸基と同様に、あるいは、糖鎖中の水酸基と同様に、単純なアルコールと同様の反応性を有する。「キシラン誘導体の前駆体」の水酸基は、糖鎖中に存在するが、エステル化又はエーテル化は、比較的容易に進行するので、有機合成化学の分野で広く用いられる反応から、任意に選択してよい。本発明者らは、「キシラン誘導体の前駆体」の分子量がセルロース等に比較して小さいこと、水酸基が2つで、共にエカトリアルに配座していることが関係していると考えている。
 エステル化反応、エーテル化反応の比較においては、一般に、エステル化反応が、カルボン酸(無水カルボン酸、カルボン酸塩化物、を含む)、リン酸に対して温和な条件で進行するので、エステル化がより好ましい。
-Methods of esterification and etherification-
A hydroxyl group in the “precursor of xylan derivative” has the same reactivity as a simple alcohol in the same manner as a hydroxyl group in xylose or a hydroxyl group in a sugar chain. The hydroxyl group of the “precursor of xylan derivative” exists in the sugar chain, but esterification or etherification proceeds relatively easily. Therefore, it is arbitrarily selected from reactions widely used in the field of synthetic organic chemistry. It's okay. The present inventors consider that the molecular weight of the “precursor of xylan derivative” is smaller than that of cellulose and the like, and that there are two hydroxyl groups and both are coordinated to equatorial.
In comparison between esterification reaction and etherification reaction, esterification generally proceeds under mild conditions with respect to carboxylic acid (including carboxylic anhydride and carboxylic acid chloride) and phosphoric acid. Is more preferable.
-エステル基、エーテル基の構造-
 エステル基、エーテル基の構造には、特に制限はないが、「キシラン誘導体の前駆体」との反応性の容易性、結晶性高分子との親和性の観点からは、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、tert-ブチル基等のアルキル基;アセチル基、プロピオニル基、ヘキサノイル基、デカノイル基、ラウリル基等のアルカノイル基;フェニル基;ベンジル基等を含む構造が好ましい。
-Structure of ester and ether groups-
The structure of the ester group or ether group is not particularly limited, but from the viewpoint of easy reactivity with the “precursor of xylan derivative” and affinity with the crystalline polymer, a methyl group, an ethyl group, Alkyl groups such as propyl group, isopropyl group, butyl group, sec-butyl group, tert-butyl group; alkanoyl groups such as acetyl group, propionyl group, hexanoyl group, decanoyl group, lauryl group; phenyl group; including benzyl group A structure is preferred.
-分子量-
 本発明に係る造核剤の分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法で測定されるポリスチレン換算数平均分子量で、3,000~150,000の範囲である。
 3,000未満であると、結晶性高分子中での安定性に問題があり、150,000を超えると、結晶性高分子材料での分散に問題がある。
 本発明において、前記GPC法で測定されるポリスチレン換算数平均分子量とは、以下の条件で測定して得られた値である。
[測定条件]
 装置   :Shimadzu 10A(株式会社島津製作所製)
 カラム  :Shodex(登録商標) K-G/806K/802連結カラム(昭和電工株式会社製)
 カラム温度:40℃
 移動層  :クロロフォルム
 流速   :0.8mL/分間
 アプライ :50μL
-Molecular weight-
The molecular weight of the nucleating agent according to the present invention is a polystyrene-equivalent number average molecular weight measured by gel permeation chromatography (GPC), and is in the range of 3,000 to 150,000.
If it is less than 3,000, there is a problem in stability in the crystalline polymer, and if it exceeds 150,000, there is a problem in dispersion in the crystalline polymer material.
In the present invention, the polystyrene-equivalent number average molecular weight measured by the GPC method is a value obtained by measurement under the following conditions.
[Measurement condition]
Apparatus: Shimadzu 10A (manufactured by Shimadzu Corporation)
Column: Shodex (registered trademark) KG / 806K / 802 connection column (manufactured by Showa Denko KK)
Column temperature: 40 ° C
Moving layer: Chloroform Flow rate: 0.8 mL / min Apply: 50 μL
(結晶性高分子組成物)
 本発明に係る結晶性高分子組成物は、結晶性高分子及び上記した本発明に係る造核剤を含むことにより、DSCの降温測定時の結晶化温度の上昇に伴う、加工時の成形サイクルの短縮等の改良が行われた、結晶性高分子組成物である。
 また、前記キシラン誘導体の前駆体及び結晶性高分子及びを少なくとも含有する結晶性高分子組成物も、本発明の結晶性高分子組成物である。
(Crystalline polymer composition)
The crystalline polymer composition according to the present invention includes a crystalline polymer and the above-described nucleating agent according to the present invention, so that a molding cycle at the time of processing accompanying an increase in the crystallization temperature during DSC temperature drop measurement It is a crystalline polymer composition that has been improved such as shortening.
The crystalline polymer composition containing at least the precursor of the xylan derivative and the crystalline polymer is also the crystalline polymer composition of the present invention.
<結晶性高分子>
 結晶性高分子を例示すれば、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン系樹脂(プロピレンホモ重合体、プロピレンブロック共重合体、プロピレンランダム共重合体、更にこれらの中でアイソタクティック、シンジオタクティック、アタクティックの立体規則性の異なる(共)重合体などを含む)、ポリブテン-1、ポリ-3-メチル-1-ブテン、ポリ-3-メチル-1-ペンテン、ポリ-4-メチル-1-ペンテン等のα-オレフィン重合体(ポリオレフィン系高分子);ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリヘキサメチレンテレフタレート等の芳香族ポリエステル系高分子;ポリ乳酸系高分子(例えば、ポリ乳酸(ポリ-L-乳酸、ポリ-D-乳酸、ステレオコンプレックス型ポリ乳酸)、ポリカプロラクトン、ポリヒドロキシアルカノエートなど)、ポリブチレンサクシネート等の生分解性ポリエステル系高分子;ポリ-[(R)-3-ヒドロキシブチレート]、ポリ-[(R)-3-ヒドロキシブチレート-co-(R)-3-ヒドロキシヘキサノエート]、ポリ-[(R)-3-ヒドロキシブチレート-co-(R)-4-ヒドロキシブチレート]、ポリ-[(R)-3-ヒドロキシブチレート-co-(R)-3-ヒドロキシバレレート]等の微生物産生ポリエステル系高分子などが挙げられる。
<Crystalline polymer>
Examples of crystalline polymers include low density polyethylene, linear low density polyethylene, high density polyethylene, polypropylene resins (propylene homopolymers, propylene block copolymers, propylene random copolymers, and among these Isotactic, syndiotactic, (co) polymers having different atactic stereoregularity), polybutene-1, poly-3-methyl-1-butene, poly-3-methyl-1-pentene, Α-olefin polymers (polyolefin polymers) such as poly-4-methyl-1-pentene; aromatic polyester polymers such as polyethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate; polylactic acid polymers (for example, , Polylactic acid (poly-L-lactic acid, poly-D-lactic acid, stereo Complex polylactic acid), polycaprolactone, polyhydroxyalkanoate, etc.), polybutylene succinate and other biodegradable polyester polymers; poly-[(R) -3-hydroxybutyrate], poly-[(R ) -3-hydroxybutyrate-co- (R) -3-hydroxyhexanoate], poly-[(R) -3-hydroxybutyrate-co- (R) -4-hydroxybutyrate], poly- Examples include microorganism-produced polyester polymers such as [(R) -3-hydroxybutyrate-co- (R) -3-hydroxyvalerate].
<添加量>
 本発明に係る結晶性高分子組成物においては、上記造核剤を、必要に応じて、1種又は2種以上用いることができ、それぞれの造核剤の使用量は、結晶性高分子100質量部に対して、0.01質量部~20質量部が好ましく、0.1質量部~10質量部がより好ましい。0.01質量部未満では、効果が得られない場合があり、また20質量部を超えると、結晶性高分子材料自体の特性が失われることがある。
<Addition amount>
In the crystalline polymer composition according to the present invention, one or more of the nucleating agents can be used as necessary, and the amount of each nucleating agent used is the crystalline polymer 100. The amount is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 10 parts by mass with respect to parts by mass. If the amount is less than 0.01 parts by mass, the effect may not be obtained. If the amount exceeds 20 parts by mass, the characteristics of the crystalline polymer material itself may be lost.
<添加方法>
 前記造核剤の前記結晶性高分子への添加方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、(1)前記結晶性高分子と前記造核剤とをそれぞれ固体(ペレット、粉末等)状態で混合(ドライブレンド)し、これを成形加工機で直接溶融成形する方法、(2)前記造核剤と前記結晶性高分子とを予め溶融混合し、該造核剤を最終組成物の濃度よりも高濃度に含む混合物(マスターバッチ)を製造し、このマスターバッチを該結晶性高分子に添加して成形加工する方法、(3)前記結晶性高分子と前記造核剤とを、最終濃度となるように予め溶融混練により混合して組成物を製造し、これを成形加工する方法、などが挙げられる。また、前記結晶性高分子及び前記造核剤を溶解し得る溶媒にこれらを溶解し、得られた溶解液から成形加工(溶媒キャスト法)してもよい。
 なお、本造核剤の添加にあたっては、公知の、他の造核剤はもちろん、酸化防止剤、耐候剤、帯電防止剤、難燃剤、無機充填剤、有機充填剤、非結晶性高分子、エラストマー、ゴム等が並存していても構わない。
<Addition method>
The method for adding the nucleating agent to the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, (1) the crystalline polymer and the nucleating agent are A method of mixing (dry blending) each in a solid state (pellet, powder, etc.) and directly melt-molding it with a molding machine, (2) Melting and mixing the nucleating agent and the crystalline polymer in advance, A method of producing a mixture (masterbatch) containing a nucleating agent at a concentration higher than the concentration of the final composition, and adding the masterbatch to the crystalline polymer; and (3) the crystalline polymer. And the nucleating agent are mixed in advance by melt-kneading so as to obtain a final concentration, and a composition is produced, followed by molding. Further, these may be dissolved in a solvent capable of dissolving the crystalline polymer and the nucleating agent, and molded (solvent casting method) from the obtained solution.
In addition, in addition to the known nucleating agent, in addition to the known nucleating agent, antioxidant, weathering agent, antistatic agent, flame retardant, inorganic filler, organic filler, amorphous polymer, Elastomer, rubber, etc. may coexist.
 以下に本発明の実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples of the present invention, but the present invention is not limited to these examples.
(調製例1:キシラン誘導体の前駆体の抽出)
 広葉樹(ユーカリクラフトパルプ、日本製紙株式会社製)50gに10質量%水酸化ナトリウム水溶液1Lを添加し、25℃にて2時間攪拌しながらアルカリ抽出を行った。次いで、これをろ紙(No.1、アドバンテック東洋株式会社製)を用いてろ過し、更に水で洗浄した。次いで、抽出物を酢酸でpH7.0に調整し、これにエタノール(純度99%、和光純薬工業株式会社製)1Lを添加し、25℃にて12時間放置した。次いで、10,000rpmにて10分間遠心分離し、沈殿物としてキシランを回収した。該沈殿物に再度エタノールを添加し、同条件で遠心して沈殿物を洗浄した。この洗浄は合計2回行った。該沈殿物に再度蒸留水を添加し、同条件で遠心して沈殿物を洗浄した。この洗浄は合計3回行った。洗浄後の沈殿物を凍結乾燥により一晩乾燥させ、粉体状の広葉樹キシラン(キシラン誘導体の前駆体)2.4gを得た。収率は4.8質量%であった。
(Preparation Example 1: Extraction of precursor of xylan derivative)
1 L of 10 mass% sodium hydroxide aqueous solution was added to 50 g of hardwood (eucalyptus kraft pulp, manufactured by Nippon Paper Industries Co., Ltd.), and alkali extraction was performed while stirring at 25 ° C. for 2 hours. Next, this was filtered using a filter paper (No. 1, manufactured by Advantech Toyo Co., Ltd.) and further washed with water. Next, the extract was adjusted to pH 7.0 with acetic acid, 1 L of ethanol (purity 99%, manufactured by Wako Pure Chemical Industries, Ltd.) was added thereto, and the mixture was allowed to stand at 25 ° C. for 12 hours. Next, the mixture was centrifuged at 10,000 rpm for 10 minutes, and xylan was recovered as a precipitate. Ethanol was added again to the precipitate, and the precipitate was washed by centrifugation under the same conditions. This washing was performed twice in total. Distilled water was added again to the precipitate, and the precipitate was washed by centrifugation under the same conditions. This washing was performed three times in total. The washed precipitate was dried overnight by freeze-drying to obtain 2.4 g of powdered hardwood xylan (precursor of xylan derivative). The yield was 4.8% by mass.
(製造例1:キシランアセテートの合成)
 N,N-ジメチルアセタミド(DMAc、和光純薬工業株式会社製)2mLに、調製例1で得られたキシラン100mgを添加し、120℃で2時間攪拌混合した。この混合物を100℃に冷却した後、塩化リチウム0.175gを添加し、室温(約25℃)まで冷却した。次いで、ピリジン0.24mLと無水酢酸0.28mLとを添加し、50℃にて6時間攪拌混合し、エステル化反応を行った。
 エステル化後の反応液を室温(約25℃)まで冷却し、該反応液の5倍量(約10mL)の100質量%冷メタノール(4℃)に投入し、25℃にて0.5時間放置した後、ろ紙(No.1、アドバンテック東洋株式会社製)によりろ過することにより沈殿物としてキシランアセテートを得た。収率は、86質量%であった。
(Production Example 1: Synthesis of xylan acetate)
100 mg of xylan obtained in Preparation Example 1 was added to 2 mL of N, N-dimethylacetamide (DMAc, manufactured by Wako Pure Chemical Industries, Ltd.), and the mixture was stirred and mixed at 120 ° C. for 2 hours. The mixture was cooled to 100 ° C., 0.175 g of lithium chloride was added, and the mixture was cooled to room temperature (about 25 ° C.). Next, 0.24 mL of pyridine and 0.28 mL of acetic anhydride were added, and the mixture was stirred and mixed at 50 ° C. for 6 hours to carry out an esterification reaction.
The reaction solution after esterification is cooled to room temperature (about 25 ° C.), and charged into 100 mass% cold methanol (4 ° C.) of 5 times the amount of the reaction solution (about 10 mL), at 0.5 ° C. for 0.5 hour. After standing, xylan acetate was obtained as a precipitate by filtering with filter paper (No. 1, manufactured by Advantech Toyo Co., Ltd.). The yield was 86% by mass.
<同定及び置換度の確認>
 核磁気共鳴装置(JNM-A500 FT-NMR、JEOL社製)を用いて、500MHzにおける重クロロフォルム中で、キシランアセテートのプロトン核磁気共鳴(H-NMR)の測定を行った。図1に、キシランアセテートのH-NMRスペクトルを示す。
 図1より、キシランには存在しない、2ppm付近にCHに由来するピークが出現し、キシランアセテートの存在が確認された。
 また、キシランに存在する2つの水酸基の水素原子の置換度(DS)をNMRの積分値より計算した結果、置換度(DS)は、2.0であった。
<Identification and confirmation of substitution degree>
Using a nuclear magnetic resonance apparatus (JNM-A500 FT-NMR, manufactured by JEOL), proton nuclear magnetic resonance ( 1 H-NMR) of xylan acetate was measured in deuterated chloroform at 500 MHz. FIG. 1 shows the 1 H-NMR spectrum of xylan acetate.
As shown in FIG. 1, a peak derived from CH 3 appeared in the vicinity of 2 ppm, which is not present in xylan, and the presence of xylan acetate was confirmed.
Moreover, as a result of calculating the substitution degree (DS) of hydrogen atoms of two hydroxyl groups present in xylan from the integrated value of NMR, the substitution degree (DS) was 2.0.
<分子量測定>
 キシランアセテート10mgをクロロフォルム1mLに懸濁し、ゲルパーミエーションクロマトグラフィー(GPC)法により重量平均分子量(Mw)及び数平均分子量(Mn)を以下の測定条件で測定した。なお、Mn及びMwはポリスチレン(PS)換算とした。
 その結果、キシランアセテートにおける重合度(DP)は、179であり、重量平均分子量(Mw)は、69,000であり、数平均分子量(Mn)は、40,500であり、Mw/Mnは、1.7であった。
[測定条件]
 装置   :Shimadzu 10A(株式会社島津製作所製)
 カラム  :Shodex(登録商標) K-G/806K/802連結カラム(昭和電工株式会社製)
 カラム温度:40℃
 移動層  :クロロフォルム
 流速   :0.8mL/分間
 アプライ :50μL
<Molecular weight measurement>
10 mg of xylan acetate was suspended in 1 mL of chloroform, and the weight average molecular weight (Mw) and the number average molecular weight (Mn) were measured by the gel permeation chromatography (GPC) method under the following measurement conditions. Mn and Mw were converted to polystyrene (PS).
As a result, the degree of polymerization (DP n ) in xylan acetate is 179, the weight average molecular weight (Mw) is 69,000, the number average molecular weight (Mn) is 40,500, and Mw / Mn is 1.7.
[Measurement condition]
Apparatus: Shimadzu 10A (manufactured by Shimadzu Corporation)
Column: Shodex (registered trademark) KG / 806K / 802 connection column (manufactured by Showa Denko KK)
Column temperature: 40 ° C
Moving layer: Chloroform Flow rate: 0.8 mL / min Apply: 50 μL
<10質量%熱分解温度の測定>
 キシランアセテート2mgを、示差熱天秤(ThermoPlus DSC8320、株式会社リガク製)に入れ、窒素雰囲気下で、50℃~450℃まで20℃/分間で昇温した。このTG曲線から求めた10質量%熱分解温度は、304℃であった。
 なお、同様の方法で求めたキシランの10質量%熱分解温度は、217℃であった。
<Measurement of 10% by mass pyrolysis temperature>
2 mg of xylan acetate was placed in a differential thermobalance (ThermoPlus DSC8320, manufactured by Rigaku Corporation), and the temperature was increased from 50 ° C. to 450 ° C. at 20 ° C./min in a nitrogen atmosphere. The 10% by mass thermal decomposition temperature determined from this TG curve was 304 ° C.
In addition, the 10 mass% thermal decomposition temperature of the xylan calculated | required by the same method was 217 degreeC.
(製造例2:キシランプロピオネートの合成)
 製造例1において、無水酢酸に代えて無水プロピオン酸を用い、エステル化反応時間を、6時間に変えて36時間としたこと以外は、製造例1と同様の方法でキシランプロピオネートを得た。収率は、62質量%であった。
 得られたキシランプロピオネートの同定、置換度の確認、分子量測定、及び10質量%熱分解温度の測定を製造例1と同様の方法で行った。
(Production Example 2: Synthesis of xylampropionate)
In Production Example 1, xylanthropionate was obtained in the same manner as in Production Example 1, except that propionic anhydride was used instead of acetic anhydride and the esterification reaction time was changed to 6 hours to 36 hours. . The yield was 62% by mass.
Identification of the obtained xylampropionate, confirmation of the degree of substitution, measurement of molecular weight, and measurement of 10% by mass pyrolysis temperature were carried out in the same manner as in Production Example 1.
 図2に、キシランプロピオネートのH-NMRスペクトル示す。図2より、キシランプロピオネートの存在が確認された。また、キシランに存在する2つの水酸基の水素原子の置換度(DS)は、2.0であった。
 また、キシランプロピオネートにおける重合度(DP)は、169であり、重量平均分子量(Mw)は、62,000であり、数平均分子量(Mn)は、41,300であり、Mw/Mnは、1.5であり、10質量%熱分解温度は、296℃であった。
FIG. 2 shows the 1 H-NMR spectrum of xylampropionate. From FIG. 2, the presence of xylampropionate was confirmed. Moreover, the substitution degree (DS) of hydrogen atoms of two hydroxyl groups present in xylan was 2.0.
Further, the degree of polymerization (DP n ) in xylampropionate is 169, the weight average molecular weight (Mw) is 62,000, the number average molecular weight (Mn) is 41,300, and Mw / Mn Was 1.5, and the thermal decomposition temperature of 10% by mass was 296 ° C.
(製造例3:キシランヘキサノエートの合成)
 製造例1において、無水酢酸に代えて無水ヘキサン酸を用い、エステル化反応時間を、6時間に変えて48時間としたこと以外は、製造例1と同様の方法でキシランヘキサノエートを得た。収率は、67質量%であった。
 得られたキシランヘキサノエートの同定、置換度の確認、分子量測定、及び10質量%熱分解温度の測定を製造例1と同様の方法で行った。
(Production Example 3: Synthesis of xylan hexanoate)
In Production Example 1, xylan hexanoate was obtained in the same manner as in Production Example 1, except that hexanoic anhydride was used instead of acetic anhydride and the esterification reaction time was changed to 6 hours to 48 hours. . The yield was 67% by mass.
Identification of the obtained xylan hexanoate, confirmation of the degree of substitution, measurement of molecular weight, and measurement of 10% by mass pyrolysis temperature were carried out in the same manner as in Production Example 1.
 図3に、キシランヘキサノエートのH-NMRスペクトル示す。図3より、キシランヘキサノエートの存在が確認された。また、キシランに存在する2つの水酸基の水素原子の置換度(DS)は、2.0であった。
 また、キシランヘキサノエートにおける重合度(DP)は、132であり、重量平均分子量(Mw)は、65,000であり、数平均分子量(Mn)は、43,300であり、Mw/Mnは、1.5であり、10質量%熱分解温度は、314℃であった。
FIG. 3 shows the 1 H-NMR spectrum of xylan hexanoate. From FIG. 3, the presence of xylan hexanoate was confirmed. Moreover, the substitution degree (DS) of hydrogen atoms of two hydroxyl groups present in xylan was 2.0.
The degree of polymerization (DP n ) in xylan hexanoate is 132, the weight average molecular weight (Mw) is 65,000, the number average molecular weight (Mn) is 43,300, and Mw / Mn Was 1.5, and the thermal decomposition temperature of 10% by mass was 314 ° C.
(製造例4:キシランデカノエートの合成)
 製造例1において、無水酢酸に代えてデカン酸クロリドを用い、ピリジンに代えてジメチルアミノピリジンを用い、エステル化反応時間を、6時間に変えて48時間としたこと以外は、製造例1と同様の方法でキシランデカノエートを得た。収率は、74質量%であった。
 得られたキシランデカノエートの同定、置換度の確認、分子量測定、及び10質量%熱分解温度の測定を製造例1と同様の方法で行った。
(Production Example 4: Synthesis of xylan decanoate)
In Production Example 1, decanoic acid chloride was used in place of acetic anhydride, dimethylaminopyridine was used in place of pyridine, and the esterification reaction time was changed from 6 hours to 48 hours. In this way, xylan decanoate was obtained. The yield was 74% by mass.
The obtained xylan decanoate was identified, the degree of substitution was confirmed, the molecular weight was measured, and the 10% by mass pyrolysis temperature was measured in the same manner as in Production Example 1.
 図4に、キシランデカノエートのH-NMRスペクトル示す。図4より、キシランデカノエートの存在が確認された。また、キシランに存在する2つの水酸基の水素原子の置換度(DS)は、2.0であった。
 また、キシランデカノエートにおける重合度(DP)は、143であり、重量平均分子量(Mw)は、101,000であり、数平均分子量(Mn)は、63,100であり、Mw/Mnは、1.6であり、10質量%熱分解温度は、305℃であった。
FIG. 4 shows the 1 H-NMR spectrum of xylan decanoate. From FIG. 4, the presence of xylan decanoate was confirmed. Moreover, the substitution degree (DS) of hydrogen atoms of two hydroxyl groups present in xylan was 2.0.
The degree of polymerization (DP n ) in xylan decanoate is 143, the weight average molecular weight (Mw) is 101,000, the number average molecular weight (Mn) is 63,100, and Mw / Mn Was 1.6, and the 10% by mass thermal decomposition temperature was 305 ° C.
(製造例5:キシランラウレートの合成)
 製造例1において、無水酢酸に代えてラウリン酸クロリドを、ピリジンに替えてジメチルアミノピリジンを用い、エステル化反応時間を、6時間に変えて48時間としたこと以外は、製造例1と同様の方法でキシランラウレートを得た。収率は、73質量%であった。
 得られたキシランラウレートの同定、置換度の確認、分子量測定、及び10質量%熱分解温度の測定を製造例1と同様の方法で行った。
(Production Example 5: Synthesis of xylan laurate)
In Production Example 1, lauric acid chloride was used instead of acetic anhydride, dimethylaminopyridine was used instead of pyridine, and the esterification reaction time was changed to 6 hours to 48 hours. Xylan laurate was obtained by the method. The yield was 73% by mass.
The obtained xylan laurate was identified, the degree of substitution was confirmed, the molecular weight was measured, and the 10% by mass pyrolysis temperature was measured in the same manner as in Production Example 1.
 図5に、キシランラウレートのH-NMRスペクトル示す。図5より、キシランラウレートの存在が確認された。また、キシランに存在する2つの水酸基の水素原子の置換度(DS)は、2.0であった。
 また、キシランラウレートにおける重合度(DP)は、123であり、重量平均分子量(Mw)は、98,000であり、数平均分子量(Mn)は、61,200であり、Mw/Mnは、1.6であり、10質量%熱分解温度は、295℃であった。
FIG. 5 shows a 1 H-NMR spectrum of xylan laurate. From FIG. 5, the presence of xylan laurate was confirmed. Moreover, the substitution degree (DS) of hydrogen atoms of two hydroxyl groups present in xylan was 2.0.
The degree of polymerization (DP n ) in xylan laurate is 123, the weight average molecular weight (Mw) is 98,000, the number average molecular weight (Mn) is 61,200, and Mw / Mn is 1.6, and the thermal decomposition temperature of 10% by mass was 295 ° C.
(製造例6:キシランブチレートの合成)
 製造例1において、無水酢酸に代えて無水ブタン酸を用い、エステル化反応時間を、6時間に変えて48時間としたこと以外は、製造例1と同様の方法でキシランブチレートを得た。収率は、72質量%であった。
 得られたキシランブチレートの同定、置換度の確認、分子量測定、及び10質量%熱分解温度の測定を製造例1と同様の方法で行った。
(Production Example 6: Synthesis of xylan butyrate)
In Production Example 1, xylan butyrate was obtained in the same manner as in Production Example 1, except that butanoic anhydride was used in place of acetic anhydride and the esterification reaction time was changed to 6 hours to 48 hours. The yield was 72% by mass.
Identification of the obtained xylan butyrate, confirmation of the degree of substitution, measurement of molecular weight, and measurement of 10% by mass pyrolysis temperature were carried out in the same manner as in Production Example 1.
 図6に、キシランブチレートのH-NMRスペクトル示す。図6より、キシランブチレートの存在が確認された。また、キシランに存在する2つの水酸基の水素原子の置換度(DS)は、2.0であった。
 また、キシランブチレートにおける重合度(DP)は、170であり、重量平均分子量(Mw)は、73,000であり、数平均分子量(Mn)は、46,000であり、Mw/Mnは、1.6であり、10質量%熱分解温度は、320℃であった。
FIG. 6 shows the 1 H-NMR spectrum of xylan butyrate. From FIG. 6, the presence of xylan butyrate was confirmed. Moreover, the substitution degree (DS) of hydrogen atoms of two hydroxyl groups present in xylan was 2.0.
The degree of polymerization (DP n ) in xylan butyrate is 170, the weight average molecular weight (Mw) is 73,000, the number average molecular weight (Mn) is 46,000, and Mw / Mn is 1.6, and the 10% by mass thermal decomposition temperature was 320 ° C.
(製造例7:キシランバレレートの合成)
 製造例1において、無水酢酸に代えて無水吉草酸を用い、エステル化反応時間を、6時間に変えて48時間としたこと以外は、製造例1と同様の方法でキシランバレレートを得た。収率は、73質量%であった。
 得られたキシランバレレートの同定、置換度の確認、分子量測定、及び10質量%熱分解温度の測定を製造例1と同様の方法で行った。
(Production Example 7: Synthesis of xylan valerate)
In Production Example 1, valeric anhydride was used in place of acetic anhydride, and xylan valerate was obtained in the same manner as in Production Example 1, except that the esterification reaction time was changed to 6 hours to 48 hours. The yield was 73% by mass.
The obtained xylan valerate was identified, the degree of substitution was confirmed, the molecular weight was measured, and the 10% by mass pyrolysis temperature was measured in the same manner as in Production Example 1.
 図7に、キシランバレレートのH-NMRスペクトル示す。図7より、キシランバレレートの存在が確認された。また、キシランに存在する2つの水酸基の水素原子の置換度(DS)は、2.0であった。
 また、キシランバレレートにおける重合度(DP)は、156であり、重量平均分子量(Mw)は、77,000であり、数平均分子量(Mn)は、45,000であり、Mw/Mnは、1.7であり、10質量%熱分解温度は、325℃であった。
FIG. 7 shows a 1 H-NMR spectrum of xylan valerate. From FIG. 7, the presence of xylan valerate was confirmed. Moreover, the substitution degree (DS) of hydrogen atoms of two hydroxyl groups present in xylan was 2.0.
In addition, the degree of polymerization (DP n ) in xylan valerate is 156, the weight average molecular weight (Mw) is 77,000, the number average molecular weight (Mn) is 45,000, and Mw / Mn is 1.7, and the 10% by mass thermal decomposition temperature was 325 ° C.
(実施例1~26:ソルベントキャストフィルムF1~26の作製)
 製造例1~7のキシラン誘導体及び下記構造式(A)で表されるポリ-L-乳酸(poly-L-lactic acid;PLLA)を用いて、以下に示す方法で、下記表1に示すソルベントキャストフィルムF1~26を作製した。
 ポリ-L-乳酸(商品名:ラクティー、株式会社島津製作所製)0.5gをクロロフォルム50mLに溶解し、前記ポリ-L-乳酸100質量部に対して、製造例1~7の各キシラン誘導体を、0.1質量部、0.5質量部、1質量部、3質量部、5質量部、及び10質量部のいずれかの量で混合し、完全に溶解させた混合物を調製した。
 これを、それぞれテフロン(登録商標)製のシャーレに流し込み、適当に穴を開けたアルミホイルで蓋をし、ドラフト内(25℃)で12時間乾燥させ、クロロフォルムを揮発させ、実施例1~26のソルベントキャストフィルムF1~26を作製した。
Figure JPOXMLDOC01-appb-C000008
(Examples 1 to 26: Preparation of solvent cast films F1 to F26)
Solvents shown in Table 1 below using the xylan derivatives of Production Examples 1 to 7 and poly-L-lactic acid (PLLA) represented by the following structural formula (A) by the following method Cast films F1 to F26 were produced.
0.5 g of poly-L-lactic acid (trade name: Lacty, manufactured by Shimadzu Corporation) is dissolved in 50 mL of chloroform, and each xylan derivative of Production Examples 1 to 7 is added to 100 parts by mass of poly-L-lactic acid. , 0.1 parts by weight, 0.5 parts by weight, 1 part by weight, 3 parts by weight, 5 parts by weight, and 10 parts by weight, and a completely dissolved mixture was prepared.
Each of these was poured into a Teflon (registered trademark) petri dish, covered with an appropriately perforated aluminum foil, dried in a fume hood (25 ° C.) for 12 hours, and the chloroform was volatilized. Examples 1-26 Solvent cast films F1 to F26 were prepared.
Figure JPOXMLDOC01-appb-C000008
(比較例1:ソルベントキャストフィルムF27の作製)
 実施例1~26において、キシラン誘導体を添加せず、ポリ-L-乳酸(商品名:ラクティー、株式会社島津製作所製)のみを用いたこと以外は、実施例1~26と同様の方法で、ソルベントキャストフィルムF27を作製した。
(Comparative Example 1: Production of solvent cast film F27)
In Examples 1 to 26, the same method as in Examples 1 to 26 except that poly-L-lactic acid (trade name: Lacty, manufactured by Shimadzu Corporation) was used without adding a xylan derivative. Solvent cast film F27 was produced.
(実施例27~33:ソルベントキャストフィルムF28~34の作製)
 製造例1~7のキシラン誘導体及び下記構造式(B)で表されるポリ-D-乳酸(poly-D-lactic acid;PDLA)を用いて、以下に示す方法で、下記表1に示すソルベントキャストフィルムF28~34を作製した。
 PDLA(帝人株式会社製)0.5gをクロロフォルム50mLに溶解し、前記PDLA100質量部に対して、製造例1~7の各キシラン誘導体をそれぞれ1質量部混合し、完全に溶解させた混合物を調製した。
 これを、それぞれテフロン(登録商標)製のシャーレに流し込み、適当に穴を開けたアルミホイルで蓋をし、ドラフト内(25℃)で12時間乾燥させ、クロロフォルムを揮発させ、実施例27~33のソルベントキャストフィルムF28~34を作製した。
Figure JPOXMLDOC01-appb-C000009
(Examples 27 to 33: Production of solvent cast films F28 to 34)
Solvents shown in Table 1 below using the xylan derivatives of Production Examples 1 to 7 and poly-D-lactic acid (PDLA) represented by the following structural formula (B) by the following method Cast films F28 to F34 were produced.
PDLA (manufactured by Teijin Limited) 0.5 g was dissolved in chloroform 50 mL, and 1 part by mass of each xylan derivative of Production Examples 1 to 7 was mixed with 100 parts by mass of PDLA to prepare a completely dissolved mixture. did.
This was poured into a petri dish made of Teflon (registered trademark), covered with an appropriately perforated aluminum foil, dried in a fume hood (25 ° C.) for 12 hours to volatilize chloroform, and Examples 27-33 Solvent cast films F28 to 34 were prepared.
Figure JPOXMLDOC01-appb-C000009
(比較例2:ソルベントキャストフィルムF35の作製)
 実施例27~33において、キシラン誘導体を添加せず、PDLA(帝人株式会社製)のみを用いたこと以外は、実施例27~33と同様の方法で、ソルベントキャストフィルムF35を作製した。
(Comparative Example 2: Production of solvent cast film F35)
In Examples 27 to 33, a solvent cast film F35 was produced in the same manner as in Examples 27 to 33 except that only the PDLA (manufactured by Teijin Limited) was used without adding the xylan derivative.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
(試験例1:定速昇温による発熱ピーク(Tc)及び結晶化エネルギー(ΔH)の評価)
 下記表2に示すソルベントキャストフィルムを用いて、以下に示す定速昇温による結晶化法で発熱ピーク(Tc)及び結晶化エネルギー(ΔH)の評価を行った。
 各ソルベントキャストフィルムを、それぞれ示差熱天秤(ThermoPlus DSC8320、株式会社リガク製)のアルミパンに入れ、室温から200℃まで昇温速度20℃/分間で昇温し(第1の昇温)、各ソルベントキャストフィルムを完全に溶解した。次いで、液体窒素で-50℃まで一気に冷却した後、再び昇温速度20℃/分間で昇温した(第2の昇温)。
(Test Example 1: Evaluation of exothermic peak (Tc) and crystallization energy (ΔH) due to constant temperature increase)
Using the solvent cast film shown in Table 2 below, the exothermic peak (Tc) and crystallization energy (ΔH) were evaluated by the following crystallization method with a constant rate of temperature increase.
Each solvent cast film was put in an aluminum pan of a differential thermal balance (ThermoPlus DSC8320, manufactured by Rigaku Corporation), heated from room temperature to 200 ° C. at a heating rate of 20 ° C./min (first heating), The solvent cast film was completely dissolved. Next, after cooling to −50 ° C. at once with liquid nitrogen, the temperature was raised again at a rate of temperature rise of 20 ° C./min (second temperature rise).
 図8Aに、ソルベントキャストフィルムF1、F5、F11、F15、F19、F23、及びF27の第2の昇温の際のDSC曲線を、図8Bに、ソルベントキャストフィルムF28~32、F34、及びF35の第2の昇温の際のDSC曲線を示す。また、下記表2に、第2の昇温の際の発熱ピーク(Tc)及び結晶化エネルギー(ΔH)の結果をまとめて示す。なお、図8A及びBにおいて、「発熱」は、相対的な熱流の変化であり、発熱の方向を矢印で表した。矢印方向に発熱がプラスであることを意味する。図9A~図10Fにおいても同様の意味を示す。 FIG. 8A shows DSC curves at the second temperature rise of the solvent cast films F1, F5, F11, F15, F19, F23, and F27. FIG. 8B shows the solvent cast films F28 to 32, F34, and F35. The DSC curve at the time of a 2nd temperature rise is shown. Table 2 below collectively shows the results of the exothermic peak (Tc) and crystallization energy (ΔH) during the second temperature increase. 8A and 8B, “heat generation” is a change in relative heat flow, and the direction of heat generation is indicated by an arrow. It means that heat generation is positive in the direction of the arrow. The same meaning is shown in FIGS. 9A to 10F.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 前記定速昇温による結晶化法により高分子化合物(ここでは、PLLA又はPDLA)が結晶化したことは、第2の昇温時における結晶化の発熱ピーク(Tc)で確認できる。前記定速昇温による結晶化法においては、第2の昇温時における発熱ピーク(Tc)の位置が低温側にある程、結晶化しやすいことを示す。更に、第2の昇温時における発熱ピーク(Tc)のピーク面積から求められる結晶化エネルギー(ΔH)の絶対値が大きいほど、結晶性高分子組成物中の結晶化度が高いことを示す。
 図8A及びB、並びに表2の結果より、ポリ-L-乳酸からなるソルベントキャストフィルムF27では、120℃に結晶化に由来する発熱ピーク(Tc)が観測され、ポリ-D-乳酸からなるソルベントキャストフィルムF35では、119℃に結晶化に由来する発熱ピーク(Tc)が観測された。
 これに対し、キシラン誘導体を添加したソルベントキャストフィルムF1、F5、F11、F15、F19、F23、F28~32、及びF34は、発熱ピーク(Tc)の位置が低温側にシフトしていた。これにより、キシラン誘導体は、造核剤として機能することが確認された。特に、キシランプロピオネートに関しては、発熱ピーク(Tc)の位置が93℃にまでシフトしており、キシランブチレートに関しては、発熱ピーク(Tc)の位置が97℃にまでシフトしていることから特にその機能は優れたものであった。また、ここでは、高分子化合物としてPLLA又はPDLAを用いてキシラン誘導体の造核剤としての効果を見たが、該キシラン誘導体は、PLLA及びPDLAの両方に対して造核剤としての機能を奏したことから、該キシラン誘導体は、該PLLAと該PDLAとからなる複合体であるステレオコンプレックス型ポリ乳酸に対しても、造核剤としての機能を奏することが推察される。
It can be confirmed from the crystallization exothermic peak (Tc) at the second temperature increase that the polymer compound (PLLA or PDLA in this case) has been crystallized by the crystallization method by the constant temperature increase. In the crystallization method based on the constant rate of temperature increase, the lower the temperature of the exothermic peak (Tc) at the second temperature increase, the easier it is to crystallize. Furthermore, the larger the absolute value of the crystallization energy (ΔH) obtained from the peak area of the exothermic peak (Tc) at the second temperature rise, the higher the crystallinity in the crystalline polymer composition.
From the results shown in FIGS. 8A and 8B and Table 2, in the solvent cast film F27 made of poly-L-lactic acid, an exothermic peak (Tc) derived from crystallization was observed at 120 ° C., and the solvent made of poly-D-lactic acid. In the cast film F35, an exothermic peak (Tc) derived from crystallization was observed at 119 ° C.
In contrast, in the solvent cast films F1, F5, F11, F15, F19, F23, F28 to 32, and F34 to which the xylan derivative was added, the position of the exothermic peak (Tc) was shifted to the low temperature side. Thereby, it was confirmed that the xylan derivative functions as a nucleating agent. In particular, the position of the exothermic peak (Tc) is shifted to 93 ° C. for xylampropionate, and the position of the exothermic peak (Tc) is shifted to 97 ° C. for xylan butyrate. In particular, its function was excellent. In addition, here, PLLA or PDLA was used as a polymer compound, and an effect as a nucleating agent for a xylan derivative was observed. However, the xylan derivative has a function as a nucleating agent for both PLLA and PDLA. Therefore, it is inferred that the xylan derivative also functions as a nucleating agent for stereocomplex polylactic acid, which is a complex composed of PLLA and PDLA.
 図9Aに、ソルベントキャストフィルムF5~8及びF27の第2の昇温の際のDSC曲線を、図9Bに、ソルベントキャストフィルムF9~13及びF27の第2の昇温の際のDSC曲線を示す。図9A及びBの結果より、キシラン誘導体の添加量を変えた場合、いずれの添加量においても造核剤として優れた機能を有していた。また、高分子化合物100質量部に対し、キシラン誘導体0.1質量部という少量の添加で優れた造核作用を得ることができることがわかった。 FIG. 9A shows a DSC curve during the second temperature rise of the solvent cast films F5 to 8 and F27, and FIG. 9B shows a DSC curve during the second temperature rise of the solvent cast films F9 to 13 and F27. . 9A and 9B, when the addition amount of the xylan derivative was changed, any addition amount had an excellent function as a nucleating agent. Moreover, it turned out that the outstanding nucleation effect | action can be obtained by addition of a small amount of 0.1 mass part of xylan derivatives with respect to 100 mass parts of high molecular compounds.
(試験例2:定速降温による発熱ピーク(Tc)及び結晶化エネルギー(ΔH)の評価)
 下記表3に示すソルベントキャストフィルムを用いて、以下に示す定速降温による結晶化法で発熱ピーク(Tc)及び結晶化エネルギー(ΔH)の評価を行った。
 各ソルベントキャストフィルムを示差熱天秤(ThermoPlus DSC8320、株式会社リガク製)のアルミパンに入れ、室温から200℃まで昇温速度20℃/分間で昇温し、各ソルベントキャストフィルムを完全に溶解させた。次いで、降温速度2℃/分間、5℃/分間、10℃/分間、又は20℃/分間で降温した。
(Test Example 2: Evaluation of exothermic peak (Tc) and crystallization energy (ΔH) due to constant temperature drop)
Using the solvent cast film shown in Table 3 below, the exothermic peak (Tc) and the crystallization energy (ΔH) were evaluated by the crystallization method based on the constant temperature drop shown below.
Each solvent cast film was put in an aluminum pan of a differential thermal balance (ThermoPlus DSC8320, manufactured by Rigaku Corporation) and heated from room temperature to 200 ° C. at a heating rate of 20 ° C./minute to completely dissolve each solvent cast film. . Subsequently, the temperature was decreased at a rate of temperature decrease of 2 ° C./min, 5 ° C./min, 10 ° C./min, or 20 ° C./min.
 図10Aに、ソルベントキャストフィルムF5の降温時のDSC曲線を、図10BにソルベントキャストフィルムF11の降温時のDSC曲線を、図10CにソルベントキャストフィルムF27の降温時のDSC曲線を、図10DにソルベントキャストフィルムF29の降温時のDSC曲線を、図10EにソルベントキャストフィルムF30の降温時のDSC曲線を、図10FにソルベントキャストフィルムF35の降温時のDSC曲線を示す。また、下記表3に、降温時の発熱ピーク(Tc)及び結晶化エネルギー(ΔH)の結果をまとめて示す。 FIG. 10A shows a DSC curve when the solvent cast film F5 is lowered, FIG. 10B shows a DSC curve when the solvent cast film F11 is lowered, FIG. 10C shows a DSC curve when the solvent cast film F27 is lowered, and FIG. 10D shows a solvent. The DSC curve when the cast film F29 cools down, FIG. 10E shows the DSC curve when the solvent cast film F30 cools down, and FIG. 10F shows the DSC curve when the solvent cast film F35 cools down. Table 3 below summarizes the results of the exothermic peak (Tc) and crystallization energy (ΔH) when the temperature is lowered.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 前記定速降温による結晶化法により高分子化合物(ここでは、PLLA又はPDLA)が結晶化したことは、前記降温時における結晶化の発熱ピーク(Tc)で確認できる。前記定速降温結晶化においては、前記降温時における発熱ピーク(Tc)の位置が高温側にある程、結晶化しやすいことを示す。
 図10A~F及び表3の結果より、ソルベントキャストフィルムF27において2℃/分間で降温した場合、発熱ピーク(Tc)104℃に小さな結晶化エネルギー(ΔH)しか観察されず、更にソルベントキャストフィルムF27において20℃/分間で降温した場合、発熱ピーク(Tc)は全く観察されなかった。この結果は、ソルベントキャストフィルムF35においても同様の傾向であり、ソルベントキャストフィルムF35においても、20℃/分間で降温した場合、発熱ピーク(Tc)は全く観察されなかった。
 これに対し、キシラン誘導体を添加したソルベントキャストフィルムF5、F11、F29、及びF30は、いずれの降温速度においても発熱ピーク(Tc)と大きな結晶化エネルギー(ΔH)が観察された。これより、キシラン誘導体は、造核剤として機能することが確認された。
It can be confirmed from the exothermic peak (Tc) of crystallization at the time of the temperature decrease that the polymer compound (here, PLLA or PDLA) is crystallized by the crystallization method by the constant temperature decrease. In the constant-speed temperature-falling crystallization, the higher the temperature of the exothermic peak (Tc) at the time of temperature-falling, the easier the crystallization.
From the results of FIGS. 10A to 10F and Table 3, when the temperature was lowered at 2 ° C./minute in the solvent cast film F27, only a small crystallization energy (ΔH) was observed at an exothermic peak (Tc) of 104 ° C., and the solvent cast film F27 No exothermic peak (Tc) was observed when the temperature was lowered at 20 ° C./min. This result is similar in the solvent cast film F35, and no exothermic peak (Tc) was observed in the solvent cast film F35 when the temperature was lowered at 20 ° C./min.
In contrast, in the solvent cast films F5, F11, F29, and F30 to which the xylan derivative was added, an exothermic peak (Tc) and a large crystallization energy (ΔH) were observed at any temperature decreasing rate. From this, it was confirmed that the xylan derivative functions as a nucleating agent.
(試験例3:半結晶化時間(t1/2)、結晶化度、ヘイズ値、及び熱膨張率の評価)
 下記表4に示すソルベントキャストフィルムを用いて、以下に示す等温による結晶化法で結晶化を行った。
 各ソルベントキャストフィルムを示差熱天秤(ThermoPlus DSC8320、株式会社リガク製)のアルミパンに入れ、室温から200℃まで昇温速度20℃/分間で昇温し、各ソルベントキャストフィルムを完全に融解させた。次いで、100℃、110℃、120℃、又は130℃まで冷却し、それぞれの温度で結晶化するまで保持(アニーリング)した。
(Test Example 3: Evaluation of half-crystallization time (t 1/2 ), crystallinity, haze value, and thermal expansion coefficient)
Using the solvent cast film shown in Table 4 below, crystallization was performed by the isothermal crystallization method shown below.
Each solvent cast film was put in an aluminum pan of a differential thermal balance (ThermoPlus DSC8320, manufactured by Rigaku Corporation) and heated from room temperature to 200 ° C. at a heating rate of 20 ° C./min to completely melt each solvent cast film. . Subsequently, it cooled to 100 degreeC, 110 degreeC, 120 degreeC, or 130 degreeC, and hold | maintained (annealing) until it crystallized at each temperature.
<半結晶化時間(t1/2)の評価>
 保温時における各ソルベントキャストフィルムの半結晶化時間(t1/2)を発熱ピークの半値幅の時間で求めた。結果を下記表4に示す。
<Evaluation of semi-crystallization time (t 1/2 )>
The half crystallization time (t1 / 2 ) of each solvent cast film at the time of heat retention was calculated | required by the time of the half value width of the exothermic peak. The results are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 前記等温による結晶化法により高分子化合物(ここでは、PLLA又はPDLA)が結晶化したことは、温度保持時の結晶化の発熱ピーク(Tc)で確認でき、半結晶化時間(t1/2)が短い程、結晶化しやすいことを示す
 表4の結果より、キシラン誘導体を添加したソルベントキャストフィルムF5、F11、F29、及びF30は、PLLA又はPDLAからなるソルベントキャストフィルムF27及びF35と比較して、いずれの温度においても半結晶化時間(t1/2)が大幅に短縮していることが確認された。
 図11Aに100℃又は130℃で保温したソルベントキャストフィルムF5、F11、及びF27を偏光顕微鏡で観察した結果を、図11Bに100℃又は130℃で保温したソルベントキャストフィルムF29、F30、及びF35を偏光顕微鏡で観察した結果を示す。
 図11A及び図11Bより、キシラン誘導体を添加したソルベントキャストフィルムF5、F11、F29、及びF30は、PLLA又はPDLAからなるソルベントキャストフィルムF27及びF35比較して、結晶が小さくその数が多いことが明らかであった。これらの結果より、キシラン誘導体は、造核剤として機能することが確認された。
The crystallization of the polymer compound (here, PLLA or PDLA) by the isothermal crystallization method can be confirmed by the crystallization exothermic peak (Tc) during temperature holding, and the half crystallization time (t 1/2 ) Indicates that the crystallization is easier as the length is shorter. From the results of Table 4, the solvent cast films F5, F11, F29, and F30 to which the xylan derivative is added are compared with the solvent cast films F27 and F35 made of PLLA or PDLA. It was confirmed that the half crystallization time (t 1/2 ) was significantly shortened at any temperature.
FIG. 11A shows the results of observing the solvent cast films F5, F11, and F27 kept at 100 ° C. or 130 ° C. with a polarizing microscope, and FIG. 11B shows the solvent cast films F29, F30, and F35 kept at 100 ° C. or 130 ° C. The result observed with the polarization microscope is shown.
From FIG. 11A and FIG. 11B, it is clear that the solvent cast films F5, F11, F29, and F30 to which the xylan derivative is added have smaller crystals and more than the solvent cast films F27 and F35 made of PLLA or PDLA. Met. From these results, it was confirmed that the xylan derivative functions as a nucleating agent.
<結晶化度の評価>
 前記半結晶化時間(t1/2)の評価において、100℃で保持(アニーリング)した場合の、アニーリング時間と結晶化度との関係を調べた。
 ここで、結晶化度(%)は、広角X線測定装置(RINT2000、株式会社リガク製)で測定した。
<Evaluation of crystallinity>
In the evaluation of the half crystallization time (t 1/2 ), the relationship between the annealing time and the crystallinity when kept at 100 ° C. (annealing) was examined.
Here, the degree of crystallinity (%) was measured with a wide-angle X-ray measurement apparatus (RINT2000, manufactured by Rigaku Corporation).
 図12に結果を示す。図12より、ソルベントキャストフィルムF5、F11、及びF27のいずれにおいても時間と共に結晶化度が高くなっていたが、PLLA単独のソルベントキャストフィルムF27と比較して、キシラン誘導体を添加したソルベントキャストフィルムF5及びF11では、結晶化が促進され、短時間でより高い結晶化度に到達していた。 Figure 12 shows the results. From FIG. 12, the crystallization degree increased with time in any of the solvent cast films F5, F11, and F27, but the solvent cast film F5 to which the xylan derivative was added as compared with the solvent cast film F27 of PLLA alone. In F11 and F11, crystallization was promoted, and a higher crystallinity was reached in a short time.
<ヘイズ値の評価>
 前記半結晶化時間(t1/2)の評価において、100℃で保持(アニーリング)した場合の、アニーリング時間とヘイズ値との関係を調べた。
 ここで、ヘイズ値(%)は、ヘイズメーター(HZ-V3、スガ試験機株式会社製)で測定した。前記ヘイズ値は、フィルムの曇り度を示し、その値が小さいほど透明性が高いことを意味する。
<Evaluation of haze value>
In the evaluation of the half crystallization time (t 1/2 ), the relationship between the annealing time and the haze value when kept at 100 ° C. (annealing) was examined.
Here, the haze value (%) was measured with a haze meter (HZ-V3, manufactured by Suga Test Instruments Co., Ltd.). The haze value indicates the haze of the film, and the smaller the value, the higher the transparency.
 図13に結果を示す。図13より、キシラン誘導体を添加したソルベントキャストフィルムF5及びF11では、熱処理時間(アニーリング時間)が長くなった場合であっても、即ち、結晶化度が高くなっても、高い透明性を維持していた。図14に、100℃、10分間後のソルベントキャストフィルムF5、F11、及びF27の写真を示す。これは、図11A及びBの結果からもわかるように、結晶が非常に小さくなっているためである。 Fig. 13 shows the results. From FIG. 13, the solvent cast films F5 and F11 to which the xylan derivative is added maintain high transparency even when the heat treatment time (annealing time) is long, that is, even when the crystallinity is high. It was. FIG. 14 shows photographs of the solvent cast films F5, F11, and F27 after 10 minutes at 100 ° C. This is because the crystals are very small, as can be seen from the results in FIGS. 11A and 11B.
<熱膨張率の評価>
 前記半結晶化時間(t1/2)の評価において、100℃で保持(アニーリング)した場合の、アニーリング時間と熱膨張との関係を調べた。
 ここで、熱膨張率(%)は、熱機械測定装置(TMA-60、株式会社島津製作所製)で測定した。
<Evaluation of thermal expansion coefficient>
In the evaluation of the half crystallization time (t 1/2 ), the relationship between the annealing time and the thermal expansion when kept at 100 ° C. (annealing) was examined.
Here, the coefficient of thermal expansion (%) was measured with a thermomechanical measuring device (TMA-60, manufactured by Shimadzu Corporation).
 図15に結果を示す。熱処理を行っていないものは、いずれも100℃で14%以上の熱膨張が生じたが、キシラン誘導体を添加し、数分間熱処理をすると、熱膨張は1%程度まで抑制された。 Fig. 15 shows the results. In all the samples not subjected to heat treatment, thermal expansion of 14% or more occurred at 100 ° C. However, when xylan derivative was added and heat treatment was performed for several minutes, thermal expansion was suppressed to about 1%.
(実施例34:熱プレスフィルムの作製及び熱分析)
 ポリプロピレン(PP)(密度0.90、230℃/2.16kg荷重におけるメルトフローレイト(MFR)1.0、商品名:PL300A、サンアロマー株式会社製)100質量部(30g)に対して、製造例5のキシランラウレート0.03質量部(0.08g)、及びジブチルヒドロキシトルエン(BHT)1質量部(0.3g)を混合し、プラストグラフ溶融混練機で230℃にて1分間溶融混練した。プラストグラフから溶融樹脂をかき出し、230℃にて加熱プレスを用いて熱プレスフィルムF36を作製した。
(Example 34: Production and thermal analysis of hot press film)
Production example for 100 parts by mass (30 g) of polypropylene (PP) (density 0.90, melt flow rate (MFR) 1.0 at 230 ° C./2.16 kg load, trade name: PL300A, manufactured by Sun Allomer Co., Ltd.) 5 xylan laurate 0.03 parts by mass (0.08 g) and 1 part by mass (0.3 g) of dibutylhydroxytoluene (BHT) were mixed and melt kneaded at 230 ° C. for 1 minute in a plastograph melt kneader. . The molten resin was scraped from the plastograph, and a hot press film F36 was produced using a hot press at 230 ° C.
 熱プレスフィルムF36を、示差熱天秤(ThermoPlus DSC8320、株式会社リガク製)のアルミパンに入れ、室温から200℃まで昇温速度10℃/分間で昇温し、熱プレスフィルムF36を完全に溶解した。200℃で5分間保持した後、降温速度20℃/分間で20℃まで降温した。更に20℃から200℃まで10℃/分間で昇温した際の吸熱ピークの接線から、結晶から融点(Tm)を求めた。また吸熱ピークを仕込み重量で割り、溶融エネルギーを求めた。結果を下記表5に示す。 The hot press film F36 was put into an aluminum pan of a differential thermal balance (ThermoPlus DSC8320, manufactured by Rigaku Corporation), and the temperature was raised from room temperature to 200 ° C. at a heating rate of 10 ° C./min to completely dissolve the hot press film F36. . After maintaining at 200 ° C. for 5 minutes, the temperature was decreased to 20 ° C. at a temperature decrease rate of 20 ° C./min. Further, the melting point (Tm) was determined from the crystal from the tangent line of the endothermic peak when the temperature was raised from 20 ° C. to 200 ° C. at 10 ° C./min. The endothermic peak was divided by the charged weight to determine the melting energy. The results are shown in Table 5 below.
(実施例35:熱プレスフィルムの作製と熱分析)
 実施例34において、PPの溶融混練の際に、キシランラウレート0.03質量部(0.08g)に代えて、調製例1のキシラン0.03質量部(0.08g)を使用したこと以外は、実施例34と同様の方法で熱プレスフィルムF37を作製し、実施例34と同様の方法で熱分析を行った。結果を下記表5に示す。
(Example 35: Production and thermal analysis of hot press film)
In Example 34, except that 0.03 parts by mass (0.08 g) of xylan of Preparation Example 1 was used instead of 0.03 parts by mass (0.08 g) of xylan laurate during the melt kneading of PP. Produced a hot press film F37 in the same manner as in Example 34, and conducted thermal analysis in the same manner as in Example 34. The results are shown in Table 5 below.
(比較例3:熱プレスィルムの作製と熱分析)
 実施例34において、PPの溶融混練の際にキシランラウレートを使用しなかったこと以外は、実施例34と同様の方法で熱プレスフィルムF38を作製し、実施例34と同様の方法で熱分析を行った。結果を下記表5に示す。
(Comparative Example 3: Production and thermal analysis of hot press film)
In Example 34, except that xylan laurate was not used in the melt-kneading of PP, a hot press film F38 was produced in the same manner as in Example 34, and thermal analysis was conducted in the same manner as in Example 34. Went. The results are shown in Table 5 below.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表5の結果より、実施例34及び35では、比較例3と比較して、融点及び溶融エネルギーが高く、結晶化度が向上していることが明らかであった。 From the results of Table 5, it was clear that in Examples 34 and 35, the melting point and melting energy were higher and the crystallinity was improved as compared with Comparative Example 3.
 以上の実施例及び試験例これらの結果より、キシラン(キシラン誘導体の前駆体)及びキシラン誘導体には、造核剤としての作用があることが確認された。 These Examples and Test Examples From these results, it was confirmed that xylan (a precursor of xylan derivatives) and xylan derivatives have an action as a nucleating agent.

Claims (15)

  1.  下記構造式(1)で表される繰返し構造単位を有するキシランのエステル化又はエーテル化により得られる誘導体であり、
     ゲルパーミエーションクロマトグラフィー法で測定されるポリスチレン換算数平均分子量が3,000~150,000の範囲にあることを特徴とする結晶性高分子の造核剤。
    Figure JPOXMLDOC01-appb-C000001
    A derivative obtained by esterification or etherification of xylan having a repeating structural unit represented by the following structural formula (1):
    A crystalline polymer nucleating agent having a polystyrene-equivalent number average molecular weight measured by gel permeation chromatography in a range of 3,000 to 150,000.
    Figure JPOXMLDOC01-appb-C000001
  2.  下記構造式(1)で表される繰返し構造単位を有するキシランのエステル化により得られる誘導体であり、
     ゲルパーミエーションクロマトグラフィー法で測定されるポリスチレン換算数平均分子量が3,000~150,000の範囲にあることを特徴とする結晶性高分子の造核剤。
    Figure JPOXMLDOC01-appb-C000002
    A derivative obtained by esterification of xylan having a repeating structural unit represented by the following structural formula (1):
    A crystalline polymer nucleating agent having a polystyrene-equivalent number average molecular weight measured by gel permeation chromatography in a range of 3,000 to 150,000.
    Figure JPOXMLDOC01-appb-C000002
  3.  下記構造式(1)で表される繰返し構造単位を有するキシランを炭素数2~12のアルカノイル基によりエステル化して得られる誘導体であり、
     ゲルパーミエーションクロマトグラフィー法で測定されるポリスチレン換算数平均分子量が3,000~150,000の範囲にあることを特徴とする結晶性高分子の造核剤。
    Figure JPOXMLDOC01-appb-C000003
    A derivative obtained by esterifying xylan having a repeating structural unit represented by the following structural formula (1) with an alkanoyl group having 2 to 12 carbon atoms;
    A crystalline polymer nucleating agent having a polystyrene-equivalent number average molecular weight measured by gel permeation chromatography in a range of 3,000 to 150,000.
    Figure JPOXMLDOC01-appb-C000003
  4.  請求項1から3のいずれかに記載の結晶性高分子の造核剤を含有してなることを特徴とする結晶性高分子組成物。 A crystalline polymer composition comprising the crystalline polymer nucleating agent according to any one of claims 1 to 3.
  5.  結晶性高分子が、生分解性ポリエステル系高分子である請求項4に記載の結晶性高分子組成物。 The crystalline polymer composition according to claim 4, wherein the crystalline polymer is a biodegradable polyester polymer.
  6.  結晶性高分子が、ポリ乳酸系高分子である請求項4に記載の結晶性高分子組成物。 The crystalline polymer composition according to claim 4, wherein the crystalline polymer is a polylactic acid polymer.
  7.  結晶性高分子が、微生物産生ポリエステル系高分子である請求項4に記載の結晶性高分子組成物。 The crystalline polymer composition according to claim 4, wherein the crystalline polymer is a microorganism-produced polyester polymer.
  8.  結晶性高分子が、ポリオレフィン系高分子である請求項4に記載の結晶性高分子組成物。 The crystalline polymer composition according to claim 4, wherein the crystalline polymer is a polyolefin polymer.
  9.  結晶性高分子が、ポリプロピレン系樹脂である請求項4に記載の結晶性高分子組成物。 The crystalline polymer composition according to claim 4, wherein the crystalline polymer is a polypropylene resin.
  10.  請求項1から3のいずれかに記載のキシラン誘導体の前駆体を含有してなることを特徴とする結晶性高分子組成物。 A crystalline polymer composition comprising the xylan derivative precursor according to any one of claims 1 to 3.
  11.  結晶性高分子が、生分解性ポリエステル系高分子である請求項10に記載の結晶性高分子組成物。 The crystalline polymer composition according to claim 10, wherein the crystalline polymer is a biodegradable polyester polymer.
  12.  結晶性高分子が、ポリ乳酸系高分子である請求項10に記載の結晶性高分子組成物。 The crystalline polymer composition according to claim 10, wherein the crystalline polymer is a polylactic acid polymer.
  13.  結晶性高分子が、微生物産生ポリエステル系高分子である請求項10に記載の結晶性高分子組成物。 The crystalline polymer composition according to claim 10, wherein the crystalline polymer is a microorganism-produced polyester polymer.
  14.  結晶性高分子が、ポリオレフィン系高分子である請求項10に記載の結晶性高分子組成物。 The crystalline polymer composition according to claim 10, wherein the crystalline polymer is a polyolefin polymer.
  15.  結晶性高分子が、ポリプロピレン系樹脂である請求項10に記載の結晶性高分子組成物。 The crystalline polymer composition according to claim 10, wherein the crystalline polymer is a polypropylene resin.
PCT/JP2012/061416 2011-05-09 2012-04-27 Nucleating agent, and crystalline polymer composition containing said nucleating agent WO2012153660A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013513984A JPWO2012153660A1 (en) 2011-05-09 2012-04-27 Nucleating agent and crystalline polymer composition containing the nucleating agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-104695 2011-05-09
JP2011104695 2011-05-09

Publications (1)

Publication Number Publication Date
WO2012153660A1 true WO2012153660A1 (en) 2012-11-15

Family

ID=47139144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061416 WO2012153660A1 (en) 2011-05-09 2012-04-27 Nucleating agent, and crystalline polymer composition containing said nucleating agent

Country Status (2)

Country Link
JP (1) JPWO2012153660A1 (en)
WO (1) WO2012153660A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7467915B2 (en) 2019-01-16 2024-04-16 王子ホールディングス株式会社 Molding material and molded body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007077232A (en) * 2005-09-13 2007-03-29 Tokyo Institute Of Technology Biodegradable polyester-based resin composition
JP2011178940A (en) * 2010-03-03 2011-09-15 Univ Of Tokyo Pulp-derived xylan, xylan derivative, methods for producing them, and polymer molding

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2872952B2 (en) * 1995-11-16 1999-03-24 第一工業製薬株式会社 Carboxymethylcellulose alkali salt

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007077232A (en) * 2005-09-13 2007-03-29 Tokyo Institute Of Technology Biodegradable polyester-based resin composition
JP2011178940A (en) * 2010-03-03 2011-09-15 Univ Of Tokyo Pulp-derived xylan, xylan derivative, methods for producing them, and polymer molding

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TADAHISA IWATA ET AL.: "Xylan Ester Yudotai no Gosei to Zokakuzai to shite no Koka", SYMPOSIUM ON MACROMOLECULES YOKOSHU, vol. 60, no. 2, 13 September 2011 (2011-09-13), pages 5387 - 5388 *
YUKIKO RODGERS(ENOMOTO) ET AL.: "Xylan no Plastic Zairyoka", CHEMICAL ENGINEERING, vol. 57, no. 4, 1 April 2012 (2012-04-01), pages 21 - 25 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7467915B2 (en) 2019-01-16 2024-04-16 王子ホールディングス株式会社 Molding material and molded body

Also Published As

Publication number Publication date
JPWO2012153660A1 (en) 2014-07-31

Similar Documents

Publication Publication Date Title
JP5369387B2 (en) Process for producing polymethylene terephthalate composition and film
TWI494322B (en) Cellulose derivative, thermoformable material, molded article and fabricating method thereof, and electric and electronic equipment
WO2005063885A1 (en) Polylactic acid resin composition and molded object thereof
EP2294140B1 (en) Fire retardant resin composition
TWI494321B (en) Cellulose derivative, resin material, molded article and fabricating method thereof, and electric and electronic equipment
TW200540223A (en) Polylactic acid resin composition
JP5423058B2 (en) Flame retardant resin composition and molded body
JP6187653B1 (en) Cellulose acylate, resin composition, and resin molded article
WO2013047766A1 (en) Poly(3-hydroxyalkanoate) resin composition
JP7143508B2 (en) Additive composition and method for making polymer composition using same
JP2005042084A (en) Polylactic acid resin composition and molded product of the same
JP5514597B2 (en) Method for producing thermoplastic cellulose composition and method for producing molded article thereof
JP2010242068A (en) Method for promoting crystallization of biodegradable resin composition
JP2005255806A (en) Polylactic acid resin composition and molded product of the same
WO2012153660A1 (en) Nucleating agent, and crystalline polymer composition containing said nucleating agent
JP2010031229A (en) Flame-retardant resin composition and molding
JP6471869B2 (en) Polyester resin composition containing aminotriazine derivative
JP5599304B2 (en) Resin composition
JP6183515B1 (en) Method for producing cellulose acylate
US10556857B2 (en) Hydrazide compounds suitable for nucleating polylactic acid polymer
JP5477567B2 (en) Polylactic acid resin composition
JP6160752B1 (en) Cellulose acylate, resin composition, resin molded product, and method for producing cellulose acylate
JP2013181134A (en) Block copolymer and method for producing the same, as well as composition, polymer molding, and crystal nucleating agent
Enomoto-Rogers et al. Syntheses of poly (L-lactide)-block-xylan butyrate-block-poly (L-lactide) triblock copolymers and their properties
JP5652518B2 (en) Polyethylene terephthalate composition and film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782150

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013513984

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12782150

Country of ref document: EP

Kind code of ref document: A1