WO2012150621A1 - Frequency synthesizer - Google Patents

Frequency synthesizer Download PDF

Info

Publication number
WO2012150621A1
WO2012150621A1 PCT/JP2011/006147 JP2011006147W WO2012150621A1 WO 2012150621 A1 WO2012150621 A1 WO 2012150621A1 JP 2011006147 W JP2011006147 W JP 2011006147W WO 2012150621 A1 WO2012150621 A1 WO 2012150621A1
Authority
WO
WIPO (PCT)
Prior art keywords
decimal part
output
data
outputs
counter
Prior art date
Application number
PCT/JP2011/006147
Other languages
French (fr)
Japanese (ja)
Inventor
真由子 藤田
稔 落合
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012150621A1 publication Critical patent/WO2012150621A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K23/00Pulse counters comprising counting chains; Frequency dividers comprising counting chains
    • H03K23/64Pulse counters comprising counting chains; Frequency dividers comprising counting chains with a base or radix other than a power of two
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K23/00Pulse counters comprising counting chains; Frequency dividers comprising counting chains
    • H03K23/64Pulse counters comprising counting chains; Frequency dividers comprising counting chains with a base or radix other than a power of two
    • H03K23/68Pulse counters comprising counting chains; Frequency dividers comprising counting chains with a base or radix other than a power of two with a base which is a non-integer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • H03L7/197Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division
    • H03L7/1974Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division for fractional frequency division

Definitions

  • the present invention relates to a frequency synthesizer using a PLL (Phase Locked Loop) circuit.
  • PLL Phase Locked Loop
  • a frequency synthesizer using a PLL circuit divides and outputs the frequency of a reference signal (hereinafter sometimes referred to as “reference frequency”).
  • a general frequency synthesizer has a restriction that the output frequency can only be an integer multiple of the reference frequency (the resolution cannot be made finer than the reference frequency).
  • Patent Document 1 the above method has a problem of generating spurious due to a periodic change in the frequency division ratio.
  • spurious can be suppressed by performing delta-sigma modulation. .
  • FIG. 6 shows a frequency synthesizer according to the contents disclosed in Patent Document 1.
  • the phase comparator 103, the low-pass filter 104, the voltage controlled oscillator 101, and the variable frequency divider (integer frequency divider) 102 constitute a PLL circuit that forms a loop.
  • the adder 106 adds the integer part data M and the delta-sigma modulated decimal part data Y, and the added output becomes a signal for switching the frequency division ratio of the variable frequency divider 102.
  • the decimal part control circuit 105 is a circuit that delta-sigma-modulates the decimal part data F input from the decimal part data part 130 and outputs the modulated decimal part data Y.
  • An adder 153 in the decimal part control circuit 105 adds the input decimal part setting data F and the carry signal output from the feedback circuit 152 (the value of the integer part generated by the addition of the decimal part), and performs quadratic integration. Output as an input signal of the device 151.
  • the output of the secondary integrator 151 becomes an output signal of the decimal part control circuit 105 while the decimal part is cut off by the quantizer 150 and also becomes an input signal of the feedback circuit 152.
  • the integrator 151 in the decimal part control circuit 105 has a circuit configuration shown in FIG. 7, and a first integration circuit 201 and a second integration circuit 202 are connected in series.
  • This figure is a block diagram represented by z conversion, and z ⁇ 1 means that a signal delayed by one operation clock is output.
  • signals X 1 , X 2 , and X 3 are mapped as shown in FIG. 8, and a decimal point is present in the bit array.
  • fraction part configuration data F is the carry signal from the D 0 ⁇ D n-1
  • the feedback circuit 152 is mapped to the D n ⁇ D n + 2.
  • the fractional part setting data F in FIG. 8 is the data shifted right by n bits with respect to the decimal point, and corresponds to a value divided by 2n in binary notation.
  • the quantizer 150 performs the quantization operation by taking out the higher-order bits from the decimal part.
  • the decimal part truncated by the quantizer 150 becomes the quantization noise Q, and the output signal Y of the decimal part control circuit 105 is
  • the second term means that the quantization noise Q has a characteristic that the level is small at a low frequency and increases as the frequency becomes high.
  • the low-pass filter 104 in the PLL loop has such a characteristic that the level becomes smaller as the frequency becomes higher, the quantization noise Q included in the output signal of the fractional part control circuit 105 is reduced by the low-pass filter 104. As a result, the quantization noise component appearing at the output of the voltage controlled oscillator 101 is suppressed.
  • the conventional frequency synthesizer described above can output the fractional part setting data F with a decimal number as shown in the equation (1).
  • the denominator at the time of the decimalization is a power of 2
  • the denominator is 2. It is impossible to set a division ratio such as a decimal number that cannot be expressed by a power.
  • the division ratio to be obtained can be expressed by an integer for both the numerator and the denominator. . . It continues with.
  • the present invention is intended to solve such a problem, and even if the division ratio includes a decimal number that cannot be expressed by the number of bits for expressing the decimal number, it is possible to avoid the occurrence of a rounding error and perform accurate frequency division.
  • An object is to realize a frequency synthesizer capable of setting a ratio.
  • a frequency synthesizer includes a voltage controlled oscillator that outputs a signal having a frequency corresponding to an input control voltage, and control data that is input from the voltage controlled oscillator.
  • a signal indicating the comparison result by comparing the phase difference between the variable frequency divider that divides the frequency based on the signal and outputs the divided signal, and the signal from the variable frequency divider and the input reference signal
  • a low-pass filter that outputs a signal after the low-pass filtering, and the output of the low-pass filter is the output of the low-pass filter.
  • the binary output from the decimal part data output unit to the decimal part control circuit is switched according to a desired frequency division ratio.
  • a desired frequency division ratio By switching between the two values, it is possible to represent a decimal that cannot be represented by the number of bits for the decimal part control circuit to represent the decimal.
  • Block diagram of a frequency synthesizer according to an embodiment Time chart showing counter operation status for switching decimal part setting data
  • Block diagram of a frequency synthesizer according to modification 1 Block diagram of a frequency synthesizer according to modification 2
  • Block diagram of a frequency synthesizer according to modification 2 Block diagram of a conventional frequency synthesizer circuit Diagram showing integrator in decimal part control circuit The figure which shows the digital signal which shows the carry part and the decimal part in the decimal part control circuit
  • a phase comparator 3 a low-pass filter 4, a voltage controlled oscillator 1, and a variable frequency divider (integer frequency divider) 2 constitute a PLL circuit that forms a loop.
  • the output from the variable frequency divider 2 and the reference signal are input to the phase comparator 3 and the feedback loop is configured so that the frequencies of the two coincide with each other, the output frequency of the voltage controlled oscillator 1 is set to the reference signal.
  • the frequency is double the frequency of the variable frequency divider.
  • the adder 6 adds the integer part data M and the delta-sigma modulated decimal part data Y.
  • the decimal part control circuit 5 is a circuit that delta-sigma-modulates the input decimal part data F or F + 1.
  • the input decimal part data F and the output of the decimal part control circuit 5 are expressed by the above-described equation (1).
  • the decimal part data output unit 10 includes a binary output unit 20, a decimal part setting data unit 30, and an adder 40.
  • the binary output unit 20 includes an L counter 21, an R counter 22, and a D counter 23, which are frequency division counters, and has a function of generating both 0 and 1 values. It has a function to output either one.
  • the L counter 21 divides the output of the variable frequency divider 2 and generates a reference clock for switching between 0 and 1 value output from the binary output unit 20.
  • the R counter 22 counts down according to the clock input from the L counter 21.
  • the R counter is a counter for determining the length of a period during which a value of 1 is output (hereinafter sometimes referred to as “first period”).
  • the D counter 23 counts down in response to the input of the clock from the L counter 21, and when it reaches a counter set value (for example, 0), it resets itself and resets the R counter 22. As will be described later, the D counter 23 determines a second period during which a value of 0 is output, and may be referred to as a cycle (hereinafter referred to as a “switching period”) of the first period and the second period. ) Is a counter that determines the length.
  • the output (0 or 1) of the R counter 22 is input to the adder 40.
  • the adder 40 outputs the result of adding the input value of 0 or 1 and the decimal part setting data F from the decimal part setting data part 30 to the decimal part control circuit 5.
  • the circuit configuration of the decimal part control circuit 5 is the same as that of the conventional decimal part control circuit 105 shown in the lower part of FIG. 6, and will be described with reference to FIG.
  • the decimal part control circuit 5 (FIG. 6: decimal part control circuit 105) adds an adder 153 that adds the carry (an integer value generated by addition of the decimal part) output from the feedback circuit 152, and quadratic integration of this value.
  • the integrator 151, the quantizer 150 that quantizes the integrator output, and the feedback circuit 152 constitute a loop.
  • the output signal of the adder 153 has the bit arrangement shown in FIG. 8, and the decimal part setting data F is stored in the decimal parts D 0 to D n ⁇ 1 and the carry signal is stored in D n to D n + 2 . Since the number of bits in this array is determined by the specifications required by the system, the number of bits in the integer part and the decimal part is an example.
  • the integrator 151 has the configuration shown in FIG. 7, and includes an integrator circuit 201 that adds the output of the adder 53 delayed by one clock, and an integrator circuit 202 that adds the output delayed by one clock. Connected in series.
  • the quantizer 150 cuts off the fractional part and is realized by extracting the bits after the decimal point of the bit array shown in FIG.
  • the temporal change of the integer part corresponds to the decimal part setting data F, and the period of the decimal part data before quantization and the period of the carry signal output from the decimal part control circuit are the same.
  • the output of the fractional part control circuit 5 is always a constant value if averaged over a period of 2 n + 1 , and the reference clock for the switching period is used as the fractional part control circuit operation clock (variable frequency divider output). If the cycle is 2 n + 1 times, it is possible to make the average frequency division ratio constant in one cycle switching period including the first period for outputting the value 1 and the second period for outputting the value 0. .
  • the L counter 21 in FIG. 1 generates this reference time, and supplies an output obtained by dividing the variable frequency divider output by 2 n + 1 as clock inputs to the R counter 22 and the D counter 23.
  • FIG. 2A shows data transition of the D counter 23, and the number of input clocks is counted until the set value D becomes zero.
  • FIG. 2B shows the output of the D counter 23. When the counter value reaches 0, a pulse is output once. This pulse is used as a reset pulse for the R counter 22.
  • FIG. 2C shows the data transition of the R counter 22, and the number of input clocks is counted until the set value R becomes 0. After the value becomes 0, the data value remains 0 but does not change.
  • the reset signal from the D counter 23 shown in 2 (b) is received, the counter data R is set again and starts changing.
  • FIG. 2 (d) shows the output of the R counter 22, which outputs 1 while the counter data is changing, and when it becomes 0, the output also changes to 0.
  • the input value of the decimal part control circuit 5 is “F + 1”.
  • the input value of the fractional part control circuit 5 is “F”.
  • the output of the fractional part control circuit is expressed by the above-described equation (1), and the level of the quantization noise expressed by the second term increases as the frequency increases, but is reduced by the low-pass filter 4 in the PLL circuit. Therefore, the second term can be ignored.
  • the output Y of the fractional part control circuit 5 is (F + 1) / L while the output of the R counter 22 is in the first period, and the output of the fractional part control circuit 5 is during the second period when the output of the R counter 22 is 0.
  • Y can be regarded as F / L.
  • decimal part data are added to the integer part data M by the adder 6 to set the frequency division ratio of the variable frequency divider 2.
  • the average frequency dividing ratio of the variable frequency divider is M + (F + 1) / L, and the R counter 22 output is 0th.
  • the average frequency division ratio of the variable frequency divider is M + F / L.
  • the decimal part data input to the decimal part control circuit 5 is a repetition of “F + 1” and “F”, and is obtained by dividing the switching period, which is a period for outputting both values once, by the reference time. It is set to be the same as the denominator D of the circumferential ratio N / D (N and D are both integers and N ⁇ D).
  • the decimal part control circuit 5 outputs a decimal number that the decimal part control circuit 5 cannot express originally. Can be handled as if
  • the frequency synthesizer generates a rounding error even if the desired frequency division ratio includes a decimal number (for example, a cyclic decimal number) that the decimal part control circuit 5 cannot express with a power of 2.
  • a decimal number for example, a cyclic decimal number
  • An accurate division ratio can be set while avoiding this.
  • the output from the binary output unit 20 may be always set to 0.
  • the conventional circuit configuration as shown in FIG. 6 can be used as it is.
  • Modification 1 In the embodiment, the value of 0 or 1 is periodically switched by the three counters 21 to 23.
  • the present invention is not limited to such an example realized by hardware such as a counter.
  • a binary output unit 20a configured with software having a count function and switching output according to the number of counts may be used.
  • the binary output unit 20 outputs a binary value of 0 or 1, but the difference between the binary values is not necessarily 1. More generally, 0 and m (m is an integer other than 0) may be output.
  • FIG. 4 shows a binary output unit 20b that realizes such an output.
  • the binary output unit 20b includes a selector 26 and a selector control unit 24 that controls the output of the selector 26.
  • the selector control unit 24 has a function of switching and outputting 0 or 1 at a timing according to a desired frequency division ratio, and includes, for example, the three counters 21 to 23 shown in FIG.
  • FIG. 5 (a) shows a selector 26a that outputs a value of 0 when the output of the selector control unit 24 is 0 and outputs a value of 3 when the output is 1.
  • FIG. 5B shows a selector 26b that outputs a value of 0 when the output of the selector control unit 24 is 0 and outputs a value of 5 when it is 1.
  • the decimal part data input to the decimal part control circuit 5 is a repetition of “F + m” and “F”, and a value obtained by dividing the switching period, which is a period for outputting both values once, by the reference time, It is set to be the same as the denominator D of the frequency division ratio N / D to be set (N and D are both integers and N ⁇ D).
  • the normalized remainder value must be a multiple of m.
  • the length of the switching cycle can be defined as follows.
  • the decimal part data input to the decimal part control circuit 5 is a repetition of “F + m” and “F”, and a value obtained by dividing the switching period, which is a period for outputting both values once, by the reference time.
  • the frequency division ratio N / D to be set may be set to m times the denominator D.
  • the binary output unit 20 is composed of the three counters 21 to 23, but the L counter (frequency dividing counter) 21 is not essential.
  • the L counter 21 is eliminated and the R counter 22 and the D counter 23 have a frequency dividing function.
  • the present embodiment includes the following aspects.
  • the frequency synthesizer is configured to output a signal having a frequency corresponding to an input control voltage and a signal from the voltage control oscillator based on input control data. Divides the frequency and outputs a signal after frequency division, compares the phase difference between the signal from the variable frequency divider and the input reference signal, and outputs a signal indicating the comparison result A phase comparison circuit; and a low-pass filter that filters a signal from the phase comparison circuit and outputs a signal after low-pass filtering, and the output of the low-pass filter is the voltage-controlled oscillator
  • the frequency synthesizer in which a loop of the PLL circuit is formed, binary fractional part data is generated, and any one of the generated binary values is set according to a desired frequency division ratio.
  • Switch to output A fraction part data output unit, a fraction part control circuit that performs delta sigma modulation on the fraction part data from the fraction part data output unit, and outputs the fraction part data after the delta sigma modulation, and the fraction part control circuit
  • An adder that adds the decimal part data output from the input data and the integer part data input thereto and outputs the addition result data to the variable frequency divider as the control data.
  • This configuration can contribute to setting an accurate division ratio while avoiding rounding errors. Also, spurious components can be suppressed by delta-sigma modulation.
  • the desired division ratio is N / D
  • the number of bits indicating the decimal part of the decimal part control circuit is n
  • the absolute value of the difference between the two values is m
  • the sum of the first period in which the decimal part data output unit outputs one of the two values and the second period in which the other value is output is D
  • the decimal part data output unit has a value obtained by dividing the remainder when the frequency division ratio N / D is normalized by 2 n and further divided by m, in the length of either the first period or the second period. It does not matter if set to.
  • the absolute value m of the binary difference may be 1.
  • the desired division ratio is N / D
  • the number of bits indicating the decimal part of the decimal part control circuit is n
  • the absolute value of the difference between the binary values is m
  • the decimal part data output unit is the binary value.
  • the sum of the first period in which one value is output and the second period in which the other value is output is m ⁇ D
  • the fractional data output unit is normal with a frequency division ratio N / D of 2 n
  • the remainder value at the time of conversion may be set to the length of either the first period or the second period.
  • the number of bits indicating the decimal part of the decimal part control circuit is n
  • the output of the variable frequency divider is a clock obtained by dividing the output of the variable frequency divider by 2 to the power of (n + 1) or the output of the variable frequency divider.
  • a clock divided by a value obtained by multiplying by a power of 2 may be used as a reference clock for the decimal part data output unit.
  • This configuration can contribute to a constant average frequency division ratio.
  • the decimal part data output unit includes a decimal part setting data part for outputting decimal part data F, a binary output part for outputting 0 or 1, and decimal part data F output from the decimal part setting data. And an adder that adds 0 or 1 output from the binary output unit and outputs data of the addition result to the decimal part control circuit, wherein the binary output unit includes the variable frequency division A first counter that receives the output clock of the counter, a second counter that receives the output of the first counter and outputs 0 or 1 to the adder until the number of input clocks reaches a set value; A third counter that receives the output of the first counter as input and resets the second counter when the number of clocks reaches a set value may be provided.
  • a value obtained by adding the output of the second counter to an arbitrary bit of the decimal part setting data may be used as the input value of the decimal part control circuit.
  • the frequency synthesizer according to the present invention is useful because it can accurately set a division ratio including a decimal number that cannot be expressed by the number of bits for expressing the decimal number.

Abstract

A frequency synthesizer according to the present invention is provided with a decimal part data output unit (10) which generates two values for decimal part data (F, F+1) and outputs either one of the generated two values by switching based on a desired division ratio, a decimal part control circuit (5) which performs delta‐sigma modulation for the decimal part data from said decimal part data output unit and outputs a decimal part data after the delta‐sigma modulation, and an adder (6) which adds the decimal part data output from said decimal part control circuit to the input integer part data (M) and outputs the added result data to a variable frequency divider (2) as control data.

Description

周波数シンセサイザFrequency synthesizer
 本発明は、PLL(Phase Locked Loop)回路を用いた周波数シンセサイザに関する。 The present invention relates to a frequency synthesizer using a PLL (Phase Locked Loop) circuit.
 PLL回路を用いた周波数シンセサイザは、基準信号の周波数(以下、「基準周波数」ということがある。)を分周して出力する。 A frequency synthesizer using a PLL circuit divides and outputs the frequency of a reference signal (hereinafter sometimes referred to as “reference frequency”).
 一般的な周波数シンセサイザでは、出力する周波数は基準周波数の整数倍にしかできない(基準周波数より細かい分解能にできない)という制約がある。 A general frequency synthesizer has a restriction that the output frequency can only be an integer multiple of the reference frequency (the resolution cannot be made finer than the reference frequency).
 この制約への対策として、可変分周器の分周比を周期的に変化させる手法が提案されている。 As a countermeasure against this restriction, a method of periodically changing the frequency dividing ratio of the variable frequency divider has been proposed.
 特許文献1によると、上記手法は分周比の周期的な変化に起因したスプリアスが発生する問題を抱えるとしており、同特許文献1では、デルタシグマ変調を行うことでスプリアスの抑圧が行えるとしている。 According to Patent Document 1, the above method has a problem of generating spurious due to a periodic change in the frequency division ratio. In Patent Document 1, spurious can be suppressed by performing delta-sigma modulation. .
 図6に、特許文献1で開示された内容にしたがった周波数シンセサイザを示す。 FIG. 6 shows a frequency synthesizer according to the contents disclosed in Patent Document 1.
 以下、図6から図8を参照しながら構成と動作とを説明する。 Hereinafter, the configuration and operation will be described with reference to FIGS.
 位相比較器103、低域通過フィルタ104、電圧制御発振器101、可変分周器(整数分周器)102で一巡ループとなるPLL回路を構成している。 The phase comparator 103, the low-pass filter 104, the voltage controlled oscillator 101, and the variable frequency divider (integer frequency divider) 102 constitute a PLL circuit that forms a loop.
 加算器106は整数部データMとデルタシグマ変調された小数部データYとを加算し、加算出力が可変分周器102の分周比を切り替える信号となる。 The adder 106 adds the integer part data M and the delta-sigma modulated decimal part data Y, and the added output becomes a signal for switching the frequency division ratio of the variable frequency divider 102.
 小数部制御回路105は、小数部データ部130から入力される小数部データFをデルタシグマ変調し、変調後の小数部データYを出力する回路である。 The decimal part control circuit 105 is a circuit that delta-sigma-modulates the decimal part data F input from the decimal part data part 130 and outputs the modulated decimal part data Y.
 小数部制御回路105内の加算器153は、入力される小数部設定データFとフィードバック回路152から出力されるキャリー信号(小数部の加算によって発生する整数部の値)を加算し、2次積分器151の入力信号として出力する。 An adder 153 in the decimal part control circuit 105 adds the input decimal part setting data F and the carry signal output from the feedback circuit 152 (the value of the integer part generated by the addition of the decimal part), and performs quadratic integration. Output as an input signal of the device 151.
 2次積分器151の出力は、量子化器150で小数部を切り捨て小数部制御回路105の出力信号となるとともに、フィードバック回路152の入力信号となる。 The output of the secondary integrator 151 becomes an output signal of the decimal part control circuit 105 while the decimal part is cut off by the quantizer 150 and also becomes an input signal of the feedback circuit 152.
 小数部制御回路105内の積分器151は、図7に示す回路構成になっており第1の積分回路201と第2の積分回路202が直列に接続されている。この図はz変換で表したブロック図であり、z-1は動作クロック1つ分遅延した信号を出力することを意味する。 The integrator 151 in the decimal part control circuit 105 has a circuit configuration shown in FIG. 7, and a first integration circuit 201 and a second integration circuit 202 are connected in series. This figure is a block diagram represented by z conversion, and z −1 means that a signal delayed by one operation clock is output.
 この回路をデジタル回路で構成する場合、X、X、Xの各信号は図8に示す様にマッピングされ、ビット配列の中で小数点が途中に存在している。 When this circuit is configured by a digital circuit, signals X 1 , X 2 , and X 3 are mapped as shown in FIG. 8, and a decimal point is present in the bit array.
 具体的にX部の信号で説明を行うと、小数部設定データFはD~Dn-1、フィードバック回路152からのキャリー信号はD~Dn+2にマッピングされる。図8における小数部設定データFは小数点部を基準にするとnビット右シフトしたもので、二進数表記で表すと2で割った値に相当する。 Doing specifically described signal X 1 parts fraction part configuration data F is the carry signal from the D 0 ~ D n-1, the feedback circuit 152 is mapped to the D n ~ D n + 2. The fractional part setting data F in FIG. 8 is the data shifted right by n bits with respect to the decimal point, and corresponds to a value divided by 2n in binary notation.
 量子化器150はこの小数点部より上位のビットを取り出すことで量子化動作を行っている。 The quantizer 150 performs the quantization operation by taking out the higher-order bits from the decimal part.
 量子化器150で切り捨てられた小数部は量子化ノイズQとなり、小数部制御回路105の出力信号Yは、 The decimal part truncated by the quantizer 150 becomes the quantization noise Q, and the output signal Y of the decimal part control circuit 105 is
Figure JPOXMLDOC01-appb-M000001
で表される。
Figure JPOXMLDOC01-appb-M000001
It is represented by
 式(1)の第1項は整数値で表される小数部設定データF値を小数データに変換したものでありL=2である。第2項は量子化ノイズQが低域周波数ではレベルが小さく、高域周波数になるに従って増加する特性を持つことを意味している。 The first term of the equation (1) is obtained by converting the decimal part setting data F value represented by an integer value into decimal data, and L = 2n . The second term means that the quantization noise Q has a characteristic that the level is small at a low frequency and increases as the frequency becomes high.
 一方、PLLループ内の低域通過フィルタ104は高域周波数ほどレベルが小さくなる特性であるため、小数部制御回路105の出力信号に含まれる量子化ノイズQは低域通過フィルタ104で低減されることで電圧制御発振器101の出力に現れる量子化ノイズ成分は抑圧されることとなる。 On the other hand, since the low-pass filter 104 in the PLL loop has such a characteristic that the level becomes smaller as the frequency becomes higher, the quantization noise Q included in the output signal of the fractional part control circuit 105 is reduced by the low-pass filter 104. As a result, the quantization noise component appearing at the output of the voltage controlled oscillator 101 is suppressed.
特開2001-237709号公報JP 2001-237709 A
 以上述べた従来の周波数シンセサイザは、式(1)に示す通り小数部設定データFを小数化して出力することが出来るが、小数化する際の分母が2のべき乗であるため、分母が2のべき乗で表すことの出来ない循環小数などの分周比を設定することができない。 The conventional frequency synthesizer described above can output the fractional part setting data F with a decimal number as shown in the equation (1). However, since the denominator at the time of the decimalization is a power of 2, the denominator is 2. It is impossible to set a division ratio such as a decimal number that cannot be expressed by a power.
 例えば、小数部を1/3に設定する場合、求める分周比は分子、分母共に整数で表すことが出来るが、小数表記すると、1/3=0.33333...と続く。 For example, when the decimal part is set to 1/3, the division ratio to be obtained can be expressed by an integer for both the numerator and the denominator. . . It continues with.
 このような循環小数の分周比の場合には、丸め誤差を含む近似値で代用せざるを得ない。Lを大きく(小数部のビット数nを大きく)すれば、丸め誤差の影響をある程度は少なくできるが、回路規模の増大を招くので対応にも限界がある。 In the case of such a circulation fractional ratio, an approximate value including a rounding error must be substituted. If L is increased (the number of bits n in the decimal part is increased), the influence of rounding errors can be reduced to some extent, but the circuit scale is increased, so that the response is limited.
 本発明は、このような課題を解決しようとするものであり、小数を表すためのビット数では表現できない小数を含む分周比であったとしても、丸め誤差の発生を回避して精確な分周比の設定が可能な周波数シンセサイザを実現することを目的とする。 The present invention is intended to solve such a problem, and even if the division ratio includes a decimal number that cannot be expressed by the number of bits for expressing the decimal number, it is possible to avoid the occurrence of a rounding error and perform accurate frequency division. An object is to realize a frequency synthesizer capable of setting a ratio.
 上記課題を解決するために、本発明に係る周波数シンセサイザは、入力される制御電圧に対応する周波数を有する信号を出力する電圧制御発振器と、前記電圧制御発振器からの信号を、入力される制御データに基づいて分周し、分周後の信号を出力する可変分周器と、前記可変分周器からの信号と入力される基準信号との間の位相差を比較し、比較結果を示す信号を出力する位相比較回路と、前記位相比較回路からの信号を低域通過ろ波し、低域通過ろ波後の信号を出力する低域通過フィルタを備え、前記低域通過フィルタの出力が前記電圧制御発振器の入力に接続されることで、PLL回路の一巡ループが形成された周波数シンセサイザにおいて、2値の小数部データを生成し、生成した2値のうちのいずれかを所望の分周比に応じて切り替えて出力する小数部データ出力部と、前記小数部データ出力部からの小数部データに対してデルタシグマ変調を行い、デルタシグマ変調後の小数部のデータを出力する小数部制御回路と、前記小数部制御回路から出力される小数部のデータと入力される整数部のデータとを加算して、加算結果のデータを前記制御データとして前記可変分周器に出力する加算器と、を備えることを特徴とする。 In order to solve the above problems, a frequency synthesizer according to the present invention includes a voltage controlled oscillator that outputs a signal having a frequency corresponding to an input control voltage, and control data that is input from the voltage controlled oscillator. A signal indicating the comparison result by comparing the phase difference between the variable frequency divider that divides the frequency based on the signal and outputs the divided signal, and the signal from the variable frequency divider and the input reference signal And a low-pass filter that outputs a signal after the low-pass filtering, and the output of the low-pass filter is the output of the low-pass filter. By connecting to the input of the voltage controlled oscillator, in the frequency synthesizer in which a loop circuit of the PLL circuit is formed, binary fractional data is generated, and one of the generated binary values is set to a desired frequency division ratio. Cut according to A decimal part data output unit that outputs in place, a fractional part control circuit that performs delta-sigma modulation on the decimal part data from the decimal part data output unit, and outputs data of the decimal part after delta-sigma modulation; An adder that adds the decimal part data output from the decimal part control circuit and the input integer part data and outputs the addition result data to the variable frequency divider as the control data; It is characterized by.
 本発明に係る周波数シンセサイザによれば、小数部データ出力部から小数部制御回路へと出力される2値は、所望の分周比に応じて切り替えられるものである。この2値の切り替えにより、小数部制御回路が小数を表すためのビット数では表現できない小数を表すことができる。 According to the frequency synthesizer of the present invention, the binary output from the decimal part data output unit to the decimal part control circuit is switched according to a desired frequency division ratio. By switching between the two values, it is possible to represent a decimal that cannot be represented by the number of bits for the decimal part control circuit to represent the decimal.
 このため、係る小数を含む分周比であったとしても、丸め誤差の発生を回避でき、精確な分周比の設定が可能となる。 For this reason, even if the division ratio includes such a decimal, the occurrence of rounding errors can be avoided, and an accurate division ratio can be set.
実施の形態に係る周波数シンセサイザのブロック図Block diagram of a frequency synthesizer according to an embodiment 小数部設定データを切り替えるためのカウンタ動作状態を示すタイムチャートTime chart showing counter operation status for switching decimal part setting data 変形例1に係る周波数シンセサイザのブロック図Block diagram of a frequency synthesizer according to modification 1 変形例2に係る周波数シンセサイザのブロック図Block diagram of a frequency synthesizer according to modification 2 変形例2に係る周波数シンセサイザのブロック図Block diagram of a frequency synthesizer according to modification 2 従来の周波数シンセサイザ回路のブロック図Block diagram of a conventional frequency synthesizer circuit 小数部制御回路内の積分器を示す図Diagram showing integrator in decimal part control circuit 小数部制御回路内のキャリー部と小数部を示すデジタル信号を示す図The figure which shows the digital signal which shows the carry part and the decimal part in the decimal part control circuit
(実施の形態)
 以下、図面に基づいて本発明の実施の形態を説明する。
(Embodiment)
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1において、位相比較器3、低域通過フィルタ4、電圧制御発振器1、可変分周器(整数分周器)2により一巡ループとなるPLL回路が構成されている。 In FIG. 1, a phase comparator 3, a low-pass filter 4, a voltage controlled oscillator 1, and a variable frequency divider (integer frequency divider) 2 constitute a PLL circuit that forms a loop.
 可変分周器2からの出力と基準信号とが位相比較器3に入力され、両者の周波数が一致するよう帰還ループが構成されているため、電圧制御発振器1の出力周波数は、基準信号に対して可変分周器の分周倍の周波数となる。 Since the output from the variable frequency divider 2 and the reference signal are input to the phase comparator 3 and the feedback loop is configured so that the frequencies of the two coincide with each other, the output frequency of the voltage controlled oscillator 1 is set to the reference signal. Thus, the frequency is double the frequency of the variable frequency divider.
 加算器6は、整数部データMとデルタシグマ変調された小数部データYとを加算する。 The adder 6 adds the integer part data M and the delta-sigma modulated decimal part data Y.
 小数部制御回路5は、入力される小数部データFまたはF+1をデルタシグマ変調する回路である。入力される小数部データFと小数部制御回路5の出力は上述した式(1)で示される。 The decimal part control circuit 5 is a circuit that delta-sigma-modulates the input decimal part data F or F + 1. The input decimal part data F and the output of the decimal part control circuit 5 are expressed by the above-described equation (1).
 小数部データ出力部10は、2値出力部20、小数部設定データ部30および加算器40を備える。 The decimal part data output unit 10 includes a binary output unit 20, a decimal part setting data unit 30, and an adder 40.
 2値出力部20は、分周カウンタであるLカウンタ21、Rカウンタ22およびDカウンタ23を含んで構成され、0および1の両値を生成する機能を有し、生成した0か1かのいずれかを出力する機能を有する。 The binary output unit 20 includes an L counter 21, an R counter 22, and a D counter 23, which are frequency division counters, and has a function of generating both 0 and 1 values. It has a function to output either one.
 Lカウンタ21は、可変分周器2の出力を分周し、2値出力部20からの0か1かの値出力を切り替えるための基準クロックを生成する。 The L counter 21 divides the output of the variable frequency divider 2 and generates a reference clock for switching between 0 and 1 value output from the binary output unit 20.
 Rカウンタ22は、Lカウンタ21からのクロックの入力に応じてカウントダウンを行う。後述するようにRカウンタは、1の値を出力する期間(以下、「第1期間」と呼ぶことがある。)の長さを決めるためのカウンタとなる。 The R counter 22 counts down according to the clock input from the L counter 21. As will be described later, the R counter is a counter for determining the length of a period during which a value of 1 is output (hereinafter sometimes referred to as “first period”).
 Dカウンタ23は、Lカウンタ21からのクロックの入力に応じてカウントダウンを行い、カウンタ設定値(例えば、0)に達すると自己リセットするとともにRカウンタ22をリセットする。後述するようにDカウンタ23は、0の値を出力する第2期間を決めるとともに、第1期間と第2期間とを合わせた一サイクルの周期(以下、「切替周期」と呼ぶことがある。)の長さを決めるカウンタとなる。 The D counter 23 counts down in response to the input of the clock from the L counter 21, and when it reaches a counter set value (for example, 0), it resets itself and resets the R counter 22. As will be described later, the D counter 23 determines a second period during which a value of 0 is output, and may be referred to as a cycle (hereinafter referred to as a “switching period”) of the first period and the second period. ) Is a counter that determines the length.
 Rカウンタ22の出力(0または1)は、加算器40に入力される。 The output (0 or 1) of the R counter 22 is input to the adder 40.
 加算器40は、入力された0または1の値と、小数部設定データ部30からの小数部設定データFとを加算した結果を小数部制御回路5へと出力する。 The adder 40 outputs the result of adding the input value of 0 or 1 and the decimal part setting data F from the decimal part setting data part 30 to the decimal part control circuit 5.
 次に、小数部制御回路5から出力される値の周期性について説明を行う。 Next, the periodicity of the value output from the decimal part control circuit 5 will be described.
 小数部制御回路5の回路構成は、図6の下部に示す従来の小数部制御回路105と同様のため、図6を用いて説明する。 The circuit configuration of the decimal part control circuit 5 is the same as that of the conventional decimal part control circuit 105 shown in the lower part of FIG. 6, and will be described with reference to FIG.
 小数部制御回路5(図6:小数部制御回路105)は、フィードバック回路152から出力されるキャリー(小数部の加算によって生成される整数値)を加算する加算器153、この値を2次積分する積分器151、積分器出力を量子化する量子化器150、およびフィードバック回路152で一巡ループを構成している。 The decimal part control circuit 5 (FIG. 6: decimal part control circuit 105) adds an adder 153 that adds the carry (an integer value generated by addition of the decimal part) output from the feedback circuit 152, and quadratic integration of this value. The integrator 151, the quantizer 150 that quantizes the integrator output, and the feedback circuit 152 constitute a loop.
 加算器153の出力信号は図8に示すビット配列になっており、小数部設定データFが小数部D~Dn-1、キャリー信号がD~Dn+2に格納される。なお、この配列のビット数はシステムが要求する仕様により決定されるため整数部、小数部のビット数は一例である。 The output signal of the adder 153 has the bit arrangement shown in FIG. 8, and the decimal part setting data F is stored in the decimal parts D 0 to D n−1 and the carry signal is stored in D n to D n + 2 . Since the number of bits in this array is determined by the specifications required by the system, the number of bits in the integer part and the decimal part is an example.
 積分器151は、図7に示す構成になっており、加算器53の出力を1クロック分遅延したものを加算する積分回路201、その出力をさらに1クロック遅延したものを加算する積分回路202を直列に接続している。 The integrator 151 has the configuration shown in FIG. 7, and includes an integrator circuit 201 that adds the output of the adder 53 delayed by one clock, and an integrator circuit 202 that adds the output delayed by one clock. Connected in series.
 量子化器150は小数部以下を切り捨てるもので、図8に示すビット配列の小数点以上のビットを取り出すことで実現している。この整数部の時間的変化が小数部設定データFに相当し、量子化する前の小数部データの周期と小数部制御回路から出力されるキャリー信号の周期は同じである。 The quantizer 150 cuts off the fractional part and is realized by extracting the bits after the decimal point of the bit array shown in FIG. The temporal change of the integer part corresponds to the decimal part setting data F, and the period of the decimal part data before quantization and the period of the carry signal output from the decimal part control circuit are the same.
 図7におけるXの小数部は常にFであり、ある時点(m)におけるXの値X3_mは、
 X3_m=F+X3_m-1
となる。周期性を求める基準値をX3_xとし、y回更新後の値をX3_x+yとすると、
Fractional part of X 1 in FIG. 7 is always F, the value X 3_M of X 3 at a certain time (m) is
X 3m = F + X 3 — m−1
It becomes. Assuming that the reference value for obtaining periodicity is X 3 — x and the value after being updated y times is X 3 — x + y ,
Figure JPOXMLDOC01-appb-M000002
で表される。式(2)の第1項は初期値であり、小数部がnビットの場合、ある値をnビット左シフト(2を掛ける)すると0になるため、y=2およびその2のべき乗の周期でXは同じ値を持つことになる。
Figure JPOXMLDOC01-appb-M000002
It is represented by The first term of equation (2) is an initial value, and when the fractional part is n bits, if a certain value is shifted left by n bits (multiply by 2 n ), it becomes 0, so y = 2 n and its power of 2 X 3 will have the same value in the period of.
 一方、ある時点(m)におけるXの値X2_m
 X2_m=X3_m+X2_m-1
となる。Xと同様に、周期性を求める基準値をX2_xとし、y回更新後の値をX2_x+yとし、式(2)を引用すると
On the other hand, the value X 2_M of X 2 at a certain time (m) is X 2_m = X 3_m + X 2_m -1
It becomes. Similar to X 3, the reference value for determining the periodicity and X 2_x, the value after y times updated with X 2_x + y, to quote a formula (2)
Figure JPOXMLDOC01-appb-M000003
 で表すことが出来る。式(3)の第1項の括弧内は初期値であり、第2項は小数部がnビットの場合、nビット左シフト(2を掛ける)すると0になり、第3項はy=2n+1およびその2のべき乗倍で0になるため結果として積分器151の出力における小数部は2n+1周期を持つこととなる。
Figure JPOXMLDOC01-appb-M000003
It can be expressed as In the parenthesis of the first term of equation (3), the initial value is the second term, and when the fractional part is n bits, when the left part is shifted n bits (multiply by 2 n ), it becomes 0, and the third term is y = Since 2 n + 1 and its power of 2 are 0, the decimal part at the output of the integrator 151 has 2 n + 1 periods as a result.
 以上より、小数部制御回路5の出力は2n+1の周期で平均化すれば常に一定の値となることが説明でき、切替期間の基準クロックを小数部制御回路動作クロック(可変分周器出力)周期の2n+1倍にすれば、値1を出力する第1期間と値0を出力する第2期間とを合わせた一サイクルの切替周期での平均分周比を一定にすることが可能となる。 From the above, it can be explained that the output of the fractional part control circuit 5 is always a constant value if averaged over a period of 2 n + 1 , and the reference clock for the switching period is used as the fractional part control circuit operation clock (variable frequency divider output). If the cycle is 2 n + 1 times, it is possible to make the average frequency division ratio constant in one cycle switching period including the first period for outputting the value 1 and the second period for outputting the value 0. .
 図1におけるLカウンタ21はこの基準時間を生成するものであり、可変分周器出力を2n+1分周した出力をRカウンタ22およびDカウンタ23のクロック入力として供給する。 The L counter 21 in FIG. 1 generates this reference time, and supplies an output obtained by dividing the variable frequency divider output by 2 n + 1 as clock inputs to the R counter 22 and the D counter 23.
 次に2値出力部20の動作について図2を用いて説明を行う。 Next, the operation of the binary output unit 20 will be described with reference to FIG.
 図2(a)はDカウンタ23のデータ遷移を表す図で、設定値Dが0になるまで入力クロック数をカウントする。 FIG. 2A shows data transition of the D counter 23, and the number of input clocks is counted until the set value D becomes zero.
 図2(b)はDカウンタ23の出力を表し、カウンタ値が0になるとパルスを1回出力する。このパルスはRカウンタ22のリセットパルスとして使われる。 FIG. 2B shows the output of the D counter 23. When the counter value reaches 0, a pulse is output once. This pulse is used as a reset pulse for the R counter 22.
 図2(c)はRカウンタ22のデータ遷移を表す図で、設定値Rが0になるまで入力クロックの数をカウントし、0になった以後は0のままデータ値は変化しないが、図2(b)に示すDカウンタ23からのリセット信号を受け取ると再びカウンタデータのRが設定され変化を開始する。 FIG. 2C shows the data transition of the R counter 22, and the number of input clocks is counted until the set value R becomes 0. After the value becomes 0, the data value remains 0 but does not change. When the reset signal from the D counter 23 shown in 2 (b) is received, the counter data R is set again and starts changing.
 図2(d)はRカウンタ22の出力を表し、カウンタデータが変化している間は1を出力し、0になると出力も0に変化する。 FIG. 2 (d) shows the output of the R counter 22, which outputs 1 while the counter data is changing, and when it becomes 0, the output also changes to 0.
 Rカウンタ22出力は加算器40で小数部設定データFと加算されるため、Rカウンタ22出力が1の第1期間の間は、加算器40の出力は小数部設定データFに1が加えられるため、小数部制御回路5の入力値は「F+1」となる。これに対して、Rカウンタ22出力が0の第2期間になると小数部制御回路5の入力値は「F」となる。 Since the output of the R counter 22 is added to the fractional part setting data F by the adder 40, 1 is added to the fractional part setting data F during the first period when the output of the R counter 22 is 1. Therefore, the input value of the decimal part control circuit 5 is “F + 1”. On the other hand, when the R counter 22 output is in the second period of 0, the input value of the fractional part control circuit 5 is “F”.
 小数部制御回路の出力は上述の式(1)で表され、第二項で表される量子化ノイズは、高い周波数ほどレベルが大きくなるが、PLL回路内の低域通過フィルタ4で低減されるため第二項は無視することが可能となる。 The output of the fractional part control circuit is expressed by the above-described equation (1), and the level of the quantization noise expressed by the second term increases as the frequency increases, but is reduced by the low-pass filter 4 in the PLL circuit. Therefore, the second term can be ignored.
 結果として、Rカウンタ22出力が第1期間の間は小数部制御回路5の出力Yは(F+1)/Lとなり、Rカウンタ22出力が0の第2期間の間は小数部制御回路5の出力YはF/Lとみなすことができる。 As a result, the output Y of the fractional part control circuit 5 is (F + 1) / L while the output of the R counter 22 is in the first period, and the output of the fractional part control circuit 5 is during the second period when the output of the R counter 22 is 0. Y can be regarded as F / L.
 これらの小数部データが加算器6により整数部データMと加算されて可変分周器2の分周比設定となる。 These decimal part data are added to the integer part data M by the adder 6 to set the frequency division ratio of the variable frequency divider 2.
 図2(e)に示すように、Rカウンタ22出力が1の第1期間の間は、可変分周器の平均分周比はM+(F+1)/Lとなり、Rカウンタ22出力が0の第2期間の間は、可変分周器の平均分周比はM+F/Lとなる。 As shown in FIG. 2E, during the first period in which the R counter 22 output is 1, the average frequency dividing ratio of the variable frequency divider is M + (F + 1) / L, and the R counter 22 output is 0th. During the two periods, the average frequency division ratio of the variable frequency divider is M + F / L.
 小数部制御回路5に入力される小数部データは「F+1」と「F」の繰り返しであり、両値を1回ずつ出力する期間である切替周期を基準時間で除したものを、設定したい分周比N/D(N、Dは共に整数で、N<Dの関係にある)の分母Dと同じに設定する。 The decimal part data input to the decimal part control circuit 5 is a repetition of “F + 1” and “F”, and is obtained by dividing the switching period, which is a period for outputting both values once, by the reference time. It is set to be the same as the denominator D of the circumferential ratio N / D (N and D are both integers and N <D).
 一方、Rカウンタ22の設定値RはN/DをL(=2)で正規化した値の余り値に設定し、Fは商になるよう設定する。 On the other hand, the set value R of the R counter 22 is set so that N / D is the remainder of the value normalized by L (= 2 n ), and F is a quotient.
Figure JPOXMLDOC01-appb-M000004
 例えば、1000/1001の分周比を小数部制御回路5内の小数ビットを10ビット(L=210)で構成する場合を考える。
Figure JPOXMLDOC01-appb-M000004
For example, consider a case where the frequency division ratio of 1000/1001 is configured with 10 bits (L = 2 10 ) for the decimal bits in the decimal part control circuit 5.
 この場合には、MOD(1000×210/1001)=MOD(商1022 余り978)より、R=978と設定する。 In this case, MOD (1000 × 2 10/ 1001) = from MOD (quotient 1022 remainder 978), sets the R = 978.
 また例えば、分周比が同じ1000/1001で上記小数ビットを20ビット(L=220)で構成する場合を考える。 Further, for example, consider a case where the decimal ratio is 1000/1001 and the fractional bits are composed of 20 bits (L = 2 20 ).
 この場合には、MOD(1000×220/1001)=MOD(商1047528 余り472)より、R=472と設定する。 In this case, MOD (1000 × 2 20/ 1001) = from MOD (quotient 1,047,528 remainder 472), sets the R = 472.
 また、Fが商、Rが剰余であるため Also, because F is a quotient and R is a remainder
Figure JPOXMLDOC01-appb-M000005
の関係が成立する。一方、切替周期Dにおける平均分周比Frは
Figure JPOXMLDOC01-appb-M000005
The relationship is established. On the other hand, the average frequency division ratio Fr in the switching period D is
Figure JPOXMLDOC01-appb-M000006
で表すことができ式(6)に式(5)式を代入するとFr=N/Dとなり、所望の分周比を持つ周波数シンセサイザが得られたことがわかる。
Figure JPOXMLDOC01-appb-M000006
By substituting equation (5) into equation (6), Fr = N / D, indicating that a frequency synthesizer having a desired frequency division ratio was obtained.
 つまり、切替周期Dにおいて2値を切り替えて出力することにより、切替周期Dの単位の観点で見ると、小数部制御回路5から、あたかもこの小数部制御回路5が本来表現できない小数が出力されているかのように取り扱うことができる。 That is, by switching and outputting two values in the switching period D, from the viewpoint of the unit of the switching period D, the decimal part control circuit 5 outputs a decimal number that the decimal part control circuit 5 cannot express originally. Can be handled as if
 以上説明したように、本実施の形態に係る周波数シンセサイザは、所望の分周比が小数部制御回路5が2のべき乗で表現できない小数(例えば、循環小数)を含むとしても、丸め誤差の発生を回避しつつ精確な分周比の設定が可能となる。 As described above, the frequency synthesizer according to the present embodiment generates a rounding error even if the desired frequency division ratio includes a decimal number (for example, a cyclic decimal number) that the decimal part control circuit 5 cannot express with a power of 2. An accurate division ratio can be set while avoiding this.
 丸め誤差の発生を抑えるために、小数部制御回路5のビット数を増やす必要もないので、回路規模の増大も回避できる。 Since there is no need to increase the number of bits of the decimal part control circuit 5 in order to suppress the occurrence of rounding errors, an increase in circuit scale can be avoided.
 また、小数部制御回路5が2のべき乗で表現できる値については、2値出力部20からの出力を常に0に設定すればよい。こうすることで、図6のような従来の回路構成をそのまま使用することができる。 Further, for values that can be expressed by the power of 2 in the decimal part control circuit 5, the output from the binary output unit 20 may be always set to 0. By doing so, the conventional circuit configuration as shown in FIG. 6 can be used as it is.
 さらに、デルタシグマ変調による平均値誤差を0にした状態で、差が非常に小さいデータを切り替えるため周波数シンセサイザ出力のスプリアス成分とはならない。 Furthermore, in the state where the average value error due to delta-sigma modulation is set to 0, the data with very small difference is switched, so it is not a spurious component of the frequency synthesizer output.
 
<変形例>
 以上、実施の形態について説明したが、次のような変形例も考えられる。

<Modification>
Although the embodiment has been described above, the following modifications are also conceivable.
 (変形例1)
 実施の形態では、3つのカウンタ21~23により0または1の値を周期的に切り替える構成としたが、このようなカウンタなどのハードウェアにより実現する例に限られない。
(Modification 1)
In the embodiment, the value of 0 or 1 is periodically switched by the three counters 21 to 23. However, the present invention is not limited to such an example realized by hardware such as a counter.
 例えば、図3に示すように、カウント機能を備え、カウント数に応じて出力を切り替えるソフトウェアから構成される2値出力部20aを用いても構わない。 For example, as shown in FIG. 3, a binary output unit 20a configured with software having a count function and switching output according to the number of counts may be used.
 (変形例2)
 実施の形態では、2値出力部20は、0か1かの2値を出力するとしたが、2値の差は必ずしも1である必要はない。より一般化して、0とm(mは0以外の整数)とを出力するとしても構わない。
(Modification 2)
In the embodiment, the binary output unit 20 outputs a binary value of 0 or 1, but the difference between the binary values is not necessarily 1. More generally, 0 and m (m is an integer other than 0) may be output.
 図4に、このような出力を実現する2値出力部20bを示す。 FIG. 4 shows a binary output unit 20b that realizes such an output.
 2値出力部20bは、セレクタ26とセレクタ26の出力を制御するセレクタ制御部24を含む。 The binary output unit 20b includes a selector 26 and a selector control unit 24 that controls the output of the selector 26.
 セレクタ制御部24は、0または1を所望の分周比に応じたタイミングで切り替えて出力する機能を有し、例えば、図1で示した3つのカウンタ21~23から構成される。 The selector control unit 24 has a function of switching and outputting 0 or 1 at a timing according to a desired frequency division ratio, and includes, for example, the three counters 21 to 23 shown in FIG.
 図5(a)には、セレクタ制御部24の出力が0のときに0の値を出力し、1のときに3の値を出力するセレクタ26aを示す。 FIG. 5 (a) shows a selector 26a that outputs a value of 0 when the output of the selector control unit 24 is 0 and outputs a value of 3 when the output is 1.
 図5(b)には、セレクタ制御部24の出力が0のときに0の値を出力し、1のときに5の値を出力するセレクタ26bを示す。 FIG. 5B shows a selector 26b that outputs a value of 0 when the output of the selector control unit 24 is 0 and outputs a value of 5 when it is 1.
 このように、2値の差がmである場合には、上記式(6)に対応する式は次の通りである。 Thus, when the binary difference is m, the equation corresponding to the above equation (6) is as follows.
Figure JPOXMLDOC01-appb-M000007
 この場合、小数部制御回路5に入力される小数部データは「F+m」と「F」の繰り返しであり、両値を1回ずつ出力する期間である切替周期を基準時間で除したものを、設定したい分周比N/D(N、Dは共に整数で、N<Dの関係にある)の分母Dと同じに設定する。
Figure JPOXMLDOC01-appb-M000007
In this case, the decimal part data input to the decimal part control circuit 5 is a repetition of “F + m” and “F”, and a value obtained by dividing the switching period, which is a period for outputting both values once, by the reference time, It is set to be the same as the denominator D of the frequency division ratio N / D to be set (N and D are both integers and N <D).
 一方、Rカウンタ22の設定値RはN/DをL(=2)で正規化した値の余り値をmで割った値に設定し、Fは商になるよう設定すればよい。ただし、正規化した余り値はmの倍数でなければならないという制約がある。 On the other hand, the set value R of the R counter 22 may be set to a value obtained by dividing the remainder of the value obtained by normalizing N / D by L (= 2 n ) by m, and F may be a quotient. However, there is a restriction that the normalized remainder value must be a multiple of m.
 
 また、特に切替周期の長さを次のように規定することもできる。

In particular, the length of the switching cycle can be defined as follows.
 すなわち、設定したい分周比がN/Dで、2値のデータの差がmで、切替周期の長さm×Dとすると、上記式(6)に対応する式は次のように表せる。 That is, if the division ratio to be set is N / D, the difference between the binary data is m, and the length of the switching cycle is m × D, the equation corresponding to the above equation (6) can be expressed as follows.
Figure JPOXMLDOC01-appb-M000008
 この場合、小数部制御回路5に入力される小数部データは「F+m」と「F」の繰り返しであり、この両値を1回ずつ出力する期間である切替周期を基準時間で除したものを、設定したい分周比N/Dの分母Dのm倍に設定すればよい。一方、Rカウンタの設定値はN/DをL(=2)で正規化した余り値、Fは商になるよう設定する。
Figure JPOXMLDOC01-appb-M000008
In this case, the decimal part data input to the decimal part control circuit 5 is a repetition of “F + m” and “F”, and a value obtained by dividing the switching period, which is a period for outputting both values once, by the reference time. The frequency division ratio N / D to be set may be set to m times the denominator D. On the other hand, the setting value of the R counter is set so that N / D is a remainder value obtained by normalizing L / (= 2 n ), and F is a quotient.
 
<補足1>
 以上、本実施の形態について説明したが、本発明は上記の内容に限定されず、本発明の目的とそれに関連又は付随する目的を達成するための各種形態においても実施可能であり、例えば、以下であっても構わない。

<Supplement 1>
Although the present embodiment has been described above, the present invention is not limited to the above-described contents, and can be implemented in various forms for achieving the object of the present invention and the object related or incidental thereto. It does not matter.
 (1)実施の形態では、2値出力部20は、3つのカウンタ21~23から構成されるとしたが、Lカウンタ(分周カウンタ)21は必須ではない。例えば、Lカウンタ21を無くして、Rカウンタ22およびDカウンタ23に分周機能を持たせる構成もあり得る。
<補足2>
 本実施の形態は、以下の態様を含むものである。
(1) In the embodiment, the binary output unit 20 is composed of the three counters 21 to 23, but the L counter (frequency dividing counter) 21 is not essential. For example, there may be a configuration in which the L counter 21 is eliminated and the R counter 22 and the D counter 23 have a frequency dividing function.
<Supplement 2>
The present embodiment includes the following aspects.
 (1)本実施の形態に係る周波数シンセサイザは、入力される制御電圧に対応する周波数を有する信号を出力する電圧制御発振器と、前記電圧制御発振器からの信号を、入力される制御データに基づいて分周し、分周後の信号を出力する可変分周器と、前記可変分周器からの信号と入力される基準信号との間の位相差を比較し、比較結果を示す信号を出力する位相比較回路と、前記位相比較回路からの信号を低域通過ろ波し、低域通過ろ波後の信号を出力する低域通過フィルタを備え、前記低域通過フィルタの出力が前記電圧制御発振器の入力に接続されることで、PLL回路の一巡ループが形成された周波数シンセサイザにおいて、2値の小数部データを生成し、生成した2値のうちのいずれかを所望の分周比に応じて切り替えて出力する小数部データ出力部と、前記小数部データ出力部からの小数部データに対してデルタシグマ変調を行い、デルタシグマ変調後の小数部のデータを出力する小数部制御回路と、前記小数部制御回路から出力される小数部のデータと入力される整数部のデータとを加算して、加算結果のデータを前記制御データとして前記可変分周器に出力する加算器と、を備えることを特徴とする。 (1) The frequency synthesizer according to the present embodiment is configured to output a signal having a frequency corresponding to an input control voltage and a signal from the voltage control oscillator based on input control data. Divides the frequency and outputs a signal after frequency division, compares the phase difference between the signal from the variable frequency divider and the input reference signal, and outputs a signal indicating the comparison result A phase comparison circuit; and a low-pass filter that filters a signal from the phase comparison circuit and outputs a signal after low-pass filtering, and the output of the low-pass filter is the voltage-controlled oscillator In the frequency synthesizer in which a loop of the PLL circuit is formed, binary fractional part data is generated, and any one of the generated binary values is set according to a desired frequency division ratio. Switch to output A fraction part data output unit, a fraction part control circuit that performs delta sigma modulation on the fraction part data from the fraction part data output unit, and outputs the fraction part data after the delta sigma modulation, and the fraction part control circuit An adder that adds the decimal part data output from the input data and the integer part data input thereto and outputs the addition result data to the variable frequency divider as the control data. .
 この構成によれば、丸め誤差の発生を回避して精確な分周比の設定することに貢献できる。また、デルタシグマ変調によりスプリアス成分を抑圧できる。 This configuration can contribute to setting an accurate division ratio while avoiding rounding errors. Also, spurious components can be suppressed by delta-sigma modulation.
 (2)前記所望の分周比をN/D、前記小数部制御回路の小数部を示すビット数をn、
 前記2値の差の絶対値をm、前記小数部データ出力部が前記2値のうちの一方の値を出力する第1期間と他方の値を出力する第2期間との和はDとし、
 前記小数部データ出力部は、分周比N/Dを2で正規化でしたときの余り値を、さらにmで割った値を、前記第1期間または第2期間のいずれかの長さに設定するとしても構わない。
(2) The desired division ratio is N / D, the number of bits indicating the decimal part of the decimal part control circuit is n,
The absolute value of the difference between the two values is m, and the sum of the first period in which the decimal part data output unit outputs one of the two values and the second period in which the other value is output is D,
The decimal part data output unit has a value obtained by dividing the remainder when the frequency division ratio N / D is normalized by 2 n and further divided by m, in the length of either the first period or the second period. It does not matter if set to.
 (3)前記2値の差の絶対値mは1であるとしても構わない。 (3) The absolute value m of the binary difference may be 1.
 (4)前記所望の分周比をN/D、前記小数部制御回路の小数部を示すビット数をn、前記2値の差の絶対値をm、前記小数部データ出力部が前記2値のうちの一方の値を出力する第1期間と他方の値を出力する第2期間との和はm×Dとし、前記小数部データ出力部は、分周比N/Dを2で正規化でしたときの余り値を、前記第1期間または第2期間のいずれかの長さに設定するとしても構わない。 (4) The desired division ratio is N / D, the number of bits indicating the decimal part of the decimal part control circuit is n, the absolute value of the difference between the binary values is m, and the decimal part data output unit is the binary value. The sum of the first period in which one value is output and the second period in which the other value is output is m × D, and the fractional data output unit is normal with a frequency division ratio N / D of 2 n The remainder value at the time of conversion may be set to the length of either the first period or the second period.
 (5)前記小数部制御回路の小数部を示すビット数はnであり、前記可変分周器の出力を2の(n+1)乗で分周したクロック、または、前記可変分周器の出力に2のべき乗を乗じた値で分周したクロックを、前記小数部データ出力部の基準クロックとするとしても構わない。 (5) The number of bits indicating the decimal part of the decimal part control circuit is n, and the output of the variable frequency divider is a clock obtained by dividing the output of the variable frequency divider by 2 to the power of (n + 1) or the output of the variable frequency divider. A clock divided by a value obtained by multiplying by a power of 2 may be used as a reference clock for the decimal part data output unit.
 この構成によれば、平均分周比を一定にすることに寄与できる。 This configuration can contribute to a constant average frequency division ratio.
 (6)前記小数部データ出力部は、小数部データFを出力する小数部設定データ部と、0または1を出力する2値出力部と、前記小数部設定データから出力される小数部データFと、前記2値出力部から出力される0または1とを加算して、加算結果のデータを前記小数部制御回路に出力する加算器とを備え、前記2値出力部は、前記可変分周器の出力クロックを入力とする第1カウンタと、第1カウンタの出力を入力とし、入力されたクロック数が設定された値に達するまでは0または1を前記加算器に出力する第2カウンタと、第1カウンタの出力を入力とし、クロック数が設定された値に達すると第2のカウンタをリセットする第3カウンタと、を備えるとしても構わない。 (6) The decimal part data output unit includes a decimal part setting data part for outputting decimal part data F, a binary output part for outputting 0 or 1, and decimal part data F output from the decimal part setting data. And an adder that adds 0 or 1 output from the binary output unit and outputs data of the addition result to the decimal part control circuit, wherein the binary output unit includes the variable frequency division A first counter that receives the output clock of the counter, a second counter that receives the output of the first counter and outputs 0 or 1 to the adder until the number of input clocks reaches a set value; A third counter that receives the output of the first counter as input and resets the second counter when the number of clocks reaches a set value may be provided.
 (7)第2カウンタの出力を前記小数部設定データの任意のビットに加算した値を、前記小数部制御回路の入力値とするとしても構わない。 (7) A value obtained by adding the output of the second counter to an arbitrary bit of the decimal part setting data may be used as the input value of the decimal part control circuit.
 本発明に係る周波数シンセサイザは、小数を表すためのビット数では表現できない小数を含む分周比も精確に設定することができ有用である。 The frequency synthesizer according to the present invention is useful because it can accurately set a division ratio including a decimal number that cannot be expressed by the number of bits for expressing the decimal number.
1 電圧制御発振器
2 可変分周器
3 位相比較器
4 低域通過フィルタ
5 小数部制御回路
6 加算器
10 小数部データ出力部
20 2値出力部
21 Lカウンタ
22 Rカウンタ
23 Dカウンタ
30 小数部設定データ部
40 加算器
DESCRIPTION OF SYMBOLS 1 Voltage control oscillator 2 Variable frequency divider 3 Phase comparator 4 Low pass filter 5 Decimal part control circuit 6 Adder 10 Decimal part data output part 20 Binary output part 21 L counter 22 R counter 23 D counter 30 Decimal part setting Data section 40 adder

Claims (7)

  1.  入力される制御電圧に対応する周波数を有する信号を出力する電圧制御発振器と、
     前記電圧制御発振器からの信号を、入力される制御データに基づいて分周し、分周後の信号を出力する可変分周器と、
     前記可変分周器からの信号と入力される基準信号との間の位相差を比較し、比較結果を示す信号を出力する位相比較回路と、
     前記位相比較回路からの信号を低域通過ろ波し、低域通過ろ波後の信号を出力する低域通過フィルタを備え、
     前記低域通過フィルタの出力が前記電圧制御発振器の入力に接続されることで、PLL回路の一巡ループが形成された周波数シンセサイザにおいて、
     2値の小数部データを生成し、生成した2値のうちのいずれかを所望の分周比に応じて切り替えて出力する小数部データ出力部と、
     前記小数部データ出力部からの小数部データに対してデルタシグマ変調を行い、デルタシグマ変調後の小数部のデータを出力する小数部制御回路と、
     前記小数部制御回路から出力される小数部のデータと入力される整数部のデータとを加算して、加算結果のデータを前記制御データとして前記可変分周器に出力する加算器と、
     を備えることを特徴とする周波数シンセサイザ。
    A voltage controlled oscillator that outputs a signal having a frequency corresponding to the input control voltage;
    A variable frequency divider that divides a signal from the voltage controlled oscillator based on input control data and outputs a divided signal;
    A phase comparison circuit that compares a phase difference between a signal from the variable frequency divider and an input reference signal and outputs a signal indicating a comparison result;
    A low-pass filter that filters the signal from the phase comparison circuit and outputs a signal after the low-pass filtering,
    In the frequency synthesizer in which a loop of a PLL circuit is formed by connecting the output of the low-pass filter to the input of the voltage controlled oscillator,
    A decimal part data output unit that generates binary fractional data and switches and outputs one of the generated binary values according to a desired frequency division ratio;
    A fractional part control circuit that performs delta-sigma modulation on the fractional part data from the fractional part data output unit, and outputs the fractional part data after the delta-sigma modulation;
    An adder that adds the decimal part data output from the decimal part control circuit and the input integer part data and outputs the addition result data to the variable frequency divider as the control data;
    A frequency synthesizer comprising:
  2.  前記所望の分周比をN/D、前記小数部制御回路の小数部を示すビット数をn、
     前記2値の差の絶対値をm、前記小数部データ出力部が前記2値のうちの一方の値を出力する第1期間と他方の値を出力する第2期間との和はDとし、
     前記小数部データ出力部は、分周比N/Dを2で正規化でしたときの余り値をさらにmで割った値を、前記第1期間または第2期間のいずれかの長さに設定する
    ことを特徴とする請求項1記載の周波数シンセサイザ。
    The desired frequency division ratio is N / D, the number of bits indicating the decimal part of the decimal part control circuit is n,
    The absolute value of the difference between the two values is m, and the sum of the first period in which the decimal part data output unit outputs one of the two values and the second period in which the other value is output is D,
    The fractional data output unit obtains a value obtained by further dividing the remainder when the frequency division ratio N / D is normalized by 2 n by either m in the length of the first period or the second period. The frequency synthesizer according to claim 1, wherein the frequency synthesizer is set.
  3.  前記2値の差の絶対値mは1である
    ことを特徴とする請求項2記載の周波数シンセサイザ。
    3. The frequency synthesizer according to claim 2, wherein an absolute value m of the difference between the two values is 1.
  4.  前記所望の分周比をN/D、前記小数部制御回路の小数部を示すビット数をn、
     前記2値の差の絶対値をm、前記小数部データ出力部が前記2値のうちの一方の値を出力する第1期間と他方の値を出力する第2期間との和はm×Dとし、
     前記小数部データ出力部は、分周比N/Dを2で正規化でしたときの余り値を、前記第1期間または第2期間のいずれかの長さに設定する
    ことを特徴とする請求項1記載の周波数シンセサイザ。
    The desired frequency division ratio is N / D, the number of bits indicating the decimal part of the decimal part control circuit is n,
    The absolute value of the difference between the two values is m, and the sum of the first period in which the decimal part data output unit outputs one of the two values and the second period in which the other value is output is m × D age,
    The decimal part data output unit sets a remainder value when the frequency division ratio N / D is normalized by 2 n to the length of either the first period or the second period. The frequency synthesizer according to claim 1.
  5.  前記小数部制御回路の小数部を示すビット数はnであり、
     前記可変分周器の出力を2の(n+1)乗で分周したクロック、または、前記可変分周器の出力に2のべき乗を乗じた値で分周したクロックを、前記小数部データ出力部の基準クロックとする
    ことを特徴とする請求項1記載の周波数シンセサイザ。
    The number of bits indicating the decimal part of the decimal part control circuit is n,
    A clock obtained by dividing the output of the variable divider by a power of 2 (n + 1) or a clock obtained by dividing the output of the variable divider by a power of 2 is output to the decimal part data output unit. 2. The frequency synthesizer according to claim 1, wherein the frequency synthesizer is used as a reference clock.
  6.  前記小数部データ出力部は、
      小数部データFを出力する小数部設定データ部と、
      0または1を出力する2値出力部と、
      前記小数部設定データから出力される小数部データFと、前記2値出力部から出力される0または1とを加算して、加算結果のデータを前記小数部制御回路に出力する加算器とを備え、
     前記2値出力部は、
      前記可変分周器の出力クロックを入力とする第1カウンタと、
      第1カウンタの出力を入力とし、入力されたクロック数が設定された値に達するまでは0または1を前記加算器に出力する第2カウンタと、
      第1カウンタの出力を入力とし、クロック数が設定された値に達すると第2のカウンタをリセットする第3カウンタと、
    を備える
    ことを特徴とする請求項1に記載の周波数シンセサイザ。
    The decimal part data output unit includes:
    A decimal part setting data part for outputting decimal part data F;
    A binary output unit for outputting 0 or 1,
    An adder that adds the decimal part data F output from the decimal part setting data and 0 or 1 output from the binary output part, and outputs the addition result data to the decimal part control circuit; Prepared,
    The binary output unit includes:
    A first counter that receives an output clock of the variable frequency divider;
    A second counter that takes the output of the first counter as input and outputs 0 or 1 to the adder until the number of input clocks reaches a set value;
    A third counter that takes the output of the first counter as input and resets the second counter when the number of clocks reaches a set value;
    The frequency synthesizer according to claim 1, comprising:
  7.  第2カウンタの出力を前記小数部設定データの任意のビットに加算した値を、前記小数部制御回路の入力値とする
    ことを特徴とする請求項6記載の周波数シンセサイザ。
    7. The frequency synthesizer according to claim 6, wherein a value obtained by adding the output of the second counter to an arbitrary bit of the decimal part setting data is used as an input value of the decimal part control circuit.
PCT/JP2011/006147 2011-05-02 2011-11-02 Frequency synthesizer WO2012150621A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-103017 2011-05-02
JP2011103017 2011-05-02

Publications (1)

Publication Number Publication Date
WO2012150621A1 true WO2012150621A1 (en) 2012-11-08

Family

ID=47107815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006147 WO2012150621A1 (en) 2011-05-02 2011-11-02 Frequency synthesizer

Country Status (1)

Country Link
WO (1) WO2012150621A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09261048A (en) * 1995-09-28 1997-10-03 Sanyo Electric Co Ltd Variable frequency devider
US5986512A (en) * 1997-12-12 1999-11-16 Telefonaktiebolaget L M Ericsson (Publ) Σ-Δ modulator-controlled phase-locked-loop circuit
JP2002152044A (en) * 2000-11-16 2002-05-24 Matsushita Electric Ind Co Ltd Delta sigma modulation circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09261048A (en) * 1995-09-28 1997-10-03 Sanyo Electric Co Ltd Variable frequency devider
US5986512A (en) * 1997-12-12 1999-11-16 Telefonaktiebolaget L M Ericsson (Publ) Σ-Δ modulator-controlled phase-locked-loop circuit
JP2002152044A (en) * 2000-11-16 2002-05-24 Matsushita Electric Ind Co Ltd Delta sigma modulation circuit

Similar Documents

Publication Publication Date Title
US6456164B1 (en) Sigma delta fractional-N frequency divider with improved noise and spur performance
JP6360386B2 (en) Spread spectrum clock generation circuit
JP4620931B2 (en) Noise shaping and digital frequency synthesis
JP4275502B2 (en) Fractional N frequency synthesizer and fractional N frequency synthesizer method
JP4827764B2 (en) Fractional frequency division PLL device and control method thereof
US8194186B2 (en) Receiver capable of generating audio reference clock
US7605665B2 (en) Fractional-N phase locked loop
US8891725B2 (en) Frequency divider with improved linearity for a fractional-N synthesizer using a multi-modulus prescaler
CN103348596A (en) Reference clock compensation for fractional-N phase lock loops (PLLs)
KR20020028418A (en) Fractional-n frequency synthesizer using sigma-delta modulator and method thereof
US8575980B2 (en) PLL circuit, error correcting method for the same, and communication apparatus including the same
JP2012039551A (en) Pll frequency synthesizer, radio communication device, and control method of pll frequency synthesizer
JP3611589B2 (en) Fractional N divider
US20050237090A1 (en) Frequency synthesizer and method
JP6247546B2 (en) Fractional N frequency synthesizer and setting method thereof
JP2015100081A (en) Spread spectrum clock generator and control method thereof
WO2012150621A1 (en) Frequency synthesizer
JP2018186505A (en) Generation of pulse width modulation signal frequency
CA2370254A1 (en) Improvements relating to frequency synthesisers
JP2006033414A (en) Phase-locked circuit
JP4037212B2 (en) Semiconductor device
JP4445415B2 (en) Frequency modulator
JP5225229B2 (en) PLL circuit
Pamarti Quantization noise conditioning techniques for digital delta-sigma modulators
JP2023166169A (en) Circuit arrangement and oscillator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP