WO2012150698A1 - ボイルオフガス処理装置及び液化ガスタンク - Google Patents

ボイルオフガス処理装置及び液化ガスタンク Download PDF

Info

Publication number
WO2012150698A1
WO2012150698A1 PCT/JP2012/061423 JP2012061423W WO2012150698A1 WO 2012150698 A1 WO2012150698 A1 WO 2012150698A1 JP 2012061423 W JP2012061423 W JP 2012061423W WO 2012150698 A1 WO2012150698 A1 WO 2012150698A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
boil
liquefied
liquefied gas
tank
Prior art date
Application number
PCT/JP2012/061423
Other languages
English (en)
French (fr)
Inventor
栄治 青木
Original Assignee
株式会社アイ・エイチ・アイ マリンユナイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイ・エイチ・アイ マリンユナイテッド filed Critical 株式会社アイ・エイチ・アイ マリンユナイテッド
Priority to SG2013075957A priority Critical patent/SG194464A1/en
Priority to US14/111,017 priority patent/US20140041398A1/en
Priority to AU2012251302A priority patent/AU2012251302B2/en
Priority to PL12779490T priority patent/PL2706282T3/pl
Priority to ES12779490T priority patent/ES2762201T3/es
Priority to KR1020137028157A priority patent/KR101542077B1/ko
Priority to CA2832716A priority patent/CA2832716C/en
Priority to CN201280032060.0A priority patent/CN103635738B/zh
Priority to EP12779490.7A priority patent/EP2706282B1/en
Publication of WO2012150698A1 publication Critical patent/WO2012150698A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/004Details of vessels or of the filling or discharging of vessels for large storage vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0128Shape spherical or elliptical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0169Liquefied gas, e.g. LPG, GPL subcooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/031Dealing with losses due to heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/031Treating the boil-off by discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • F17C2265/034Treating the boil-off by recovery with cooling with condensing the gas phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • F17C2265/035Treating the boil-off by recovery with cooling with subcooling the liquid phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/037Treating the boil-off by recovery with pressurising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/066Fluid distribution for feeding engines for propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/07Generating electrical power as side effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground
    • F17C2270/0136Terminals

Definitions

  • the present invention relates to a boil-off gas processing apparatus and a liquefied gas tank, and more particularly to a boil-off gas processing apparatus for re-liquefying boil-off gas and returning it to the liquefied gas tank, and a liquefied gas tank equipped with the boil-off gas processing apparatus.
  • liquefied gas such as liquefied natural gas (LNG) and liquefied petroleum gas (LPG) is enclosed in a liquefied gas tank in facilities and equipment such as transportation tankers, import bases, storage bases, and liquefied gas fuel tanks of ships. Stored. Even if the liquefied gas tank is provided with a heat insulation measure, the liquefied gas evaporates due to the intrusion heat from the outside of the tank to the inside of the tank.
  • LNG liquefied natural gas
  • LPG liquefied petroleum gas
  • evaporated gas hereinafter referred to as “boil-off gas”
  • the gas vapor pressure in the liquefied gas tank rises, and the liquefied gas in the liquefied gas tank is saturated with the liquefied gas surface temperature. It becomes a pressure and becomes a gas-liquid equilibrium state. Further, the heated liquefied gas gathers on the liquid surface portion of the liquefied gas tank by convection accompanying the temperature rise, and forms a liquid layer (upper high temperature layer) higher than the entire temperature of the liquefied gas. And a vapor-liquid equilibrium state is maintained between this upper high temperature layer and a gas vapor phase.
  • the intrusion heat into the liquefied gas tank is carried to the upper high temperature layer by the convection of the liquefied gas and raises the temperature of the upper high temperature layer. Therefore, the temperature of the upper high temperature layer rises in a relatively short time, and the pressure of the gas vapor phase that balances with the temperature of the upper high temperature layer also rises. Since the upper high temperature layer is thinner (smaller amount) than the lower low temperature layer that occupies most of the liquefied gas, it rises to a predetermined pressure (upper limit value) of the liquefied gas tank in a relatively short time.
  • boil-off gas is transferred to an external gas processing device by a compressor or the like.
  • the gas processing device includes, for example, a reliquefaction device that cools boil-off gas with a low-temperature medium such as nitrogen gas, liquefies it, and returns it to the liquefied gas tank, a gas using device that burns in a boiler or a gas-fired engine, and is used as an energy source,
  • gas incineration and disposal devices for burning and discarding gas, and devices for discarding to the atmosphere such as gas flares and gas vent devices.
  • the BOG return pipe is branched from the middle of the BOG extraction pipe for taking out the BOG (boil-off gas) generated in the low-temperature liquefied gas tank, and the BOG return pipe is placed in the low-temperature liquefied gas tank.
  • the tip is opened near the bottom of the tank.
  • a net for injecting BOG as a small-diameter bubble is attached to the lower end outlet which is the tip of the BOG return pipe, and the BOG taken out from the BOG take-out pipe is passed through the BOG return pipe through the net. It is designed to be ejected into low-temperature liquefied gas as small-diameter bubbles.
  • Such a processing method re-liquefies the boil-off gas.
  • BOG blow-off gas
  • a liquefied gas tank of a liquefied gas carrier is reformed, supplied to the fuel cell as fuel, and the fuel cell generates power. It is a thing.
  • Such a processing method uses boil-off gas as an energy source.
  • Patent Document 2 requires a fuel cell facility equipped with a fuel cell, a reformer, and the like, resulting in a large equipment cost.
  • the boil-off gas when used as an energy source in this way, the amount of boil-off gas generated may exceed the energy consumption. In such a case, the boil-off gas must eventually be incinerated or discarded. There was also a problem of not becoming.
  • the present invention was devised in view of the above-described problems, and reduces the equipment cost and operation cost required for boil-off gas processing, and can suppress the boil-off gas incineration or disposal. And it aims at providing a liquefied gas tank.
  • a boil-off gas processing apparatus that re-liquefies boil-off gas generated in a liquefied gas tank that stores liquefied gas and returns the boil-off gas to the liquefied gas tank, and discharges the boil-off gas from the liquefied gas tank to the outside.
  • a boil-off gas processing apparatus characterized by maintaining a pressure necessary for re-liquefying the boil-off gas and having a length capable of releasing heat necessary for re-liquefaction of the boil-off gas.
  • a liquefied gas tank having a heat insulating container for storing the liquefied gas, the boil-off gas processing device for re-liquefying the boil-off gas generated in the liquefied gas tank and returning it to the liquefied gas tank.
  • a boil-off gas discharge line that discharges the boil-off gas to the outside from the liquefied gas tank; and a boil-off gas reliquefaction line in which at least a part of the boil-off gas discharge line is immersed in the liquefied gas in the liquefied gas tank;
  • the boil-off gas reliquefaction line has a length capable of maintaining a pressure necessary for reliquefaction of the boiloff gas and releasing a heat amount necessary for reliquefaction of the boiloff gas.
  • a liquefied gas tank is provided.
  • the boil-off gas reliquefaction line has pressure holding means for condensing and collecting the boil-off gas and discharging the boil-off gas into the liquefied gas as a liquid. Also good.
  • the boil-off gas re-liquefaction line may re-liquefy all of the boil-off gas and release it into the liquefied gas, or may re-liquefy part of the boil-off gas and release it into the liquefied gas. Good.
  • an external induction line that guides the boil-off gas reliquefaction line to the outside of the liquefied gas tank, and a pressure that is disposed at a tip of the external induction line to condense and collect the boil-off gas and discharge the boil-off gas as a liquid
  • You may have a holding means and a return line which returns the liquid discharge
  • a liquid receiving tank for temporarily receiving the liquid discharged from the pressure holding means may be provided between the pressure holding means and the return line.
  • the boil-off gas discharge line may include a compressor that discharges or boosts the boil-off gas.
  • the boil-off gas reliquefaction line is maintained at a predetermined pressure and is formed to have a predetermined length.
  • Heat exchange is performed with the liquefied gas stored in the liquefied gas tank.
  • the boil-off gas can be re-liquefied in the boil-off gas re-liquefaction line, and the boil-off gas can be re-liquefied and then released to the liquefied gas tank. Therefore, a special reliquefaction device is not required, and the equipment cost and operation cost required for processing the boil-off gas can be reduced.
  • the boil-off gas can be discharged from the gas vapor phase so that the inside of the liquefied gas tank does not reach a predetermined pressure, and the discharged boil-off gas can be re-liquefied and returned to the liquefied gas tank. Therefore, incineration or disposal of boil-off gas can be suppressed.
  • FIG. 1 is a view showing a boil-off gas processing apparatus according to the first embodiment of the present invention
  • FIG. 1A is a schematic overall configuration diagram
  • FIG. 1B is a schematic configuration diagram of a vapor trap
  • FIG. 2 is a pressure-enthalpy diagram showing the operation of the boil-off gas processing apparatus.
  • the boil-off gas processing apparatus 1 re-liquefies the boil-off gas 22 generated in the liquefied gas tank 2 for storing the liquefied gas 21 and returns it to the liquefied gas tank 2 as shown in FIG. 1A.
  • a boil-off gas processing apparatus that discharges boil-off gas 22 from the liquefied gas tank 2 to the outside, and immerses at least a part of the boil-off gas discharge line 3 in the liquefied gas 21 in the liquefied gas tank 2.
  • Boil-off gas reliquefaction line 4, and boil-off gas reliquefaction line 4 has pressure holding means 42 for holding the pressure necessary for reliquefaction of boiloff gas 22 and is necessary for reliquefaction of boiloff gas 22. It has a length L that can release a large amount of heat.
  • the liquefied gas tank 2 shown in FIG. 1A has a heat insulating container 2a for storing the liquefied gas 21 and a tank dome 2b disposed on the upper part of the heat insulating container 2a.
  • the configuration of the liquefied gas tank 2 is not limited to the illustrated one, and can be changed as appropriate according to the location, purpose of use, etc., such as a transportation tanker, import base, storage base, liquefied gas fuel tank of a ship, etc. is there.
  • the heat insulating container 2a has, for example, an inner layer made of a material excellent in low temperature toughness, a heat insulating layer (or a cold insulating layer) that suppresses intrusion heat from the outside, and an outer layer that holds the heat insulating layer. Further, the shape of the heat insulating container 2a may be a rectangular shape as illustrated, a spherical shape, or a cylindrical shape.
  • the tank dome 2b is disposed on the roof portion of the heat insulating container 2a, and constitutes an insertion port such as piping for carrying in and out of the liquefied gas and a traffic path for maintenance and the like.
  • the boil-off gas discharge line 3 includes a boil-off gas discharge pipe 31 inserted into the upper layer portion in the liquefied gas tank 2, a compressor 32 that discharges or boosts the boil-off gas 22, and a flow path switching valve that changes the flow path of the boil-off gas 22. 33.
  • a boil-off gas discharge pipe 31 inserted into the upper layer portion in the liquefied gas tank 2
  • a compressor 32 that discharges or boosts the boil-off gas 22
  • a flow path switching valve that changes the flow path of the boil-off gas 22. 33.
  • the boil-off gas discharge pipe 31 is inserted and opened from the tank dome 2b of the liquefied gas tank 2 into the liquefied gas tank 2, and is disposed at a position where the boil-off gas 22 accumulated in the upper layer portion of the liquefied gas tank 2 can be sucked.
  • the compressor 32 sucks the boil-off gas 22 accumulated in the liquefied gas tank 2 and discharges the boil-off gas 22 out of the tank through the boil-off gas discharge line 3.
  • the compressor 32 may be automatically operated when the pressure in the liquefied gas tank 2 reaches a predetermined threshold value, or may be manually operated at an arbitrary timing.
  • the boil-off gas discharge line 3 is branched into, for example, a boil-off gas reliquefaction line 4 and a boil-off gas consumption line 5.
  • a flow path switching valve 33 is disposed at the branch point of the boil-off gas discharge line 3.
  • the flow path switching valve 33 does not necessarily need to be a three-way valve, and may be replaced by a stop valve disposed in each of the boil-off gas reliquefaction line 4 and the boil-off gas consumption line 5.
  • the boil-off gas consumption line 5 is used when the boil-off gas 22 is used as an energy source.
  • the boil-off gas consumption line 5 is branched into a first consumption line 51 and a second consumption line 52.
  • a flow path switching valve 53 is disposed at the branch point of the boil-off gas consumption line 5.
  • the flow path switching valve 53 does not necessarily have to be a three-way valve, and may be replaced by a stop valve disposed in each of the first consumption line 51 and the second consumption line 52.
  • the first consumption line 51 is connected to the engine 54, for example, and the second consumption line 52 is connected to the boiler 55, for example, and uses the boil-off gas 22 as fuel.
  • the boil-off gas 22 is transferred to the boil-off gas reliquefaction line 4 and reliquefied.
  • the configuration of the boil-off gas consumption line 5 is not limited to that shown in the figure, and the first consumption line 51 and the second consumption line 52 are used when there is a single gas use device (engine 54, boiler 55, etc.). There is no need to branch off.
  • the boil-off gas consumption line 5 may be branched according to the number, or one or a plurality of same or different kinds of gas are used.
  • a configuration in which devices (engine, boiler, etc.) are appropriately combined may be used, or a gas incineration disposal device or a disposal device to the atmosphere may be included as necessary.
  • the boil-off gas reliquefaction line 4 condenses and collects the boil-off gas return pipe 41 inserted into the liquefied gas 21 of the liquefied gas tank 2 and the boil-off gas 22 and discharges the boil-off gas 22 into the liquefied gas 21 as a liquid. Pressure holding means 42.
  • the boil-off gas return pipe 41 In the figure, only a part of the boil-off gas return pipe 41 is shown, and the piping of the boil-off gas reliquefaction line 4 is simplified.
  • the boil-off gas return pipe 41 is branched from the boil-off gas discharge line 3, is inserted into the liquefied gas tank 2 from the tank dome 2 b of the liquefied gas tank 2, and is immersed in the liquefied gas 21.
  • the boil-off gas return pipe 41 has a vertical part 41a immersed in the liquefied gas 21 substantially vertically and a horizontal part 41b bent in a substantially horizontal direction.
  • the vertical portion 41a is immersed in the liquefied gas 21 by a depth M, and the horizontal portion 41b has a length N.
  • the depth M is set so that the lower end of the vertical portion 41a is disposed near the bottom of the liquefied gas tank 2 away from the liquid surface of the liquefied gas 21 in order to keep the heat exchange rate long.
  • the length L of the boil-off gas return pipe 41 immersed in the liquefied gas 21 (that is, the sum of the depth M of the vertical portion 41a and the length N of the horizontal portion 41b) is necessary for reliquefaction of the boil-off gas 22. Is set to a length that can release a large amount of heat.
  • the boil-off gas return pipe 41 may be led into the liquefied gas tank 2 from a portion other than the tank dome 2b (for example, a side wall portion or a bottom surface portion of the liquefied gas tank 2). Further, in the case of the liquefied gas tank 2 that does not have the tank dome 2b, the boil-off gas return pipe 41 may be introduced into the liquefied gas tank 2 from the roof portion, the side wall portion, the bottom surface portion, or the like of the liquefied gas tank 2.
  • the operation of the boil-off gas processing apparatus 1 will be described with reference to FIG.
  • the horizontal axis represents enthalpy (kJ / kg), and the vertical axis represents pressure (kPa).
  • the curve at the center indicates the vapor-liquid equilibrium line 100
  • the curve from the upper left to the lower right across the vapor-liquid equilibrium line 100 indicates the isotherm 101
  • the curve toward the upper right indicates the isentropic line 102.
  • the inside of the gas-liquid equilibrium line 100 means a gas-liquid mixed phase
  • the left side of the gas-liquid equilibrium line 100 means the liquid phase
  • the right side of the gas-liquid equilibrium line 100 means the gas phase.
  • the liquefied gas tank 2 is provided with a heat insulation measure, not a little, intrusion heat from the outside of the tank to the inside of the tank is generated, and the liquefied gas 21 evaporates due to the intrusion heat, and boil-off gas 22 is generated.
  • the boil-off gas 22 is generated, the gas vapor pressure in the liquefied gas tank 2 rises, and the liquefied gas 21 in the liquefied gas tank 2 becomes a saturated vapor pressure at the surface temperature of the liquefied gas and enters a gas-liquid equilibrium state.
  • the liquefied gas 21 warmed by the intrusion heat gathers on the liquid surface portion of the liquefied gas tank 2 due to convection accompanying the temperature rise, and as shown in FIG. (Upper high temperature layer 21a) is formed.
  • a liquid layer (lower low temperature layer 21b) that is larger in volume and lower in temperature than the upper high temperature layer 21a is formed under the upper high temperature layer 21a.
  • the liquefied gas 21 and the boil-off gas 22 are in a state A in which the gas-liquid equilibrium state is maintained in the liquefied gas tank 2. Since the intrusion heat into the liquefied gas tank 2 is substantially concentrated in the upper high temperature layer 21a, the liquid in the upper high temperature layer 21a (liquefied gas 21) absorbs the amount of heat of ⁇ h1 by the intrusion heat and maintains a gas-liquid equilibrium state. Therefore, the state moves to the state B and gasifies to become the boil-off gas 22.
  • the boil-off gas 22 is pressurized by the compressor 32, so that the state of the boil-off gas 22 shifts to a state C, for example.
  • a state C for example.
  • the boil-off gas 22 absorbs the amount of heat of ⁇ h2.
  • an isotherm 101c passing through the state C indicates a temperature higher than that of the isotherm 101a passing through the vicinity of the state A.
  • the isotherm 101a shows about ⁇ 160 ° C.
  • the isotherm 101c shows about ⁇ 120 ° C. Note that the temperature in the state C can be accurately calculated according to the properties of natural gas, the pressure and properties of the boil-off gas 22, and the like.
  • boil-off gas 22 in the state C is introduced into the liquefied gas 21 of the liquefied gas tank 2 through the boil-off gas return pipe 41 of the boil-off gas reliquefaction line 4.
  • the boil-off gas 22 passes through the vertical portion 41a of the boil-off gas return pipe 41 and is transferred to the depth M, and reaches the state D or a supercooled state on the same straight line via the horizontal portion 41b, so that the liquefied gas tank 2 is liquefied. It is released into the gas 21.
  • the boil-off gas 22 transferred to the depth M is heat-exchanged with the low-temperature liquefied gas 21 in the lower low-temperature layer 21b, and releases heat quantity ⁇ h3 to condense and liquefy.
  • the liquefied gas 21 in the lower low temperature layer 21b has not reached the state of the liquefied gas 21 in the upper high temperature layer 21a in an equilibrium state at a higher pressure, and is on the isotherm 101a, which is a temperature lower than the temperature in the state A. Has temperature.
  • the pressure of the boil-off gas return pipe 41 is set so as to obtain a pressure Pd that gives a temperature difference between the boil-off gas 22 and the lower low temperature layer 21b that can release the amount of heat ⁇ h3 necessary for liquefying the boil-off gas 22. . That is, heat exchange is performed between the boil-off gas 22 from the state C to the state D on the vapor-liquid equilibrium line 100 and the lower low-temperature layer 21b, and the boil-off gas return pipe 41 so that the necessary heat quantity can be exchanged.
  • the pressure holding means 42 is disposed at the end of the boil-off gas return pipe 41 so that the pressure Pd can be obtained.
  • the length L of the boil-off gas return pipe 41 releases a heat quantity ⁇ h3 necessary for the boil-off gas 22 that is liquefied by the exchange heat quantity per time corresponding to the pressure Pd to shift to the state D, and the boil-off gas reliquefaction is performed.
  • the line 4 re-liquefies all of the boil-off gas 22 and releases it into the liquefied gas 21, it is set to a length necessary for complete liquefaction.
  • the pressure Pa is about 1 atm (about 101 kPa)
  • the pressure Pd is, for example, 2 to 4 atm (about 202 to about 404 kPa). It is.
  • the re-liquefied boil-off gas 22 is released into the liquefied gas 21 and mixed into the liquefied gas 21 of the lower low temperature layer 21b, thereby releasing a heat quantity corresponding to ⁇ h4 and the liquefied gas 21 of the lower low temperature layer 21b. And homogenize. Note that the re-liquefied boil-off gas 22 released into the liquefied gas 21 in the state D or the supercooled state may be vaporized by adiabatic expansion, but ⁇ h4 before reaching the upper high temperature layer 21a. It releases heat and is finally liquefied.
  • the liquefied gas 21 in the liquefied gas tank 2 absorbs the amount of heat of ⁇ h3 and ⁇ h4, so that the temperature rises slightly.
  • the liquefied gas 21 in the lower low temperature layer 21b is present in a large amount and it takes a long time to increase the overall temperature of the liquefied gas 21, the temperature increase accompanying the reliquefaction of the boil-off gas 22 is liquefied gas. 21 and is substantially fogged out.
  • the boil-off gas 22 may be discharged into the liquefied gas 21 with the gas-liquid mixed phase on the way from the state C to the state D.
  • the boil-off gas reliquefaction line 4 re-liquefies a part of the boil-off gas 22 and discharges it into the liquefied gas 21.
  • this is effective when the transfer pressure of the boil-off gas 22 in the boil-off gas reliquefaction line 4 is low, or when it is not necessary to completely reliquefy the boil-off gas 22.
  • the above-described reliquefaction treatment of the boil-off gas 22 is stored in the upper high-temperature layer 21a by returning the boil-off gas 22 to the lower low-temperature layer 21b and returning it to the liquefied gas tank 2 that has been pressurized by intrusion heat. Intrusion heat is distributed and stored in the lower low temperature layer 21b. That is, the boil-off gas processing device 1 has an action like a pressure accumulator. Therefore, by disposing the boil-off gas treatment device 1 in the liquefied gas tank 2, it is possible to ensure a long time until the upper limit predetermined pressure is reached even if the liquefied gas tank 2 is a normal pressure tank.
  • boil-off gas processing apparatus 1 only the boil-off gas reliquefaction line 4 needs to be arranged, and no special reliquefaction apparatus is required, and the equipment cost and operation cost required for processing the boil-off gas 22 are reduced. can do. Further, the boil-off gas 22 can be discharged from the gas vapor phase so that the inside of the liquefied gas tank 2 does not reach a predetermined pressure, and the discharged boil-off gas 22 can be re-liquefied and returned to the liquefied gas tank 2. 22 incineration or disposal can be suppressed.
  • FIG. 1A shows a vapor trap as shown in FIG. 1A.
  • FIG. 1B shows a float-type vapor trap (pressure holding means 42).
  • the vapor trap includes, for example, a main body 42a, a float type on-off valve 42b that can float and sink vertically in the main body 42a, a liquid discharge orifice 42c that discharges liquefied liquid, and discharges the discharged liquid to the outside. 42d.
  • the boil-off gas 22 transferred from the boil-off gas return pipe 41 and the re-liquefied boil-off gas 22 are temporarily stored in the main body portion 42a, and when a certain amount of liquid is accumulated in the main body portion 42a, the float type on-off valve 42b. rises, the liquid discharge orifice 42c is opened, and the liquid is discharged to the discharge port 42d. When the liquid in the main body 42a is reduced, the float type on-off valve 42b is lowered and the liquid discharge orifice 42c is closed.
  • the inside of the boil-off gas return pipe 41 can be easily maintained at the pressure Pd, and the boil-off gas 22 is completely liquefied. Can be discharged into the liquefied gas tank 2.
  • the pressure holding means 42 is not limited to the one shown in the figure, and any pressure difference between the front and rear is used as in other structures such as vapor traps and orifices as long as the inside of the boil-off gas return pipe 41 can be maintained at the pressure Pd.
  • a simple device, a pressure regulating valve, or the like can be used instead.
  • FIG. 3 is a figure which shows the modification of the boil off gas processing apparatus shown in FIG. 1
  • FIG. 3A is a 1st modification
  • FIG. 3B is a 2nd modification
  • FIG. 3C is a 3rd modification.
  • Show. 4 is a view showing a modification of the boil-off gas processing apparatus shown in FIG. 1,
  • FIG. 4A shows a fourth modification
  • FIG. 4B shows a fifth modification
  • FIG. 4C shows a sixth modification. ing.
  • the pressure holding means 42 in the first embodiment is omitted.
  • the liquefied gas 21 in the liquefied gas tank 2 has a sufficient height and the boil-off gas 22 can be condensed by the static pressure of the liquefied gas 21 due to gravity, or the boil-off gas reliquefaction line 4 is used to liquefy the boil-off gas 22. If the length L is sufficient, the pressure holding means 42 such as a vapor trap can be omitted.
  • the boil-off gas reliquefaction line 4 of the first modification is configured linearly in the liquefied gas 21 of the liquefied gas tank 2.
  • the compressor 32 in the first embodiment is omitted.
  • the compressor 32 for discharging or boosting the boil-off gas 22 can be omitted.
  • FIG. 4A shows a meandering portion of the boil-off gas reliquefaction line 4 immersed in the liquefied gas 21.
  • the boil-off gas reliquefaction line 4 specifically, the boil-off gas return pipe 41
  • the heat exchange rate for re-liquefying the boil-off gas 22 can be improved.
  • the part immersed in the liquefied gas 21 of the boil-off gas reliquefaction line 4 is formed in a coil shape.
  • the boil-off gas reliquefaction line 4 specifically, the boil-off gas return pipe 41
  • the heat exchange rate for re-liquefying the boil-off gas 22 can be improved.
  • the sixth modification shown in FIG. 4C is obtained by meandering the horizontal portion of the boil-off gas reliquefaction line 4 (specifically, the horizontal portion 41b of the boil-off gas return pipe 41). Such a configuration can also improve the heat exchange rate for reliquefying the boil-off gas 22.
  • the horizontal portion of the boil-off gas reliquefaction line 4 may be formed in a coil shape as in the second modification.
  • the pressure holding means 42 such as a vapor trap may be disposed, or the compressor 32 may be omitted.
  • the boil-off gas consumption line 5 is not shown, but the boil-off gas consumption line 5 similar to that of the first embodiment may be arranged or unnecessary. It may be omitted.
  • FIG. 5 is a view showing a boil-off gas processing apparatus according to the second embodiment of the present invention
  • FIG. 5A is a schematic overall configuration diagram
  • FIG. 5B is a modified example.
  • symbol is attached
  • the illustration of the boil-off gas discharge pipe 31 and the boil-off gas return pipe 41 is omitted.
  • the boil-off gas processing apparatus 1 includes an external induction line 6 that guides the boil-off gas reliquefaction line 4 to the outside of the liquefied gas tank 2, and a boil-off gas that is disposed at the tip of the external induction line 6.
  • Pressure holding means 7 that condenses and collects 22 and discharges the boil-off gas 22 as a liquid
  • a return line 8 that returns the liquid released from the pressure holding means 7 to the liquefied gas 21 in the liquefied gas tank 2.
  • the pressure holding means 7 may have the same configuration as the vapor trap shown in FIG. 1B. Further, according to the second embodiment, maintenance of the pressure holding means 7 can be performed in a state where the liquefied gas 21 is stored in the liquefied gas tank 2.
  • the modification of the second embodiment shown in FIG. 5B includes a liquid receiving tank 9 that temporarily receives the liquid discharged from the pressure holding means 7 between the pressure holding means 7 and the return line 8. is there.
  • a communication line 91 that connects the inside of the liquefied gas tank 2 and the inside of the liquid receiving tank 9 is connected to the liquid receiving tank 9.
  • the gas vapor pressure in the liquid receiving tank 9 and the liquefied gas tank 2 is set to the same pressure, so that the liquid in the liquid receiving tank 9 can be easily introduced into the liquefied gas 21 in the liquefied gas tank 2. Can be returned. You may make it arrange
  • the terms “upper high temperature layer 21a” and “lower low temperature layer 21b” are liquefied even when the boil-off gas 22 is not taken out or the boil-off gas 22 is taken out. It is assumed that the gas vapor pressure in the gas tank 2 is higher than the pressure in the deep part of the liquefied gas tank 2.
  • the boil-off gas processing apparatus 1 according to the above-described embodiment is operated, the gas vapor pressure in the liquefied gas tank 2 becomes equal to or lower than the saturated vapor pressure of the liquefied gas 21 in the deep portion of the liquefied gas tank 2.
  • the upper high temperature layer 21a and the lower low temperature layer 21b may be indistinguishable (for example, when the temperature in the state A in FIG. 2 is equal to or lower than the isotherm 101a), the present invention excludes such a state. Not the purpose. That is, the terms “upper high temperature layer 21a” and “lower low temperature layer 21b” are an upper high temperature layer and a lower low temperature layer that are formed when it is assumed that the boil-off gas 22 is not taken out to the outside. 21 means a layer that is not affected by temperature change.
  • the upper high temperature layer may be read as the upper heat collecting layer or the upper heat storage layer, and the lower low temperature layer may be read as the lower liquefied gas layer.
  • the present invention is not limited to the above-described embodiments, and facilities such as transportation tankers, import bases, stockpiling bases, ship liquefied gas fuel tanks, etc. relating to liquefied gases such as liquefied natural gas (LNG) and liquefied petroleum gas (LPG)
  • LNG liquefied natural gas
  • LPG liquefied petroleum gas

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

液化ガス(21)を貯蔵する液化ガスタンク(2)内で発生したボイルオフガス(22)を再液化して液化ガスタンク(2)内に返戻するボイルオフガス処理装置であって、ボイルオフガス(22)を液化ガスタンク(2)から外部に排出するボイルオフガス排出ライン(3)と、一部を液化ガスタンク(2)内の液化ガス(21)内に浸漬させたボイルオフガス再液化ライン(4)と、を有し、ボイルオフガス再液化ライン(4)は、ボイルオフガス(22)の再液化に必要な圧力を保持する圧力保持手段(42)を有するとともに、ボイルオフガス(22)の再液化に必要な熱量を吸収可能な長さ(L)を有している。

Description

ボイルオフガス処理装置及び液化ガスタンク
 本発明は、ボイルオフガス処理装置及び液化ガスタンクに関し、特に、ボイルオフガスを再液化して液化ガスタンク内に返戻するためのボイルオフガス処理装置及び該ボイルオフガス処理装置を備えた液化ガスタンクに関する。
 一般に、液化天然ガス(LNG)や液化石油ガス(LPG)等の液化ガスは、輸送タンカー、輸入基地、備蓄基地、船舶の液化ガス燃料タンク等の施設及び設備において、液化ガスタンク内に封入されて貯蔵される。液化ガスタンクは、断熱対策が施されていたとしても、少なからず、タンク外部からタンク内部への侵入熱を生じ、かかる侵入熱により液化ガスは蒸発する。
 この蒸発したガス(以下、「ボイルオフガス」という。)を液化ガスタンクの外部に取り出さない場合、液化ガスタンク内のガス蒸気圧は上昇し、液化ガスタンク内の液化ガスは、液化ガス表面温度の飽和蒸気圧となって気液平衡状態になる。また、温められた液化ガスは、温度上昇に伴う対流によって、液化ガスタンクの液表面部分に集まり、液化ガスの全体温度よりも高温の液層(上部高温層)を形成する。そして、この上部高温層とガス蒸気相との間で気液平衡状態が保たれる。
 すなわち、液化ガスタンクへの侵入熱は、液化ガスの対流によって上部高温層に運ばれ、上部高温層の温度を上昇させることとなる。したがって、上部高温層の温度は、比較的短時間で上昇し、上部高温層の温度と平衡するガス蒸気相の圧力も上昇することとなる。上部高温層は、液化ガスの大部分を占める下部低温層よりも層が薄い(量が少ない)ことから、比較的短い時間で液化ガスタンクの所定圧力(上限値)まで上昇することとなる。
 そこで、従来、例えば、常圧で液化ガスを貯蔵する液化ガスタンクにあっては、液化ガスタンクの内圧を所定圧力以下に抑制するために、ボイルオフガスをコンプレッサ等により外部のガス処理装置に移送して処理していた。ガス処理装置には、例えば、ボイルオフガスを窒素ガス等の低温媒体により冷却し液化して液化ガスタンクに返戻する再液化装置、ボイラやガス焚きエンジン等で燃焼しエネルギー源として使用するガス使用装置、ガスを燃焼廃棄するガス焼却廃棄装置、ガスフレアやガスベント装置等の大気への廃棄装置等、がある。
 特許文献1に記載されたボイルオフガスの処理方法は、低温液化ガスタンク内で発生したBOG(ボイルオフガス)を取り出すBOG取出管の途中よりBOG戻し管を分岐させ、該BOG戻し管を低温液化ガスタンク内に入れて先端部をタンク底部近くに開口させている。そして、上記BOG戻し管の先端部である下端出口部に、BOGを小径の気泡として噴出させるようにするための網を取り付け、上記BOG取出管に取り出されたBOGをBOG戻し管内から網を通し小径の気泡として低温液化ガス中に噴出させるようにしたものである。かかる処理方法は、ボイルオフガスを再液化するものである。
 特許文献2に記載されたボイルオフガスの処理方法は、液化ガス運搬船の液化ガスタンクにて発生するBOG(ボイルオフガス)を、改質して燃料電池へ燃料として供給し、該燃料電池により発電させるようにしたものである。かかる処理方法は、ボイルオフガスをエネルギー源として使用するものである。
特開2000-46295号公報 特開2004-51049号公報
 しかしながら、ボイルオフガスを再液化する場合は設備コスト及び運転コストが多大である、ボイルオフガスをエネルギー源として使用する場合は設備コストが多大である、ボイルオフガスを焼却又は廃却する場合は無駄が多い、という問題があった。
 また、特許文献1に記載された再液化装置では、ボイルオフガスを気泡のまま液化ガスタンク内に噴出させており、ボイルオフガスの気泡は、気泡のまま液化ガス内を上昇し、液表面に到達し、ガス蒸気相に戻ってしまうという問題があった。
 また、特許文献2に記載された処理方法では、燃料電池、改質器等を備えた燃料電池設備が必要であり、設備コストが多大となる。また、このように、ボイルオフガスをエネルギー源として使用する場合には、ボイルオフガスの発生量がエネルギー消費量を上回ることもあり、かかる場合には、結局、ボイルオフガスを焼却又は廃却しなければならないという問題もあった。
 本発明は、上述した問題点に鑑み創案されたものであり、ボイルオフガスの処理に要する設備コスト及び運転コストを低減し、ボイルオフガスの焼却又は廃却を抑制することができる、ボイルオフガス処理装置及び液化ガスタンクを提供することを目的とする。
 本発明によれば、液化ガスを貯蔵する液化ガスタンク内で発生したボイルオフガスを再液化して前記液化ガスタンク内に返戻するボイルオフガス処理装置であって、前記ボイルオフガスを前記液化ガスタンクから外部に排出するボイルオフガス排出ラインと、前記ボイルオフガス排出ラインの少なくとも一部を前記液化ガスタンク内の前記液化ガス内に浸漬させたボイルオフガス再液化ラインと、を有し、前記ボイルオフガス再液化ラインは、前記ボイルオフガスの再液化に必要な圧力を保持するとともに、前記ボイルオフガスの再液化に必要な熱量を放出可能な長さを有する、ことを特徴とするボイルオフガス処理装置が提供される。
 また、本発明によれば、液化ガスを貯蔵する断熱容器を有する液化ガスタンクであって、前記液化ガスタンク内で発生したボイルオフガスを再液化して前記液化ガスタンク内に返戻するボイルオフガス処理装置を有し、前記ボイルオフガスを前記液化ガスタンクから外部に排出するボイルオフガス排出ラインと、前記ボイルオフガス排出ラインの少なくとも一部を前記液化ガスタンク内の前記液化ガス内に浸漬させたボイルオフガス再液化ラインと、を有し、前記ボイルオフガス再液化ラインは、前記ボイルオフガスの再液化に必要な圧力を保持するとともに、前記ボイルオフガスの再液化に必要な熱量を放出可能な長さを有する、ことを特徴とする液化ガスタンクが提供される。
 上述したボイルオフガス処理装置及び液化ガスタンクにおいて、前記ボイルオフガス再液化ラインは、前記ボイルオフガスを凝縮して捕集し前記ボイルオフガスを液体として前記液化ガス内に放出する圧力保持手段を有していてもよい。
 前記ボイルオフガス再液化ラインは、前記ボイルオフガスの全部を再液化して前記液化ガス内に放出してもよいし、前記ボイルオフガスの一部を再液化して前記液化ガス内に放出してもよい。
 また、前記ボイルオフガス再液化ラインを前記液化ガスタンクの外部に誘導する外部誘導ラインと、該外部誘導ラインの先端に配置され前記ボイルオフガスを凝縮して捕集し前記ボイルオフガスを液体として放出する圧力保持手段と、該圧力保持手段から放出される液体を前記液化ガスタンク内の液化ガスに返戻する返戻ラインと、を有していてもよい。
 さらに、前記圧力保持手段と前記返戻ラインとの間に、前記圧力保持手段から放出される液体を一時的に受け容れる受液タンクを有していてもよい。
 また、前記ボイルオフガス排出ラインは、前記ボイルオフガスを排出又は昇圧するコンプレッサを有していてもよい。
 上述した本発明に係るボイルオフガス処理装置及び液化ガスタンクによれば、ボイルオフガス再液化ラインを所定の圧力に保持するとともに所定の長さに形成することにより、ボイルオフガス再液化ライン内のボイルオフガスと液化ガスタンク内に貯蔵された液化ガスとを熱交換させる。これにより、ボイルオフガスをボイルオフガス再液化ライン内で再液化させることができ、ボイルオフガスを再液化してから液化ガスタンクに放出することができる。したがって、特別な再液化装置を必要とせず、ボイルオフガスの処理に要する設備コスト及び運転コストを低減することができる。
 また、液化ガスタンク内が所定圧力に達しないようにボイルオフガスをガス蒸気相から排出することができ、排出したボイルオフガスを再液化して液化ガスタンクに返戻することができる。したがって、ボイルオフガスの焼却又は廃却を抑制することができる。
本発明の第一実施形態に係るボイルオフガス処理装置を示す図であって概略全体構成図を示している。 本発明の第一実施形態に係るボイルオフガス処理装置を示す図であってベーパートラップの概略構成図を示している。 ボイルオフガス処理装置の作用を示す圧力-エンタルピー線図である。 図1に示したボイルオフガス処理装置の変形例を示す図であって第一変形例を示している。 図1に示したボイルオフガス処理装置の変形例を示す図であって第二変形例を示している。 図1に示したボイルオフガス処理装置の変形例を示す図であって第三変形例を示している。 図1に示したボイルオフガス処理装置の変形例を示す図であって第四変形例を示している。 図1に示したボイルオフガス処理装置の変形例を示す図であって第五変形例を示している。 図1に示したボイルオフガス処理装置の変形例を示す図であって第六変形例を示している。 本発明の第二実施形態に係るボイルオフガス処理装置を示す図であって概略全体構成図を示している。 本発明の第二実施形態に係るボイルオフガス処理装置を示す図であって変形例を示している。
 以下、本発明の実施形態について図1~図5を用いて説明する。ここで、図1は、本発明の第一実施形態に係るボイルオフガス処理装置を示す図であり、図1Aは概略全体構成図、図1Bはベーパートラップの概略構成図、を示している。図2は、ボイルオフガス処理装置の作用を示す圧力-エンタルピー線図である。
 本発明の第一実施形態にボイルオフガス処理装置1は、図1Aに示したように、液化ガス21を貯蔵する液化ガスタンク2内で発生したボイルオフガス22を再液化して液化ガスタンク2内に返戻するボイルオフガス処理装置であって、ボイルオフガス22を液化ガスタンク2から外部に排出するボイルオフガス排出ライン3と、ボイルオフガス排出ライン3の少なくとも一部を液化ガスタンク2内の液化ガス21内に浸漬させたボイルオフガス再液化ライン4と、を有し、ボイルオフガス再液化ライン4は、ボイルオフガス22の再液化に必要な圧力を保持する圧力保持手段42を有するとともに、ボイルオフガス22の再液化に必要な熱量を放出可能な長さLを有している。
 図1Aに示した液化ガスタンク2は、液化ガス21を貯蔵する断熱容器2aと、断熱容器2aの上部に配置されたタンクドーム2bと、を有する。なお、液化ガスタンク2の構成は、図示したものに限定されず、輸送タンカー、輸入基地、備蓄基地、船舶の液化ガス燃料タンク等、配置場所や使用目的等に応じて、適宜変更し得るものである。
 断熱容器2aは、例えば、低温靭性に優れた素材により構成される内層と、外部からの侵入熱を抑制する断熱層(又は保冷層)と、断熱層を保持する外層と、を有する。また、断熱容器2aの形状は、図示したような角型の形状であってもよいし、球型の形状であってもよいし、円筒型の形状であってもよい。タンクドーム2bは、断熱容器2aの屋根部に配置され、液化ガスの搬出入を行う配管等の挿通口やメンテナンス等のための交通路を構成する。
 ボイルオフガス排出ライン3は、液化ガスタンク2内の上層部に挿通されたボイルオフガス排出管31と、ボイルオフガス22を排出又は昇圧するコンプレッサ32と、ボイルオフガス22の流路を変更する流路切替弁33と、を有する。なお、図では、ボイルオフガス排出管31の一部のみを図示し、ボイルオフガス排出ライン3を構成する配管の図を簡略化している。
 ボイルオフガス排出管31は、液化ガスタンク2のタンクドーム2bから液化ガスタンク2内に挿通及び開口され、液化ガスタンク2の上層部に溜まったボイルオフガス22を吸入できる位置に配置されている。
 コンプレッサ32は、液化ガスタンク2内に溜まったボイルオフガス22を吸引し、ボイルオフガス排出ライン3によりタンク外に排出する。コンプレッサ32は、液化ガスタンク2内の圧力が所定の閾値に到達すると自動的に作動させるようにしてもよいし、手動で任意のタイミングに作動させるようにしてもよい。
 ボイルオフガス排出ライン3は、例えば、ボイルオフガス再液化ライン4及びボイルオフガス消費ライン5に分岐される。ボイルオフガス排出ライン3の分岐点には、流路切替弁33が配置されている。流路切替弁33は、必ずしも三方弁である必要はなく、ボイルオフガス再液化ライン4及びボイルオフガス消費ライン5のそれぞれに配置した止め弁で代用するようにしてもよい。ボイルオフガス消費ライン5は、ボイルオフガス22をエネルギー源として使用する場合等に使用される。
 ボイルオフガス消費ライン5は、第一消費ライン51及び第二消費ライン52に分岐される。ボイルオフガス消費ライン5の分岐点には、流路切替弁53が配置されている。流路切替弁53は、必ずしも三方弁である必要はなく、第一消費ライン51及び第二消費ライン52のそれぞれに配置した止め弁で代用するようにしてもよい。第一消費ライン51は、例えば、エンジン54に接続され、第二消費ライン52は、例えば、ボイラ55に接続されており、ボイルオフガス22を燃料として使用する。なお、ボイルオフガス22の発生量がエネルギー消費量を上回る場合には、ボイルオフガス22はボイルオフガス再液化ライン4に移送され、再液化される。
 なお、ボイルオフガス消費ライン5の構成は、図示したものに限定されるものではなく、ガス使用装置(エンジン54、ボイラ55等)が単数の場合には第一消費ライン51及び第二消費ライン52に分岐させる必要はない。また、ガス使用装置(エンジン54、ボイラ55等)が三台以上の場合には台数に合わせてボイルオフガス消費ライン5を分岐させるようにしてもよいし、単数又は複数の同種又は異種のガス使用装置(エンジン、ボイラ等)を適宜組み合わせた構成であってもよいし、必要に応じて、ガス焼却廃棄装置や大気への廃棄装置を有していてもよい。
 ボイルオフガス再液化ライン4は、液化ガスタンク2の液化ガス21内に挿通されたボイルオフガス返戻管41と、ボイルオフガス22を凝縮して捕集し当該ボイルオフガス22を液体として液化ガス21内に放出する圧力保持手段42と、を有する。なお、図では、ボイルオフガス返戻管41の一部のみを図示し、ボイルオフガス再液化ライン4を構成する配管の図を簡略化している。
 ボイルオフガス返戻管41は、ボイルオフガス排出ライン3から分岐され、液化ガスタンク2のタンクドーム2bから液化ガスタンク2内に挿通され、液化ガス21内に浸漬されている。ボイルオフガス返戻管41は、略垂直に液化ガス21に浸漬した垂直部41aと略水平方向に屈曲した水平部41bとを有する。垂直部41aは、深さMだけ液化ガス21に浸漬し、水平部41bは、長さNを有する。深さMは、熱交換率を長く保持するために、液化ガス21の液面から離れた液化ガスタンク2の底部寄りに垂直部41aの下端が配置されるように設定される。また、液化ガス21内に浸漬されたボイルオフガス返戻管41の長さL(すなわち、垂直部41aの深さM及び水平部41bの長さNの合計)は、ボイルオフガス22の再液化に必要な熱量を放出可能な長さに設定される。
 なお、ボイルオフガス返戻管41は、タンクドーム2b以外の部分(例えば、液化ガスタンク2の側壁部や底面部)から液化ガスタンク2内に導くようにしてもよい。また、タンクドーム2bを有しない液化ガスタンク2の場合には、ボイルオフガス返戻管41は、液化ガスタンク2の屋根部、側壁部、底面部等から液化ガスタンク2内に導くようにすればよい。
 ここで、ボイルオフガス処理装置1の作用について、図2を参照しつつ説明する。図2に示した圧力-エンタルピー線図において、横軸はエンタルピー(kJ/kg)、縦軸は圧力(kPa)を示している。また、図中、中央部の曲線は気液平衡線100、左上から気液平衡線100を横切って右下に至る曲線は等温線101、右上に向かう曲線は等エントロピー線102、を示している。なお、等温線101及び等エントロピー線102については、説明に必要な部分のみを図示している。また、気液平衡線100の内側は気液混合相、気液平衡線100の左側は液相、気液平衡線100の右側は気相、を意味する。
 ところで、液化ガスタンク2は、断熱対策が施されていたとしても、少なからず、タンク外部からタンク内部への侵入熱を生じ、かかる侵入熱により液化ガス21は蒸発し、ボイルオフガス22を生じる。ボイルオフガス22が発生すると、液化ガスタンク2内のガス蒸気圧は上昇し、液化ガスタンク2内の液化ガス21は、液化ガス表面温度の飽和蒸気圧となって気液平衡状態になる。また、侵入熱により温められた液化ガス21は、温度上昇に伴う対流によって、液化ガスタンク2の液表面部分に集まり、図1Aに示したように、液化ガス21の全体温度よりも高温の液層(上部高温層21a)を形成する。また、上部高温層21aの下には、上部高温層21aよりも大量かつ低温の液層(下部低温層21b)が形成される。
 いま、液化ガスタンク2内において、液化ガス21とボイルオフガス22とが気液平衡状態を保った状態Aにあるものとする。液化ガスタンク2への侵入熱は、上部高温層21aに略集約されることから、上部高温層21aの液体(液化ガス21)は、侵入熱によりΔh1の熱量を吸収し、気液平衡状態を保つために、状態Bへと移行してガス化し、ボイルオフガス22となる。
 ボイルオフガス処理装置1を作動させると、ボイルオフガス22はコンプレッサ32によって昇圧されることから、ボイルオフガス22の状態は、例えば、状態Cへと移行する。なお、ここでは、等エントロピー線102に略沿うように変化した場合を図示しているが、配管からの熱移動等もあるため完全断熱圧縮にはならず、必ずしも等エントロピー線102に沿って移行するわけではない。状態Cへの移行による圧力上昇に伴って、ボイルオフガス22はΔh2の熱量を吸収する。また、状態Cを通る等温線101cは、状態Aの近傍を通る等温線101aよりも高い温度を示している。例えば、液化ガス21が液化メタンガスの場合、等温線101aは約-160℃を示し、等温線101cは約-120℃を示している。なお、状態Cにおける温度は、天然ガスの性状、ボイルオフガス22の圧力や性状等によって正確に計算することができる。
 そして、状態Cのボイルオフガス22をボイルオフガス再液化ライン4のボイルオフガス返戻管41によって、液化ガスタンク2の液化ガス21内に導入する場合を考える。ボイルオフガス22は、ボイルオフガス返戻管41の垂直部41aを通過して深さMまで移送され、水平部41bを経由して状態D又は同一直線上の過冷却状態に至り、液化ガスタンク2の液化ガス21内に放出される。このとき、深さMまで移送されたボイルオフガス22は、下部低温層21bの低温の液化ガス21と熱交換され、Δh3の熱量を放出して凝縮し液化する。なお、下部低温層21bの液化ガス21は、より高い圧力で平衡状態にある上部高温層21aの液化ガス21の状態に至っておらず、状態Aの温度よりも低い温度である等温線101a上の温度を有している。
 ボイルオフガス返戻管41の圧力は、ボイルオフガス22と下部低温層21bとの間で、ボイルオフガス22の液化に必要な熱量Δh3を放出可能な温度差を与える圧力Pdが得られるように設定される。すなわち、状態Cから気液平衡線100上の状態Dに至るボイルオフガス22と下部低温層21bとの間で熱交換が行われ、必要な時間当たりの熱量交換ができるようにボイルオフガス返戻管41の圧力Pdを設定することができ、かかる圧力Pdが得られるように、ボイルオフガス返戻管41の終端部に圧力保持手段42が配置される。また、ボイルオフガス返戻管41の長さLは、圧力Pdに応じた時間当たりの交換熱量によって液化するボイルオフガス22が全て状態Dに移行するのに必要な熱量Δh3を放出し、ボイルオフガス再液化ライン4が、ボイルオフガス22の全部を再液化して液化ガス21内に放出する場合には、完全に液化するのに必要な長さに設定される。
 なお、常圧で液化ガス21を貯蔵する液化ガスタンク2では、圧力Paは約1気圧(約101kPa)であり、圧力Pdは、例えば、2~4気圧(約202~約404kPa)もあれば十分である。
 その後、再液化されたボイルオフガス22は、液化ガス21内に放出され、下部低温層21bの液化ガス21に混入することによって、Δh4に相当する熱量を放出し、下部低温層21bの液化ガス21と均一化する。なお、状態D又は過冷却状態において液化ガス21内に放出された再液化されたボイルオフガス22は、断熱膨張により気化する場合もあり得るが、上部高温層21aに到達するまでの間にΔh4の熱量を放出し最終的に液化される。
 上述したボイルオフガス22の再液化の過程において、液化ガスタンク2内の液化ガス21は、Δh3及びΔh4の熱量を吸収することから、若干の温度上昇を生じる。しかしながら、下部低温層21bの液化ガス21は大量に存在していること、液化ガス21の全体の温度上昇には長時間を要すること等から、ボイルオフガス22の再液化に伴う温度上昇は液化ガス21に分散され、実質的に霧消される。
 なお、図2において、状態Cから状態Dに至る途中の気液混合相のまま液化ガス21内にボイルオフガス22を放出するようにしてもよい。これは、ボイルオフガス再液化ライン4が、ボイルオフガス22の一部を再液化して液化ガス21内に放出する場合を意味している。例えば、ボイルオフガス再液化ライン4におけるボイルオフガス22の移送圧力が低い場合、ボイルオフガス22の完全な再液化を必要としない場合等に有効である。
 上述したボイルオフガス22の再液化処理は、侵入熱によって昇圧された液化ガスタンク2に対して、ボイルオフガス22を下部低温層21bに再液化して返戻することにより、上部高温層21aに蓄熱された侵入熱を下部低温層21bに分散蓄熱していることとなる。すなわち、ボイルオフガス処理装置1は、あたかも蓄圧装置のごとき作用を有する。したがって、液化ガスタンク2にボイルオフガス処理装置1を配置することにより、液化ガスタンク2が常圧タンクの場合であっても、上限の所定圧力に達するまでの時間を長く確保することができる。
 また、上述したボイルオフガス処理装置1によれば、ボイルオフガス再液化ライン4を配置するだけでよく、特別な再液化装置を必要とせず、ボイルオフガス22の処理に要する設備コスト及び運転コストを低減することができる。また、液化ガスタンク2内が所定圧力に達しないようにボイルオフガス22をガス蒸気相から排出することができ、排出したボイルオフガス22を再液化して液化ガスタンク2に返戻することができ、ボイルオフガス22の焼却又は廃却を抑制することができる。
 ところで、圧力保持手段42には、例えば、図1Aに示したような、ベーパートラップが使用される。ここで、図1Bは、フロート式のベーパートラップ(圧力保持手段42)を示している。ベーパートラップは、例えば、本体部42aと、本体部42a内で垂直方向に浮沈可能なフロート式開閉弁42bと、液化された液体を吐出する液吐出オリフィス42cと、吐出された液体を外部に放出する排出口42dと、を有する。
 ボイルオフガス返戻管41から移送されるボイルオフガス22及び再液化されたボイルオフガス22は、本体部42a内で一時的に貯留され、本体部42aに一定量の液体が溜まると、フロート式開閉弁42bが上昇し、液吐出オリフィス42cが開放され、排出口42dに液体が吐出される。本体部42a内の液体が減少すると、フロート式開閉弁42bが降下し、液吐出オリフィス42cが閉鎖される。
 かかるベーパートラップ(圧力保持手段42)をボイルオフガス再液化ライン4に配置することにより、ボイルオフガス返戻管41内を容易に圧力Pdに維持することができるとともに、ボイルオフガス22を完全に液化した状態で液化ガスタンク2内に放出することができる。なお、圧力保持手段42は、図示したものに限定されず、ボイルオフガス返戻管41内を圧力Pdに維持できるものであれば、他の構造のベーパートラップ、オリフィスのように前後の圧力差を利用した簡易な装置、圧力調整弁等で代用することもできる。
 続いて、第一実施形態に係るボイルオフガス処理装置1の変形例について説明する。ここで、図3は、図1に示したボイルオフガス処理装置の変形例を示す図であり、図3Aは第一変形例、図3Bは第二変形例、図3Cは第三変形例、を示している。また、図4は、図1に示したボイルオフガス処理装置の変形例を示す図であり、図4Aは第四変形例、図4Bは第五変形例、図4Cは第六変形例、を示している。なお、第一実施形態に係るボイルオフガス処理装置1と同じ構成部品については、同じ符号を付して重複した説明を省略する。また、各図において、ボイルオフガス排出管31及びボイルオフガス返戻管41の図は省略してある。
 図3Aに示した第一変形例は、第一実施形態における圧力保持手段42を省略したものである。液化ガスタンク2内の液化ガス21が十分な高さを有し、重力による液化ガス21の静圧でボイルオフガス22を凝縮することができる場合又はボイルオフガス再液化ライン4がボイルオフガス22の液化に十分な長さLを有する場合には、ベーパートラップ等の圧力保持手段42を省略することができる。
 図3Bに示した第二変形例は、第一変形例のボイルオフガス再液化ライン4を、液化ガスタンク2の液化ガス21内で直線状に構成したものである。液化ガスタンク2が十分な高さを有する場合には、深さM=長さLとなるように、ボイルオフガス再液化ライン4を構成することができる。
 図3Cに示した第三変形例は、第一実施形態におけるコンプレッサ32を省略したものである。液化ガスタンク2内のガス蒸気圧のみで、ボイルオフガス22を液化ガスタンク2の液化ガス21内に返戻することができる場合には、ボイルオフガス22を排出又は昇圧するコンプレッサ32を省略することができる。
 図4Aに示した第四変形例は、ボイルオフガス再液化ライン4の液化ガス21に浸漬された部分を蛇行させたものである。ボイルオフガス再液化ライン4(具体的には、ボイルオフガス返戻管41)をかかる形状に構成することにより、ボイルオフガス22を再液化するための熱交換率を向上させることができる。
 図4Bに示した第五変形例は、ボイルオフガス再液化ライン4の液化ガス21に浸漬された部分をコイル状に形成したものである。ボイルオフガス再液化ライン4(具体的には、ボイルオフガス返戻管41)をかかる形状に構成することにより、ボイルオフガス22を再液化するための熱交換率を向上させることができる。
 図4Cに示した第六変形例は、ボイルオフガス再液化ライン4の水平部(具体的には、ボイルオフガス返戻管41の水平部41b)を蛇行させたものである。かかる構成によってもボイルオフガス22を再液化するための熱交換率を向上させることができる。なお、図示しないが、第二変形例と同様に、ボイルオフガス再液化ライン4の水平部をコイル状に形成してもよい。
 上述した第四変形例~第六変形例において、ベーパートラップ等の圧力保持手段42を配置するようにしてもよいし、コンプレッサ32を省略するようにしてもよい。また、上述した第一変形例~第六変形例において、ボイルオフガス消費ライン5を図示していないが、第一実施形態と同様のボイルオフガス消費ライン5を配置してもよいし、不要であれば省略するようにしてもよい。
 次に、本発明の第二実施形態に係るボイルオフガス処理装置1について説明する。ここで、図5は、本発明の第二実施形態に係るボイルオフガス処理装置を示す図であり、図5Aは概略全体構成図、図5Bは変形例、を示している。なお、第一実施形態に係るボイルオフガス処理装置1と同じ構成部品については、同じ符号を付して重複した説明を省略する。また、各図において、ボイルオフガス排出管31及びボイルオフガス返戻管41の図は省略してある。
 図5Aに示した第二実施形態に係るボイルオフガス処理装置1は、ボイルオフガス再液化ライン4を液化ガスタンク2の外部に誘導する外部誘導ライン6と、外部誘導ライン6の先端に配置されボイルオフガス22を凝縮して捕集しボイルオフガス22を液体として放出する圧力保持手段7と、圧力保持手段7から放出される液体を液化ガスタンク2内の液化ガス21に返戻する返戻ライン8と、を有する。かかる第二実施形態によれば、圧力保持手段7を約-160℃(液化ガス21がLNGの場合)の低温域に配置する必要がなく、略常温常圧域に配置することができるため、市販されている又はより簡略化したベーパートラップ、オリフィス、圧力調整弁等を圧力保持手段7として使用することができる。勿論、圧力保持手段7は、図1Bに示したベーパートラップと同じ構成のものを使用するようにしてもよい。また、第二実施形態によれば、液化ガスタンク2に液化ガス21を貯蔵した状態で、圧力保持手段7のメンテナンスを行うこともできる。
 図5Bに示した第二実施形態の変形例は、圧力保持手段7と返戻ライン8との間に、圧力保持手段7から放出される液体を一時的に受け容れる受液タンク9を有するものである。また、受液タンク9には、液化ガスタンク2の内部と受液タンク9の内部とを連通する連通ライン91が接続されている。かかる連通ライン91を形成することにより、受液タンク9と液化ガスタンク2内のガス蒸気圧を同じ圧力にすることによって、受液タンク9内の液体を液化ガスタンク2の液化ガス21内に容易に返戻することができる。返戻ライン8や連通ライン91には、必要に応じて圧力調整弁等を配置するようにしてもよい。
 上述した本発明に係る実施形態の説明において、「上部高温層21a」及び「下部低温層21b」の用語は、ボイルオフガス22を外部に取り出さない場合又はボイルオフガス22を外部に取り出したとしても液化ガスタンク2内のガス蒸気圧が液化ガスタンク2の深部における圧力よりも高い場合を想定したものである。上述した実施形態に係るボイルオフガス処理装置1を作動させることにより、液化ガスタンク2内のガス蒸気圧が液化ガスタンク2の深部における液化ガス21の飽和蒸気圧と同等以下の圧力になった場合には、上部高温層21aと下部低温層21bとを区別できなくなる場合(例えば、図2における状態Aの温度が等温線101a以下となる場合)もあり得るが、本発明はこのような状態を除外する趣旨ではない。すなわち、「上部高温層21a」及び「下部低温層21b」の用語は、ボイルオフガス22を外部に取り出さないと仮定した場合に形成される上部高温層及び下部低温層であって、その後の液化ガス21の温度変化に左右されない層を意味する。なお、上部高温層は上部集熱層や上部蓄熱層と読み替えてもよいし、下部低温層は下部液化ガス層と読み替えるようにしてもよい。
 本発明は上述した実施形態に限定されず、液化天然ガス(LNG)や液化石油ガス(LPG)等の液化ガスに関する、輸送タンカー、輸入基地、備蓄基地、船舶の液化ガス燃料タンク等の施設及び設備に適宜適用することができる、常圧タンク以外の液化ガスタンクにも適用することができる、上述した実施形態及び変形例は適宜組み合わせて使用することができる等、本発明の趣旨を逸脱しない範囲で種々変更が可能であることは勿論である。
1 ボイルオフガス処理装置
2 液化ガスタンク
3 ボイルオフガス排出ライン
4 ボイルオフガス再液化ライン
5 ボイルオフガス消費ライン
6 外部誘導ライン
7,42 圧力保持手段
8 返戻ライン
9 受液タンク
21 液化ガス
22 ボイルオフガス
32 コンプレッサ

Claims (7)

  1.  液化ガスを貯蔵する液化ガスタンク内で発生したボイルオフガスを再液化して前記液化ガスタンク内に返戻するボイルオフガス処理装置であって、
     前記ボイルオフガスを前記液化ガスタンクから外部に排出するボイルオフガス排出ラインと、
     前記ボイルオフガス排出ラインの少なくとも一部を前記液化ガスタンク内の前記液化ガス内に浸漬させたボイルオフガス再液化ラインと、
     を有し、前記ボイルオフガス再液化ラインは、前記ボイルオフガスの再液化に必要な圧力を保持するとともに、前記ボイルオフガスの再液化に必要な熱量を放出可能な長さを有する、ことを特徴とするボイルオフガス処理装置。
  2.  前記ボイルオフガス再液化ラインは、前記ボイルオフガスを凝縮して捕集し前記ボイルオフガスを液体として前記液化ガス内に放出する圧力保持手段を有する、ことを特徴とする請求項1に記載のボイルオフガス処理装置。
  3.  前記ボイルオフガス再液化ラインは、前記ボイルオフガスの全部又は一部を再液化して前記液化ガス内に放出する、ことを特徴とする請求項1に記載のボイルオフガス処理装置。
  4.  前記ボイルオフガス再液化ラインを前記液化ガスタンクの外部に誘導する外部誘導ラインと、該外部誘導ラインの先端に配置され前記ボイルオフガスを凝縮して捕集し前記ボイルオフガスを液体として放出する圧力保持手段と、該圧力保持手段から放出される液体を前記液化ガスタンク内の液化ガスに返戻する返戻ラインと、を有することを特徴とする請求項1に記載のボイルオフガス処理装置。
  5.  前記圧力保持手段と前記返戻ラインとの間に、前記圧力保持手段から放出される液体を一時的に受け容れる受液タンクを有する、ことを特徴とする請求項4に記載のボイルオフガス処理装置。
  6.  前記ボイルオフガス排出ラインは、前記ボイルオフガスを排出又は昇圧するコンプレッサを有する、ことを特徴とする請求項1に記載のボイルオフガス処理装置。
  7.  液化ガスを貯蔵する断熱容器を有する液化ガスタンクであって、
     請求項1~請求項6のいずれかに記載のボイルオフガス処理装置を備えた、ことを特徴とする液化ガスタンク。
     
PCT/JP2012/061423 2011-05-02 2012-04-27 ボイルオフガス処理装置及び液化ガスタンク WO2012150698A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
SG2013075957A SG194464A1 (en) 2011-05-02 2012-04-27 Boil-off gas processing apparatus and liquefied gas tank
US14/111,017 US20140041398A1 (en) 2011-05-02 2012-04-27 Boil-off gas processing apparatus and liquefied gas tank
AU2012251302A AU2012251302B2 (en) 2011-05-02 2012-04-27 Boil-off gas processing device and liquefied gas tank
PL12779490T PL2706282T3 (pl) 2011-05-02 2012-04-27 Urządzenie do przetwarzania odparowanego gazu i zbiornik skroplonego gazu
ES12779490T ES2762201T3 (es) 2011-05-02 2012-04-27 Dispositivo de procesamiento de gas de evaporación y tanque de gas licuado
KR1020137028157A KR101542077B1 (ko) 2011-05-02 2012-04-27 보일오프 가스 처리장치 및 액화가스 탱크
CA2832716A CA2832716C (en) 2011-05-02 2012-04-27 Boil-off gas processing apparatus and liquefied gas tank
CN201280032060.0A CN103635738B (zh) 2011-05-02 2012-04-27 蒸发气体处理装置及液化气罐
EP12779490.7A EP2706282B1 (en) 2011-05-02 2012-04-27 Boil-off gas processing device and liquefied gas tank

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-102884 2011-05-02
JP2011102884A JP5715479B2 (ja) 2011-05-02 2011-05-02 ボイルオフガス処理装置及び液化ガスタンク

Publications (1)

Publication Number Publication Date
WO2012150698A1 true WO2012150698A1 (ja) 2012-11-08

Family

ID=47107884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061423 WO2012150698A1 (ja) 2011-05-02 2012-04-27 ボイルオフガス処理装置及び液化ガスタンク

Country Status (11)

Country Link
US (1) US20140041398A1 (ja)
EP (1) EP2706282B1 (ja)
JP (1) JP5715479B2 (ja)
KR (1) KR101542077B1 (ja)
CN (1) CN103635738B (ja)
AU (1) AU2012251302B2 (ja)
CA (1) CA2832716C (ja)
ES (1) ES2762201T3 (ja)
PL (1) PL2706282T3 (ja)
SG (1) SG194464A1 (ja)
WO (1) WO2012150698A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9255664B2 (en) * 2012-12-24 2016-02-09 General Electric Company Cryogenic fuel system with auxiliary power provided by boil-off gas
JP2014224553A (ja) * 2013-05-15 2014-12-04 株式会社Ihi 低温液化ガスタンク
JP2015124807A (ja) * 2013-12-26 2015-07-06 川崎重工業株式会社 液化燃料ガス蒸発促進装置及び船舶用燃料ガス供給システム
KR102198068B1 (ko) * 2014-09-15 2021-01-05 한국조선해양 주식회사 액화가스 처리 시스템
CN104315802A (zh) * 2014-10-27 2015-01-28 中国海洋石油总公司 液化天然气蒸发气动态回收方法及设备
JP6448364B2 (ja) * 2014-12-26 2019-01-09 川崎重工業株式会社 ガス燃料供給システム及びその制御方法
CA2956439C (en) * 2015-10-08 2017-11-14 1304338 Alberta Ltd. Method of producing heavy oil using a fuel cell
KR102305886B1 (ko) * 2015-10-30 2021-09-28 한국조선해양 주식회사 가스 처리 시스템
EP3372485A4 (en) 2015-11-05 2019-07-24 Hyundai Heavy Industries Co., Ltd. GAS TREATMENT SYSTEM AND CONTAINER THEREWITH
JP6882859B2 (ja) * 2016-07-05 2021-06-02 川崎重工業株式会社 運航管理システム
JP2018017133A (ja) * 2016-07-25 2018-02-01 三井造船株式会社 液化石油ガス運搬船用ボイルオフガス処理システム
AU2017381785B2 (en) * 2016-12-23 2020-04-16 Shell Internationale Research Maatschappij B.V. Vessel for the transport of liquefied gas and method of operating the vessel
JP6609865B2 (ja) * 2017-04-06 2019-11-27 三菱造船株式会社 浮体
CA2997634A1 (en) 2018-03-07 2019-09-07 1304342 Alberta Ltd. Production of petrochemical feedstocks and products using a fuel cell
KR102075259B1 (ko) * 2018-07-24 2020-02-07 한국조선해양 주식회사 액화가스 처리 시스템 및 이를 구비하는 액화가스 운반선
US11719387B2 (en) * 2018-12-05 2023-08-08 Messer Industries Usa, Inc. Liquid conditioning for cryogen vessel fill station
JP7227837B2 (ja) * 2019-04-23 2023-02-22 三菱造船株式会社 液化ガス貯留タンク、及び船舶
WO2023073811A1 (ja) * 2021-10-26 2023-05-04 日揮グローバル株式会社 天然ガス処理設備

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2713775A (en) * 1953-11-06 1955-07-26 Phillips Petroleum Co Recovery of salt free liquid from liquid having salts dissolved therein
JPS62194099A (ja) * 1986-02-18 1987-08-26 Mitsubishi Heavy Ind Ltd ボイルオフガス再液化装置
WO1998045642A1 (en) * 1997-04-04 1998-10-15 Impress Metal Packaging B.V. Device for dispensing liquid nitrogen
JP2000046295A (ja) 1998-07-27 2000-02-18 Ishikawajima Harima Heavy Ind Co Ltd 低温液化ガスタンク内のbog再液化装置
JP2004051049A (ja) 2002-07-23 2004-02-19 Ishikawajima Harima Heavy Ind Co Ltd 液化ガス運搬船のbog処理方法及び装置
JP2008546956A (ja) * 2005-06-17 2008-12-25 リンデ アクチエンゲゼルシヤフト 深冷媒体用貯蔵容器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE685425C (de) * 1936-09-08 1939-12-18 August Spannagel Dipl Ing Verfahren zum Lagern von fluechtigen und/oder brennbaren Fluessigkeiten in Tanks
US2550886A (en) * 1947-02-12 1951-05-01 Union Carbide & Carbon Corp System for conserving liquefied gases
US2784560A (en) * 1954-02-11 1957-03-12 American Messer Corp Process and apparatus for storing and shipping liquefied gases
BE574768A (ja) * 1958-01-16
US3150495A (en) * 1962-08-09 1964-09-29 Phillips Petroleum Co Storage and pressure control of refrigerated liquefied gases
US3114344A (en) * 1962-09-04 1963-12-17 Phillips Petroleum Co Ship for transporting volatile liquid and process
US4187689A (en) * 1978-09-13 1980-02-12 Chicago Bridge & Iron Company Apparatus for reliquefying boil-off natural gas from a storage tank
US4276749A (en) * 1980-04-16 1981-07-07 Phillips Petroleum Company Storage system for liquefied gases
NO315293B1 (no) * 2001-10-31 2003-08-11 Procyss As Fremgangsmåte for absorbering av damper og gasser ved kontroll av overtrykki lagertanker for v¶sker samt anvendelse av fremgangsmåten
CN101421554B (zh) * 2006-04-13 2012-06-20 氟石科技公司 Lng蒸汽的处理配置和方法
US7493778B2 (en) * 2006-08-11 2009-02-24 Chicago Bridge & Iron Company Boil-off gas condensing assembly for use with liquid storage tanks
KR100805022B1 (ko) * 2007-02-12 2008-02-20 대우조선해양 주식회사 Lng 운반선용 lng 저장탱크 및 이를 이용한 증발가스처리 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2713775A (en) * 1953-11-06 1955-07-26 Phillips Petroleum Co Recovery of salt free liquid from liquid having salts dissolved therein
JPS62194099A (ja) * 1986-02-18 1987-08-26 Mitsubishi Heavy Ind Ltd ボイルオフガス再液化装置
WO1998045642A1 (en) * 1997-04-04 1998-10-15 Impress Metal Packaging B.V. Device for dispensing liquid nitrogen
JP2000046295A (ja) 1998-07-27 2000-02-18 Ishikawajima Harima Heavy Ind Co Ltd 低温液化ガスタンク内のbog再液化装置
JP2004051049A (ja) 2002-07-23 2004-02-19 Ishikawajima Harima Heavy Ind Co Ltd 液化ガス運搬船のbog処理方法及び装置
JP2008546956A (ja) * 2005-06-17 2008-12-25 リンデ アクチエンゲゼルシヤフト 深冷媒体用貯蔵容器

Also Published As

Publication number Publication date
AU2012251302A1 (en) 2013-11-28
EP2706282B1 (en) 2019-10-02
CN103635738A (zh) 2014-03-12
CA2832716C (en) 2015-08-04
JP2012233534A (ja) 2012-11-29
ES2762201T3 (es) 2020-05-22
AU2012251302B2 (en) 2016-01-28
KR20130133299A (ko) 2013-12-06
US20140041398A1 (en) 2014-02-13
PL2706282T3 (pl) 2020-03-31
KR101542077B1 (ko) 2015-08-05
SG194464A1 (en) 2013-12-30
EP2706282A1 (en) 2014-03-12
CN103635738B (zh) 2015-10-21
EP2706282A4 (en) 2016-01-20
JP5715479B2 (ja) 2015-05-07
CA2832716A1 (en) 2012-11-08

Similar Documents

Publication Publication Date Title
JP5715479B2 (ja) ボイルオフガス処理装置及び液化ガスタンク
CN109154421B (zh) 用于向消耗气体的构件供给可燃气体并用于液化所述可燃气体的装置
JP6684789B2 (ja) 液化ガスを冷却するための装置および方法
KR101122549B1 (ko) 액화천연가스 운반선의 증발가스 억제장치
KR101075195B1 (ko) 열교환기가 포함된 저장탱크 및 그 저장탱크를 포함하는 천연가스연료공급시스템
CN103403435B (zh) 液化天然气储藏/搬运船及液化天然气储藏/搬运船的剩余气体产生抑制方法
KR101941314B1 (ko) 액화가스 처리 시스템
KR20110073825A (ko) 부유식 해상구조물의 액화천연가스 재기화 장치
KR20200111208A (ko) 가스 유조선을 위한 가스 저장 시설에서 가스를 처리하기 위한 방법 및 시스템
JP2013242021A (ja) 液体水素貯槽から発生するボイルオフガスの再液化方法
JP2011157979A (ja) ボイルオフガスの再液化装置および方法
US20080184735A1 (en) Refrigerant storage in lng production
KR100885796B1 (ko) 증발가스 재액화 장치
KR20110115897A (ko) Lng 탱크를 갖는 부유식 해양 구조물 및 상기 부유식 해양 구조물에서의 증발가스 처리방법
KR20140033894A (ko) 독립형 저장탱크의 누출액 수집 장치
KR101623092B1 (ko) 냉열발전을 이용한 증발가스 재액화 방법 및 장치
KR20120051481A (ko) 이종연료 엔진용 액화천연가스 공급 시스템 및 공급 방법
KR101010329B1 (ko) Lng 운반선 내 lng 저장 탱크의 증발가스 냉각 시스템
KR100834272B1 (ko) Lng 저장탱크, 그 탱크가 설치된 lng운반선, 및lng운반방법
KR20110074169A (ko) 액화천연가스 공급 시스템
KR102608692B1 (ko) 증발가스 처리 시스템 및 방법
KR20150097030A (ko) 보냉룸을 가지는 액화가스 저장 구조물
US20130327066A1 (en) Temperature control
KR20150126162A (ko) 이중각 액화물 탱크
KR20220153152A (ko) 연료공급장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12779490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2832716

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14111017

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012779490

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137028157

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012251302

Country of ref document: AU

Date of ref document: 20120427

Kind code of ref document: A