WO2012149732A1 - 光器件、光器件集成方法及光网络系统 - Google Patents

光器件、光器件集成方法及光网络系统 Download PDF

Info

Publication number
WO2012149732A1
WO2012149732A1 PCT/CN2011/079500 CN2011079500W WO2012149732A1 WO 2012149732 A1 WO2012149732 A1 WO 2012149732A1 CN 2011079500 W CN2011079500 W CN 2011079500W WO 2012149732 A1 WO2012149732 A1 WO 2012149732A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength division
optical device
optical
disposed
division multiplexer
Prior art date
Application number
PCT/CN2011/079500
Other languages
English (en)
French (fr)
Inventor
陈聪
林华枫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201180002251.8A priority Critical patent/CN102483494B/zh
Priority to PCT/CN2011/079500 priority patent/WO2012149732A1/zh
Publication of WO2012149732A1 publication Critical patent/WO2012149732A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0228Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths
    • H04J14/023Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths in WDM passive optical networks [WDM-PON]
    • H04J14/0232Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths in WDM passive optical networks [WDM-PON] for downstream transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/0252Sharing one wavelength for at least a group of ONUs, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an optical device, an optical device integration method, and an optical network system.
  • BACKGROUND Passive Optical Network is a point-to-multipoint optical access technology.
  • the P0N system sometimes has a Time Division Multiple Access (TDMA) PON and a Wavelength-division multiplexing (WDM) PON, wherein the TDMA PON system includes: an Optical Line Terminal (OLT), Optical splitter (Splitter), Optical Network Unit (ONU), and optical fiber connecting these devices.
  • the OLT is connected to the optical splitter through a trunk fiber, and the optical splitter is connected to each other through multiple branch fibers.
  • the TDMA P0N network uses the broadcast mode in the downlink, and the uplink uses the time division multiplexing method to make the 0NU according to the 0LT.
  • the time slots sequentially emit signal light.
  • TDMA-P0N uses a single wavelength for both uplink and downlink, many users share one wavelength, so the development reaches a certain stage and is limited by bandwidth.
  • the WDM P0N network uses Array Waveguide Grating (AWG).
  • AWG Array Waveguide Grating
  • each ONU uses independent wavelengths of light for signal transmission, which can increase the bandwidth of the P0N network.
  • TDMA-P0N and WDM-P0N mainly realizes TDMA PON and WDM PON by integrating Splitter in TDMA PON and AWG in WDM PON and Wavelength Division Multiplexer (WDM) on the same plane.
  • the Planar Lightwave Circuit (PLC) type WDM has a small bandwidth, low isolation between different wavelengths, and large size.
  • Embodiments of the present invention provide an optical device, an optical device integration method, and an optical network system, which are used to solve the problem of poor insertion loss and bandwidth between the AWG and the Splitter caused by integrating the AWG and the Splitter in the same plane in the prior art. Small, low isolation, and large component size after integration.
  • An aspect of the present invention provides an optical device, including: an optical splitter, an arrayed waveguide grating, a wavelength division multiplexer, and a reflective film, wherein the optical device has upper and lower layers, wherein the optical splitter And the at least two wavelength division multiplexers are disposed on an upper layer, the at least two reflective films and the arrayed waveguide gratings are disposed in a lower layer; or the arrayed waveguide grating and the at least two wave divisions
  • the processor is disposed on the upper layer, and the at least two reflective films and the optical splitter are disposed in the lower layer;
  • At least one wavelength division multiplexer is adjacent to an input end of the optical device, at least another wavelength division multiplexer is adjacent to an output end of the optical device, and the wavelength division multiplexer is disposed at a fixed angle at an upper layer;
  • At least one reflective film is adjacent to an input end of the optical device, at least another reflective film is adjacent to an output end of the optical device, and the reflective film is disposed at a fixed angle in a lower layer;
  • a projection portion of the wavelength division multiplexer covers the reflective film such that a portion of the optical signal passing through the wavelength division multiplexer is incident perpendicularly onto the reflective film.
  • Another aspect of the present invention also provides a method of optical device integration, the method comprising:
  • Optical splitters and arrayed waveguide gratings are separately fabricated by semiconductor process technology
  • At least two wavelength division multiplexers and the optical splitter disposed on an upper plane, at least two reflective films and the arrayed waveguide grating are disposed on a lower plane;
  • At least one wavelength division multiplexer is disposed adjacent to an input end of the optical device, at least another wavelength division multiplexer is disposed adjacent to an output end of the optical device, and the wavelength division multiplexer is a fixed angle is disposed on the upper layer; at least one reflective film is disposed adjacent to the input end of the optical device, at least another reflective film is disposed adjacent to the output end of the optical device, and the reflective film is disposed at a fixed angle at a lower layer ;
  • optical network system includes: an optical line terminal and a plurality of optical network units, wherein the optical line terminal passes through the optical device and the plurality of optical network units,
  • the integrated optical device is fabricated by the integrated method of the above optical device.
  • An optical device wherein the reflective film and the arrayed waveguide grating are disposed in a lower layer by disposing an optical splitter and a wavelength division multiplexer in an upper layer, or the arrayed waveguide grating and A wavelength division multiplexer is disposed on the upper layer, the reflective film and the optical splitter are disposed in a lower layer, and a projection portion of the wavelength division multiplexer is covered
  • the reflective film is such that a part of the optical signal passing through the wavelength division multiplexer is perpendicularly incident on the reflective film, thereby realizing a double-layer waveguide integrated optical splitter and an arrayed waveguide grating, so that the optical device has a high Performance, large bandwidth, high isolation and small size.
  • FIG. 1 is a top plan view of a structure of an optical device according to an embodiment of the present invention.
  • FIG. 2 is a front view of a structure of an optical device according to an embodiment of the present invention.
  • FIG. 3 is a top view of an optical device with an upper layer as an optical splitter according to an embodiment of the present invention
  • FIG. 4 is a top view of an array of waveguides of the optical device according to an embodiment of the present invention
  • FIG. 5 is an optical splitter of the optical device and an array of waveguides for the lower layer of the optical device according to an embodiment of the present invention
  • Front view of the grating
  • FIG. 6 is a front elevational view of an optical device with an upper layer as an optical splitter and a lower layer as an arrayed waveguide grating according to another embodiment of the present invention
  • FIG. 7 is a front elevational view of an optical device with an upper layer as an optical splitter and a lower layer as an arrayed waveguide grating according to another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an optical network system according to an embodiment of the present invention.
  • the purpose of the present invention is to clearly and completely describe the technical solutions in the embodiments of the present invention, and it is obvious that the technical solutions in the embodiments of the present invention are clearly and completely described.
  • the described embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • FIG. 1 is a top view showing a structure of an optical device according to an embodiment of the present invention.
  • the optical device includes: an optical splitter, an Array Waveguide Grating (AWG), and wavelength division multiplexing. (Wavelength Division Multiplexer, WDM) and a reflective film, the optical device has upper and lower layers, Wherein the optical splitter and the at least two wavelength division multiplexers are disposed in an upper layer, the at least two reflective films and the arrayed waveguide grating are disposed in a lower layer; or, the arrayed waveguide grating and the The at least two wavelength division multiplexers are disposed on the upper layer, and the at least two reflective films and the optical splitter are disposed in the lower layer.
  • WDM Wavelength Division Multiplexer
  • At least one wavelength division multiplexer is adjacent to an input end of the optical device, at least another wavelength division multiplexer is adjacent to an output end of the optical device, and the wavelength division multiplexer is disposed at an upper level at a fixed angle.
  • At least one reflective film is adjacent to an input end of the optical device, at least another reflective film is adjacent to an output end of the optical device, and the reflective film is disposed at a fixed angle in a lower layer.
  • a projection portion of the wavelength division multiplexer covers the reflective film such that a portion of the optical signal passing through the wavelength division multiplexer is incident perpendicularly onto the reflective film, the at least one reflection viewed from a top view of FIG.
  • the film is located before the at least one WDM, and the at least another WDM is located before the at least one other reflective film, wherein from top to bottom, a portion between the WDM and the reflective film is recloseable, gp, upper WDM Part of the projection is a reflective film that can cover the lower layer, and the upper layer of WDM is disposed at an upper angle at a fixed angle, the optimum angle is 45 degrees, but different angles can be used according to various types of AWGs.
  • the reflective film is also disposed at a fixed angle in the lower layer, and the optimum angle is 45 degrees. However, different angles can be used according to various types of reflective films.
  • the above layers are WDM and Splitter as an example. With the above settings, the optical signal can be passed. After the WDM, the short-wavelength optical signal passes through and enters the Splitter, and the long-wavelength optical signal is reflected and then vertically incident on the lower reflective film, and enters The AWG transmits the final long-wavelength optical signal through a fixed-angle reverse-reflecting film and WDM multiplexed and output through the output of the optical device.
  • the optical splitter and the arrayed waveguide grating are fabricated by a semiconductor process. Further, the optical splitter and the arrayed waveguide grating are fabricated by a silicon dioxide process and disposed on an upper layer or a lower layer of the optical device.
  • the core layer of the optical splitter is silicon dioxide having a high refractive index, and both the upper cladding layer and the lower cladding layer are silica having a lower refractive index than the core layer.
  • an AWG and a splitter with a cross-aligned mark are respectively fabricated using a semiconductor process technology, so that the input waveguide and the output waveguide of the optical splitter and the arrayed waveguide grating are respectively designed. Structures that can be aligned up and down; AWG and splitter are generally silica-based, and the input and output of the AWG and splitter are designed to correspond to each other. When the AWG chip and the splitter chip overlap, the corresponding input and output waveguides are connected.
  • the wavelength division multiplexing The device is a low pass filter, such as a Short Pass Filter-Thin Film Filter (SPF-TFF-WDM); or
  • the wavelength division multiplexer is a long pass filter.
  • LPF-TFF long pass filter-Thin Film Filter
  • FIG. 1 is one of the modes, that is, the upper surface layer of the optical device is close to the waveguide core layer.
  • Performing a fixed-angle slot respectively inserting the thin film filter (TFF) or the reflective film into the opened slot; and secondly, using a saw blade with a fixed angle of the edge angle at the optical device away from the waveguide a groove is formed in the upper surface layer of the core layer, and then the TFF film sheet and the reflection film are attached to the inclined surface of the fixed angle or the TFF film and the reflection film are evaporated on the inclined surface by the evaporation technique (see FIG.
  • TFF thin film filter
  • the upper layer (also referred to as an upper plane) of the optical device is WDM and Splitter, and the lower layer is a reflective film and an AWG, and the WDM is SPF-TFF-WDM, an optical signal having a wavelength range of ⁇ a and an optical signal having a wavelength range of ⁇ s are input through an input terminal, wherein the ⁇ s is a short wavelength range (for example, a wavelength range of 1490 nm or a wavelength range of 1310 nm), ⁇ a is a long wavelength range (for example, a wavelength range of 1550 nm).
  • the optical signal of ⁇ a and the optical signal of ⁇ s are sent to SPF-TFF-WDM1 placed at a fixed angle
  • the optical signal of ⁇ s enters Splitter through SPF-TFF-WDM, and then enters the output through WDM2, and ⁇
  • the optical signal of a is vertically reflected onto the reflective film 1 of the lower layer, is horizontally reflected into the AWG through a fixed angle, passes through the AWG, is divided into multiple optical signals, and is respectively reflected by the reflective film 2 to be vertically reflected to the SPF-TFF- On WDM2, the reflection of SPF-TFF-WDM2 is coupled to the optical signal of ⁇ s in Splitter into the same waveguide output.
  • the fixed angle of 45 degrees is the optimum angle, but according to the WDM product, the angles of the WDM and the reflective film can be simultaneously changed to achieve the above functions, and the best use case of the reflective film is a total reflection film.
  • An optical device wherein the reflective film and the arrayed waveguide grating are disposed in a lower layer by disposing an optical splitter and a wavelength division multiplexer in an upper layer, or the arrayed waveguide is a grating and a wavelength division multiplexer are disposed on the upper layer, the reflective film and the optical splitter are disposed in a lower layer, and a projection portion of the wavelength division multiplexer covers the reflective film such that the wave passes through A part of the optical signal of the sub-multiplexer is vertically incident on the reflective film, realizing a double-layer waveguide integrated optical splitter and an arrayed waveguide grating, so that the optical device has high performance, large bandwidth, high isolation and size Small advantage.
  • FIG. 3 and FIG. 4 are respectively top views of an optical device with an upper layer as an optical splitter according to an embodiment of the present invention, and a top view of the lower layer of the optical device as an arrayed waveguide grating.
  • the AWG can also be in the upper layer, and the splitter can also be in the lower layer.
  • the WDM only needs to be replaced by the WDM of the low-pass filter.
  • the WDM of the pass filter can also implement the functions of the above optical device.
  • the upper layer of the optical device is composed of WDM1, Splitter, and WDM2, wherein a splitter chip with a cross-aligned mark is fabricated using a semiconductor process technology, and the splitter generally adopts a silicon dioxide process, wherein the alignment mark (Fig. The alignment mark is respectively disposed on the four corners of the upper layer and the waveguide side, and the WDM1 is disposed at a fixed inclination angle near the input port side of the optical device, and the WDM 2 is disposed at a fixed inclination angle close to the optical device. Output port side.
  • a splitter chip with a cross-aligned mark is fabricated using a semiconductor process technology
  • the splitter generally adopts a silicon dioxide process
  • the alignment mark Fig.
  • the alignment mark is respectively disposed on the four corners of the upper layer and the waveguide side
  • the WDM1 is disposed at a fixed inclination angle near the input port side of the optical device
  • the WDM 2 is disposed at a fixed inclination angle close to
  • the lower layer of the optical device is composed of a fixed angle reflective film 1, a fixed angle reflective film 2, and an AWG, wherein the alignment marks are respectively disposed on the four corners of the lower layer and the waveguide side, and are used for Align with the upper layer.
  • the input and output of the AWG and splitter are designed to correspond to each other.
  • the WDM1 and WDM2 of FIG. 3 and the reflective film 1 and the reflective film 2 of FIG. 4 are respectively inserted into the corresponding grooves by the grooved manner, and the refractive index is matched by the WDM1, the WDM2, and the reflective film 1 and the reflective film 2, respectively.
  • the curing adhesive is fixed.
  • AWGs and splitters are aligned under the microscope by cross-alignment marks, adhered with index-matched UV-curable glue, and finally the input and output are made with FA (fibre array) Coupling package.
  • FIG. 6, and FIG. 7 are front elevational views of an optical device in an optical device and an arrayed waveguide grating in an underlying layer in three manners according to an embodiment of the present invention
  • Figure 5 is a mode in which a fixed-angle slot is formed in an upper layer or a lower layer of the optical device, and the TFF film filter or the reflective film is placed in the opened slot, respectively; Forming a groove in the upper layer or the lower layer of the optical device with a saw blade having a fixed angle of the edge angle, and plating the TFF film filter on the inclined surface of the fixed angle by a patching technique or a photolithography evaporation technique, respectively.
  • FIG. 7 is a groove formed by a saw blade or by inductively coupled plasma etching, into which a isosceles triangular glass block plated with the wavelength division multiplexer or reflective film is inserted.
  • the embodiment of the present invention further provides a method for integrating an optical device, where the method includes:
  • Optical splitters and arrayed waveguide gratings are separately fabricated by semiconductor process technology
  • the waveguide grating is disposed on the lower plane;
  • At least one wavelength division multiplexer is disposed adjacent to an input end of the optical device, at least another wavelength division multiplexer is disposed adjacent to an output end of the optical device, and the wavelength division multiplexer is a fixed angle is disposed on the upper layer; at least one reflective film is disposed adjacent to the input end of the optical device, at least another reflective film is disposed adjacent to the output end of the optical device, and the reflective film is disposed at a fixed angle at a lower layer ;
  • a method for integrating an optical device wherein the reflective film and the arrayed waveguide grating are disposed in a lower layer by disposing an optical splitter and a wavelength division multiplexer in an upper layer, or An arrayed waveguide grating and a wavelength division multiplexer are disposed in an upper layer, the reflective film and the optical splitter are disposed in a lower layer, and a projection portion of the wavelength division multiplexer covers the reflective film such that a part of the optical signal of the wavelength division multiplexer is perpendicularly incident on the reflective film, and the double-layer waveguide integrated optical splitter and the arrayed waveguide grating are realized, so that the optical device realized by the above method has high performance, Large bandwidth, high isolation and small size.
  • FIG. 8 is a schematic structural diagram of an optical network system according to an embodiment of the present invention.
  • the optical network system includes: an optical line terminal and a plurality of optical network units, the optical line terminals being coupled to the plurality of optical network units by an optical device.
  • the optical device specifically includes: an optical splitter, an arrayed waveguide grating, at least two wavelength division multiplexers, and at least two reflective films, wherein the optical device has upper and lower layers, wherein An optical splitter and the at least two wavelength division multiplexers are disposed on an upper layer, and the at least two reflective films and the arrayed waveguide grating are disposed in a lower layer; or the arrayed waveguide grating and the at least two a wavelength division multiplexer is disposed on the upper layer, and the at least two reflective films and the optical splitter are disposed in the lower layer;
  • At least one wavelength division multiplexer is adjacent to an input end of the optical device, at least another wavelength division multiplexer is adjacent to an output end of the optical device, and the wavelength division multiplexer is disposed at a fixed angle at an upper layer;
  • At least one reflective film is adjacent to an input end of the optical device, at least another reflective film is adjacent to an output end of the optical device, and the reflective film is disposed at a fixed angle in a lower layer;
  • a projection portion of the wavelength division multiplexer covers the reflective film such that a portion of the optical signal passing through the wavelength division multiplexer is incident perpendicularly onto the reflective film.
  • the upper layer of the optical device is WDM and Splitter, and the lower layer is the reflective film and the AWG.
  • the WDM1 and WDM2 are SPF-TFF-WDM. For example, when the TLT of the TDMA-P0N transmits the downlink optical signal ⁇ down and WDM- After the PON's 0LT transmits the downlink signal light ⁇ 1 , ⁇ 2 , ...
  • ⁇ down is transmitted through the SPF-TFF-WDM1 into the spl itter waveguide, and is outputted through the other SPF-TFF-WDM2 at the output end, and
  • the long-wavelength light of ⁇ 1, ⁇ 2 is reflected by the SPF-TFF-WDM1 and then vertically downwardly incident on the reflective film 1.
  • the reflective film 1 reflects the incident light and enters the AWG, and then passes through the reflective film 2 and the SPF-TFF.
  • the 0NU can receive the downlink signal of the TDMA-P0N and the downlink signal of the WDM-P0N, and can flexibly use the TDMA according to the user's bandwidth requirement.
  • 0N of P0N or 0 of WDM-P0N 0NU sends the uplink signal light ⁇ up used by TDMA-P0N or the uplink signal light ⁇ 1 ', ⁇ 2, ...
  • TFF-WDM1 and reflective film 1 are combined into the same fiber and transmitted into 0LT, thereby realizing the coexistence and seamless evolution of TDMA-P0N and WDM-P0N.
  • An optical network system provided by an embodiment of the present invention enables an optical network unit to receive a downlink signal of a TDMA-P0N and a downlink signal of the WDM-P0N through an optical device, and can be flexibly used through bandwidth requirements. In this way, the coexistence and seamless evolution of TDMA-P0N and WDM-P0N are realized.
  • the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本发明实施例提供一种光器件,所述光器件包括:光分路器、阵列式波导光栅、波分复用器以及反射膜,其特征在于,所述光器件有上、下两层,其中所述光分路器和波分复用器被设置在上层,所述反射膜和阵列式波导光栅被设置在下层;或者,所述阵列式波导光栅和波分复用器被设置在上层,所述反射膜和所述光分路器被设置在下层,所述波分复用器或者所述反射膜分别靠近所述光器件的输入端,且以固定角度进行设置;且所述波分复用器的投影部分覆盖所述反射膜,使得通过所述波分复用器的部分光信号垂直入射到所述反射膜上,实现了双层波导集成光分路器和阵列式波导光栅,使得所述光器件具有高性能、大带宽、高隔离度和尺寸小的优点。

Description

光器件、 光器件集成方法及光网络系统 技术领域 本发明实施例涉及通信技术领域,尤其涉及一种光器件、光器件集成方法及光网络系统。
背景技术 无源光网络 (Passive Optical Network, 简称 PON) 是一种点对多点的光接入技 术。 目前 P0N系统有时分多址 (Time Division Multiple Access, TDMA ) PON和波分 复用 (Wavelength-division multiplexing, WDM) PON, 其中所述 TDMA PON系统包括: 光线路终端(Optical Line Terminal , OLT)、光分路器(Splitter)、光网络单元(Optical Network Unit, ONU) 以及连接这些设备的光纤。 OLT 通过一根主干光纤与光分路器连 接, 光分路器通过多个分支光纤与各个 (MU连接。 TDMA P0N网络下行使用广播的方式, 上行使用时分复用的方式使 0NU按 0LT规定的时隙依次发出信号光。但是由于 TDMA-P0N 上下行都使用单一波长, 众多用户共享一个波长, 因此发展到一定阶段受到了带宽的限 制, 而 WDM P0N网络使用阵列波导光栅 (Array Waveguide Grating, AWG) 来进行密集 波分复用,每个 0NU都使用独立波长的光进行信号传输,这样可以增加 P0N网络的带宽。
目前现有网络已经布放了大量的 TDMA PON, 另外不同用户对带宽的需求也不同, 因此形成了 TDMA PON和 WDM PON共存的场景。 实现 TDMA-P0N和 WDM-P0N共存的技术主 要通过将 TDMA PON中的 Splitter以及 WDM PON中的 AWG和波分复用器 (Wavelength Division Multiplexer, WDM)集成在同一个平面上来实现 TDMA PON和 WDM PON的共存, 但是, 由于 Splitter和 AWG结构的限制, 将 Splitter和 AWG集成在同一平面上会造成 Splitter和 AWG的多路输出端交错在一起, 带来不均匀的额外插损; 另外在同一平面 上制作的平面光波回路 (Planar Lightwave Circuit, PLC) 型 WDM有带宽小、 不同波 长间隔离度低, 尺寸大等问题。 发明内容
本发明实施例提供一种光器件、 光器件集成方法及光网络系统, 用以解决现有技术 中将 AWG和 Splitter集成在同一平面后,导致的 AWG和 Splitter之间的插损一致性差、 带宽小、 隔离度低、 且集成后的器件尺寸大等问题。 本发明一方面提供了一种光器件, 包括: 光分路器、 阵列式波导光栅、 波分复用器 以及反射膜, 所述光器件有上、 下两层, 其中所述光分路器和所述至少两个波分复用器 被设置在上层, 所述至少两个反射膜和阵列式波导光栅被设置在下层; 或者, 所述阵列 式波导光栅和所述至少两个波分复用器被设置在上层,所述至少两个反射膜和所述光分 路器被设置在下层;
其中, 至少一个波分复用器靠近所述光器件的输入端, 至少另一个波分复用器靠近 所述光器件的输出端, 且所述波分复用器成固定角度设置在上层;
至少一个反射膜靠近所述光器件的输入端, 至少另一个反射膜靠近所述光器件的输 出端, 且所述反射膜成固定角度设置在下层;
所述波分复用器的投影部分覆盖所述反射膜,使得通过所述波分复用器的部分光信 号垂直入射到所述反射膜上。
本发明另一方面还提供了一种光器件集成的方法, 所述方法包括:
通过半导体工艺技术分别制作出光分路器和阵列式波导光栅;
将至少两个波分复用器和所述光分路器设置在上平面, 至少两个反射膜和所述阵列 式波导光栅设置在下平面上; 或者,
将至少两个波分复用器和所述阵列式波导光栅设置在上平面, 至少两个反射膜和所 述光分路器设置在下平面上;
其中, 至少一个波分复用器被设置在靠近所述光器件的输入端, 至少另一个波分复 用器被设置在靠近所述光器件的输出端, 且所述波分复用器成固定角度设置在上层; 至少一个反射膜被设置在靠近所述光器件的输入端, 至少另一个反射膜被设置在靠 近所述光器件的输出端, 且所述反射膜成固定角度设置在下层;
将所述上平面的光分路器和下平面的阵列式波导光栅通过对准标志进行对准, 且所 述波分复用器的投影部分覆盖所述反射膜,使得入射到所述波分复用器的部分光信号被 反射后垂直入射到所述反射膜上。
本发明另一方面还提供了一种光网络系统, 所述光网络系统包括: 光线路终端和多 个光网络单元, 所述光线路终端通过上述光器件与所述多个光网络单元, 所述集成光器 件为通过上述光器件的集成方法制作出来的。
本发明提供的一种光器件, 通过将光分路器和波分复用器设置在上层, 将所述反射 膜和阵列式波导光栅被设置在下层, 或者, 将所述阵列式波导光栅和波分复用器被设置 在上层, 所述反射膜和所述光分路器被设置在下层, 且所述波分复用器的投影部分覆盖 所述反射膜, 使得通过所述波分复用器的部分光信号垂直入射到所述反射膜上, 实现了 双层波导集成光分路器和阵列式波导光栅, 使得所述光器件具有高性能、 大带宽、 高隔 离度和尺寸小的优点。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施例或现有 技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下面描述中的附图是本发 明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还 可以根据这些附图获得其他的附图。
图 1为本发明实施例提供的一种光器件结构俯视图;
图 2为本发明实施例提供的一种光器件结构正视图;
图 3为本发明实施例提供的一种光器件的上层为光分路器的俯视图;
图 4为本发明实施例提供的一种光器件的下层为阵列式波导光栅的俯视图; 图 5为本发明一实施例提供的一种光器件的上层为光分路器以及下层为阵列式波导 光栅的正视图;
图 6为本发明另一实施例提供的一种光器件的上层为光分路器以及下层为阵列式波 导光栅的正视图;
图 7为本发明又一实施例提供的一种光器件的上层为光分路器以及下层为阵列式波 导光栅的正视图;
图 8为本发明实施例提供的一种光网络系统的结构示意图。 具体实肺式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发明实施例中 的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例 是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技 术人员在没有作出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范 围。
如图 1所示为本发明实施例提供的一种光器件结构俯视图, 所述光器件包括: 光分 路器 (Spl itter)、 阵列式波导光栅 (Array Waveguide Grating, AWG )、 波分复用器 (Wavelength Division Multiplexer, WDM) 以及反射膜, 所述光器件有上、 下两层, 其中所述光分路器和所述至少两个波分复用器被设置在上层,所述至少两个反射膜和阵 列式波导光栅被设置在下层; 或者, 所述阵列式波导光栅和所述至少两个波分复用器被 设置在上层, 所述至少两个反射膜和所述光分路器被设置在下层。
其中, 至少一个波分复用器靠近所述光器件的输入端, 至少另一个波分复用器靠近 所述光器件的输出端, 且所述波分复用器成固定角度设置在上层。
至少一个反射膜靠近所述光器件的输入端, 至少另一个反射膜靠近所述光器件的输 出端, 且所述反射膜成固定角度设置在下层。
所述波分复用器的投影部分覆盖所述反射膜,使得通过所述波分复用器的部分光信 号垂直入射到所述反射膜上, 从图 1的俯视图看, 所述至少一个反射膜位于所述至少一 个 WDM之前, 所述至少另一个 WDM位于所述至少另一个反射膜之前, 其中从上而下看, WDM和反射膜之间有部分是可以重合的, gp, 上层的 WDM的投影有一部分是可以覆盖到 下层的反射膜, 且所述上层的 WDM以固定的角度设置在上层, 最优的角度为 45度, 但 是根据各种类型的 AWG可以使用不同的角度,所述反射膜也是以固定的角度设置在下层, 最优角度为 45度, 但是根据各种类型的反射膜可以使用不同的角度, 以上层为 WDM和 Splitter为例,通过上述设置,可以使得光信号通过所述 WDM后,短波长的光信号通过, 进入 Splitter,长波长的光信号被反射后垂直入射到下层的反射膜, 并进入到 AWG中进 行传输,最后长波长的光信号又经过固定角度的反向放置的反射膜和 WDM合波后通过所 述光器件的输出口输出。
所述光分路器和所述阵列式波导光栅采用半导体工艺制作, 进一步地, 所述光分路 器和阵列式波导光栅采用二氧化硅工艺制作并被设置所述光器件的上层或者下层,所述 光分路器的芯层为折射率高的二氧化硅, 上包层和下包层均为较芯层的折射率低的二氧 化硅。
进一步地, 使用半导体工艺技术分别制作出带十字对准标志 (对应图 1 中的对准 mark)的 AWG和 splitter,使得所述光分路器和阵列式波导光栅的输入波导和输出波导 分别设计成能上下对齐的结构; AWG和 splitter—般采用二氧化硅工艺, AWG和 splitter 的输入和输出端分别设计在相互对应的位置上, 当 AWG芯片和 splitter芯片重叠后相 应的输入波导和输出波导也能重叠, 然后在其上进行斜 45° 开槽并插入 TFF和反射膜, 将插入的薄膜用折射率匹配的 UV固化胶固定住,然后两个独立的 AWG和 splitter在显 微镜下通过十字对准标志进行对准, 用折射率匹配的 UV固化胶 (gp, 折射率匹配液) 将两芯片粘住, 最后输入和输出端用光纤阵列 (Fibre Array, FA) 进行耦合封装。 进一步地, 当所述光分路器和至少两个波分复用器被设置在上层, 所述至少两个反 射膜和所述阵列式波导光栅被设置在下层时, 所述波分复用器为低通滤波片, 例如低通 薄膜滤波片 (Short Pass Filter-Thin Film Filter, SPF-TFF-WDM); 或者,
当所述阵列式波导光栅和所述波分复用器被设置在上层,所述反射膜和所述光分路 器被设置在下层时, 所述波分复用器为长通滤波片, 例如长通滤波片 (long pass filter-Thin Film Filter, LPF- TFF)。
其中, WDM和反射膜有以下几种方式被设置在所述光器件的上层或者下层, 且成固 定角度: 图 1为其中一种方式, 即在所述光器件离波导芯层近的上表层进行固定角度的 开槽, 分别将所述薄膜滤波片 (TFF) 或者所述反射膜放入所述开的槽中; 其二为用边 缘角度为固定角度的锯片在所述光器件离波导芯层近的上表层划出一条槽, 然后将 TFF 薄膜片和反射膜贴在固定角度的斜面上或者通过蒸镀技术在斜面上蒸镀 TFF薄膜和反射 膜(请参见图 6); 其三为用锯片或者用感应耦合等离子体刻蚀的方法刻出一条槽, 将镀 上所述波分复用器或者反射膜的等腰三角形玻璃块插入到槽中 (请参见图 7)。
如图 2所示为本发明实施例提供的一种光器件结构侧视图, 以光器件的上层 (也可 以称为上平面) 为 WDM和 Splitter, 下层为反射膜和 AWG为例, 且 WDM为 SPF-TFF-WDM, 波 长范围为 λ a的光信号和波长范围为 λ s的光信号通过输入端输入, 其中, 所述 λ s为短 波长范围(例如 1490nm波长范围或者 1310nm波长范围), λ a为长波长范围(例如 1550nm 波长范围) 。 所述 λ a的光信号和 λ s的光信号发送到经过固定角度放置的 SPF-TFF-WDM1 后, λ s的光信号通过 SPF-TFF-WDM进入 Splitter, 进而通过 WDM2进入输出端, 而 λ a的 光信号被垂直反射到下层的反射膜 1上, 经过固定角度被水平反射到 AWG中, 经过 AWG后, 分成多路光信号, 并分别通过反射膜 2, 被垂直反射到 SPF-TFF-WDM2上, 进而通过 SPF-TFF-WDM2的反射, 与 Splitter中的 λ s的光信号耦合进同一根波导中输出。
其中固定角度为 45度是最优角度, 但是根据 WDM产品的不同, WDM和反射膜的角度可 以同时改变来实现上述功能, 所述反射膜最佳用例是全反射膜。
本发明实施例提供的一种光器件, 通过将光分路器和波分复用器设置在上层, 将所 述反射膜和阵列式波导光栅被设置在下层, 或者, 将所述阵列式波导光栅和波分复用器 被设置在上层, 所述反射膜和所述光分路器被设置在下层, 且所述波分复用器的投影部 分覆盖所述反射膜, 使得通过所述波分复用器的部分光信号垂直入射到所述反射膜上, 实现了双层波导集成光分路器和阵列式波导光栅,使得所述光器件具有高性能、大带宽、 高隔离度和尺寸小的优点。 图 3和图 4分别为本发明实施例提供的一种光器件的上层为光分路器的俯视图, 以及 一种光器件的下层为阵列式波导光栅的俯视图。这里仅仅是以上层为光分路器以及下层 为阵列式波导光栅为例进行说明, 实际中, AWG也可以在上层, Splitter也可以在下层, 其中 WDM只需要由低通滤波片的 WDM替换成长通滤波片的 WDM也可以实现上述光器件的功 能。
如图 3所示, 所述光器件的上层为 WDM1、 Splitter以及 WDM2组成, 其中使用半导 体工艺技术制作出带十字对准标志的 splitter芯片, splitter一般采用二氧化硅工艺, 其中对准标记 (图中为对准 mark) 分别设置在上层的四个角上及波导边上, 且 WDM1以 固定的倾斜角度被设置在靠近光器件的输入端口侧, WDM2以固定的倾斜角度被设置在靠 近光器件的输出端口侧。 如图 4所示, 所述光器件的下层为固定角度的反射膜 1、 固定 角度的反射膜 2以及 AWG组成, 其中对准标志分别设置在下层的四个角上及波导边上, 用来与上层进行对准。
AWG和 splitter的输入和输出端分别设计在相互对应的位置上。 其中图 3的 WDM1 和 WDM2和图 4中的反射膜 1和反射膜 2通过开槽的方式, 将所述 WDM1、 WDM2以及反射 膜 1和反射膜 2分别插入对应的槽中, 并用折射率匹配的固化胶固定住。
进一步地,将两个独立的 AWG和 splitter在显微镜下通过十字对准标志进行对准, 用折射率匹配的 UV固化胶将其粘住, 最后输入和输出端用 FA ( fibre array光纤阵列) 进行耦合封装。
图 5、 图 6和图 7分别为本发明实施例提供的一种光器件中通过三种方式设置的上层 为光分路器以及下层为阵列式波导光栅的正视图;
图 5为其中一种方式, 即在所述光器件的上层或者下层进行固定角度的开槽, 分别 将所述 TFF薄膜滤波片或者所述反射膜放入所述开的槽中; 图 6为用边缘角度为固定角 度的锯片在所述光器件的上层或者下层分别划出一条槽,通过贴片技术或光刻蒸镀技术 分别在固定角度的斜面上镀上所述 TFF薄膜滤波片或者所述反射膜; 图 7为用锯片或者 用感应耦合等离子体刻蚀的方法作出一条槽,将镀上所述波分复用器或者反射膜的等腰 三角形玻璃块插入到槽中。
基于上述的光器件的结构图, 本发明实施例还提供了一种光器件集成的方法, 所述 方法包括:
通过半导体工艺技术分别制作出光分路器和阵列式波导光栅;
将至少两个波分复用器和所述光分路器设置在上平面, 至少两个反射膜和所述阵列 式波导光栅设置在下平面上; 或者,
将至少两个波分复用器和所述阵列式波导光栅设置在上平面, 至少两个反射膜和所 述光分路器设置在下平面上;
其中, 至少一个波分复用器被设置在靠近所述光器件的输入端, 至少另一个波分复 用器被设置在靠近所述光器件的输出端, 且所述波分复用器成固定角度设置在上层; 至少一个反射膜被设置在靠近所述光器件的输入端, 至少另一个反射膜被设置在靠 近所述光器件的输出端, 且所述反射膜成固定角度设置在下层;
将所述上平面的光分路器和下平面的阵列式波导光栅通过对准标志进行对准, 且所 述波分复用器的投影部分覆盖所述反射膜,使得进入所述波分复用器的部分光信号垂直 入射到所述反射膜上。
本发明实施例提供的一种集成光器件的方法,通过将光分路器和波分复用器设置在 上层, 将所述反射膜和阵列式波导光栅被设置在下层, 或者, 将所述阵列式波导光栅和 波分复用器被设置在上层, 所述反射膜和所述光分路器被设置在下层, 且所述波分复用 器的投影部分覆盖所述反射膜,使得通过所述波分复用器的部分光信号垂直入射到所述 反射膜上, 实现了双层波导集成光分路器和阵列式波导光栅, 使得通过上述方法实现的 所述光器件具有高性能、 大带宽、 高隔离度和尺寸小的优点。
图 8为本发明实施例提供的一种光网络系统的结构示意图。
所述光网络系统包括: 光线路终端和多个光网络单元, 所述光线路终端通过一种光 器件与所述多个光网络单元相连接。
所述光器件具体包括: 光分路器、 阵列式波导光栅、 至少两个波分复用器以及至少 两个反射膜, 其特征在于, 所述光器件有上、 下两层, 其中所述光分路器和所述至少两 个波分复用器被设置在上层, 所述至少两个反射膜和阵列式波导光栅被设置在下层; 或 者, 所述阵列式波导光栅和所述至少两个波分复用器被设置在上层, 所述至少两个反射 膜和所述光分路器被设置在下层;
其中, 至少一个波分复用器靠近所述光器件的输入端, 至少另一个波分复用器靠近 所述光器件的输出端, 且所述波分复用器成固定角度设置在上层;
至少一个反射膜靠近所述光器件的输入端, 至少另一个反射膜靠近所述光器件的输 出端, 且所述反射膜成固定角度设置在下层;
所述波分复用器的投影部分覆盖所述反射膜,使得通过所述波分复用器的部分光信 号垂直入射到所述反射膜上。 以光器件的上层为 WDM与 Spl itter, 下层为反射膜与 AWG, 其中, WDM1和 WDM2 为 SPF-TFF-WDM为例, 当所述 TDMA-P0N的 0LT发送下行光信号光 λ down和 WDM-PON的 0LT发送下行信号光 λ 1、 λ 2……进入上述光器件后, λ down通过 SPF-TFF-WDM1进入 spl itter波导中进行传输, 在输出端通过另一个 SPF-TFF-WDM2输出, 而 λ 1、 λ 2等长 波长的光被 SPF-TFF-WDM1反射后垂直向下入射到反射膜 1上, 反射膜 1将入射光反射 后进入到 AWG中,然后通过反射膜 2和 SPF-TFF-WDM2与 spl itter对应波导中的光合在 一起输出, 因此 0NU既可以接收 TDMA-P0N的下行信号, 又可以接收 WDM-P0N的下行信 号, 0而可以根据用户对带宽的需求灵活地使用 TDMA-P0N的 0NU或 WDM-P0N的 0而, 0NU 发出 TDMA-P0N所使用的上行信号光 λ up 或 WDM-PON所使用的上行信号光 λ 1 ' 、 λ 2, ……通过和下行一样的原理分别经过 TFF-WDM2和反射膜 2进入到 spl itter和 AWG 中,再通过 TFF-WDM1和反射膜 1合束到同一根光纤中,传输进 0LT中,以此实现 TDMA-P0N 和 WDM-P0N的共存以及无缝演进。
本发明实施例提供的一种光网络系统, 通过一种光器件, 使得光网络单元即可以接 收 TDMA-P0N的下行信号, 又可以接收 WDM-P0N的下行信号, 且可以通过带宽需求灵活 使用, 以此实现 TDMA-P0N和 WDM-P0N的共存以及无缝演进。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤可以通过程序 指令相关的硬件来完成, 前述的程序可以存储于一计算机可读取存储介质中, 该程序在 执行时, 执行包括上述方法实施例的步骤; 而前述的存储介质包括: R0M、 RAM, 磁碟或 者光盘等各种可以存储程序代码的介质。 最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其限制; 尽 管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术人员应当理解: 其依 然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分技术特征进行等同 替换; 而这些修改或者替换, 并不使相应技术方案的本质脱离本发明各实施例技术方案 的精神和范围。

Claims

权利要求
1、 一种光器件, 所述光器件包括: 光分路器、 阵列式波导光栅、 至少两个波分复 用器以及至少两个反射膜, 其特征在于, 所述光器件有上、 下两层, 其中所述光分路器 和所述至少两个波分复用器被设置在上层,所述至少两个反射膜和阵列式波导光栅被设 置在下层; 或者, 所述阵列式波导光栅和所述至少两个波分复用器被设置在上层, 所述 至少两个反射膜和所述光分路器被设置在下层;
其中, 至少一个波分复用器靠近所述光器件的输入端, 至少另一个波分复用器靠近 所述光器件的输出端, 且所述波分复用器成固定角度设置在上层;
至少一个反射膜靠近所述光器件的输入端, 至少另一个反射膜靠近所述光器件的输 出端, 且所述反射膜成固定角度设置在下层;
所述波分复用器的投影部分覆盖所述反射膜,使得入射到所述波分复用器的部分光 信号被反射后垂直入射到所述反射膜上。
2、 根据权利要求 1所述的光器件, 其特征在于, 所述光分路器和所述阵列式波导 光栅采用半导体工艺制作。
3、 根据权利要求 1所述的光器件, 其特征在于, 当所述光分路器和至少两个波分 复用器被设置在上层, 所述至少两个反射膜和所述阵列式波导光栅被设置在下层时, 所 述波分复用器为低通滤波片; 或者,
当所述阵列式波导光栅和所述波分复用器被设置在上层,所述反射膜和所述光分路 器被设置在下层时, 所述波分复用器为长通滤波片。
4、 根据权利要求 1或者 3所述的光器件, 其特征在于, 所述光分路器和阵列式波 导光栅采用二氧化硅工艺制作并被设置所述光器件的上层或者下层,所述光分路器所在 的上层或者下层的芯层为折射率高的二氧化硅, 上包层和下包层均为较芯层的折射率低 的二氧化硅。
5、 根据权利要求 1-4所述的任意一种光器件, 其特征在于, 在所述光器件的上层 或者下层进行固定角度的开槽, 分别将所述波分复用器或者所述反光膜放入所述开的槽 中; 或者,
用边缘角度为固定角度的锯片在所述光器件的上层或者下层分别划出一条槽,通过 贴片技术和光刻蒸镀技术分别在固定角度的斜面上镀上所述波分复用器或者所述反光 膜; 或者, 用锯片或者用感应耦合等离子体刻蚀的方法刻出一条槽,将镀上所述波分复用器或 者反射膜的等腰三角形玻璃块插入到槽中。
6、 一种光器件集成的方法, 其特征在于, 所述方法包括:
通过半导体工艺技术分别制作出光分路器和阵列式波导光栅;
将至少两个波分复用器和所述光分路器设置在上层, 至少两个反射膜和所述阵列式 波导光栅设置在下层; 或者,
将至少两个波分复用器和所述阵列式波导光栅设置在上层, 至少两个反射膜和所述 光分路器设置在下层;
其中, 至少一个波分复用器被设置在靠近所述光器件的输入端, 至少另一个波分复 用器被设置在靠近所述光器件的输出端, 且所述波分复用器成固定角度设置在上层; 至少一个反射膜被设置在靠近所述光器件的输入端, 至少另一个反射膜被设置在靠 近所述光器件的输出端, 且所述反射膜成固定角度设置在下层;
将所述上平面的光分路器和下平面的阵列式波导光栅通过对准标志进行对准, 且所 述波分复用器的投影部分覆盖所述反射膜,使得进入所述波分复用器的部分光信号垂直 入射到所述反射膜上。
7、 根据权利要求 6所述的光器件的集成方法, 当所述光分路器和波分复用器设置 在上层, 所述反射膜和所述阵列式波导光栅被设置在下层时, 所述波分复用器为低通滤 波片; 或者,
当所述阵列式波导光栅和所述波分复用器被设置在上层,所述反射膜和所述光分路 器被设置在下层时, 所述波分复用器为长通滤波片。
8、 根据权利要求 6或者 7所述的光器件, 其特征在于, 所述光分路器和阵列式波 导光栅采用二氧化硅工艺制作并被设置所述光器件的上层或者下层,所述光分路器所在 的上层或者下层的芯层为折射率高的二氧化硅, 上包层和下包层均为较芯层的折射率低 的二氧化硅。
9、 根据权利要求 6-8所述的任意一种光器件, 其特征在于, 在所述光器件的上层 或者下层进行固定角度的开槽, 分别将所述波分复用器或者所述反射膜放入所述开的槽 中; 或者,
用边缘角度为固定角度的锯片在所述光器件的上层或者下层分别划出一条槽,通过 贴片技术和光刻蒸镀技术分别在固定角度的斜面上镀上所述波分复用器或者所述反射 膜; 或者, 用锯片或者用感应耦合等离子体刻蚀的方法刻出一条槽,将镀上所述波分复用器或 者反射膜的等腰三角形玻璃块插入到槽中。
10、 一种光网络系统, 其特征在于, 包括: 光线路终端和多个光网络单元, 所述光 线路终端通过如权利要求 1-5所述的光器件与所述多个光网络单元相连接。
PCT/CN2011/079500 2011-09-09 2011-09-09 光器件、光器件集成方法及光网络系统 WO2012149732A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180002251.8A CN102483494B (zh) 2011-09-09 2011-09-09 光器件、光器件集成方法及光网络系统
PCT/CN2011/079500 WO2012149732A1 (zh) 2011-09-09 2011-09-09 光器件、光器件集成方法及光网络系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/079500 WO2012149732A1 (zh) 2011-09-09 2011-09-09 光器件、光器件集成方法及光网络系统

Publications (1)

Publication Number Publication Date
WO2012149732A1 true WO2012149732A1 (zh) 2012-11-08

Family

ID=46093348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079500 WO2012149732A1 (zh) 2011-09-09 2011-09-09 光器件、光器件集成方法及光网络系统

Country Status (2)

Country Link
CN (1) CN102483494B (zh)
WO (1) WO2012149732A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1831574A (zh) * 2005-03-07 2006-09-13 富士通株式会社 波长选择开关
CN101536370A (zh) * 2006-11-07 2009-09-16 韩国科学技术院 用于将遗留无源光网络升级到基于波分复用无源光网络的下一代无源光网络的方法和网络体系结构
CN101546239A (zh) * 2008-03-24 2009-09-30 日东电工株式会社 使用波导的装置、光学触摸面板以及制造波导的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101545239A (zh) * 2009-04-21 2009-09-30 陕西长大西筑路面机械科技有限公司 新型摊铺机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1831574A (zh) * 2005-03-07 2006-09-13 富士通株式会社 波长选择开关
CN101536370A (zh) * 2006-11-07 2009-09-16 韩国科学技术院 用于将遗留无源光网络升级到基于波分复用无源光网络的下一代无源光网络的方法和网络体系结构
CN101546239A (zh) * 2008-03-24 2009-09-30 日东电工株式会社 使用波导的装置、光学触摸面板以及制造波导的方法

Also Published As

Publication number Publication date
CN102483494A (zh) 2012-05-30
CN102483494B (zh) 2013-01-23

Similar Documents

Publication Publication Date Title
JP6927628B2 (ja) 双方向光サブアセンブリ、宅内光回線終端装置、局内光回線終端装置、及び受動光ネットワークシステム
JP2953947B2 (ja) 光通信ネットワーク
US20120170933A1 (en) Core-selective optical switches
WO2016134323A1 (en) Integrated polarization splitter and rotator
US20080031625A1 (en) WDM hybrid splitter module
WO2013087006A1 (zh) 无源光网络系统、光线路终端和光传输方法
WO2013075662A1 (zh) 共存无源光网络系统及上、下行光信号发送方法
US9854336B2 (en) Systems and methods for coupling a fiber to a polarization sensitive photonic integrated circuit
CN114641720A (zh) 偏振系统和方法
EP2981010B1 (en) Optical module and optical network system
CN101873189B (zh) 一种兼容两种无源光网络的波分复用器
WO2015054825A1 (zh) 一种波分复用wdm接收机装置和无源光网络系统
JP5664686B2 (ja) 光素子
WO2012149732A1 (zh) 光器件、光器件集成方法及光网络系统
WO2022042721A1 (zh) 光收发器装置和光网络系统
CN208444050U (zh) 一种可见光波分复用器
JP4947916B2 (ja) 光導波回路デバイス
TW201213910A (en) Reflective semiconductor optical amplifier for optical networks
JP2021179483A (ja) 光波長フィルタ及び波長分離光回路
KR101961812B1 (ko) Ftth 오버레이를 위한 광모듈
CN201654271U (zh) 用于光纤到户的平面光波导型单纤三向复用器
CN108345065B (zh) 光信号处理装置以及制备方法
KR100749492B1 (ko) 댁내 광전송 광가입자용 트리플렉서 모듈 필터
KR20210023511A (ko) 배열도파로 격자 형태의 파장역다중화 소자 및 그 제조방법
CN109802745A (zh) 一种用于200g/400g光收发模块的8通道波分复用/解复用器件

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180002251.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864810

Country of ref document: EP

Kind code of ref document: A1