WO2012152134A1 - 以太网二层组播快速收敛的方法及以太网系统 - Google Patents

以太网二层组播快速收敛的方法及以太网系统 Download PDF

Info

Publication number
WO2012152134A1
WO2012152134A1 PCT/CN2012/072748 CN2012072748W WO2012152134A1 WO 2012152134 A1 WO2012152134 A1 WO 2012152134A1 CN 2012072748 W CN2012072748 W CN 2012072748W WO 2012152134 A1 WO2012152134 A1 WO 2012152134A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
user
multicast
message
blocked
Prior art date
Application number
PCT/CN2012/072748
Other languages
English (en)
French (fr)
Inventor
周吉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012152134A1 publication Critical patent/WO2012152134A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • H04L12/1863Arrangements for providing special services to substations for broadcast or conference, e.g. multicast comprising mechanisms for improved reliability, e.g. status reports
    • H04L12/1868Measures taken after transmission, e.g. acknowledgments

Definitions

  • Ethernet Layer 2 multicast fast convergence method and Ethernet system
  • the present invention relates to the field of Ethernet technologies, and specifically relates to a method for fast convergence of Ethernet Layer 2 multicast and an Ethernet system. Background technique
  • Multicast technology refers to a network communication technology in which a single sender corresponds to multiple receivers. It implements point-to-multipoint efficient rate transmission in IP (Internet Protocol) network communication, which can effectively save network bandwidth and reduce Network load, widely used in real-time data transmission, multimedia conferencing, data copying, gaming and simulation.
  • IP Internet Protocol
  • Ring network technology is a real-time link backup technology that provides guarantee for the reliable transmission of service data. It effectively implements link protection by switching data traffic to the backup link in time when the primary link fails. It solves the problem that the traditional data network has weak protection capability and long recovery time. In theory, it can provide fast protection of 50ms and is compatible with traditional Ethernet protocols.
  • IGMP Internet Group Management Protocol
  • IGMP Internet Group Management Protocol
  • the host needs to respond to the IGMP query message of the multicast router, that is, responds with the IGMP member report message.
  • the router periodically sends the membership query message, and then determines whether a specific group is on its own subnet according to the received response message.
  • a host joins, and when a report of the host's exit group is received, a specific group of queries is issued (IGMP v2) to determine if a particular group has no members.
  • IGMP Snooping Internet Group Management Listening Protocol
  • the Layer 2 device running IGMP Snooping analyzes the received IGMP messages and establishes a mapping relationship between the port and the MAC address of the MAC address.
  • the multicast data is forwarded based on the mapping relationship.
  • the Layer 2 device is not running IGMP Snooping, the multicast data is broadcast on the Layer 2 device.
  • the Layer 2 device is running IGMP Snooping
  • the multicast data of the multicast group is not broadcast on the Layer 2 device.
  • Layer 2 devices are multicast to the intended recipient.
  • the querier is configured on the upstream device to send IGMP general queries to the downstream device to obtain the user joining or leaving the multicast group. Message.
  • the upstream device receives a Leave message from a port, if there is a group specified in the Leave message on the port, it will generate a specific group query message to check whether the subnet connected to it is There are also other hosts that need to receive a particular set of data messages.
  • the downstream device or the user sets the port that receives the Query message to the IGMP routing port, and sends the IGMP Query message to the routing port.
  • the convergence process of the Layer 2 multicast forwarding path is as follows:
  • the primary link fails multicast traffic does not immediately switch from the primary link to the backup link. Forwarding, but until the upstream IGMP querier sends a general query message, and the host sends an IGMP report message to respond to the query, the Layer 2 link will re-learn the IGMP report message to update the forwarding link.
  • Multicast traffic is switched to the backup link.
  • the primary link recovers, the backup link is blocked by the Layer 2 ring network protocol, but the multicast traffic does not immediately switch back from the backup link to the primary link, but still waits for a general query cycle time. .
  • the general query period is a few minutes. That is to say, during this period, the multicast traffic cannot be switched normally, that is, the multicast service is always unavailable. Therefore, the multicast service in the Layer 2 ring network cannot be quickly converge, and its reliability is greatly reduced. Summary of the invention
  • the main purpose of the present invention is to provide a method for fast convergence of Ethernet Layer 2 multicast and an Ethernet system, so as to solve the problem that the multicast service cannot be quickly switched when the link topology changes, and the reliability of the multicast service is ensured. Sex and stability.
  • a method for fast convergence of Ethernet Layer 2 multicast including:
  • the node determines that a faulty port or a user on the blocked port exists, and the user on the faulty port or the blocked port will go offline from the faulty port or the device where the blocked port is located;
  • the node constructs the leaving message of the group in which the user is located, sets the maximum response time of the leaving message to a predetermined value, and sends the leaving message to the multicast routing port;
  • the querier receives the leaving message, and determines that the maximum response time is a predetermined value according to the leaving message, and sends a query message to all non-multicast routing ports, and if not, ends the process;
  • the downstream device of the querier receives the query message, responds to the query message, and performs multicast traffic switching.
  • the method further includes: the proxy device receiving the leaving message, and forwarding the leaving message to the querier.
  • the node determines that a user exists on the faulty port, and the user on the faulty port is offline from the device where the faulty port is located, including:
  • the physical status of the port changes from open UP to closed DOWN, causing the user to go offline; or, the logical state of the port changes from forwarding FORWARD to blocking BLOCK, causing the user to go offline; or,
  • the port is a multicast routing port, the logical state of the port is changed from FORWARD to BLOCK, and a multicast user exists on the node.
  • the faulty port is a port that is physically DOWN.
  • the method further includes: determining that the blocked port is Multicasting the routing port, determining a VLAN of the virtual local area network that is blocked on the multicast routing port, and determining that the node exists in the multicast user in the VLAN.
  • An Ethernet system including:
  • a node configured to determine that a faulty port or a user on the blocked port exists, and the user on the failed port or the blocked port will go offline from the device where the failed port or the blocked port is located, And then configuring the leaving message of the group in which the user is located, setting a maximum response time of the leaving message to a predetermined value, and sending the leaving message to the multicast routing port;
  • a querier configured to receive the leave message, and determine, according to the leave message, that the maximum response time is a predetermined value, send a query message to all non-multicast routing ports;
  • the downstream device of the querier is configured to receive the query message, respond to the query message, and perform multicast traffic switching.
  • the method further includes: a proxy device, configured to receive the leave message, and forward the leave message to the querier.
  • a proxy device configured to receive the leave message, and forward the leave message to the querier.
  • the determining that a user is present on the faulty port, and the user on the faulty port is offline from the device where the faulty port is located including:
  • the physical status of the port changes from open UP to closed DOWN, causing the user to go offline; or, the logical state of the port changes from forwarding FORWARD to blocking BLOCK, causing the user to go offline; or,
  • the port is a multicast routing port, the logical state of the port is changed from FORWARD to BLOCK, and a multicast user exists on the node.
  • the node is further configured to determine that a user exists on the blocked port, and the user on the blocked port determines that the blocked device is offline after the device where the blocked port is offline.
  • the port is a multicast routing port, and determines a blocked virtual VLAN VLAN on the multicast routing port, and determines that the node exists in the multicast user in the VLAN.
  • the faulty port is a port that is physically DOWN.
  • the technical solution of the present invention has the following beneficial effects:
  • the method and system provided by the present invention informs the querier by setting the maximum response time in the leaving message, so that the downstream device of the querier can respond to the querier.
  • the link is connected to solve the problem that the multicast service cannot be quickly switched when the link topology changes, and the reliability and stability of the multicast service are guaranteed.
  • FIG. 1 is a flowchart of a first method according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a second method according to an embodiment of the present invention.
  • FIG. 3 is a structural diagram of a system according to an embodiment of the present invention.
  • FIG. 4 is another structural diagram of a system according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an application example of an Ethernet topology according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of another application example of an Ethernet topology according to an embodiment of the present invention
  • An embodiment of the present invention provides a method for fast convergence of an Ethernet Layer 2 multicast.
  • the method provided in this embodiment is applied when a link of a multicast traffic fails, as shown in FIG. 1 . Including steps:
  • the node determines that a user exists on the failed port, and the fault will cause the user to go offline. Specifically:
  • the change includes three cases:
  • the physical state of the port changes from UP to DOWN, causing the user to go offline;
  • the logical state of the port changes from FORWARD to BLOCK, causing the user to go offline;
  • the port is a multicast routing port.
  • the logical state of the port changes from FORWARD to BLOCK, and a multicast user exists on the node.
  • the node constructs a leaving message of the group where the user is located, sets a maximum response time of the leaving message to a predetermined value, and sends the leaving message to the multicast routing port. Specifically: when multicast traffic When the link fails, the node determines that there is a user on the failed port, and because the fault will cause the user to go offline, the node needs to construct the leaving message of the group in which the user is located, leaving the packet in the leaving message.
  • the maximum response time field is padded to 255. In other embodiments, the field may also be padded with other predetermined values and then sent to the node's multicast routing port.
  • the querier receives the leaving message, and determines, according to the leaving message, that the maximum response time is a predetermined value, and sends a query message to all non-multicast routing ports; otherwise, the process ends.
  • the querier After the querier receives the leave message, it needs to determine the maximum response time field. If it is 255, it sends a query message to all non-multicast routing ports (such as a specific group query or a general query message).
  • S140 The downstream device of the querier receives the query, and responds to the query and performs multicast traffic switching.
  • the downstream device responds to the query message by sending a join message, and the current user has the
  • the above users may or may not be the above users.
  • the downstream device may be a network side device of the next level of the querier, or may be a user.
  • the method further includes the following steps: the proxy device receives the leave message, and forwards the leave message to the querier.
  • the proxy device forwards and leaves the packet, it does not modify (some vendors will set this field to 0 when the proxy forwards).
  • the maximum response time field value in the packet If there is no proxy device, the node sends the leave message directly from the multicast routing port to the querier.
  • the method informs the querier by setting the maximum response time in the leaving message, so that the downstream device of the querier can respond to the querier and complete the link connection to solve the problem.
  • the link topology changes, the multicast service cannot be switched quickly, ensuring the reliability and stability of the multicast service.
  • the embodiment of the present invention provides a method for fast convergence of Ethernet Layer 2 multicast.
  • the method provided in this embodiment is applied to when a link of a multicast traffic fails, as shown in FIG. 2, the method includes:
  • the node determines that a user exists on the blocked port, and the user is offline because the port is blocked. More specifically, the step S210 includes: first detecting that the link topology changes, the change includes three types. happening:
  • the physical state of the port changes from UP to DOWN, that is, the state change will cause the user to go offline;
  • the logical state of the port changes from FORWARD to BLOCK, that is, the state change will cause the user to go offline;
  • the port is a multicast routing port, and the logical state of the port is changed from FORWARD to
  • the method further includes:
  • the blocked port is a multicast routing port, and determines which VLANs on the multicast routing port are blocked, and determining that the node has a multicast user in the VLAN,
  • the multicast user is a user.
  • the node constructs the leaving message of the group where the user is located, sets a maximum response time of the leaving message to a predetermined value, and sends the leaving message to the multicast routing port.
  • the node determines that there is a user on the failed port, and because the fault will cause the user to go offline, the node needs to construct the leaving message of the group in which the user is located.
  • the maximum response time field in the message is filled with 255. In other embodiments, the field may also be filled with other predetermined values and then sent to the multicast routing port of the node.
  • the querier receives the leaving message, and determines that the maximum response time is a predetermined value according to the leaving message, and sends a query message to all non-multicast routing ports. If not, the process ends. ; specific:
  • the querier After the querier receives the leave message, it needs to determine the maximum response time field. If it is 255, it sends a query message to all non-multicast routing ports (such as a specific group query or a general query message).
  • S240 The downstream device of the querier receives the query, responds to the query, and performs multicast traffic switching to accelerate convergence of the multicast traffic in the link.
  • the downstream device responds to the query message by sending a join message, and the current user may be the user mentioned above, or may not be the user.
  • the method further includes the following steps: the proxy device receives the leave message, and forwards the leave message to the querier.
  • the proxy device forwards and leaves the packet, it does not modify (some vendors will set this field to 0 when the proxy forwards).
  • the maximum response time field value in the packet If there is no proxy device, the node sends the leave message directly from the multicast routing port to the querier.
  • the method informs the querier by setting the maximum response time in the leaving message when the link failure of the multicast traffic is restored, so that the downstream device of the querier can respond to the querier, complete the chain.
  • the problem is that the multicast service cannot be quickly switched when the link topology changes, and the reliability and stability of the multicast service are guaranteed.
  • the embodiment of the present invention further provides an Ethernet system.
  • the system includes: a node 310, configured to determine that a user exists on the port that is faulty, and the fault will cause the user to go offline, and then construct The leaving message of the group in which the user is located sets the maximum response time of the leaving message to a predetermined value, and sends the leaving message to the multicast routing port.
  • the node 310 is used to determine The physical state of the port changes from UP to DOWN, that is, the state change causes the user to go offline; or the logical state of the port changes from FORWARD to BLOCK, that is, the state change causes the user to go offline; or the port is a multicast routing port, the port The logical state changes from FORWARD to BLOCK, and there is a multicast user on this node.
  • the querier 320 is configured to receive the leave message, and determine, according to the leave message, that the maximum response time is a predetermined value, and send a query message to all non-multicast routing ports;
  • the downstream device 330 of the querier is configured to receive the query message, respond to the query message, and perform multicast traffic switching to accelerate convergence of the multicast traffic in the link.
  • system further includes: a proxy device 311, configured to receive the leave message, and forward the leave message to the querier 320.
  • the method informs the querier by setting the maximum response time in the leaving message, so that the downstream device of the querier can respond to the querier and complete the link connection to solve the problem.
  • the link topology changes, the multicast service cannot be switched quickly, ensuring the reliability and stability of the multicast service.
  • the present invention further provides another Ethernet system.
  • the system includes: a node 310, configured to determine that a user exists on the blocked port, and a user causes the user to be offline because the port is blocked, and then constructs The leaving message of the group in which the user is located sets the maximum response time of the leaving message to a predetermined value, and sends the leaving message to the multicast routing port.
  • the node 310 is used to determine The physical state of the port changes from UP to DOWN, that is, the state The change will cause the user to go offline; or, the logical state of the port changes from FORWARD to BLOCK, that is, the state change will cause the user to go offline; or, the port is a multicast routing port, the logical state of the port changes from FORWARD to BLOCK, and There is a multicast user on the node.
  • the querier 320 is configured to receive the leave message, and determine, according to the leave message, that the maximum response time is a predetermined value, and send a query message to all non-multicast routing ports;
  • the downstream device 330 of the querier is configured to receive the query message, respond to the query message, and perform multicast traffic switching to accelerate convergence of the multicast traffic in the link. In this system, if the downstream device is not connected after the querier, the user is directly connected.
  • the node 310 is further configured to determine that the blocked port is a multicast routing port, determine which VLANs on the multicast routing port are blocked, and determine the node 310. There is a multicast user in the VLAN, and the multicast user is a user.
  • the system When the link failure of the multicast traffic is restored, the system notifies the querier by setting the maximum response time in the leaving message, so that the downstream device of the querier can respond to the querier and complete the link connection to solve the problem.
  • the link topology changes the multicast service cannot be switched quickly, ensuring the reliability and stability of the multicast service.
  • the topology shown in Figure 5 includes: an Ethernet topology consisting of a source server, a switch, and a user, wherein IGMP Snooping is enabled on switches S0, S1, S2, S3, and S4, and switches SI, S2, S3, and S4 form a loop.
  • the switch S1 ⁇ S2 ⁇ S3 is the primary link, and the switches S1 ⁇ S4 ⁇ S3 are the backup links.
  • Port 1 of switch S0 is configured with proxy querier
  • port 3 of switch S1, port 2 of switch S2, 1 of port S3, and port 2 of port S4 are all multicast routing ports (dynamic or statically configured) After the user clicks on the air, a multicast user entry is formed on the port 1 of the switch S1, the port 1 of the switch S2, and the port 3 of the switch S3. In the case of a normal link, multicast traffic is down the primary link. of.
  • the topology includes: an Ethernet topology consisting of source servers, switches, and users.
  • the state of port 1 of switch S3 enters FORWARD from BLOCK.
  • the physical connection of the port 1 of the switch S2 is disconnected, and the user on the port 1 will go offline.
  • the switch S2 constructs the leaving packets of these user groups.
  • the maximum response time field in the leaving packet is filled with 255, and then the port is 2 issued.
  • switch S1 sends the leaving message from port 3 without changing the maximum response time field value.
  • the switch SO determines whether the value of the maximum response time field in the message is 255. If 255, the query message is sent from port 1.
  • the switch S1 After receiving the query message, the switch S1 will Port 1 and port 2 are sent out. When switch S2 receives it, it will discard it. After receiving it, switch S4 will send it out from port 2. After receiving it, switch S3 will respond to the multicast join message and send it from port 1. After switch S4 receives it, it will send it. An entry is formed on port 2 and then sent from port 1. After receiving the switch, switch S1 forms an entry on port 2 and then sends it from port 3. After receiving the switch, the switch SO forms an entry on port 1. In this way, data traffic can be dropped from the backup link, resulting in rapid convergence.
  • port 1 of switch S3 When the primary link fails, as shown in Figure 5, the state of port 1 of switch S3 will enter BLOC from FORWARD again.
  • port 1 of switch S3 is a multicast routing port, and there is a multicast user entry (on port 3) on S3. Therefore, switch S3 constructs a Leave message for all multicast user groups on it. The maximum response time field in the text is filled with 255 and then sent to port 1 and port 2.
  • switch S2 there is no multicast user entry, so the Leave message is not forwarded to the multicast routing port and is directly discarded.
  • Switch S4 has a multicast user entry and therefore forwards the packet to the multicast routing port. Leave the message.
  • the subsequent steps are similar to the subsequent steps when the link described in the previous paragraph fails, and therefore will not be described here. After the node on the primary link receives the join message again, the multicast traffic completes the fast switchover when the link is restored.
  • Application example two
  • the topology includes: an Ethernet topology consisting of a source server, a switch, and a user.
  • the topology shown in Figure 7 is similar to the topology of Figure 5, but is a blocked port of the loop. It is no longer port 1 of switch S3, but port 2 of switch S4.

Abstract

本发明涉及一种以太网二层组播快速收敛的方法及以太网系统,该方法包括:节点确定发生故障的端口或者被阻塞的端口上有用户存在,且由于该故障或者被阻塞将会导致该用户下线;构造用户所在组的离开报文,设定离开报文的最大响应时间为预定值,查询器接收离开报文,根据离开报文判断出最大响应时间是预定值,则向其所有非组播路由端口发送查询报文;查询器的下游设备接收到查询报文,响应查询报文完成组播流量的切换。以解决在链路拓扑发生变化时,组播业务不能快速切换的问题,保障组播业务的可靠性和稳定性。

Description

以太网二层组播快速收敛的方法及以太网系统 技术领域
本发明涉及以太网技术领域, 具体是以太网二层组播快速收敛的方法 及以太网系统。 背景技术
近年来, 随着互联网的迅速普及和推广, 组播技术和环网技术在市场 上的应用越来越广泛。
组播技术指的是单个发送者对应多个接收者的一种网络通信技术, 它 实现了 IP (网际协议) 网络通信中的点到多点的高效速率传输, 能够有效 地节约网络带宽、 降低网络负载, 广泛的应用于实时数据传送、 多媒体会 议、 数据拷贝、 游戏和仿真等诸多方面。
环网技术是一种实时链路备份技术, 它为业务数据的可靠性传输提供 了保障, 通过在主链路发生故障时及时将数据流量切换至备份链路, 有效 地实现了链路保护功能, 解决了传统数据网保护能力弱、 故障恢复时间长 的问题, 理论上可以提供 50ms的快速保护特性, 同时兼容传统的以太网协 议。
IGMP (互联网组管理协议 )是因特网协议家族中的一个组播协议, 目 前 IGMP具有三种版本, 即 IGMP vl、 v2和 v3。 它主要用来在 IP主机和与 其直接相邻的组播路由器之间建立、 维护组播组成员关系。 主机需要响应 组播路由器的 IGMP查询报文, 即以 IGMP成员报告报文响应; 路由器周 期性发送成员资格查询报文, 然后根据收到的响应报文确定某个特定组在 自己所在子网上是否有主机加入, 并且当收到主机的退出组的报告时, 发 出特定组的查询才艮文(IGMP v2 ), 以确定某个特定组是否已无成员存在。 IGMP Snooping (互联网组管理侦听协议 )是运行在二层设备上的组播 约束机制, 用于管理和控制组播组。 运行 IGMP Snooping的二层设备通过 对收到的 IGMP报文进行分析 , 为端口和 MAC ( Media Access Control, 硬 件位址)组播地址建立起映射关系, 并根据这样的映射关系转发组播数据。 当二层设备没有运行 IGMP Snooping时, 组播数据在二层设备被广播; 当 二层设备运行了 IGMP Snooping后, 已知组播组的组播数据不会在二层设 备被广播, 而在二层设备被组播给指定的接收者。
目前, 在使用 IGMP Snooping协议的二层组播链路网络中, 通常在最 上游设备上配置查询器, 通过周期性的向下游设备发送 IGMP通用查询报 文来获取用户加入或者离开组播组的消息。 另外, 当上游设备从某个端口 收到离开报文时, 如果这个端口上存在离开报文中所指定的组, 那么它就 会生成特定组查询报文, 查询与它连接的子网中是否还存在其它主机需要 接收特定组的数据报文。 下游设备或用户收到 IGMP查询报文之后, 就会 将收到查询报文的端口设置为 IGMP路由端口, 并且向路由端口发送所要 查询组的 IGMP ^艮告 4艮文。
依据这个原理, 当前在二层环网链路环境下, 二层组播转发路径的收 敛过程为: 当主链路发生故障时, 组播流量不会立刻从主链路上切换到备 份链路上去转发, 而是一直等到上游 IGMP查询器发下一个通用查询报文, 并且主机发送 IGMP报告报文来响应该查询时, 二层链路上才会重新学习 IGMP报告报文来更新转发链路,组播流量才切换到备份链路上来。 当主链 路故障恢复时, 备份链路会被二层环网协议阻塞掉, 但组播流量也不会立 刻从备份链路上切回至主链路, 而仍然要等待一个通用查询周期的时间。 通常情况下, 通用查询周期是几分钟, 也就是说, 这期间组播流量不能正 常完成切换, 即组播业务一直不通。 从而, 在二层环网中的组播业务就不 能够快速收敛, 其可靠性大大降低。 发明内容
本发明的主要目的是提供一种以太网二层组播快速收敛的方法及以太 网系统, 以解决在链路拓朴发生变化时, 组播业务不能快速切换的问题, 保障组播业务的可靠性和稳定性。
本发明解决其技术问题所采用的技术方案是:
一种以太网二层组播快速收敛的方法, 包括:
节点确定发生故障端口或者被阻塞端口上有用户存在, 且所述故障 端口或者被阻塞端口上的用户将会从所述故障端口或者被阻塞端口所在 的设备下线;
节点构造所述用户所在组的离开报文, 设定所述离开报文的最大响 应时间为预定值, 并将所述离开报文发往组播路由端口;
查询器接收所述离开报文, 根据所述离开报文判断出所述最大响应 时间是预定值, 则向其所有非组播路由端口发送查询报文, 如果不是, 则结束流程;
所述查询器的下游设备接收到所述查询报文, 响应所述查询报文并 进行组播流量的切换。
优选地, 所述节点将所述离开报文发往组播路由端口之后, 还包括: 代理设备接收到所述离开报文, 并将所述离开报文转发给所述查询器。
优选地, 所述节点确定发生故障端口上有用户存在, 且所述故障端 口上的用户将会从所述故障端口所在的设备下线, 具体包括:
端口物理状态由打开 UP变为关闭 DOWN, 导致用户下线; 或者, 端口的逻辑状态由转发 FORWARD变为阻塞 BLOCK, 导致用户下 线; 或者,
端口是组播路由端口, 所述端口的逻辑状态由 FORWARD 变为 BLOCK, 且所述节点上存在组播用户。 优选地, 所述故障端口为物理被 DOWN的端口。
优选地, 在执行节点确定被阻塞端口上有用户存在, 且所述被阻塞 端口上的用户将会从所述被阻塞端口所在的设备下线之后, 还包括: 确定所述被阻塞的端口为组播路由端口, 并确定所述组播路由端口 上被阻塞掉的虚拟局域网 VLAN, 以及确定所述节点存在所述 VLAN内 的组播用户。
一种以太网系统, 包括:
节点, 用于确节点确定发生故障端口或者被阻塞端口上有用户存在, 且所述发生故障端口或者被阻塞端口上的用户将会从所述发生故障端口 或者被阻塞端口所在的设备下线, 然后构造所述用户所在组的离开报文, 设定所述离开报文的最大响应时间为预定值, 并将所述离开报文发往组 播路由端口;
查询器, 用于接收所述离开报文, 根据所述离开报文判断出所述最 大响应时间是预定值, 则向其所有非组播路由端口发送查询报文;
查询器的下游设备, 用于接收到所述查询报文, 响应所述查询报文 并进行组播流量的切换。
优选地, 还包括: 代理设备, 用于接收到所述离开报文, 并将所述 离开报文转发给所述查询器。
优选地, 所述确定发生故障端口上有用户存在, 且所述故障端口上 的用户将会从所述故障端口所在的设备下线, 具体包括:
端口物理状态由打开 UP变为关闭 DOWN, 导致用户下线; 或者, 端口的逻辑状态由转发 FORWARD变为阻塞 BLOCK, 导致用户下 线; 或者,
端口是组播路由端口, 所述端口的逻辑状态由 FORWARD 变为 BLOCK, 且所述节点上存在组播用户。 优选地, 所述节点, 还用于在确定被阻塞端口上有用户存在, 且所 述被阻塞端口上的用户将会从所述被阻塞端口所在的设备下线之后, 确 定所述被阻塞的端口为组播路由端口, 并确定所述组播路由端口上被阻 塞掉的虚拟局域网 VLAN, 以及确定所述节点存在所述 VLAN内的组播 用户。
优选地, 所述故障端口为物理被 DOWN的端口。
实施本发明的技术方案, 具有以下有益效果: 本发明提供的方法和系 统, 通过在离开报文中设定最大响应的时间来告知查询器, 使查询器的下 游设备能够响应该查询器, 完成链路连接, 以解决在链路拓朴发生变化时, 组播业务不能快速切换的问题, 保障组播业务的可靠性和稳定性。 附图说明
图 1为本发明实施例提供的第一种方法流程图;
图 2为本发明实施例提供的第二种方法的流程图;
图 3为本发明实施例提供的系统结构图;
图 4为本发明实施例提供的系统另一结构图;
图 5为本发明实施例提供以太网拓朴的应用实例的结构示意图; 图 6为本发明实施例提供以太网拓朴的另一应用实例的结构示意图; 图 7为本发明实施例提供以太网拓朴的又一应用实例的结构示意图。 具体实施方式
为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图 及实施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体 实施例仅仅用以解释本发明, 并不用于限定本发明。
本发明实施例提供一种以太网二层组播快速收敛的方法, 该实施例提 供的方法应用于当组播流量的链路发生故障的时候, 如图 1 所示, 该方法 包括步驟:
S110、 节点确定发生故障的端口上有用户存在, 且由于该故障将会导 致该用户下线; 具体的:
首先检测到链路拓朴发生变化, 该变化包括三种情况:
一, 端口物理状态由 UP (打开)变为 DOWN (关闭), 导致用户下线; 二, 端口的逻辑状态由 FORWARD (转发) 变为 BLOCK (阻塞), 导 致用户下线;
三, 端口是组播路由端口, 该端口的逻辑状态由 FORWARD 变为 BLOCK, 且该节点上存在组播用户。
S120、 节点构造所述用户所在组的离开报文, 设定所述离开报文的最 大响应时间为预定值, 并将所述离开报文发往组播路由端口; 具体的: 当组播流量的链路发生故障时, 节点确定发生故障的端口上有用户存 在, 并且由于这个故障将会导致该用户下线的, 则该节点需要构造这些用 户所在组的离开报文, 离开报文中的最大响应时间字段填充为 255, 在其他 的实施例中, 该字段也可以填充为其他的预定值, 然后发往该节点的组播 路由端口。
S130、 查询器接收到所述离开报文, 根据所述离开报文判断出所述最 大响应时间是预定值, 则向其所有非组播路由端口发送查询报文; 否则结 束该流程。 具体的:
当查询器收到该离开报文之后, 需要判断其中的最大响应时间字段, 如果是 255, 则向其所有非组播路由端口发查询报文(如: 特定组查询或通 用查询报文)。
S140、 所述查询器的下游设备接收到所述查询 4艮文, 响应所述查询才艮 文并进行组播流量的切换。
该下游设备是通过发送加入报文响应该查询报文的, 该当前用户有可 能是上述的用户, 也有可能不是上述的用户。 该下游设备可以为该查询器 下一级的网络侧设备, 也可以为用户。
该方法中, 还进一步包括步驟: 代理设备接收到所述离开报文, 并将 所述离开报文转发给所述查询器。
代理设备在转发离开报文时, 不修改(有些厂商会在代理转发时将该 字段置 0 )报文中的最大响应时间字段值。 如果没有代理设备, 则节点直接 从组播路由端口将离开报文发送到查询器。
该方法在组播流量的链路发生故障时, 通过在离开报文中设定最大响 应的时间来告知查询器, 使查询器的下游设备能够响应该查询器, 完成链 路连接, 以解决在链路拓朴发生变化时, 组播业务不能快速切换的问题, 保障组播业务的可靠性和稳定性。
本发明实施例提供一种以太网二层组播快速收敛的方法, 该实施例提 供的方法应用于当组播流量的链路发生故障的时候, 如图 2所示, 该方法 包括:
S210、 节点确定被阻塞的端口上有用户存在, 并且有用户因为所述端 口阻塞导致下线; 更为具体的, 该步驟 S210包括: 首先检测到链路拓朴发 生变化, 该变化包括三种情况:
一, 端口物理状态由 UP变为 DOWN, 即状态改变会导致用户下线; 二, 端口的逻辑状态由 FORWARD变为 BLOCK, 即状态改变会导致 用户下线;
三, 端口是组播路由端口, 该端口的逻辑状态由 FORWARD 变为
BLOCK, 且该节点上存在组播用户。
在其他的实施例中, 所述步驟 S210之后, 进一步包括:
如果确定所述被阻塞的端口为组播路由端口, 并确定该组播路由端口 上哪些 VLAN被阻塞掉, 以及确定该节点存在所述 VLAN内的组播用户, 该组播用户为用户。
S220、 节点构造所述用户所在组的离开报文, 设定所述离开报文的最 大响应时间为预定值, 并将所述离开报文发往组播路由端口;
当组播流量的链路故障恢复时, 节点确定发生故障的端口上有用户存 在, 并且由于这个故障将会导致该用户下线的, 则该节点需要构造这些用 户所在组的离开报文, 离开报文中的最大响应时间字段填充为 255 , 在其他 的实施例中, 该字段也可以填充为其他的预定值, 然后发往该节点的组播 路由端口。
S230、 查询器接收到所述离开报文, 根据所述离开报文判断出所述最 大响应时间是预定值, 则向其所有非组播路由端口发送查询报文, 如果不 是, 则结束该流程; 具体的:
当查询器收到该离开报文之后, 需要判断其中的最大响应时间字段, 如果是 255 , 则向其所有非组播路由端口发查询报文(如: 特定组查询或通 用查询报文)。
S240、 所述查询器的下游设备接收到所述查询 4艮文, 响应所述查询才艮 文并进行组播流量的切换, 以加快组播流量在链路中的收敛。
该下游设备是通过发送加入报文响应该查询报文的, 该当前用户有可 能是上述的用户, 也有可能不是上述的用户。
该方法中, 还进一步包括步驟: 代理设备接收到所述离开报文, 并将 所述离开报文转发给所述查询器。
代理设备在转发离开报文时, 不修改(有些厂商会在代理转发时将该 字段置 0 )报文中的最大响应时间字段值。 如果没有代理设备, 则节点直接 从组播路由端口将离开报文发送到查询器。
该方法在组播流量的链路故障恢复时, 通过在离开报文中设定最大响 应的时间来告知查询器, 使查询器的下游设备能够响应该查询器, 完成链 路连接, 以解决在链路拓朴发生变化时, 组播业务不能快速切换的问题, 保障组播业务的可靠性和稳定性。
本发明实施例还提供一种以太网系统, 如图 3所示, 系统包括: 节点 310, 用于确定发生故障的端口上有用户存在, 且由于该故障将会 导致该用户下线, 然后构造所述用户所在组的离开报文, 设定所述离开报 文的最大响应时间为预定值, 并将所述离开报文发往组播路由端口; 更为 具体的, 该节点 310用于确定端口物理状态由 UP变为 DOWN, 即状态改 变会导致用户下线; 或者, 端口的逻辑状态由 FORWARD变为 BLOCK, 即状态改变会导致用户下线; 或者, 端口是组播路由端口, 该端口的逻辑 状态由 FORWARD变为 BLOCK, 且该节点上存在组播用户。
查询器 320, 用于接收所述离开报文,根据所述离开报文判断出所述最 大响应时间是预定值, 则向其所有非组播路由端口发送查询报文;
查询器的下游设备 330, 用于接收到所述查询报文, 响应所述查询报文 并进行组播流量的切换, 以加快组播流量在链路中的收敛。
在其他的实施例中, 该系统如图 4所示, 还包括: 代理设备 311 , 用于 接收到所述离开报文, 并将所述离开报文转发给所述查询器 320。
该方法在组播流量的链路发生故障时, 通过在离开报文中设定最大响 应的时间来告知查询器, 使查询器的下游设备能够响应该查询器, 完成链 路连接, 以解决在链路拓朴发生变化时, 组播业务不能快速切换的问题, 保障组播业务的可靠性和稳定性。
本发明还提供另一种以太网系统, 如图 3所示, 该系统包括: 节点 310, 用于确定被阻塞的端口上有用户存在, 并且有用户因为所述 端口阻塞导致下线, 然后构造所述用户所在组的离开报文, 设定所述离开 报文的最大响应时间为预定值, 并将所述离开报文发往组播路由端口; 更 为具体的, 该节点 310用于确定端口物理状态由 UP变为 DOWN, 即状态 改变会导致用户下线; 或者, 端口的逻辑状态由 FORWARD变为 BLOCK, 即状态改变会导致用户下线; 或者, 端口是组播路由端口, 该端口的逻辑 状态由 FORWARD变为 BLOCK, 且该所述节点上存在组播用户。
查询器 320, 用于接收到所述离开报文,根据所述离开报文判断出所述 最大响应时间是预定值, 则向其所有非组播路由端口发送查询报文;
查询器的下游设备 330, 用于接收到所述查询报文, 响应所述查询报文 并进行组播流量的切换, 以加快组播流量在链路中的收敛。 该系统中, 如 果查询器的后没有连接下游设备, 则直接连接用户。
在其他的实施例中, 进一步的, 所述节点 310, 还用于确定所述被阻塞 的端口为组播路由端口, 并确定该组播路由端口上哪些 VLAN被阻塞掉, 以及确定该节点 310存在所述 VLAN内的组播用户, 该组播用户为用户。
该系统在组播流量的链路故障恢复时, 通过在离开报文中设定最大响 应的时间来告知查询器, 使查询器的下游设备能够响应该查询器, 完成链 路连接, 以解决在链路拓朴发生变化时, 组播业务不能快速切换的问题, 保障组播业务的可靠性和稳定性。
下面描述上述方法和系统的应用实例:
应用实例一:
如图 5 所示的拓朴。 该拓朴为包括: 源服务器、 交换机和用户组成的 以太网拓朴, 其中, 交换机 S0、 Sl、 S2、 S3和 S4上开启 IGMP Snooping 功能, 交换机 SI、 S2、 S3、 S4构成一个环路, 交换机 S1→S2→S3是主链 路, 交换机 S1→S4→S3是备份链路。 其中, 交换机 S0的端口 1配置代理 查询器, 交换机 S1的端口 3、 交换机 S2 的端口 2、 交换机 S3的 1和端口 2、 交换机 S4的端口 1都是组播路由端口 (动态的或者配置为静态的), 用 户点播后, 在交换机 S1的端口 1、 交换机 S2的端口 1、 交换机 S3的端口 3都形成有组播用户表项。在链路正常的情况下,组播流量是沿主链路下来 的。
当主链路发生故障时, 如图 6所示的拓朴, 该拓朴为包括: 源服务器、 交换机和用户组成的以太网拓朴, 交换机 S3的端口 1的状态会从 BLOCK 进入 FORWARD。 交换机 S2的端口 1物理连接断开, 端口 1上的用户将会 下线, 此时交换机 S2构造这些用户组的离开报文, 离开报文中的最大响应 时间字段被填充为 255 , 然后向端口 2发出。 交换机 S1从端口 1收到这些 离开报文之后, 将该离开报文从端口 3发出, 不改变其中的最大响应时间 字段值。 交换机 SO从端口 1收到这些离开报文之后, 判断报文中最大响应 时间字段的值是否为 255 , 如果是 255 , 则从端口 1发出查询报文, 交换机 S1收到查询报文后会在端口 1和端口 2发出, 交换机 S2收到后会丟弃, 交 换机 S4收到后会从端口 2发出, 交换机 S3收到后会响应组播加入报文从 端口 1发出, 交换机 S4收到后会在端口 2形成表项, 然后从端口 1发出, 交换机 S1收到后会在端口 2形成表项, 然后从端口 3发出, 交换机 SO收 到后会在端口 1 形成表项。 这样数据流量就能够从备份链路上下来, 从而 形成快速收敛。
当主链路故障恢复时, 如图 5所示, 交换机 S3的端口 1的状态又会从 FORWARD进入 BLOC :。 此时交换机 S3的端口 1是组播路由端口, 且 S3 上有组播用户表项 (在端口 3上), 因此, 交换机 S3会构造它上面所有组 播用户组的离开报文, 该离开报文中的最大响应时间字段被填充为 255 , 然 后向端口 1和端口 2发出。 交换机 S2上由于没有组播用户表项, 因此不会 向组播路由端口转发该离开报文, 直接丟弃; 而交换机 S4上是有组播用户 表项的, 因此会向组播路由端口转发离开报文。 后续的步驟就和前一段中 所描述的链路发生故障时的后续步驟类似了, 因此这里不再赘述。 当主链 路上的节点重新收到加入报文之后, 组播流量就完成了链路恢复时的快速 切换了。 应用实例二:
如图 7所示的拓朴, 该拓朴为包括: 源服务器、 交换机和用户组成的 以太网拓朴, 如图 7所示的拓朴和图 5的拓朴类似, 只是环路的阻塞端口 不再是交换机 S3的端口 1 , 而是交换机 S4的端口 2。
主链路发生故障时和应用实例一中的链路故障处理步驟类似, 这里不 再重复。
而当主链路故障恢复时, 如图 7所示, 交换机 S4的端口 2的状态会从 FORWARD进入 BLOCK, 此时交换机 S4的端口 2上有用户表项, 因此, 交换机 S2会构造这些下线的用户组的离开报文, 离开报文中的最大响应时 间字段被填充为 255 , 然后向端口 1发出。后续的步驟和前面应用实例一链 路发生故障的过程相同, 因此不再赘述。
以上仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发 明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本 发明的保护范围之内。

Claims

权利要求书
1、 一种以太网二层组播快速收敛的方法, 其特征在于, 包括: 节点确定发生故障端口或者被阻塞端口上有用户存在, 且所述故障 端口或者被阻塞端口上的用户将会从所述故障端口或者被阻塞端口所在 的设备下线;
节点构造所述用户所在组的离开报文, 设定所述离开报文的最大响 应时间为预定值, 并将所述离开报文发往组播路由端口;
查询器接收所述离开报文, 根据所述离开报文判断出所述最大响应 时间是预定值, 则向其所有非组播路由端口发送查询报文, 如果不是, 则结束流程;
所述查询器的下游设备接收到所述查询报文, 响应所述查询报文并 进行组播流量的切换。
2、 如权利要求 1所述方法, 其特征在于, 所述节点将所述离开报文 发往组播路由端口之后, 还包括: 代理设备接收到所述离开报文, 并将 所述离开报文转发给所述查询器。
3、 如权利要求 1所述方法, 其特征在于, 所述节点确定发生故障端 口上有用户存在, 且所述故障端口上的用户将会从所述故障端口所在的 设备下线, 具体包括:
端口物理状态由打开 UP变为关闭 DOWN, 导致用户下线; 或者, 端口的逻辑状态由转发 FORWARD变为阻塞 BLOCK, 导致用户下 线; 或者,
端口是组播路由端口, 所述端口的逻辑状态由 FORWARD 变为 BLOCK, 且所述节点上存在组播用户。
4、 如权利要求 1 所述方法, 其特征在于, 所述故障端口为物理被 DOWN的端口。
5、 如权利要求 1所述的方法, 其特征在于, 在执行节点确定被阻塞 端口上有用户存在, 且所述被阻塞端口上的用户将会从所述被阻塞端口 所在的设备下线之后, 还包括:
确定所述被阻塞的端口为组播路由端口, 并确定所述组播路由端口 上被阻塞掉的虚拟局域网 VLAN , 以及确定所述节点存在所述 VLAN内 的组播用户。
6、 一种以太网系统, 其特征在于, 包括:
节点, 用于确节点确定发生故障端口或者被阻塞端口上有用户存在, 且所述发生故障端口或者被阻塞端口上的用户将会从所述发生故障端口 或者被阻塞端口所在的设备下线, 然后构造所述用户所在组的离开报文, 设定所述离开报文的最大响应时间为预定值, 并将所述离开报文发往组 播路由端口;
查询器, 用于接收所述离开报文, 根据所述离开报文判断出所述最 大响应时间是预定值, 则向其所有非组播路由端口发送查询报文;
查询器的下游设备, 用于接收到所述查询报文, 响应所述查询报文 并进行组播流量的切换。
7、 如权利要求 6所述的系统, 其特征在于, 还包括: 代理设备, 用 于接收到所述离开报文, 并将所述离开报文转发给所述查询器。
8、 如权利要求 6所述的系统, 其特征在于, 所述确定发生故障端口 上有用户存在, 且所述故障端口上的用户将会从所述故障端口所在的设 备下线, 具体包括:
端口物理状态由打开 UP变为关闭 DOWN, 导致用户下线; 或者, 端口的逻辑状态由转发 FORWARD变为阻塞 BLOCK, 导致用户下 线; 或者,
端口是组播路由端口, 所述端口的逻辑状态由 FORWARD 变为 BLOCK, 且所述节点上存在组播用户。
9、 如权利要求 6所述的系统, 其特征在于, 所述节点, 还用于在确 定被阻塞端口上有用户存在, 且所述被阻塞端口上的用户将会从所述被 阻塞端口所在的设备下线之后, 确定所述被阻塞的端口为组播路由端口, 并确定所述组播路由端口上被阻塞掉的虚拟局域网 VLAN, 以及确定所 述节点存在所述 VLAN内的组播用户。
10、 如权利要求 6所述系统, 其特征在于, 所述故障端口为物理被 DOWN的端口。
PCT/CN2012/072748 2011-05-10 2012-03-21 以太网二层组播快速收敛的方法及以太网系统 WO2012152134A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110120018.1A CN102185776B (zh) 2011-05-10 2011-05-10 以太网二层组播快速收敛的方法及以太网系统
CN201110120018.1 2011-05-10

Publications (1)

Publication Number Publication Date
WO2012152134A1 true WO2012152134A1 (zh) 2012-11-15

Family

ID=44571847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072748 WO2012152134A1 (zh) 2011-05-10 2012-03-21 以太网二层组播快速收敛的方法及以太网系统

Country Status (2)

Country Link
CN (1) CN102185776B (zh)
WO (1) WO2012152134A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117041136A (zh) * 2023-10-10 2023-11-10 北京国科天迅科技股份有限公司 组播管理方法、系统、装置、交换机和存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185776B (zh) * 2011-05-10 2016-03-02 中兴通讯股份有限公司 以太网二层组播快速收敛的方法及以太网系统
CN102347859B (zh) * 2011-09-26 2013-04-10 杭州华三通信技术有限公司 快速恢复链路的方法和装置
CN105490970B (zh) * 2015-12-08 2018-10-30 迈普通信技术股份有限公司 一种链路快速收敛的方法、装置及系统
CN105338331B (zh) * 2015-12-16 2018-08-24 武汉微创光电股份有限公司 一种非压缩视频监控系统及故障恢复方法
CN113472663B (zh) * 2021-06-25 2022-11-18 新华三信息安全技术有限公司 一种报文转发方法及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064906A (zh) * 2006-04-26 2007-10-31 中兴通讯股份有限公司 一种缩短移动通讯系统被叫建立时间的方法
CN101145922A (zh) * 2006-09-13 2008-03-19 中兴通讯股份有限公司 一种实现组播终端可靠离开的系统和方法
CN101465746A (zh) * 2007-12-17 2009-06-24 华为技术有限公司 组播网络收敛的方法和系统以及组播转发装置
CN101521927A (zh) * 2009-04-03 2009-09-02 中兴通讯股份有限公司 一种组播转发路径收敛的方法和系统
CN102185776A (zh) * 2011-05-10 2011-09-14 中兴通讯股份有限公司 以太网二层组播快速收敛的方法及以太网系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064906A (zh) * 2006-04-26 2007-10-31 中兴通讯股份有限公司 一种缩短移动通讯系统被叫建立时间的方法
CN101145922A (zh) * 2006-09-13 2008-03-19 中兴通讯股份有限公司 一种实现组播终端可靠离开的系统和方法
CN101465746A (zh) * 2007-12-17 2009-06-24 华为技术有限公司 组播网络收敛的方法和系统以及组播转发装置
CN101521927A (zh) * 2009-04-03 2009-09-02 中兴通讯股份有限公司 一种组播转发路径收敛的方法和系统
CN102185776A (zh) * 2011-05-10 2011-09-14 中兴通讯股份有限公司 以太网二层组播快速收敛的方法及以太网系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117041136A (zh) * 2023-10-10 2023-11-10 北京国科天迅科技股份有限公司 组播管理方法、系统、装置、交换机和存储介质
CN117041136B (zh) * 2023-10-10 2024-01-23 北京国科天迅科技股份有限公司 组播管理方法、系统、装置、交换机和存储介质

Also Published As

Publication number Publication date
CN102185776B (zh) 2016-03-02
CN102185776A (zh) 2011-09-14

Similar Documents

Publication Publication Date Title
US7826348B2 (en) Multicast fast reroute
US9077551B2 (en) Selection of multicast router interfaces in an L2 switch connecting end hosts and routers, which is running IGMP and PIM snooping
CN105763359B (zh) 用于交织结构交换机集群的分布式双向转发检测协议(d-bfd)
US9100203B2 (en) IP multicast over multi-chassis trunk
US8345540B2 (en) Virtual snooping bridge in computer networks
US8204061B1 (en) Virtual port channel switches with distributed control planes
US6654371B1 (en) Method and apparatus for forwarding multicast data by relaying IGMP group membership
CN100571205C (zh) 一种接入网络中的组播业务保护方法及其系统、装置
US20130021896A1 (en) Method, system, and device for protecting multicast in communication network
US7719959B2 (en) Achieving super-fast convergence of downstream multicast traffic when forwarding connectivity changes between access and distribution switches
WO2017028586A1 (zh) 一种业务报文的组播方法及装置
WO2008119290A1 (fr) Procédé de protection par redondance du flux de diffusion multiple, et dispositif correspondant
EP1804423A2 (en) Method for rapidly recovering multicast service and network device
WO2011035699A1 (zh) 一种组播快速收敛方法、路由器和通信系统
WO2012003743A1 (zh) 组播流量的转发方法及装置
WO2012152134A1 (zh) 以太网二层组播快速收敛的方法及以太网系统
US20140233563A1 (en) Multicast processing method and device
WO2010111956A1 (zh) 一种组播转发路径收敛的方法和系统
WO2012109941A1 (zh) 一种trill网络的冗余备份方法及系统
CN103051536A (zh) 一种二层冗余链路的快速组播切换方法
WO2018014767A1 (zh) 一种信息确定方法、装置及存储介质
WO2011035599A1 (zh) 用于实现网络故障时切换的方法及查询器
WO2011144048A2 (zh) 一种组播实现的方法和网络设备
US20140269746A1 (en) Load balancing of logical connections over multi-chassis trunk
EP1062766A1 (en) Method, apparatus, and medium for minimal time multicast graft/join restoration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12782883

Country of ref document: EP

Kind code of ref document: A1