WO2012152037A1 - 一种在协作多点系统中进行信道质量测量的方法和系统 - Google Patents

一种在协作多点系统中进行信道质量测量的方法和系统 Download PDF

Info

Publication number
WO2012152037A1
WO2012152037A1 PCT/CN2011/084752 CN2011084752W WO2012152037A1 WO 2012152037 A1 WO2012152037 A1 WO 2012152037A1 CN 2011084752 W CN2011084752 W CN 2011084752W WO 2012152037 A1 WO2012152037 A1 WO 2012152037A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
point
state information
channel state
information reference
Prior art date
Application number
PCT/CN2011/084752
Other languages
English (en)
French (fr)
Inventor
关艳峰
陈艺戬
郁光辉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012152037A1 publication Critical patent/WO2012152037A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present invention relates to wireless communication technology, a method and system for channel quality measurement in a coordinated multipoint system. Background technique
  • MIMO Multiple Input Multiple Output
  • MIMO technology utilizes spatial diversity gain through transmit diversity and receive diversity, antenna array gain through beamforming techniques, and spatial multiplexing gain through spatial multiplexing techniques.
  • the obtaining spatial diversity gain utilizes the weak correlation of the spatial channel, and combined with the selectivity in time/frequency, the transmit diversity provides multiple signal copies for signal transmission, and the receive diversity is to receive multiple signals transmitted by the transmitted signal in space.
  • obtaining the strong correlation of the antenna array gain using the spatial channel by installing a small-pitch antenna array, The electromagnetic waves transmitted in the space are interfered to form a strong directional radiation pattern, so that the main lobe of the radiation pattern is adaptively directed to the user's incoming wave direction, thereby improving the signal-to-noise ratio of the received signal and improving the system capacity or coverage range -
  • single stream beamforming technology obtaining spatial multiplexing gain is to use a weak correlation of spatial channels to transmit different data streams on multiple independent spatial channels, thereby increasing the peak rate of data transmission - for example Multi-user multiple input multiple output (MU-MIMO, Mutiple Us Er MIMO ) technology.
  • MU-MIMO Multi-user multiple input multiple output
  • LTE Release 8/9 in order to measure the spatial channel state or quality and demodulate the received data symbols, a Common Reference Signal (CRS) is introduced.
  • the user equipment UE, User Equipment
  • UE can measure the channel state through the CRS, and provide basic channel state information for selecting different MIMO transmission modes for the user equipment and the cell, which is implemented by CRS in LTE Release 8/9.
  • the measurement of the channel by the terminal also realizes the demodulation of the data transmitted by the terminal to the cell;
  • the supported transmission modes include diversity, open-loop single-user MIMO (SU-MIMO, Single User MIMO), beamforming, closed-loop single-user ⁇ and closed-loop MU-MIMO.
  • the channel state information reference signal (CSI-RS, Channel State Information-Reference Signal) is supported in the LTE Release 10.
  • CSI-RS Channel State Information reference Signal
  • the inventors have found that the prior art has the following problems: A specific technical solution for implementing multi-cell joint processing and coordinated channel state information measurement by using a channel state information reference signal CSI-RS based on Coordinated Multiple Point (CoMP) and transparent to user equipment.
  • CoMP Coordinated Multiple Point
  • the technical problem to be solved by the present invention is to provide a method and system for performing channel quality measurement in a coordinated multipoint system, which is used to solve the multi-cell joint processing by CSI-RS based on coordinated multipoint in the prior art. Defects of specific techniques for the measurement of coordinated channel state information.
  • an embodiment of the present invention provides a method for measuring channel quality of coordinated multi-points, the method comprising: determining, by a primary coordination point of a plurality of the coordinated points, a channel state information reference signal configuration parameter And determining, by the plurality of the coordination points, a subframe for transmitting the channel state information reference signal according to the channel state information reference signal configuration parameter; and transmitting, by the coordination node, the channel state information reference signal according to the channel state information reference signal configuration parameter.
  • the subframes are different; all the cooperation points transmit the channel state information reference signal on the determined subframe, so that the user equipment measures the channel quality according to the channel state information reference signal.
  • the multiple collaboration points include a primary collaboration point and a secondary collaboration point
  • the primary coordination point generates the channel state information reference signal configuration parameter
  • sends the channel state information reference signal configuration parameter to Determining, by the plurality of the coordination points, the subframe for transmitting the channel state information reference signal according to the channel state information reference signal configuration parameter further includes: the primary coordination point according to the channel state information reference signal configuration parameter Determining, by itself, a subframe and a reference signal sequence for transmitting the channel state information reference signal; the slave coordination point determines, according to the channel state information reference signal configuration parameter from the primary coordination point, that the channel state information reference signal is sent by itself Subframe and reference signal sequence.
  • the reference signal sequence used for transmitting the channel state information reference signal from the cooperation point is the same as the reference signal sequence used by the primary coordination point to transmit the channel state information reference signal.
  • the channel state information reference signal configuration parameter includes a transmission period and a transmission offset; when the transmission period of the primary cooperation point is P A , and the transmission offset is / Qffet , including There are M cooperation points in the main cooperation point, 1 ⁇ M ⁇ 16, and the primary cooperation point sends the channel state information reference signal on the downlink subframe whose subframe number is / ( M + .
  • the sending, by the collaboration point, the channel state information reference signal on the determined subframe further includes: in consecutive transmission periods, the primary collaboration point and the slave collaboration point are in different subframes
  • the channel state information reference signals are transmitted using different transmit antennas at the same resource location; the different transmit antennas include transmit antennas of the primary coordination point and transmit antennas of respective slave coordination points.
  • the method further includes: the primary coordination point receiving the channel quality fed back by the user equipment
  • the information of the channel quality information is used by the user equipment according to the channel state information reference signal and/or sent by the user equipment for each of the collaboration points including the primary collaboration point and the secondary collaboration point.
  • the channel state information reference signal set can be generated.
  • the primary coordination point receives channel quality information that is fed back by the user equipment by: the primary coordination point periodically or aperiodically receiving channel quality information that is fed back by the user equipment;
  • the user equipment completes the measurement and feeds back the channel quality information between the current cooperation point and the user equipment before transmitting the channel state information reference signal at the next cooperation point.
  • the primary coordination point after receiving the channel quality information, the primary coordination point sends all or part of the channel quality information to the slave coordination point.
  • the channel quality information includes: a precoding matrix index, a channel quality information indication, and/or a rank indication.
  • a system for measuring channel quality of a coordinated multipoint includes a plurality of cooperation points, wherein: a cooperation point includes: a configuration unit, configured to determine a channel state information reference signal configuration parameter; and a subframe determining unit, configured to Determining, by the channel state information reference signal configuration parameter, a subframe for transmitting a channel state information reference signal; and determining, by the coordination point, the subframes that transmit the channel state information reference signal according to the channel state information reference signal configuration parameter are different; And a communication unit, configured to send the channel state information reference signal on the determined subframe, so that the user equipment measures the channel quality according to the channel state information reference signal.
  • the collaboration point further includes: a switching unit, configured to notify the configuration unit when the collaboration point is used as a primary collaboration point, and generate, by the configuration unit, the channel state information reference signal configuration parameter; And a unit, configured to send the channel state information reference signal configuration parameter to the slave collaboration point.
  • the subframe determining unit of the collaboration point further includes: a first subframe unit, when the collaboration point is used as a primary collaboration point, determining that the sending period is the Send bias / ⁇ ffet, the main collaboration site consensus including M cooperative points, 1 ⁇ M ⁇ 16, the cooperating main point is subframe number 3 ⁇ 4 ( ⁇ / (M 'JPA "+ -.
  • Downlink sub Sending the channel state indication reference signal on the frame where is the original sequence number of the subframe, starting from 0, floor ( ) is a rounding operation; the second subframe unit is used for the collaboration point as the mth transmitting from the point when collaborating in the subframe number is m / (m ⁇ ⁇ ⁇ ) ) + ⁇ ⁇ _.
  • ⁇ downlink sub-frame of the channel state information reference signal m start counting from 1, m or less ⁇ 1.
  • the beneficial effects of the above technical solution of the present invention are as follows:
  • the primary coordination point determines a transmission period and a transmission offset required for transmitting the CSI-RS, and the primary cooperation point and the secondary cooperation point determine that each of the CSI-RSs is transmitted according to the transmission period and the transmission offset.
  • Sub-frame the UE detects channel quality according to CSI-RSs from different coordination points, and the coordination point and the UE can implement downlink coordinated multi-point technology through CSI-RS, wherein the CoMP technology makes the MIMO technology no longer limited to a single cell, but It is possible to jointly process and coordinate multiple cells.
  • FIG. 1 is a schematic flow chart of a method for measuring channel quality of coordinated multi-point according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a network topology of two coordinated point transmission channel state information reference signals according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of determining a subframe and transmitting a CSI-RS according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of determining three subframes and transmitting a CSI-RS according to an embodiment of the present invention
  • FIG. Example 2 cooperation points determine a subframe and send a CSI-RS and receive feedback schematic. detailed description
  • CSI-RS Channel State Information Reference Signal
  • DMRS Demodulation Reference Signal
  • the main purpose is to further optimize channel measurement. The overhead and flexibility of channel measurement and demodulation.
  • the CSI-RS is dedicated to the measurement of the channel.
  • the measurement of the CSI-RS can be used to calculate the Precoding Matrix Indicator (PMI) that the UE needs to feed back to the Cell.
  • PMI Precoding Matrix Indicator
  • the Channel Quality Indicator (CQI, Channel Quality Indicator) And the rank indication (RI, Rank Indicator); the distribution of CSI-RS in both the time domain and the frequency domain is sparse, and it is guaranteed that only one CSI per antenna port of the serving cell is included in one resource block (RB, Resource Block) -
  • RB Resource Block
  • the sparse CSI-RS can support the 8-cell configuration of a single Cell, and strongly supports the neighbor cell measurement configuration.
  • CSI-RS also has the advantage of further improving the average spectrum utilization of the cell, especially the spectrum utilization of the cell edge, because CSI-RS provides the possibility of application of CoMP technology, and CoMP technology makes MIMO technology no longer Limited to a single cell, but can be combined and coordinated by multiple cells.
  • CoMP technology mainly includes two forms: Joint Transmission (JT): Data is jointly processed by each collaboration point, that is, each UE's data is jointly transmitted by all coordination points to eliminate interference and improve reception quality.
  • Coordinated Scheduling/Coordinated Beamforming (CS/CB) Data is transmitted only from the serving cell, but the UE scheduling or BF mode is performed by the cooperation point. CoMP technology needs to know more channel quality information.
  • joint transmission technology requires each UE to feed back channel information to its coordination point, and the coordination point jointly or independently determines the precoding matrix or vector to the UE.
  • CoMP technology is impossible to implement because CRS is cell-specific.
  • channel measurement and feedback measurement from UE to multiple collaboration points can be realized through CSI-RS through coordination between cells. information.
  • Embodiments of the present invention provide a method for performing channel quality measurement in a coordinated multipoint system.
  • the coordinated multipoint system includes a plurality of collaboration points.
  • the method includes: Step 101: A primary coordination point of the plurality of collaboration points determines a channel state information reference signal configuration parameter (CSI-RS) Configuration parameter);
  • CSI-RS channel state information reference signal configuration parameter
  • Step 102 A plurality of the coordination points determine a subframe for transmitting a channel state information reference signal according to the channel state information reference signal configuration parameter; and all the cooperation points transmit the channel state information reference according to the channel state information reference signal configuration parameter.
  • the subframes of the signals are different.
  • Step 103 All the coordinated points send the channel state information reference signal on the determined subframe, so that the user equipment measures the channel quality according to the channel state information reference signal.
  • the primary coordination point determines a channel state information reference signal configuration parameter required for transmitting the CSI-RS, and the channel state information reference signal configuration parameter specifically determines a specific subframe capable of transmitting the CSI-RS, and the primary cooperation point And determining, from the cooperation point, the subframes that respectively send the CSI-RS according to the channel state information reference signal configuration parameter, and the UE can detect the channel quality of the corresponding channel according to the CSI-RSs from different cooperation points, so that the MIMO technology is no longer limited. Single cell, but can be combined and coordinated by multiple cells.
  • the all the collaboration points include the primary collaboration point and other secondary collaboration points; the multiple collaboration points also include the primary collaboration point and the secondary collaboration point.
  • the plurality of collaboration points include a primary collaboration point and a secondary collaboration point
  • the primary coordination point generates the channel state information reference signal configuration parameter
  • Channel state information reference signal configuration parameters include transmission period and transmission offset; when primary collaboration The transmission period of the point is and the transmission offset is P A _.
  • the channel state information reference signal wherein, is the original sequence number of the subframe, starting from 0, floor ( ) is a rounding operation; the mth from the cooperation point in the subframe number is m / (M ⁇ ⁇ ⁇ ) ) + ⁇ ⁇ _.
  • the channel state information reference signal is transmitted on the downlink subframe of ⁇ , and m starts counting from 1, and m is less than or equal to ⁇ 1.
  • one detection period is not more than 80 milliseconds.
  • the primary coordination point can transmit the CSI-RS in any one subframe within one transmission period in one detection period.
  • the sending period means that: a cooperative point must select the appropriate subframe every time the CSI-RS is sent, and cannot select one subframe to load and send the CSI-RS.
  • the collaboration point selects the appropriate subframe according to the transmission period and the transmission offset, and sends M CSI-RSs through M cooperation points in each detection period with a length of not more than 80 milliseconds, that is, it is necessary to select an appropriate one for each collaboration point.
  • Subframes therefore, it is necessary to determine, for each collaboration point, all subframes that can send CSI-RSs for the coordination point.
  • the subframes that can theoretically transmit CSI-RS for one coordination point are continuous, and the number of subframes is continuous.
  • the first subframe that can send CSI-RS for the collaboration point is the start of its transmission period.
  • the start subframe, the last subframe after the start subframe capable of transmitting the CSI-RS for the cooperation point is the last subframe, and the transmission period includes the start subframe to the last subframe and all subframes between them .
  • M collaboration points there are M collaboration points, 1 ⁇ M ⁇ 16; M collaboration points include both primary collaboration points and secondary collaboration points:
  • the primary coordination point determines a transmission period and a transmission offset required for transmitting the CSI-RS, and the transmission period and the transmission offset constitute a channel state information reference signal configuration parameter;
  • the M cooperation points After the primary coordination point sends the channel state information reference signal configuration parameters to the M-1 cooperation points through the RRC signaling, the M cooperation points send the CSI-RS to the UE in the respective subframes according to the channel state information reference signal configuration parameter. In this way, the UE completes the primary channel quality information measurement and feedback for the M cooperation points every ⁇ subframe.
  • Each collaboration point configures the CSI-RS to be transmitted according to the channel state information reference signal configuration parameter as follows:
  • the transmission period of the primary collaboration point is the transmission offset.
  • the subframe number of the downlink subframe of the CSI-RS is . ⁇ .
  • the type of the cooperation point is a cell
  • the evolved base station eNB, evolved Node B
  • the collaboration point set is [Cdll, Cell2], where the serving cell of the UE is Celll; the two cells configure the CSI-RS to implement the channel of the UE to the two cells. Measurement of quality.
  • Cell CSI-RS is transmitted on the respective sub-frame 3, and cooperating main application point ( ⁇ / (M ⁇ JPJ) + -. F, and m-th point from the cooperation
  • the steps include:
  • Step 202 specifically, 5 corresponds to -. ⁇ is between 0 and 4
  • the integer, without loss of generality, takes - fto l , then the primary coordination point Celll sends CSI-RS 1 in subframe 1 as shown in Figure 3, and sends CSI-RS 2 in subframe 6 from collaboration point Cell2. .
  • the method further includes: receiving, by the primary coordination point, the channel quality information that is fed back by the user equipment; From each of the collaboration points, the channel quality information is generated by the user equipment according to the channel state information reference signal and the available channel state information reference signal set sent by the cooperation point, and specifically, channel estimation may be adopted.
  • the algorithm generates the channel quality information.
  • Each of the cooperation points may send a CSI-RS set to the UE when the UE measures the cooperation point;
  • the channel quality information includes one or a combination of the following: a precoding matrix indicator (PMI, Precoding Matrix Indicator), and a channel quality information indication (CQI) , Channel Quality Indicator) and rank indicator (RI, Rank Indicator).
  • PMI Precoding Matrix Indicator
  • CQI channel quality information indication
  • RI rank Indicator
  • Celll needs channel quality information of Cdl2 to UE, such as RI, PMI and CQI. Therefore, the UE needs to measure CSI-RS2.
  • the serving cell of the UE can configure the transmission period and transmission bias of the Celll.
  • the Cdl2 is configured to calculate a corresponding subframe capable of transmitting the CSI-RS2 according to the transmission period and the transmission offset, and the UE can calculate the channel quality information of the Celll and the Cdl2 according to the channel state information reference signal configuration parameter of the Celll. Feedback.
  • two cells implement CSI-RS to measure the channel quality information of two cells.
  • the subframe determined by offset transmits CSI-RS 2 of Cdl2.
  • Celll subframe transmitting a CSI-RS 1, Cdl2 transmitted in a subframe 16 One CSI-RS 2.
  • the type of the collaboration point is Cell
  • the serving cell of the UE is Celll
  • the set of collaboration points is [Celll, Cell2. , Cdl3].
  • Celll sends CSI-RS 1 once in subframe 0
  • Cell2 sends CSI-RS 2 once in subframe 5
  • Cell3 sends CSI-RS 3 once in subframe 10.
  • the three coordination points [Celll, Cell2, Cell3] will transmit the CSI-RS again, that is, Celll sends the CSI-RS once in the subframe 15, and the Cell2 is sent once in the subframe 20.
  • CSI-RS 2 Cell3 transmits CSI-RS 3 once in subframe 25.
  • the primary coordination point receives channel quality information that is fed back by the user equipment by: the primary coordination point periodically or aperiodically receiving channel quality information that is fed back by the user equipment;
  • the user equipment completes the measurement and feeds back the channel quality information between the current cooperation point and the user equipment before transmitting the channel state information reference signal at the next cooperation point.
  • the UE may feed back or non-periodically feedback the channel quality information to the primary coordination point; wherein, in the aperiodic measurement, the UE completes the cooperation point i before the cooperation point i+1 sends the CSI-RS. Measurement and feedback of channel quality information between UEs.
  • the primary coordination point After receiving the channel quality information, the primary coordination point sends all or part of the channel quality information to the slave collaboration point.
  • the channel quality measurement of the two cells in the station is coordinated, and the two cells configure the CSI-RS to measure the channel quality information of the two cells in the measurement process.
  • the UE will respond in time after receiving the CSI-RS sent by each collaboration point. Feed channel quality information.
  • Celll sends CSI-RS 1 once in subframe 1, and Cell2 sends CSI-RS 2 once in subframe 6.
  • the UE will complete the transmission of another CSI-RS of 2 coordination points [Celll, Cell2], that is, Celll sends CSI-RS 1 in subframe 11 and Cell2 in subframe 16 Send CSI-RS 2 once.
  • the UE After receiving the CSI-RS 1 sent from the Celll in the subframe 1, the UE generates channel quality information by using the CSI-RS 1 and the CSI-RS set, and feeds the channel quality information to the cooperation before the subframe 11. Point, the specific selection is fed back to the collaboration point on subframe 3.
  • the UE After receiving the CSI-RS 2 sent from Cdl2 on the subframe 6, the UE generates channel quality information by using the CSI-RS 2 and the CSI-RS set, and feeds the channel quality information to the cooperation before the subframe 11. Point, the specific selection is fed back to the collaboration point on subframe 8.
  • the UE After receiving the CSI-RS 1 sent from the Cell 11 on the subframe 11, the UE generates channel quality information by using the CSI-RS 1 and the CSI-RS set, and feeds the channel quality information to the cooperation before the subframe 16 Point, the specific selection is fed back to the collaboration point on the subframe 13.
  • the UE After receiving the CSI-RS 2 sent from the Cdl2 on the subframe 16, the UE generates channel quality information by using the CSI-RS 2 and the CSI-RS set, and feeds the channel quality information to the main before the subframe 21.
  • the collaboration point Cell 1 specifically feeds back to the collaboration point on the subframe 18.
  • Embodiments of the present invention provide a system for measuring channel quality of coordinated multiple points, including Multiple collaboration points, one of which includes:
  • a configuration unit configured to determine a channel state information reference signal configuration parameter
  • a subframe determining unit configured to determine, according to the channel state information reference signal configuration parameter, a subframe for transmitting a channel state information reference signal; and all the cooperation points transmit the channel state information reference signal according to the channel state information reference signal configuration parameter Subframes are different;
  • the first communication unit is configured to send the channel state information reference signal on the determined subframe, so that the user equipment measures the channel quality according to the channel state information reference signal.
  • the primary coordination point determines a channel state information reference signal configuration parameter required for transmitting the CSI-RS, and the channel state information reference signal configuration parameter specifically determines a specific subframe capable of transmitting the CSI-RS, and the primary cooperation point And determining, from the cooperation point, the subframes that respectively send the CSI-RS according to the channel state information reference signal configuration parameter, and the UE can detect the channel quality of the corresponding channel according to the CSI-RSs from different cooperation points, so that the MIMO technology is no longer limited. Single cell, but can be combined and coordinated by multiple cells.
  • the collaboration points also include:
  • a switching unit configured to be used as a primary coordination point, to notify the configuration unit, to generate, by the configuration unit, the channel state information reference signal configuration parameter;
  • a second communication unit configured to send the channel state information reference signal configuration parameter to the slave collaboration point.
  • the subframe determining unit of the collaboration point further includes:
  • the main cooperation point includes M cooperation points, 1 ⁇ M ⁇ 16, the primary cooperation point is in the subframe number ⁇ / ⁇ M ' 7 ⁇ )).
  • the channel state information reference signal is sent on the downlink subframe of the ffS6t , where ⁇ is the original sequence number of the subframe, counting from 0, and floor ( ) is a rounding operation.
  • a second subframe unit configured to use the collaboration point as the mth of the slave collaboration points, in a subframe
  • the serial number is m. / ( ⁇ ⁇ ⁇ ⁇ )) + ⁇ ⁇ _.
  • the channel state information reference signal is transmitted on the downlink subframe of ⁇ , and m starts counting from 1, and m is less than or equal to ⁇ 1.
  • the main collaboration points also include:
  • an information forwarding unit configured to send all or part of the channel quality information to the slave collaboration point after receiving the channel quality information.
  • User Equipment also includes:
  • a measuring unit configured to generate the channel quality information according to the CSI-RS sent by the collaboration point and using a CSI-RS set; wherein, in the aperiodic measurement, before the sending the CSI-RS at the next collaboration point Channel quality information between the current collaboration point and the user equipment.
  • a feedback unit configured to feed back the channel quality information to the primary collaboration point; wherein, when the channel quality information is non-periodically fed back, the current collaboration point is fed back to the CSI-RS before the next collaboration point sends the CSI-RS Channel quality information between user equipments.
  • the primary coordination point determines the transmission period and transmission offset required for transmitting the CSI-RS, and the primary coordination point and the remaining secondary cooperation points determine the subframes for which the CSI-RSs are respectively transmitted according to the transmission period and the transmission offset.
  • the user equipment performs channel quality information measurement according to the CSI-RS from different cooperation points and the CSI-RS set, and feeds back channel quality information to the primary cooperation point, including M cooperation points to the PMI of the user equipment, RI or
  • the CQI enables the user equipment to implement the CoMP technology through the CSI-RS.
  • the CoMP technology makes the MIMO technology no longer limited to a single cell, but can be jointly processed and coordinated by multiple cells.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种在协作多点系统中进行信道质量测量的方法和系统 技术领域
本发明涉及无线通信技术, 一种在协作多点系统中进行信道质量测量 的方法和系统。 背景技术
随着无线通信技术的快速发展, 严重不足的频谱资源逐渐成为制约无 线通信发展的主要因素, 如何充分利用有限的频谱资源, 提高频谱利用率 是无线通信的重要研究方向。多输入多输出( MIMO , Multiple Input Multiple Out )技术因其能在不增加带宽的情况下提高传输效率和频谱利用率而获得 广泛应用。 MIMO技术通过发射分集和接收分集利用了空间分集增益, 通 过波束成形 (Beamforming )技术利用了天线阵列增益, 通过空间复用技术 利用了空间复用增益。 其中, 获取空间分集增益利用空间信道的弱相关性, 并结合时间 /频率上的选择性, 发射分集为信号传输提供多个信号副本, 接 收分集是接收了发射信号在空间中传输的多个信号副本, 进而提高信号传 输的可靠性, 从而改善接收信号的信噪比-例如空频块码(Space Frequency Block Code ); 获取天线阵列增益利用空间信道的强相关性, 通过安装小间 距天线阵列, 使得空间中传输的电磁波产生干涉从而形成强方向性的辐射 方向图, 使得辐射方向图的主瓣自适应地指向用户来波方向, 从而提高接 收信号的信噪比, 提高系统容量或者覆盖范围 -例如单流波束成形 (Single Stream Beamforming )技术;获取空间复用增益是利用空间信道的弱相关性, 在多个相互独立的空间信道上传输不同的数据流, 从而提高数据传输的峰 值速率-例如多用户多输入多输出( MU-MIMO, Mutiple User MIMO )技术。 显然, MIMO技术的使用严重依赖于空间信道的特性及其测量。 在长期演进版本 ( LTE Release, Long Term Evolution Release ) 8/9中, 为了对空间信道状态或者质量进行测量和对接收的数据符号进行解调, 引 入了公共参考信号( CRS, Common Reference Signal ), 用户设备 ( UE, User Equipment )可以通过 CRS进行信道状态的测量, 为用户设备和小区( Cell ) 选择不同的 MIMO传输模式提供了基本的信道状态信息,在 LTE Release 8/9 中通过 CRS实现了终端对信道的测量, 也实现了终端对小区发送数据的解 调; 可以支持的传输模式包括分集, 开环单用户 MIMO ( SU-MIMO, Single User MIMO ), 波束成形, 闭环单用户 ΜΙΜΟ和闭环 MU-MIMO。
为了更好地支持 MIMO技术应用,在 LTE Release 10中支持发送信道状 态信息参考信号 (CSI-RS, Channel State Information-Reference Signal ), 但 发明人发现现有技术存在如下问题:现有技术中没有基于协作多点( CoMP, Coordinated Multiple Point ), 并在对用户设备透明的情况下通过信道状态信 息参考信号 CSI-RS来实现多小区联合处理和协调的信道状态信息测量的具 体技术方案。 发明内容
本发明要解决的技术问题是提供一种在协作多点系统中进行信道质量 测量的方法和系统,用于解决现有技术中,没有基于协作多点的通过 CSI-RS 来实现多小区联合处理和协调的信道状态信息测量的具体技术的缺陷。
为解决上述技术问题, 本发明的实施例提供一种对协作多点的信道质 量进行测量的方法, 该方法包括: 多个所述协作点中的主协作点确定一信 道状态信息参考信号配置参数; 多个所述协作点根据所述信道状态信息参 考信号配置参数确定发送信道状态信息参考信号的子帧; 所有协作点根据 信道状态信息参考信号配置参数确定的发送所述信道状态信息参考信号的 子帧各不相同; 所有协作点在确定的子帧上发送所述信道状态信息参考信 号, 使得用户设备根据所述信道状态信息参考信号对信道质量进行测量。 所述的方法中, 所述多个协作点包括主协作点和从协作点, 所述主协 作点生成所述信道状态信息参考信号配置参数, 并将所述信道状态信息参 考信号配置参数发送给所述从协作点; 多个所述协作点根据所述信道状态 信息参考信号配置参数确定发送信道状态信息参考信号的子帧还包括: 所 述主协作点根据所述信道状态信息参考信号配置参数确定自身发送所述信 道状态信息参考信号的子帧和参考信号序列; 所述从协作点根据来自所述 主协作点的所述信道状态信息参考信号配置参数确定自身发送所述信道状 态信息参考信号的子帧和参考信号序列。
所述的方法中, 所述从协作点发送所述信道状态信息参考信号使用的 参考信号序列, 与所述主协作点发送所述信道状态信息参考信号使用的参 考信号序列相同。
所述的方法中, 所述信道状态信息参考信号配置参数包括发送周期和 发送偏置; 当所述主协作点的所述发送周期为 PA, 且所述发送偏置为 / Qffet 时, 包括主协作点在内共有 M 个协作点, 1<M<16, 所述主协作点在子帧 序号为 / (M + 。^的下行子帧上发送所述信道状态信息参考信 号, 其中, ^为子帧的原始序号, 从 0开始计数, floor ( )是下取整运算; 第 m个从协作点在子帧序号为 m · PA +floor(tf / (M - P ) + PA_OSset的下行子帧上发 送所述信道状态信息参考信号, m从 1开始计数, m小于等于^1。
所述的方法中, 所有协作点在确定的子帧上发送所述信道状态信息参 考信号还包括: 在连续的所述发送周期内, 所述主协作点和所述从协作点 在不同子帧的相同的资源位置上使用不同的发射天线发射所述信道状态信 息参考信号; 所述不同的发射天线包括主协作点的发射天线和各个从协作 点的发射天线。
所述的方法中, 用户设备根据所述信道状态信息参考信号对信道质量 进行测量之后还包括: 所述主协作点接收所述用户设备反馈的所述信道质 量信息; 其中, 对于包括主协作点和从协作点在内的每一个所述协作点, 所述信道质量信息由所述用户设备根据该协作点发送的所述信道状态信息 参考信号和 /或可使用信道状态信息参考信号集合生成。
所述的方法中, 所述主协作点通过如下方式接收所述用户设备反馈的 信道质量信息: 所述主协作点周期性或者非周期性接收所述用户设备反馈 的信道质量信息; 其中, 在非周期性接收所述信道质量信息时, 由所述用 户设备在下一个协作点发送所述信道状态信息参考信号之前完成测量并反 馈当前的协作点与所述用户设备之间的信道质量信息。
所述的方法中, 所述主协作点接收到所述信道质量信息后, 向从协作 点发送全部或者部分所述信道质量信息。
所述的方法中, 所述信道质量信息包括: 预编码矩阵索引、 信道质量 信息指示和 /或秩指示。
一种对协作多点的信道质量进行测量的系统, 包括多个协作点, 其中, 一个协作点包括: 配置单元, 用于确定一信道状态信息参考信号配置参数; 子帧确定单元, 用于根据所述信道状态信息参考信号配置参数确定发送信 道状态信息参考信号的子帧; 所有协作点根据信道状态信息参考信号配置 参数确定的发送所述信道状态信息参考信号的子帧各不相同; 第一通信单 元, 用于在确定的子帧上发送所述信道状态信息参考信号, 使得用户设备 根据所述信道状态信息参考信号对信道质量进行测量。
所述的系统中, 协作点还包括: 切换单元, 用于当所述协作点作为主 协作点时, 通知所述配置单元, 由配置单元产生所述信道状态信息参考信 号配置参数; 第二通信单元, 用于将所述信道状态信息参考信号配置参数 发送给从协作点。
所述的系统中, 所述协作点的所述子帧确定单元还包括: 第一子帧单 元, 用于所述协作点作为主协作点时, 确定所述发送周期为 且所述发 送偏置为/^ ffet时, 包括主协作点共有 M个协作点, 1<M<16, 所述主协作 点在子帧序号为 ¾ (ί / (M 'JPA》 + -。 的下行子帧上发送所述信道状态指 示参考信号, 其中, 为子帧的原始序号, 从 0开始计数, floor ( )是下取 整运算; 第二子帧单元, 用于所述协作点作为第 m个所述从协作点时, 在 子帧序号为 m / (M · ΡΑ )) + ΡΑ_。^的下行子帧上发送所述信道状态信 息参考信号, m从 1开始计数, m小于等于^1。
本发明的上述技术方案的有益效果如下: 主协作点确定发送 CSI-RS所 需的发送周期和发送偏置, 主协作点和从协作点根据发送周期和发送偏置 确定各自发送 CSI-RS的子帧, 由 UE根据来自不同协作点的 CSI-RS检测 信道质量,协作点和 UE能够通过 CSI-RS来实现下行协作多点技术,其中, CoMP技术使 MIMO技术不再局限于单小区, 而是可以多小区联合处理和 协调。 附图说明
图 1 为本发明实施例对协作多点的信道质量进行测量的方法流程示意 图;
图 2为本发明实施例 2个协作点发送信道状态信息参考信号的网络拓 朴示意图;
图 3为本发明实施例 2个协作点确定子帧并发送 CSI-RS的示意图; 图 4为本发明实施例 3个协作点确定子帧并发送 CSI-RS的示意图; 图 5为本发明实施例 2个协作点确定子帧并发送 CSI-RS以及接收反馈 示意图。 具体实施方式
为使本发明要解决的技术问题、 技术方案和优点更加清楚, 下面将结 合附图及具体实施例进行详细描述。 LTE Release 10 中定义了两种新的参考信号: 信道状态信息参考信号 ( CSI-RS , Channel State Indication-Reference Signal ) 和解调参考信号 ( DMRS, Demodulation Reference Signal ), 主要目的是进一步优化信道测 量的开销以及提高信道测量和解调的灵活度。 其中, CSI-RS专用于信道的 测量,通过对 CSI-RS的测量可以计算出 UE需要向 Cell反馈的预编码矩阵 索引(PMI, Precoding Matrix Indicator ),信道质量信息指示( CQI, Channel Quality Indicator )和秩指示(RI, Rank Indicator ); CSI-RS在时域和频域的 分布都是稀疏的, 并且要保证在一个资源块(RB, Resource Block ) 内只包 含服务小区每个天线端口一个 CSI-RS的导频密度,而且在时域,要求以 5ms 的整数倍作为 CSI-RS的周期。 稀疏的 CSI-RS可以支持单 Cell的 8天线配 置, 而且有力地支持了邻小区测量配置。
CSI-RS还有一个优势, 即为进一步提高小区平均的频谱利用率、 尤其 是小区边缘频谱利用率提供了可能,因为 CSI-RS为 CoMP技术的应用提供 了可能, CoMP技术使 MIMO技术不再局限于单小区, 而是可以多小区联 合处理和协调。 CoMP 技术主要包括两种形式: 联合发射 (JT , Joint Transmission ): 数据由每一个协作点联合处理, 即每个 UE的数据都由所有 协作点联合发射, 以消除干扰提高接收质量。 协作调度 /协作波束赋形 ( CS/CB, Coordinated Scheduling/ Coordinated Beamforming ): 数据仅仅从 服务小区发射, 但 UE调度或 BF方式是由协作点共同完成。 CoMP技术需 要知道更多的信道质量信息,例如,联合发射技术要求每个 UE向其协作点 反馈信道信息, 协作点联合或独立决定向该 UE 的预编码矩阵或矢量。 在 R8和 R9中, 由于 CRS都是小区专有, CoMP技术是不可能实现的, 但在 R10中可以通过 Cell间的协调通过 CSI-RS来实现 UE到多个协作点的信道 测量并反馈测量信息。
本发明实施例提供一种在协作多点系统中进行信道质量测量的方法, 所述协作多点系统包括多个协作点, 如图 1所示, 所述方法包括: 步驟 101 ,多个所述协作点中的主协作点确定一信道状态信息参考信号 配置参数 ( CSI-RS配置参数 );
步驟 102,多个所述协作点根据所述信道状态信息参考信号配置参数确 定发送信道状态信息参考信号的子帧; 所有协作点根据信道状态信息参考 信号配置参数确定的发送所述信道状态信息参考信号的子帧各不相同; 步驟 103 , 所有协作点在确定的子帧上发送所述信道状态信息参考信 号 , 使得用户设备根据所述信道状态信息参考信号对信道质量进行测量。
应用所提供的技术手段,主协作点确定发送 CSI-RS所需的信道状态信 息参考信号配置参数, 该信道状态信息参考信号配置参数具体确定了能够 发送 CSI-RS的具体子帧,主协作点和从协作点根据信道状态信息参考信号 配置参数确定各自发送 CSI-RS 的子帧, 由 UE根据来自不同协作点的 CSI-RS均能够检测对应的信道的信道质量,使得 MIMO技术不再局限于单 小区, 而是可以多小区联合处理和协调。
本发明实施例中, 当出现所有协作点的称谓时, 该所有协作点包含了 主协作点和其他的从协作点; 多个协作点也包括主协作点和从协作点。
在一个优选实施例中, 多个协作点包括主协作点和从协作点, 所述主 协作点生成所述信道状态信息参考信号配置参数, 并将所述信道状态信息 参考信号配置参数发送给所述从协作点; 多个所述协作点根据所述信道状 态信息参考信号配置参数确定发送信道状态信息参考信号的子帧还包括: 所述主协作点根据所述信道状态信息参考信号配置参数确定自身发送所述 信道状态信息参考信号的子帧; 所述从协作点根据来自所述主协作点的所 述信道状态信息参考信号配置参数确定自身发送所述信道状态信息参考信 号的子帧。
信道状态信息参考信号配置参数包括发送周期和发送偏置; 当主协作 点的所述发送周期为 且所述发送偏置为 PA_。ffet时, 包括主协作点在内共 有 M 个协作点 , 1<Μ<16 , 所述主协作点在子帧序号 为 floor(tf / ( ' ^)} + p^的下行子帧上发送所述信道状态信息参考信号, 其 中, 为子帧的原始序号, 从 0开始计数, floor ( )是下取整运算; 第 m 个从协作点在子帧序号为 m / (M · ΡΑ)) + ΡΑ_。^的下行子帧上发送所 述信道状态信息参考信号, m从 1开始计数, m小于等于^1。
以主协作点和各个从协作点的总数为 M个为例, 当主协作点确定发送 周期为 所述发送偏置的具体数值为 PA_Qffet时, 理论上, 一个检测周期不 大于 80毫秒, 主协作点在一个检测周期内, 在一个发送周期内的任意一个 子帧上均能够发送 CSI-RS。 为明确告知 UE某一个协作点具体在哪一个子 帧上会发送一个 CSI-RS, 因此需要采用发送偏置来具体确定一个能够发送 CSI-RS的子帧, 若 5 A的取值集合为 [5, 10, 20, 40, 80] , 的取值小 于 的具体数值, PA为 5对应的 为 0 ~ 4之间的整数, 10对应的 -Qf 为 0 ~ 9之间的整数, 20对应的 -Qf 为 0 ~ 19之间的整数, 40对应的 -。f 为 0 ~ 39之间的整数, 80对应的 -。ffS6t为 0 ~ 79之间的整数, 显然, 发送偏 置的具体数值 。ffet的取值范围应当涵盖当前所在的发送周期的每一个子 帧。
发送周期是指: 一个协作点每次发送 CSI-RS必须选择恰当的子帧, 而 不能任意选择一个子帧加载并发送 CSI-RS。 协作点根据发送周期和发送偏 置选择恰当的子帧,在每一个长度不大于 80毫秒的检测周期中,通过 M个 协作点发送 M个 CSI-RS, 即需要为每一个协作点选择一个恰当的子帧, 因 此, 需要为每一个协作点确定所有能够为该协作点发送 CSI-RS的子帧, 换 言之, 理论上能够为一个协作点发送 CSI-RS的子帧是连续的, 个数多于一 个且有限, 则第一个能够为该协作点发送 CSI-RS的子帧是其发送周期的起 始子帧,起始子帧之后的最后一个能够为该协作点发送 CSI-RS的子帧是末 尾子帧, 发送周期包含了从起始子帧到末尾子帧以及它们之间的所有子帧。 下行子帧。
在一个应用场景中, 共有 M个协作点, 1 <M< 16; M个协作点既包括 主协作点也包括从协作点:
主协作点确定发送 CSI-RS所需的发送周期和发送偏置,发送周期和发 送偏置构成了信道状态信息参考信号配置参数;
主协作点通过 RRC信令向 M-1个从协作点下发信道状态信息参考信号 配置参数后, M个协作点根据信道状态信息参考信号配置参数在各自的子 帧上向 UE发送 CSI-RS, 如此, 则 UE每隔 Μ · 个子帧完成对 M个协作点 的一次信道质量信息测量和反馈。
各个协作点根据信道状态信息参考信号配置参数对将要发送的 CSI-RS 进行如下配置:
1 , 主协作点的发送周期为 发送偏置为 。ffs6t , 因此, 根据主协作 点的发送公式 Zoor(ί / (M · JPJ) + -。ffsεt可知 M=l , 主协作点第一次发送
CSI-RS的下行子帧的子帧序号为 。^。
2, M-1 个从协作点中, 第 m个从协作点根据从协作点的发送公式
Figure imgf000011_0001
+ Put确定的下行子帧发送 CSI-RS , 其第一次发送 CSI-RS的下行子帧的子帧序号为 PA + PA_Qffset , m从 1开始计数, m小于等于 M。
如图 2所示, 在一个应用场景中, 实现 M=2个协作点的 CSI-RS配置 和发送,协作点的类型为小区(Cell ),—个演进型基站(eNB, evolved Node B ) 包括 3个 Cell, 本实施例中取协作点集合为 [Cdll , Cell2] , 其中 UE的 服务小区为 Celll; 2个 Cell通过配置 CSI-RS实现 UE对 2个 Cell的信道 质量的测量。
2个 Cell在各自的子帧上发送 CSI-RS的情形如图 3所示, 并应用主协 作点的发送公式 ¾or(ί /(M·JPJ) + -。f , 以及第 m个从协作点根据从协作 点的发送公式 m · +floor(tf /(M-P ) + PA_OSset , 步驟包括:
步驟 201, Celll 的 CSI-RS 的发送周期配置为 PA=5 , Celll 根据 floor(tf /( ·^)} + 所确定的子帧发送 CSI-RS 1。
Cell2根据 m · PA +floor(tf /(M-P ) + PA.offset所确定的子帧发送 CSI-RS 2。 步驟 202,具体而言, 5对应的 —。^为 0~4之间的整数, 不失一般性, 取 —。fto=l , 则主协作点 Celll如图 3所示在子帧 1发送一次 CSI-RS 1, 从 协作点 Cell2在子帧 6发送一次 CSI-RS 2。
显然 Celll和 Cdl2在 2· =ιο个子帧内完成各发射一次 CSI-RS的任务。 步驟 203, 在接下来 2· =10个子帧内, 2个协作点 [Celll, Cdl2]将完 成又一次发射 CSI-RS的任务, 即 Celll在子帧 11上发送一次 CSI-RS 1, Cell2在子帧 16发送一次 CSI-RS 2。
在一个优选实施例中, 用户设备根据所述信道状态信息参考信号对信 道质量进行测量之后还包括: 主协作点接收所述用户设备反馈的所述信道 质量信息; 其中, 对于包括主协作点和从协作点在内的每一个所述协作点, 信道质量信息由所述用户设备根据该协作点发送的所述信道状态信息参考 信号和可使用信道状态信息参考信号集合生成, 具体可以采用信道估计算 法生成所述信道质量信息。 其中, 各个协作点会向 UE发送 UE测量该协作 点时可使用 CSI-RS集合; 信道质量信息包括如下之一或组合: 预编码矩阵 索引(PMI, Precoding Matrix Indicator ),信道质量信息指示( CQI, Channel Quality Indicator )和秩指示 ( RI, Rank Indicator )。
在一个应用场景中, 如图 2所示, 共有 M=2个协作点, 协作点的类型 为 Cell, UE的服务小区为 Celll ,协作点集合为 [Celll , Cdl2]。 Celll和 Cdl2 位于同一站址内, 即一个 eNB内的两个小区。
Celll为了实现与 Cell2的协作传输,需要 Cdl2至 UE的信道质量信息, 例如 RI, PMI和 CQI, 因此 UE需要测量 CSI-RS2, 此时, UE的服务小区 Celll可配置 Celll的发送周期和发送偏置,并通知 Cdl2根据发送周期和发 送偏置计算出能够发送 CSI-RS2的相应子帧, UE根据 Celll的信道状态信 息参考信号配置参数, 即可实现对 Celll和 Cdl2的信道质量信息的测量和 反馈。
在一个应用场景中, 2个 Cell通过配置 CSI-RS实现 UE对 2个 Cell的 信道质量信息的测量。
Celll 的发送周期配置为 PA=5 , Celll根据 ^^ ^ ^^ + ^^所确 定的子帧发送 Celll的 CSI-RS 1 , Cell2根据 m · PA+floor(tf I {M - PA )) + PA.offset所 确定的子帧发送 Cdl2的 CSI-RS 2。
5对应的 -。f 为 0 ~ 4之间的整数,本实施例中不失一般性取 -。ffset =1 , 则 Celll在子帧 1发送一次 CSI-RS 1 , Cell2在子帧 6发送一次 CSI-RS 2。
显然, UE在 2· =ιο个子帧内对 2个协作点 [Celll , Cell2]的信道质量 各进行一次测量。
在接下来 2· =10个子帧内, UE将对 2个协作点 [Celll , Cdl2]的信道 质量进行又一次测量, 即 Celll在子帧 1发送一次 CSI-RS 1 , Cdl2在子帧 16发送一次 CSI-RS 2。
在一个应用场景中, 如图 4所示, 实现 M=3 个协作点的配置和发送 CSI-RS, 协作点的类型为 Cell, UE的服务小区为 Celll , 其协作点集合为 [Celll , Cell2, Cdl3]。
3个 Cell在各自的子帧上发送 CSI-RS的情形如图 4所示, 以实现 UE 对 3个 Cell的信道质量信息的测量, Celll 的 CSI-RS 的发送周期配置为 PA=5, Celll根据 ^^^/"MO) 75^所确定的子帧发送 Cdll的 CSI-RS 1, 〇6112根据"¾^+/^^//^^) + ^。^, 且 m=l所确定的子帧发送 Cell2 的 CSI-RS 2, Cell3 « m ' Pa +floor(tf '^'^ , 且 m=2所确定的子帧发送 Cell3的 CSI-RS3。 具体包括:
ΡΑ=5对应的 -。f 为 0~4之间的整数, 不失一般性, 取 -。 ffset=0 , 则
Celll在子帧 0发送一次 CSI-RS 1 , Cell2在子帧 5发送一次 CSI-RS 2, Cell3 在子帧 10发送一次 CSI-RS 3。
显然, UE在 3· =15个子帧内对 3个协作点 [Celll, Cell2, Cdl3]的信 道质量信息的各一次的测量。
在接下来 3· =15个子帧内, 3个协作点 [Celll, Cell2, Cell3]将又一次 发射 CSI-RS, 即 Celll在子帧 15发送一次 CSI-RS 15, Cell2在子帧 20发 送一次 CSI-RS 2, Cell3在子帧 25发送一次 CSI-RS 3。
在一个优选实施例中, 所述主协作点通过如下方式接收所述用户设备 反馈的信道质量信息: 所述主协作点周期性或者非周期性接收所述用户设 备反馈的信道质量信息; 其中, 在非周期性接收所述信道质量信息时, 由 所述用户设备在下一个协作点发送所述信道状态信息参考信号之前完成测 量并反馈当前的协作点与所述用户设备之间的信道质量信息。 换言之, UE 会向所述主协作点周期反馈或非周期反馈所述信道质量信息; 其中, 在非 周期测量时, UE在协作点 i+1发送所述 CSI-RS之前完成对协作点 i与 UE 间的信道质量信息的测量和反馈。
所述主协作点接收到所述信道质量信息后, 向从协作点发送全部或者 部分所述信道质量信息。
在一个应用场景中, 如图 5 所示, 实现站内两小区协作多点的信道质 量测量, 2个 Cell通过配置 CSI-RS实现 UE对 2个 Cell的信道质量信息的 测量; 在测量过程中, UE在接收到各个协作点发来的 CSI-RS后会适时反 馈信道质量信息。
主协作点 Cdll发送 CSI-RS的发送周期配置为 PA=5, Celll根据公式 0 r(i//(MO) + pwt确定的子帧发送 CSI-RS 1, 从协作点 Cell2 根据 m-PA+floor(tf /(M-PA)) + PA_oiisst , 且 确定的子帧发送 Cdl2CSIRS 2。 PA=5对应的 -。f 为 0~4之间的整数, 不失一般性, 取 -。 ffset=l, 则
Celll在子帧 1发送一次 CSI-RS 1 , Cell2在子帧 6发送一次 CSI-RS 2。
在接下来 2· =10个子帧内, UE将完成 2个协作点 [Celll, Cell2]的又 一次 CSI-RS的发射, 即 Celll在子帧 11发送一次 CSI-RS 1, Cell2在子帧 16发送一次 CSI-RS 2。
显然, UE在 2· =10个子帧内对 2个协作点 [Celll, Cell2]的各一次测 量, 其中, 在对两个协作点的信道质量进行第一次测量的过程中, 包括:
UE接到来自 Celll在子帧 1上发送来的 CSI-RS 1后, 将 CSI-RS 1和 可使用 CSI-RS集合生成信道质量信息, 并且在子帧 11之前将该信道质量 信息反馈给协作点, 具体选择在子帧 3上反馈给协作点。
UE接到来自 Cdl2在子帧 6上发送来的 CSI-RS 2后, 将 CSI-RS 2和 可使用 CSI-RS集合生成信道质量信息, 并且在子帧 11之前将该信道质量 信息反馈给协作点, 具体选择在子帧 8上反馈给协作点。
在对两个协作点的信道质量进行第二次测量的过程中, 包括:
UE接到来自 Celll在子帧 11上发送来的 CSI-RS 1后, 将 CSI-RS 1和 可使用 CSI-RS集合生成信道质量信息, 并且在子帧 16之前将该信道质量 信息反馈给协作点, 具体选择在子帧 13上反馈给协作点。
UE接到来自 Cdl2在子帧 16上发送来的 CSI-RS 2后, 将 CSI-RS 2和 可使用 CSI-RS集合生成信道质量信息, 并且在子帧 21之前将该信道质量 信息反馈给主协作点 Cell 1 , 具体选择在子帧 18上反馈给协作点。
本发明实施例提供一种对协作多点的信道质量进行测量的系统, 包括 多个协作点, 其中, 一个协作点包括:
配置单元, 用于确定一信道状态信息参考信号配置参数;
子帧确定单元, 用于根据所述信道状态信息参考信号配置参数确定发 送信道状态信息参考信号的子帧; 所有协作点根据信道状态信息参考信号 配置参数确定的发送所述信道状态信息参考信号的子帧各不相同;
第一通信单元, 用于在确定的子帧上发送所述信道状态信息参考信号, 使得用户设备根据所述信道状态信息参考信号对信道质量进行测量。
应用所提供的技术手段,主协作点确定发送 CSI-RS所需的信道状态信 息参考信号配置参数, 该信道状态信息参考信号配置参数具体确定了能够 发送 CSI-RS的具体子帧,主协作点和从协作点根据信道状态信息参考信号 配置参数确定各自发送 CSI-RS 的子帧, 由 UE根据来自不同协作点的 CSI-RS均能够检测对应的信道的信道质量,使得 MIMO技术不再局限于单 小区, 而是可以多小区联合处理和协调。
协作点中还包括:
切换单元, 用于当作为主协作点时, 通知所述配置单元, 由配置单元 产生所述信道状态信息参考信号配置参数;
第二通信单元, 用于将所述信道状态信息参考信号配置参数发送给从 协作点。
协作点的所述子帧确定单元还包括:
第一子帧单元, 用于所述协作点作为主协作点时, 确定所述发送周期 为 且所述发送偏置为 PA_Qffet时,包括主协作点共有 M个协作点, 1<M<16, 所述主协作点在子帧序号为 ^^/ ^M ' 7^)) 。ffS6t的下行子帧上发送所述 信道状态信息参考信号, 其中, ^为子帧的原始序号, 从 0开始计数, floor ( )是下取整运算。
第二子帧单元, 用于所述协作点作为第 m个所述从协作点时, 在子帧 序号为 m .
Figure imgf000017_0001
/ (Μ · ΡΑ)) + ΡΑ_。^的下行子帧上发送所述信道状态信息参 考信号, m从 1开始计数, m小于等于^1。
主协作点还包括:
信息转发单元, 用于接收到所述信道质量信息后, 向从协作点发送全 部或者部分所述信道质量信息。
用户设备中还包括:
测量单元, 用于根据该协作点发送的所述 CSI-RS和可使用 CSI-RS集 合生成所述信道质量信息; 其中, 在非周期测量时, 在下一个协作点发送 所述 CSI-RS之前测量当前的协作点与所述用户设备之间的信道质量信息。
以及,
反馈单元, 用于将所述信道质量信息反馈给主协作点; 其中, 在非周 期性反馈所述信道质量信息时,在下一个协作点发送所述 CSI-RS之前反馈 当前的协作点与所述用户设备之间的信道质量信息。
应用所提供的技术手段,主协作点确定发送 CSI-RS所需的发送周期和 发送偏置, 主协作点和其余的从协作点根据发送周期和发送偏置确定各自 发送 CSI-RS的子帧, 由用户设备根据来自不同协作点的 CSI-RS和可使用 CSI-RS集合进行信道质量信息的测量, 并向主协作点反馈信道质量信息, 包括 M个协作点至用户设备的 PMI, RI或 CQI, 使得用户设备能够通过 CSI-RS来实现 CoMP技术, 其中, CoMP技术使 MIMO技术不再局限于单 小区, 而是可以多小区联合处理和协调。
以上所述是本发明的优选实施方式, 应当指出, 对于本技术领域的普 通技术人员来说, 在不脱离本发明所述原理的前提下, 还可以作出若干改 进和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权利要求书
1. 一种在协作多点系统中进行信道质量测量的方法, 所述协作多点系 统包括多个协作点, 其特征在于, 所述方法包括:
多个所述协作点中的主协作点确定一信道状态信息参考信号配置参 数;
多个所述协作点根据所述信道状态指示参考信号配置参数确定发送信 道状态指示参考信号的子帧; 所有协作点根据信道状态参考信号配置参数 确定的发送所述信道状态信息参考信号的子帧各不相同;
所有协作点在确定的子帧上发送所述信道状态信息参考信号, 使得用 户设备根据所述信道状态信息参考信号对信道质量进行测量。
2. 根据权利要求 1所述的方法, 其特征在于, 所述多个协作点包括主 协作点和从协作点, 所述主协作点生成所述信道状态信息参考信号配置参 数, 并将所述信道状态信息参考信号配置参数发送给所述从协作点;
多个所述协作点根据所述信道状态信息参考信号配置参数确定发送信 道状态信息参考信号的子帧包括:
所述主协作点根据所述信道状态信息参考信号配置参数确定自身发送 所述信道状态信息参考信号的子帧和参考信号序列;
所述从协作点根据来自所述主协作点的所述信道状态信息参考信号配 置参数确定自身发送所述信道状态信息参考信号的子帧和参考信号序列。
3. 根据权利要求 2所述的方法, 其特征在于, 所述从协作点发送所述 信道状态信息参考信号使用的参考信号序列, 与所述主协作点发送所述信 道状态信息参考信号使用的参考信号序列相同。
4. 根据权利要求 1所述的方法, 其特征在于, 所述信道状态信息参考 信号配置参数包括发送周期和发送偏置;
当所述主协作点的所述发送周期为 且所述发送偏置为 PA_Qffet时, 包 括主协作点在内共有 M个协作点, 1<M<16, 所述主协作点在子帧序号为 floor(tf / ( ' ^)} + p^的下行子帧上发送所述信道状态信息参考信号, 其 中, ^为子帧的原始序号, 从 0开始计数, floor ( )是下取整运算;
第 m个从协作点在子帧序号为 m . ΡΑ / (M · ΡΑ)) + / 。^的下行子帧 上发送所述信道状态信息参考信号, m从 1开始计数, m小于等于^1。
5. 根据权利要求 4所述的方法, 其特征在于, 所有协作点在确定的子 帧上发送所述信道状态信息参考信号包括:
在连续的所述发送周期内, 所述主协作点和所述从协作点在不同子帧 的相同的资源位置上使用不同的发射天线发射所述信道状态信息参考信 号; 所述不同的发射天线包括主协作点的发射天线和各个从协作点的发射 天线。
6.根据权利要求 1所述的方法, 其特征在于, 用户设备根据所述信道 状态信息参考信号对信道质量进行测量之后还包括:
所述主协作点接收所述用户设备反馈的所述信道质量信息; 其中, 对 于包括主协作点和从协作点在内的每一个所述协作点, 所述信道质量信息 由所述用户设备根据该协作点发送的所述信道状态信息参考信号和 /或可使 用信道状态信息参考信号集合生成。
7.根据权利要求 6所述的方法, 其特征在于, 所述主协作点通过如下 方式接收所述用户设备反馈的信道质量信息:
所述主协作点周期性或者非周期性接收所述用户设备反馈的信道质量 信息; 其中, 在非周期性接收所述信道质量信息时, 由所述用户设备在下 一个协作点发送所述信道状态信息参考信号之前完成测量并反馈当前的协 作点与所述用户设备之间的信道质量信息。
8. 根据权利要求 6所述的方法, 其特征在于, 所述主协作点接收到所 述信道质量信息后, 向从协作点发送全部或者部分所述信道质量信息。
9. 根据权利要求 7和 8所述的任一方法, 其特征在于, 所述信道质量 信息包括: 预编码矩阵索引、 信道质量信息指示和 /或秩指示。
10. 一种对协作多点的信道质量进行测量的系统, 其特征在于, 包括 多个协作点, 其中, 一个协作点包括:
配置单元, 用于确定一信道状态信息参考信号配置参数;
子帧确定单元, 用于根据所述信道状态信息参考信号配置参数确定发 送信道状态信息参考信号的子帧; 所有协作点根据信道状态信息参考信号 配置参数确定的发送所述信道状态信息参考信号的子帧各不相同;
第一通信单元, 用于在确定的子帧上发送所述信道状态信息参考信号, 使得用户设备根据所述信道状态信息参考信号对信道质量进行测量。
11. 根据权利要求 10所述的系统, 其特征在于, 协作点还包括: 切换单元, 用于当所述协作点作为主协作点时, 通知所述配置单元, 由配置单元产生所述信道状态信息参考信号配置参数;
第二通信单元, 用于将所述信道状态信息参考信号配置参数发送给从 协作点。
12. 根据权利要求 10所述的系统, 其特征在于, 所述协作点的所述子 帧确定单元还包括:
第一子帧单元, 用于所述协作点作为主协作点时, 确定所述发送周期 为 且所述发送偏置为 PA_Qffet时,包括主协作点共有 M个协作点, 1<M<16, 所述主协作点在子帧序号为 ^^/ ^M ' 7^)) 。ffS6t的下行子帧上发送所述 信道状态信息参考信号, 其中, ^为子帧的原始序号, 从 0开始计数, floor ( )是下取整运算;
第二子帧单元, 用于所述协作点作为第 m个所述从协作点时, 在子帧 序号为 m .
Figure imgf000020_0001
/ (Μ · ΡΑ)) + ΡΑ_。^的下行子帧上发送所述信道状态信息参 考信号, m从 1开始计数, m小于等于^1。
PCT/CN2011/084752 2011-06-30 2011-12-27 一种在协作多点系统中进行信道质量测量的方法和系统 WO2012152037A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110182147.3 2011-06-30
CN201110182147.3A CN102857279B (zh) 2011-06-30 2011-06-30 一种在协作多点系统中进行信道质量测量的方法和系统

Publications (1)

Publication Number Publication Date
WO2012152037A1 true WO2012152037A1 (zh) 2012-11-15

Family

ID=47138747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084752 WO2012152037A1 (zh) 2011-06-30 2011-12-27 一种在协作多点系统中进行信道质量测量的方法和系统

Country Status (2)

Country Link
CN (1) CN102857279B (zh)
WO (1) WO2012152037A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018232751A1 (zh) * 2017-06-23 2018-12-27 Oppo广东移动通信有限公司 无线通信方法和设备

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212958B (zh) * 2013-05-21 2021-03-26 上海朗帛通信技术有限公司 一种移动通信系统中的信道信息反馈方法和装置
CN104469960B (zh) * 2013-09-25 2019-12-10 中兴通讯股份有限公司 调度配置方法与装置
CN104811288B (zh) * 2014-01-29 2019-11-29 上海诺基亚贝尔股份有限公司 协同多点传输的方法
CN105309030B (zh) * 2014-04-10 2019-11-15 华为技术有限公司 一种报告信道状态信息的方法、用户设备和基站
CN105227272B (zh) * 2014-06-28 2019-08-09 上海朗帛通信技术有限公司 一种大尺度mimo传输方法和装置
CN110247747B (zh) 2015-01-30 2021-01-05 华为技术有限公司 通信系统中反馈信息的传输方法及装置
CN107294583B (zh) * 2016-03-31 2020-10-16 华为技术有限公司 一种信道状态测量方法、装置及存储介质
CN108135005B (zh) * 2016-12-01 2022-07-12 罗德施瓦兹两合股份有限公司 用于复合mimo测量的测量设备和测量方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101888665A (zh) * 2009-05-13 2010-11-17 普天信息技术研究院有限公司 一种基于本地调度器的多点协同传输方法
CN101997633A (zh) * 2009-08-17 2011-03-30 中兴通讯股份有限公司 不同小区的信道测量导频的复用方法和系统
WO2011040751A2 (en) * 2009-09-30 2011-04-07 Lg Electronics Inc. Apparatus and method for transmitting uplink control information

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101888665A (zh) * 2009-05-13 2010-11-17 普天信息技术研究院有限公司 一种基于本地调度器的多点协同传输方法
CN101997633A (zh) * 2009-08-17 2011-03-30 中兴通讯股份有限公司 不同小区的信道测量导频的复用方法和系统
WO2011040751A2 (en) * 2009-09-30 2011-04-07 Lg Electronics Inc. Apparatus and method for transmitting uplink control information

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018232751A1 (zh) * 2017-06-23 2018-12-27 Oppo广东移动通信有限公司 无线通信方法和设备
US11191081B2 (en) 2017-06-23 2021-11-30 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and apparatus for measurement and reporting for reference signal

Also Published As

Publication number Publication date
CN102857279B (zh) 2017-11-24
CN102857279A (zh) 2013-01-02

Similar Documents

Publication Publication Date Title
JP7337747B2 (ja) ユーザ装置、無線通信方法、基地局及びシステム
CN109804570B (zh) 用于波束成形的准共址
EP2853040B1 (en) Reference signal measurement method and apparatus for use in wireless communication system including plural base stations with distributed antennas
JP6573610B2 (ja) ユーザ装置および基地局
CN107666341B (zh) 用大规模阵列天线的移动通信系统中csi-rs端口共享的参考信号配置的方法和装置
WO2012152037A1 (zh) 一种在协作多点系统中进行信道质量测量的方法和系统
TWI571072B (zh) 用於通道狀態資訊參考符號資源組之通道狀態資訊報告
KR101840642B1 (ko) 분산 안테나 무선 통신 시스템 및 그 방법
KR102231078B1 (ko) 이동 통신 시스템에서 피드백 송수신 방법 및 장치
JP6495187B2 (ja) モバイル通信システムで複数のアンテナを用いてフィードバック情報を送受信するための方法及び装置
JP6168320B2 (ja) ネットワーク支援型の干渉抑制/消去方法およびシステム
JP6014264B2 (ja) 無線通信システムにおいてチャネルを推定する方法および装置
WO2013107259A1 (zh) 一种传输带宽信息的方法及装置
WO2014042477A1 (ko) 협력적 송신을 지원하는 무선 통신 시스템에서 데이터를 수신하는 방법 및 장치
WO2013015588A2 (ko) 무선 통신 시스템에서 무선 링크 모니터링 방법 및 장치
WO2013131401A1 (zh) 信道状态信息的处理方法、基站和终端
CN107733611B9 (zh) 准共位置信息的处理方法及装置
JP2020127221A (ja) ユーザ装置及び無線通信方法
CN110999468A (zh) 在无线通信系统中发送和接收上行链路信道的方法及其装置
WO2014012509A1 (zh) 信道质量指示信息上报及确定方法和设备
JP6260799B2 (ja) 複数のチャネル特性の計算及び通知
US8467736B2 (en) Method and apparatus for inter-cell synchronization in a multi-cell environment
KR20120093027A (ko) 채널상태정보 송수신 장치 및 방법
EP3970278B1 (en) Apparatuses and methods for multi-user transmissions
WO2012167687A1 (zh) Comp终端的协作调度的方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11865002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11865002

Country of ref document: EP

Kind code of ref document: A1