WO2012148786A1 - ELECTROLYTE AND pH MONITORING FOR FLUID REMOVAL PROCESSES - Google Patents
ELECTROLYTE AND pH MONITORING FOR FLUID REMOVAL PROCESSES Download PDFInfo
- Publication number
- WO2012148786A1 WO2012148786A1 PCT/US2012/034330 US2012034330W WO2012148786A1 WO 2012148786 A1 WO2012148786 A1 WO 2012148786A1 US 2012034330 W US2012034330 W US 2012034330W WO 2012148786 A1 WO2012148786 A1 WO 2012148786A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blood
- fluid
- indicator
- dialysate
- sensor
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/14—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
- A61M1/16—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
- A61M1/1601—Control or regulation
- A61M1/1603—Regulation parameters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0031—Implanted circuitry
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/026—Measuring blood flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/026—Measuring blood flow
- A61B5/0295—Measuring blood flow using plethysmography, i.e. measuring the variations in the volume of a body part as modified by the circulation of blood therethrough, e.g. impedance plethysmography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/053—Measuring electrical impedance or conductance of a portion of the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/053—Measuring electrical impedance or conductance of a portion of the body
- A61B5/0537—Measuring body composition by impedance, e.g. tissue hydration or fat content
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/14503—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/14535—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring haematocrit
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/14539—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring pH
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/14546—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring analytes not otherwise provided for, e.g. ions, cytochromes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4836—Diagnosis combined with treatment in closed-loop systems or methods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4848—Monitoring or testing the effects of treatment, e.g. of medication
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6847—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
- A61B5/6866—Extracorporeal blood circuits, e.g. dialysis circuits
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/14—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/14—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
- A61M1/16—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/14—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
- A61M1/16—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
- A61M1/1601—Control or regulation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/14—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
- A61M1/16—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
- A61M1/1601—Control or regulation
- A61M1/1603—Regulation parameters
- A61M1/1605—Physical characteristics of the dialysate fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/14—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
- A61M1/16—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
- A61M1/1601—Control or regulation
- A61M1/1603—Regulation parameters
- A61M1/1605—Physical characteristics of the dialysate fluid
- A61M1/1607—Physical characteristics of the dialysate fluid before use, i.e. upstream of dialyser
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/14—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
- A61M1/16—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
- A61M1/1601—Control or regulation
- A61M1/1613—Profiling or modelling of patient or predicted treatment evolution or outcome
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/14—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
- A61M1/28—Peritoneal dialysis ; Other peritoneal treatment, e.g. oxygenation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/34—Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/34—Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
- A61M1/3403—Regulation parameters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/34—Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
- A61M1/342—Adding solutions to the blood, e.g. substitution solutions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3607—Regulation parameters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3607—Regulation parameters
- A61M1/3609—Physical characteristics of the blood, e.g. haematocrit, urea
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3607—Regulation parameters
- A61M1/3609—Physical characteristics of the blood, e.g. haematocrit, urea
- A61M1/361—Physical characteristics of the blood, e.g. haematocrit, urea before treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3607—Regulation parameters
- A61M1/3609—Physical characteristics of the blood, e.g. haematocrit, urea
- A61M1/3612—Physical characteristics of the blood, e.g. haematocrit, urea after treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/24—Dialysis ; Membrane extraction
- B01D61/32—Controlling or regulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/02—Membrane cleaning or sterilisation ; Membrane regeneration
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/10—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
- G16H20/17—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/40—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
- G16H40/63—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/70—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Z—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
- G16Z99/00—Subject matter not provided for in other main groups of this subclass
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/02—Operational features
- A61B2560/0223—Operational features of calibration, e.g. protocols for calibrating sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/04—General characteristics of the apparatus implanted
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/18—General characteristics of the apparatus with alarm
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/3303—Using a biosensor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/3306—Optical measuring means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/3306—Optical measuring means
- A61M2205/3313—Optical measuring means used specific wavelengths
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/3331—Pressure; Flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/3331—Pressure; Flow
- A61M2205/3334—Measuring or controlling the flow rate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/3375—Acoustical, e.g. ultrasonic, measuring means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/35—Communication
- A61M2205/3507—Communication with implanted devices, e.g. external control
- A61M2205/3523—Communication with implanted devices, e.g. external control using telemetric means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/50—General characteristics of the apparatus with microprocessors or computers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/50—General characteristics of the apparatus with microprocessors or computers
- A61M2205/52—General characteristics of the apparatus with microprocessors or computers with memories providing a history of measured variating parameters of apparatus or patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/60—General characteristics of the apparatus with identification means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/70—General characteristics of the apparatus with testing or calibration facilities
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2230/00—Measuring parameters of the user
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2230/00—Measuring parameters of the user
- A61M2230/005—Parameter used as control input for the apparatus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2230/00—Measuring parameters of the user
- A61M2230/20—Blood composition characteristics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2230/00—Measuring parameters of the user
- A61M2230/20—Blood composition characteristics
- A61M2230/207—Blood composition characteristics hematocrit
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2230/00—Measuring parameters of the user
- A61M2230/20—Blood composition characteristics
- A61M2230/208—Blood composition characteristics pH-value
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2230/00—Measuring parameters of the user
- A61M2230/65—Impedance, e.g. conductivity, capacity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/12—Use of permeate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/40—Automatic control of cleaning processes
Definitions
- the present disclosure relates generally to devices, systems and uses for monitoring indicators of electrolytes or pH in patients for which blood cleaning or fluid removal is indicated, such as patients suffering from kidney disease or heart failure.
- the patient undergoes periodic examinations that allow a healthcare provider to set various parameters of the blood fluid removal procedures, such as the profile of fluid removal, the composition of dialysate or replacement fluid employed, and the like. These examinations typically occur once a month in accordance with current standards of care.
- Hemodialysis or similar procedures may occur three to four times a week.
- the patient may undergo 10 to 15 or more blood fluid removal sessions before the
- prescription or parameters are changed. It is possible, for example, that a prescription with regard to a dialysate electrolyte and pH buffer composition will not be appropriate for a patient several days or weeks after the prescription is set. Accordingly, it may be desirable to more frequently determine whether the electrolyte or pH concentration of a fluid used in blood fluid removal sessions is appropriate. In addition, it may be desirable to adjust the concentration or composition of the fluid during a blood fluid removal session in a manner that may improve patient health and reduce morbidity.
- This disclosure describes devices, systems and uses for monitoring indicators of pH or electrolytes in patients for which blood fluid removal sessions are indicated.
- the monitoring may occur during a blood fluid removal session, and the concentration or composition of buffer or electrolytes may be adjusted based on monitored data acquired during the blood fluid removal session.
- the dialysate of replacement fluid may be adjusted during a session to enhance patient safety.
- a use includes initiating a blood fluid removal procedure for a patient in need thereof.
- the procedure includes use of a fluid selected from a dialysate fluid or a replacement fluid.
- the fluid has an initial pH buffer composition or electrolyte composition.
- the use further includes monitoring an indicator of blood electrolyte concentration or blood pH of the patient during the blood fluid removal session, and adjusting the pH buffer composition or the electrolyte composition of the fluid based on a value of the monitored indicator.
- the monitoring may be of blood before or after the blood has passed through the blood fluid removal device, or may be of fluid removed from the blood.
- data acquired from monitoring performed on blood before and after passing through the blood fluid removal device is compared to data acquired from fluid (e.g., dialysate) before and after passing through blood fluid removal media of the device, and based on the comparison, the pH buffer composition or the electrolyte composition of the fluid is adjusted.
- fluid e.g., dialysate
- a system includes a blood fluid removal device, which has (i) an inlet for receiving blood from a patient, (ii) an outlet for returning blood from the patient, (iii) a medium for removing fluid and contaminants from the blood, the medium being positioned between the inlet and the first outlet, and (iv) a fluid source for carrying a fluid, where the fluid is selected from dialysate and replacement fluid. If the fluid is dialysate, the fluid source carries the fluid to the medium. If the fluid is replacement fluid, the fluid source carries the fluid to the blood after the blood exits the medium.
- the system further includes (i) a concentrate source for housing a concentrate solution comprising concentrated electrolyte or pH buffer, (ii) a concentrate flow control element for controlling the rate that the concentrate solution enters the fluid source; (iii) a sensor for monitoring an indicator of blood pH or blood electrolyte concentration; and (iv) control electronics in operable communication with the sensor and the concentrate flow control element.
- the control electronics are configured, via the concentrate flow control element, to adjust the rate at which the concentrate solution enters the fluid source based on data obtained from the sensor.
- a system includes (i) a medium housing defining a major chamber; (ii) a blood flow removal membrane disposed in the housing and sealingly dividing the major chamber into first and second minor chambers; (iii) a first inlet and a first outlet in fluid communication with the first minor chamber, wherein the system is configured such that blood enters the first minor chamber through the first inlet and exits the first minor chamber through the first outlet; (iv) a second inlet and a second outlet in fluid communication with the second minor chamber, wherein the system is configured such that dialysate enters the second minor chamber through the second inlet and exits the second minor chamber through the second outlet; (vi) a dialysate regeneration medium in fluid communication with and disposed in a dialysate flow path between the second inlet and the second outlet; (vii) a concentrate source for housing a concentrate solution comprising concentrated electrolyte or pH buffer; (viii) a concentrate flow control element for controlling the rate that the concentrate solution enters the dialy
- One or more embodiments of the systems, devices and uses described herein may provide one or more advantages over prior systems, devices and uses for blood fluid removal in patients. Such advantages will be apparent to those skilled in the art upon reading the following detailed description. BRIEF DESCRIPTION OF THE DRAWINGS
- FIGS. 1-3 are schematic block diagrams showing interaction of blood fluid removal devices with a patient showing flow of blood (dashed arrows) and fluid (solid arrows), which blood fluid removal devices may be used in various embodiments described herein.
- FIG. 4 is a schematic block diagram showing some selected components of an
- FIGS. 5-6 are schematic block diagrams showing sensors and blood flow between
- FIGS. 7-8 are schematic block diagrams showing flow paths and some control
- FIGS. 9-10 are schematic block diagrams of some components of blood fluid removal devices that are configured to adjust pH or electrolyte concentrations of fluids in response to data regarding monitored pH or electrolyte levels in blood.
- FIGS. 11-13 are flow diagrams illustrating overviews of general uses in accordance with embodiments described herein.
- the schematic drawings presented herein are not necessarily to scale.
- Like numbers used in the figures refer to like components, steps and the like. However, it will be understood that the use of a number to refer to a component in a given figure is not intended to limit the component in another figure labeled with the same number. In addition, the use of different numbers to refer to components is not intended to indicate that the different numbered components cannot be the same or similar.
- a "patient for which a blood fluid removal session is indicated" is a patient for which a blood fluid removal session is indicated.
- patient that has undergone, is undergoing, or is likely to undergo at least one blood fluid removal session In general, such patients are fluid overloaded patients, such as patients suffering from heart failure, chronic kidney disease, or acute kidney failure. Often such patients are stage 3 to stage 5 chronic kidney disease patients, are unresponsive or under- responsive to diuretics, or the like.
- a "blood fluid removal process,” or the like refers to a process from
- blood fluid removal processes include ultrafiltration, hemofiltration, hemodialysis, hemodiafiltration, peritoneal dialysis, and the like. Any patient for which blood fluid removal is indicated may benefit from the devices, systems and uses described herein.
- the sensors are configured and positioned to monitor pH or electrolytes in one or more of (i) blood of the patient before the blood enters a fluid removal or cleaning medium of the blood fluid removal device; (ii) blood of the patient before after blood exits the medium before being returned to the patient; (iii) fluid removed from the blood of the patient after passing through the medium; (iv) fluid, such as dialysate, before entering the medium; (v) fluid upstream or downstream of the addition of a concentrate for use in altering the composition of the fluid (e.g., dialysate or replacement fluid); (vi) or the like. Additional discussion with regard to sensor placement and use of such sensors will follow. First, however, a brief discussion of blood fluid removal devices or systems that may be used in accordance with the teachings presented herein is presented.
- Any suitable device or system for removing fluid, or fluid and contaminants, from blood may be used in accordance with the teachings presented herein.
- the devices, or components thereof, may be traditional large counsel-type, wearable, or implantable.
- FIGS. 1-3 Block diagrams of some example devices and systems are shown in FIGS. 1-3.
- blood may be removed from a patient 10 and fluid may be removed via a blood fluid removal device 100 and returned to the patient 10. Removed fluid may be diverted. In some embodiments where the blood fluid removal device 100 or system, or components thereof, are implanted, the removed fluid may be diverted to the patient' s bladder.
- blood fluid removal devices 100 that may operate as depicted in FIG. 1 are ultrafiltration and hemofiltration devices. Examples of such devices and components thereof that may be employed in accordance with the teachings presented herein are well known in the art. It will be understood that peritoneal dialysis, where dialysate is introduced into the peritoneal cavity, may also be employed.
- replacement fluid may be introduced into the patient's blood if fluid is removed from the blood by the device 100 at too great of a rate or amount.
- the replacement fluid may be added to the original blood before fluid removal or may be added to the blood after initial fluid removal and prior to return to the patient' s cardiovascular system.
- the replacement fluid is added after initial fluid removal.
- the pH and electrolyte concentration of the replacement fluid may be set or adjusted, e.g. as described in more detail below, based on monitoring of pH or electrolytes of the patient.
- the blood fluid removal device 100 may employ dialysate to assist in removal of contaminants from the patient's blood and in maintaining proper pH and electrolyte balance.
- the pH or electrolyte concentration of the dialysate may be set or adjusted, e.g. as described in more detail below, based on monitoring of pH or electrolytes.
- Used dialysate and fluid removed from the blood may be diverted.
- the used dialysate and removed fluid, or a portion thereof may be regenerated (indicated by dashed lined regeneration system 150) to produce fresh dialysate for re-use in the blood fluid removal process.
- REDY regenerative dialysis
- Nephrology 4:275- 278, 1998 which system may be employed or readily modified for use in embodiments described herein.
- a concentrate may be added to the regenerated dialysate to adjust the pH and electrolytes of the regenerated dialysate to an amount suitable for re-use as fresh dialysate.
- dialysate Regardless of whether the dialysate is regenerated, systems and devices that operate in a manner shown in the embodiment of FIG. 2 include hemodialysis and hemodiafiltration systems. Examples of such devices and components thereof that may be employed in accordance with the teachings presented herein are well known in the art. It will be understood that peritoneal dialysis, where the dialysate is introduced into peritoneal cavity may also be employed.
- replacement fluid may be introduced into the patient's blood, upstream or downstream of fluid removal, e.g. as described above with regard to FIG. 1.
- one goal of hemodialysis, ultrafiltration, and the like is to ensure that the patient's blood pH and electrolyte concentrations are within acceptable ranges.
- Typical ranges of pH and blood electrolyte concentration that are desired during or following a blood fluid removal session are provided in Table 1 below. As indicated in Table 1, concentrations of various acids or bases (or salts or hydrates thereof) are often important in determining the pH of blood. Accordingly, some typical target concentrations of such acids, bases are presented in Table 1.
- buffers are typically employed to maintain proper blood pH.
- Some suitable buffers that may be used in fluid, such as replacement fluid or dialysate include bicarbonate, acetate, citrate, lactate, amino acid and protein buffers. The concentration and composition of the buffers and components thereof may be adjusted based on monitored pH of the patient's blood. Similarly, the concentration of electrolytes such as sodium, potassium, calcium, and chloride in replacement fluid or dialysate may be set or altered based the monitored levels of electrolytes.
- any suitable sensor may be employed to monitor pH or electrolytes.
- FIG. 4 a block diagram showing some components that a sensing device 200 may include is depicted.
- the sensing device 200 is shown as a stand-alone device in FIG. 4, but is will be understood that the device, one or more components thereof, may be incorporated into other devices, such as a blood fluid cleaning device.
- the sensor 200 depicted in FIG. 4 has a housing 299 (which can be shared with another device if the sensor, or portion thereof, is incorporated into the other device) for containing various electronic components 296, 297, 289, 295.
- any suitable transducer may be employed to detect pH or electrolytes.
- the transducer is an ion selective electrode configured to detect H + ions, K + ions, Na + ions, Ca 2+ ions, CI " ions, phosphate ions, magnesium ions, acetate ions, amino acids ions, or the like.
- Such electrodes, and components of sensors employing such electrodes are known in the art and may be employed, or modified to be employed, for use in the monitoring described herein.
- pH sensor is Medtronic, Inc.'s Bravo® pH sensor.
- potassium selective electrode is the Thermo Scientific Potassium Ionplus®.
- Other examples of ion-selective electrodes are contained in the CCX Stat Profile® produced by Nova Biomedical.
- one or more sensors are employed to detect one or more ions to gauge pH or electrolytes in the blood.
- a sensor may have more than one transducer, even if leadless, that may monitor more than one ionic species. By measuring more than one ionic species, a more detailed understanding of the levels of various electrolytes or blood components may be had. For example, in some patients in some situations, one electrolyte may be at elevated levels while another may be at reduced levels.
- more than one sensor for the same ion is employed for purposes of result confirmation and redundancy, which can improve reliability and accuracy.
- sensors for the same ion may be configured to accurately detect different ranges of concentrations of the ion.
- more than one transducer is present in a single unit. This allows for convenient data collection and circuitry, as all the data may be collected in one place at the same time. Further, the multiple transducers may share the same fluid collection mechanism (e.g., a microdialyzer in the case of an implant), and if needed or desired, may share the same data processing and memory storage components.
- a fluid collection mechanism e.g., a microdialyzer in the case of an implant
- a sensor (or transducer) may be placed at any suitable location for purposes of
- a blood fluid removal system and sensors is depicted.
- sensors 200A, 200B may be employed.
- a pH or electrolyte sensor 200A may be located external to the patient 10 and configured to monitor pH or electrolyte levels in the blood before the blood enters the blood fluid removal device 100 (or before entering blood fluid removal medium, as will be discussed below in more detail).
- sensor 200A may be positioned such that a transducer is placed within a catheter carrying blood from the patient 10 to the blood fluid removal device 100 or blood fluid removal media.
- Data acquired from a sensor 200A upstream of the fluid delivery device 100 or blood fluid removal media provides an indication of the actual status of the patient 10.
- data acquired from a sensor 200A upstream of the fluid delivery device 100 or medium can be used to determine whether blood pH and electrolytes are approaching target ranges or to determine the rate at which pH and electrolytes are changing in the patient as a result of the blood fluid removal process. While not intending to be bound by theory, it is possible that too rapid of a change in pH or electrolyte concentrations can lead to patient hypotension or sudden death that is seen in patient populations that undergo blood fluid removal processes. By monitoring and controlling the rate of change of pH or electrolyte changes in the blood of a patient during the blood fluid removal session, perhaps the incidence of crashing or sudden death can be reduced.
- a sensor 200B is located external to the patient 10 and configured to monitor pH or electrolyte levels in the blood after the blood exits the blood fluid removal device 100 (or after exiting the blood fluid removal medium) and before being returned to the patient 10.
- sensor 200B may be positioned such that a transducer is placed within a catheter carrying blood from the blood fluid removal device 100 (or medium) to the patient 10.
- Such a downstream sensor 200B may be used to ensure that pH and electrolyte levels of blood to be returned to the patient are not out of range.
- the system employs both an upstream sensor 200A and a
- the pH or electrolyte levels detected upstream and downstream may be compared, and the compared data may be used to adjust the pH or electrolyte concentration or composition of fluid employed during a blood fluid removal session.
- the compared data may also be used to determine the rate of change of blood electrolyte concentration or pH.
- the patient prior to a blood fluid removal session or in the early parts of such a session, the patient is typically fluid over-loaded and the concentration of electrolytes may be low (due to the increased fluid volume). It may be appropriate to allow a slightly higher than target concentration electrolyte to be introduced back into the patient when the patient's electrolyte levels are low.
- the electrolyte levels in the returned blood should within target range. Monitoring both upstream and downstream will allow for adjustments and checks on progress that may not be attainable by monitoring only one or the other.
- FIG. 6 a system employing sensors 200C, 200D, 200E, 200F in
- sensors 200C, 200D, 200E, 200F may be employed.
- the system may also employ one or more downstream sensors as described with regard to FIG. 5, but are not shown in FIG. 6.
- a brief discussion of some possible configurations and uses of sensors 200C, 200D, 200E, 200F is provided herein. However, it will be understood that meaningful data may be obtained from configurations other than those described below.
- the system (e.g., the system depicted in FIG. 6) employs two upstream sensors 200C, 200D.
- the first upstream sensor 200C is positioned to monitor pH or electrolyte levels in the blood after it exits the blood fluid removal device 100 or medium but before replacement fluid is added.
- the second sensor 200D is positioned to monitor pH or electrolyte levels of the blood after the replacement fluid is added and before the blood is returned to the patient 10.
- the first sensor 200C may be used to determine what adjustments may be needed to pH and electrolyte levels, and the second sensor 200D may be used to verify that the appropriate adjustments were made to achieve the desired pH and electrolyte concentrations prior to returning the blood to the patient.
- the system employs a sensor 200E to monitor pH or electrolytes
- the blood fluid removal device 100 or medium may include a sensor 200D configured and positioned to monitor pH or electrolytes of fluid (in the depicted case, dialysate) prior to entering the blood fluid device 100 or medium.
- a sensor 200D configured and positioned to monitor pH or electrolytes of fluid (in the depicted case, dialysate) prior to entering the blood fluid device 100 or medium.
- pH or electrolytes of fluid in the depicted case, dialysate
- the pH or levels of electrolytes (or change in pH or electrolytes) exiting the device 100 or medium may be used to predict the blood pH and electrolyte levels without having to measure the levels in the blood directly.
- data acquired from the sensors may be used to adjust the pH or electrolyte concentrations of fluid (e.g.
- dialysate or replacement fluid used during the dialysis session.
- concentrations of dialysate or replacement fluid are varied and the patient's response to the varying concentrations, as measured by one or more of sensors, is used to determine how best to proceed with further adjustments.
- the system may be configured to learn what works best for the particular patient 10. For example, dialysate or replacement fluid having different buffer concentrations or compositions or different electrolyte concentrations may be used during an initial blood fluid session or early in a blood fluid session. The patient's response to these different fluids can be monitored via sensors, and the system can learn what works best for the patient.
- the system can determine whether the use of the different fluids resulted in the patient's blood levels approaching target levels or deviating from target levels, as well as the rate at which the levels approach or deviate from target ranges. Based on the initial sessions or stages, the system may begin to predict how to react to a particular monitored pH or electrolyte level for the patient and adjust the fluid pH and electrolyte concentrations accordingly.
- the pH and electrolyte concentration of the fluid may be adjusted in any suitable manner.
- FIGS. 7-8 some representative components of an example of a closed-loop system (FIG.7) and an open- loop system (FIG. 8) for adjusting pH and electrolyte concentrations of fluid are shown.
- FIG. 7 data from one or more sensor 200 is presented to control electronics 495, which are configured to control flow control elements 415, 425, 435, such as valves.
- the electronically controllable flow control elements 415, 425, 435 are in fluid communication with supplies of concentrated electrolyte or buffer solutions 410, 420, 430 and with fluid line 440, which may be a catheter for carrying fresh dialysate or a catheter for carrying replacement fluid.
- the concentrates 410, 420, 430 are added to bulk fluid 400 to adjust the concentration of electrolytes or the pH of the bulk fluid (and thus the blood).
- data from one or more sensor 200 may be processed and
- a display 600 which may be a part of the blood fluid removal device, a separate computer, or the like.
- a healthcare provider may use the information presented on the display 600 to adjust the concentration of electrolytes or pH. This can be done, for example, by transmitting appropriate instructions to the control electronics via an input device 500.
- Any suitable input device 500 may be used.
- input device 500 may be a keyboard, a computer, a tablet, a personal data assistant, a physician programmer, or the like.
- the input device 500 is the display 600; e.g., where the display 600 is a touch screen device.
- the control electronics 495 can control flow control elements 415, 425, 435 to control the amount of concentrate 410, 420, 430 introduced to bulk fluid 400, which may be dialysate or replacement fluid.
- any number of suitable concentrates may be used.
- one concentrate may be sufficient with higher amounts being added when the electrolytes are determined to be low in the patient' s blood, and smaller amounts being added when the electrolytes are determined to be high in the patient's blood.
- More than one concentrate may be used when it is desired to, for example, control pH and electrolyte concentration independently or to control concentration of different electrolytes independently.
- the number of concentrates is the same as the number of ion species (pH and electrolytes) monitored.
- Control elements 415, 425, 435 may be any suitable control element, such as electronically controllable valves, electronically controllable pump mechanisms, or the like.
- Any suitable system may be configured as depicted in FIGS. 7-8 to provide control of adjustment of pH or electrolytes based on data acquired from one or more sensors.
- FIGS. 9- 10 selected components of two example systems are illustrated in FIGS. 9- 10.
- the system in FIG. 9 illustrates control of flow of a concentrate into replacement fluid
- the system in FIG. 10 illustrates control of flow of a concentrate into dialysate.
- the depicted device 100 includes a fluid pathway for adding replacement fluid to blood before it is returned to the patient.
- the device 100 includes an inlet 110 for receiving blood from the patient and an outlet 140 for returning blood to the patient.
- a blood flow control element 120 In the flow path between the inlet 110 and outlet 140 are a blood flow control element 120 and a medium for removing fluid and contaminants from the blood.
- the blood flow control element 120 is operably coupled to control electronics 150 which provide instructions to control the rate at which blood is passed through medium 130. Fluids and contaminants removed from the blood by the medium 130 may exit via outlet 180.
- the device 100 depicted in FIG. 9 also includes an inlet 197 for receiving bulk
- the device 100 also includes (i) an inlet 401 for receiving a concentrate for adjusting the pH or electrolyte concentration of the bulk replacement fluid, and (ii) a concentrate flow control element 415 in
- the concentrate is added to the replacement fluid prior to the replacement fluid being added to the blood (as depicted) so that the concentrate may be mixed or diluted prior to being added to the blood.
- the device may include a mixer (not shown) to mix the concentrate and bulk replacement fluid prior to adding to the blood.
- control electronics 150 are operably coupled to the concentrate flow control element 415 and are configured to control the rate at which the concentrate flow control element 415 adds fluid to the replacement fluid or blood based on data received from one or more sensors 200 that monitor pH or electrolytes levels (e.g., as described above). By controlling the rate at which the concentrate is introduced into replacement fluid or blood, the concentration or pH (or buffering capacity) of the returned blood can be controlled.
- FIG. 10 in which components that are numbered the same as in FIG.
- the device has an inlet 110 for receiving blood from a patient, a blood flow control element 120 in communication with the inlet 110 and configured to control the rate at which blood flows through medium 130 for removing fluid and contaminates from the blood.
- the device also includes an outlet 140 in communication with the medium 130 for returning blood to the patient.
- the medium 130 component has a housing 139 defining a major chamber 131.
- dialysate is regenerated by passing through dialysate regeneration medium 402 or components, such REDY regeneration medium and components, or the like, to regenerate bulk dialysate.
- the device also has an outlet 180 in communication with the medium 130 for diverting fluid removed from the blood out of the device.
- a flow regulator element 700 such as a valve, is operably coupled to control electronics 150 and is disposed in the flow path between the medium 130 and the outlet 180 to control the amount of fluid that exits the device (as a portion of the fluid is regenerated).
- the regeneration media or components (402) remove much of the pH buffer or electrolytes from the dialysate.
- a concentrate containing concentrated electrolytes and pH buffers is added to the regenerated dialysate before the dialysate re-enters the medium 130.
- a sensor 299 is positioned downstream of the regeneration medium 402 to monitor a level of a component of the regenerated dialysate.
- the sensor 299 may be a pH or electrolyte sensor and data acquired from sensor 299 may be used in determining how much concentrate to add to the regenerated fluid (which data may be provided to control electronics 150).
- the sensor 299 may be a sensor that monitors a blood waste product, such as urea, to determine whether the regeneration media 402 is properly functioning.
- the concentrate 410 is stored in a reservoir 410, having an inlet 401 that allows the concentrate supply in the reservoir 410 to be replenished from time to time.
- the rate at which the concentrate is added to the regenerated dialysate is controlled by concentrate flow control element 415, which is operably coupled to control electronics 150, and is based on data received from sensor 200 that monitors pH or electrolyte concentrations (e.g., as described above).
- the device 100 in FIG. 10 also has a dialysis flow control element 170 for controlling the rate at which dialysis is introduced into the dialysis flow compartment of the medium 130.
- the device 100 also includes a negative pressure control element 190 in communication with the dialysate compartment of the medium
- the negative pressure control element 190 which may include a pump or the like, may be used to generate or change a pressure differential across the membrane to control the rate at which fluid is removed from blood that passes though the medium component 130.
- the control electronics 150 which may include a processor, memory, etc., are operably coupled to, and configured to control, the blood flow control element 120, the dialysis flow control element 170, and the negative pressure control element 190. By controlling these elements in a coordinated manner, the rate at which fluid is removed from blood may be controlled. It will be understood that a device 100 need not have all of the controllable elements (120, 170, 190) depicted in FIG. 10 to effectively control rate of fluid removal from blood.
- control element Any suitable control element may be used for the various control elements (120, 150,
- FIGS. 9-10 show devices that can adjust blood electrolyte or pH by adjusting the pH or electrolyte concentration of replacement fluid or dialysate, it will be understood that pH and concentration can also be adjusted by, for example, adjusting the rate at which dialysate or blood is passed over a dialysis membrane. The rate of transfer between blood and dialysate of electrolytes, etc. across the membrane will be dependent on the flow rate of the blood and the dialysate. Accordingly, in systems where dialysate electrolyte concentration or pH cannot be readily adjusted, the rate of flow of blood or dialysate flow may be altered to achieve similar effects to adjusting the concentration of electrolytes in dialysate.
- FIGS. 9-10 depict components as being within a single unit, it will be understood that one or more of the components may be housed in separate units.
- the control electronics, or a portion thereof may be housed in a separate device, such as a computer, tablet, physician programmer, or the like.
- the computer, tablet, etc. may receive input from sensors, determine appropriate action to take, and instruct appropriate components of a blood fluid removal device to take the appropriate action.
- blood fluid removal devices and systems, and components thereof, described herein are presented for purposes of illustration and not limitation. Components, devices and systems other than those described herein, or derivations of the components, devices and systems described herein, may be employed. Further, components of the devices depicted and discussed above may be interchanged, substituted or added to components of alternative embodiments, as appropriate. Further, it will be understood that, while many of the blood fluid removal devices depicted in a variety of the figures, such as FIGS. 1-3 and 5-6, are shown as external to the patient, the teachings presented herein apply if the device, or components thereof, were implanted in the patient.
- FIGS. 11-13 The devices and systems described above, or components thereof, may be used to carry out the uses depicted in FIGS. 11-13 and described below, or portions thereof. Of course, any suitable device or system may be employed to carry out the uses, or portions thereof, described below. It will be understood that various steps of the uses presented with regard to any one of FIGS. 11-13 below may be interchanged, substituted, or added to steps presented with regard to any other of FIGS. 11-13.
- the depicted use includes initiating a blood fluid removal session (801) and monitoring an indicator pH or electrolyte concentration of blood (810); e.g. detecting pH or electrolytes in blood or in fluid from which pH or electrolyte levels in blood can be derived.
- an indicator pH or electrolyte concentration of blood e.g. detecting pH or electrolytes in blood or in fluid from which pH or electrolyte levels in blood can be derived.
- the pH or electrolyte composition or concentration of fluid e.g., dialysate or replacement fluid
- the fluid composition may be adjusted, e.g. as discussed above.
- continuous, periodic or intermittent determinations may be made as to whether the pH or electrolyte concentration is out of range (830) based on data acquired during the monitoring (810). For example, a determination (830) may be made as to whether pH or electrolyte levels crossed a threshold (e.g., a ceiling or floor). If the pH or electrolytes are determined to be within range, monitoring (810) may continue. If the pH or electrolytes are determined to be out of range (e.g., cross a threshold), an alert (840) may be issued to notify the patient or a healthcare provider of the situation.
- a threshold e.g., a ceiling or floor
- the situation may warrant stopping (890) of the blood fluid removal session; e.g., if the detected pH or electrolytes are too far out of range or cross a heightened threshold. In other cases, it may be suitable to continue with the blood fluid removal session with heightened awareness of a situation for which increased attention may be warranted.
- the depicted use includes initiating a blood fluid removal session (801) and monitoring an indicator pH or electrolyte concentration upstream (815) and downstream (813) of blood fluid removal. Data acquired from upstream and downstream sensors may be compared to determine how to adjust (860) the fluid composition, e.g. as described above.
- FIG. 13 the depicted use show a use where blood electrolyte
- concentration or pH is adjusted by altering the flow rate of dialysate or blood.
- the use includes initiating a blood fluid removal session (900), such as a hemodialysis session, and monitoring an indicator of pH or electrolyte (910), which can be in the patient, upstream of the device, downstream of the device, within the device, or the like. Based on the monitored data (910), adjustments to the flow of dialysate or blood may be made (920) to adjust the electrolyte concentration or pH in the blood that gets returned to the patient.
- the uses described herein may be carried out by sensor devices, blood fluid removal devices, or other devices in communication with sensor devices or blood fluid removal devices. These uses may be algorithms or instructions programmed into memory of such devices, which may be carried out by processors or other control electronics of the devices. Preferably, the processor is in communication with appropriate control elements of the devices and is configured to control such elements in a manner such that the programmed instructions are carried out by the appropriate device. It will be understood that a computer readable medium programmed with instructions that cause a sensor device, blood fluid removal device, or other suitable device to carry out a use, or a portion thereof, as described herein are contemplated.
- the computer readable medium may be non-transitory, i.e. lasting for more than a fleeting instant or seconds.
- the medium may be memory, such as RAM or ROM, a cd or dvd, flash memory, or the like.
- a system comprises: (a) a blood fluid removal device comprising (i) an inlet for receiving blood from a patient, (ii) an outlet for returning blood from the patient, (iii) a medium for removing fluid and contaminants from the blood, the medium being positioned between the inlet and the first outlet, and (iv) a fluid source for carrying a fluid, the fluid selected from dialysate and replacement fluid, wherein if the fluid is dialysate the fluid source carries the fluid to the medium, and wherein if the fluid is replacement fluid the fluid source carries the fluid to the blood after the blood exits the medium; (b) a concentrate source for housing a concentrate solution comprising concentrated electrolyte or pH buffer; (c) a concentrate flow control element for controlling the rate that the concentrate solution enters the fluid source; (d) a first sensor configured to monitor an indicator of blood electrolyte concentration or blood pH; and (e) control electronics in operable communication with the sensor and the concentrate flow control element, wherein the
- a second aspect is a system of the first aspect, wherein the first sensor is configured to monitor blood before the blood enters the medium.
- a third aspect is a system of the second aspect, further comprising a second sensor
- the second sensor being configured to monitor blood after the blood exits the medium.
- a fourth aspect is a system of the third aspect, wherein the control electronics are in
- control electronics are configured to adjust the rate at which the concentrate solution enters the fluid source based on the comparison of the data acquired from the first sensor and the second sensor.
- a fifth aspect is a system of aspect 1, wherein the first sensor is configured to monitor the indicator in fluid removed from the blood after the fluid removed from the blood exits the medium
- a sixth aspect is a system of aspect 5, wherein the control electronics are configured to derive the blood pH or blood electrolyte concentration based on data acquired from the first sensor.
- a seventh aspect is a system of aspect 5, further comprising a second sensor configured to monitor the indicator in dialysate in the fluid source before the dialysate enters the medium, wherein the control electronics are control electronics are in operable communication with the second sensor and are configured to compare data acquired from the first sensor to data acquired from the second sensor, and wherein the control electronics are configured to adjust the rate at which the concentrate solution enters the fluid source based on the comparison of the data acquired from the first sensor and the second sensor.
- An eighth aspect is a system of the first aspect, wherein the first sensor is configured to monitor the indicator in the blood after the blood exits the medium and before
- a ninth aspect is a system of aspect 8, further comprising a second sensor configured to monitor the indicator in the blood after the replacement fluid has been added to the blood.
- a tenth aspect is a system of any of aspects 1-9, wherein the control electronics, or
- An eleventh aspect is a system of any of aspects 1-10, further comprising a computer readable medium, wherein the computer readable medium comprises instructions that cause the control electronics to control the concentrate flow control element to adjust the rate at which the concentrate solution enters the fluid source based on data obtained from the sensor.
- a twelfth aspect is a use carried out by a blood fluid removal device or system
- a thirteenth aspect is use of aspect 12, wherein monitoring the indicator comprises
- a fourteenth aspect is a use of aspect 13, further comprising comparing a value of the indicator monitored before the blood is passed through the medium to a value of the indicator monitored after passing the blood through the medium, wherein adjusting the pH buffer composition or the electrolyte composition comprises adjusting the
- composition based on the comparison.
- a fifteenth aspect is a use of any of aspects 12-14, wherein adjusting the composition comprises adding a concentrated electrolyte solution or buffer solution to the fluid.
- a sixteenth aspect is a use of any of aspects 12-15, further comprising (i) determining whether a value of the monitored indicator crosses a threshold; and (ii) providing an alert if the value of the monitored indicator is determined to cross the threshold.
- a seventeenth aspect is a use of aspect 12, wherein monitoring the indicator comprises monitoring the indicator in fluid removed from the blood.
- An eighteenth aspect is a use of aspect 17, further comprising determining a blood
- electrolyte concentration or pH from a value of the monitored indicator of the fluid removed from the blood.
- a nineteenth aspect is a use of aspect 17 or aspect 18, wherein the fluid for use in the blood fluid removal procedure is dialysate, and wherein monitoring the indicator further comprises monitoring the indicator in the dialysate prior to the dialysate entering a blood fluid removal medium, and wherein the use further comprises comparing a value of the monitored indicator in fluid removed from the blood to a value of the monitored indicator in the dialysate prior to entering the blood fluid removal medium.
- a twentieth aspect is a use of aspect 12, wherein the fluid for use in the blood fluid
- monitoring the indicator comprises monitoring the indicator in blood downstream of a blood fluid removal medium and upstream of addition of the replacement fluid to the blood.
- a twenty-first aspect is a use of aspect 20, wherein monitoring the indicator further
- the use further comprises comparing a value of the monitored indicator obtained upstream of the addition of replacement fluid to a value of the monitored indicator obtained downstream of the addition of replacement fluid.
- a twenty-second aspect is a system comprising: (i) a medium housing defining a major chamber; (ii) a blood flow removal membrane disposed in the housing and sealingly dividing the major chamber into first and second minor chambers; (iii) a first inlet and a first outlet in fluid communication with the first minor chamber, wherein the system is configured such that blood enters the first minor chamber through the first inlet and exits the first minor chamber through the first outlet; (iv) a second inlet and a second outlet in fluid communication with the second minor chamber, wherein the system is configured such that dialysate enters the second minor chamber through the second inlet and exits the second minor chamber through the second outlet; (v) a dialysate regeneration medium in fluid communication with and disposed in a dialysate flow path between the second inlet and the second outlet; (vi) a concentrate source for housing a concentrate solution comprising concentrated electrolyte or pH buffer; (vii) a concentrate flow control element for controlling the rate that the concentrate solution enters
- a twenty-third aspect is a use carried out by a blood fluid removal device or system, comprising: (i) initiating blood fluid removal procedure for a patient in need thereof, wherein the procedure comprises use of a dialysate fluid and a dialysate membrane, as at least a part of a blood fluid removal medium, across which electrolytes may be exchanged between blood and the dialysate fluid; (ii) monitoring an indicator of blood electrolyte concentration or blood pH during the blood fluid removal session; and (iii) adjusting the flow rate of the dialysate fluid or blood based on a value of the monitored indicator.
- a twenty-fourth aspect is a use of aspect 23, wherein monitoring the indicator comprises monitoring the indicator in blood before passing the blood through the blood fluid removal medium and after passing the blood through the blood fluid removal medium.
- a twenty-fifth aspect is a use of aspect 23, further comprising comparing a value of the indicator monitored before the blood is passed through the medium to a value of the indicator monitored after passing the blood through the medium, wherein adjusting the flow rate of the dialysate fluid or the blood comprises adjusting the composition based on the comparison.
- a twenty-sixth aspect is a use of any of aspects 23-25, wherein monitoring the indicator comprises monitoring the indicator in fluid removed from the blood.
- a twenty- seventh aspect is a use of aspect 23, further comprising determining a blood electrolyte concentration or pH from a value of the monitored indicator of the fluid removed from the blood.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Physics & Mathematics (AREA)
- Vascular Medicine (AREA)
- Hematology (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Pathology (AREA)
- Urology & Nephrology (AREA)
- Anesthesiology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Emergency Medicine (AREA)
- Cardiology (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Primary Health Care (AREA)
- Epidemiology (AREA)
- Radiology & Medical Imaging (AREA)
- Physiology (AREA)
- Water Supply & Treatment (AREA)
- Computer Networks & Wireless Communication (AREA)
- Business, Economics & Management (AREA)
- General Business, Economics & Management (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- External Artificial Organs (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
Abstract
Uses include monitoring indicators of blood pH or blood electrolyte levels during a blood fluid removal session and adjusting concentrations of pH buffers or electrolytes in dialysate or replacement fluid used during the session based on the monitored indicators. Blood fluid removal systems may employ sensors that monitor blood pH or electrolyte levels to adjust the fluid parameters during a blood fluid removal session.
Description
ELECTROLYTE AND pH MONITORING FOR FLUID REMOVAL PROCESSES
RELATED APPLICATION
[0001] This application claims priority to U.S. Utility Application No. 13/424,479 filed March
20, 2012, which claims priority U.S. Provisional Application No. 61/480,539, U.S. Provisional Application No. 61/480,544, U.S. Provisional Application No. 61/480,541, U.S. Provisional Application No. 61/480,535, U.S. Provisional Application No.
61/480,532, U.S. Provisional Application No. 61/480,530, and U.S. Provisional Application No. 61/480,528, wherein each priority Provisional Application was filed April 29, 2011, wherein each priority application is hereby incorporated by reference in its entirety to the extent that it does not conflict with the disclosure presented herein.
FIELD
[0002] The present disclosure relates generally to devices, systems and uses for monitoring indicators of electrolytes or pH in patients for which blood cleaning or fluid removal is indicated, such as patients suffering from kidney disease or heart failure.
BACKGROUND
[0003] Patients who undergo hemodialysis or other procedures that remove solutes and fluid from the blood often die of cardiac complications. Many factors may contribute to such death, including stress placed on the heart due to the increased blood fluid volume in these patients. Increased fluid concentrations and inability to remove waste products
from the blood, in some cases, can also contribute to electrolyte and pH imbalance that can affect cardiac contractility and efficiency. Further, rapid changes in fluid volume or pH or electrolyte concentration of the blood during hemodialysis or other fluid removal processes may place additional stress on the heart and may contribute to the high rate of morbidity for patients who undergo blood fluid removal procedures.
[0004] When a patient reaches a point where routine blood fluid removal procedures are
prescribed, the patient undergoes periodic examinations that allow a healthcare provider to set various parameters of the blood fluid removal procedures, such as the profile of fluid removal, the composition of dialysate or replacement fluid employed, and the like. These examinations typically occur once a month in accordance with current standards of care.
[0005] Hemodialysis or similar procedures may occur three to four times a week. Thus, the patient may undergo 10 to 15 or more blood fluid removal sessions before the
prescription or parameters are changed. It is possible, for example, that a prescription with regard to a dialysate electrolyte and pH buffer composition will not be appropriate for a patient several days or weeks after the prescription is set. Accordingly, it may be desirable to more frequently determine whether the electrolyte or pH concentration of a fluid used in blood fluid removal sessions is appropriate. In addition, it may be desirable to adjust the concentration or composition of the fluid during a blood fluid removal session in a manner that may improve patient health and reduce morbidity.
SUMMARY
This disclosure, among other things, describes devices, systems and uses for monitoring indicators of pH or electrolytes in patients for which blood fluid removal sessions are indicated. The monitoring may occur during a blood fluid removal session, and the concentration or composition of buffer or electrolytes may be adjusted based on
monitored data acquired during the blood fluid removal session. By monitoring pH or electrolytes, the dialysate of replacement fluid may be adjusted during a session to enhance patient safety.
[0007] In various embodiments described herein, a use includes initiating a blood fluid removal procedure for a patient in need thereof. The procedure includes use of a fluid selected from a dialysate fluid or a replacement fluid. The fluid has an initial pH buffer composition or electrolyte composition. The use further includes monitoring an indicator of blood electrolyte concentration or blood pH of the patient during the blood fluid removal session, and adjusting the pH buffer composition or the electrolyte composition of the fluid based on a value of the monitored indicator. The monitoring may be of blood before or after the blood has passed through the blood fluid removal device, or may be of fluid removed from the blood. In some embodiments, data acquired from monitoring performed on blood before and after passing through the blood fluid removal device is compared to data acquired from fluid (e.g., dialysate) before and after passing through blood fluid removal media of the device, and based on the comparison, the pH buffer composition or the electrolyte composition of the fluid is adjusted.
[0008] In embodiments, a system includes a blood fluid removal device, which has (i) an inlet for receiving blood from a patient, (ii) an outlet for returning blood from the patient, (iii) a medium for removing fluid and contaminants from the blood, the medium being positioned between the inlet and the first outlet, and (iv) a fluid source for carrying a fluid, where the fluid is selected from dialysate and replacement fluid. If the fluid is dialysate, the fluid source carries the fluid to the medium. If the fluid is replacement fluid, the fluid source carries the fluid to the blood after the blood exits the medium. The system further includes (i) a concentrate source for housing a concentrate solution comprising concentrated electrolyte or pH buffer, (ii) a concentrate flow control element for controlling the rate that the concentrate solution enters the fluid source; (iii) a sensor for monitoring an indicator of blood pH or blood electrolyte concentration; and (iv) control electronics in operable communication with the sensor and the concentrate flow
control element. The control electronics are configured, via the concentrate flow control element, to adjust the rate at which the concentrate solution enters the fluid source based on data obtained from the sensor.
[0009] In embodiments, a system includes (i) a medium housing defining a major chamber; (ii) a blood flow removal membrane disposed in the housing and sealingly dividing the major chamber into first and second minor chambers; (iii) a first inlet and a first outlet in fluid communication with the first minor chamber, wherein the system is configured such that blood enters the first minor chamber through the first inlet and exits the first minor chamber through the first outlet; (iv) a second inlet and a second outlet in fluid communication with the second minor chamber, wherein the system is configured such that dialysate enters the second minor chamber through the second inlet and exits the second minor chamber through the second outlet; (vi) a dialysate regeneration medium in fluid communication with and disposed in a dialysate flow path between the second inlet and the second outlet; (vii) a concentrate source for housing a concentrate solution comprising concentrated electrolyte or pH buffer; (viii) a concentrate flow control element for controlling the rate that the concentrate solution enters the dialysate flow path downstream of the dialysate regeneration medium and upstream of the second inlet; (ix) a sensor configured to monitor an indicator of electrolyte concentration or pH of dialysate in the dialysate flow path downstream of the dialysate regeneration medium and upstream of the second inlet; and (x) control electronics in operable communication with the sensor and the concentrate flow control element, wherein the control electronics are configured, via the concentrate flow control element, to adjust the rate at which the concentrate solution enters the dialysate flow path based on data obtained from the sensor.
[0010] One or more embodiments of the systems, devices and uses described herein may provide one or more advantages over prior systems, devices and uses for blood fluid removal in patients. Such advantages will be apparent to those skilled in the art upon reading the following detailed description.
BRIEF DESCRIPTION OF THE DRAWINGS
[0011] The accompanying drawings, which are incorporated into and form a part of the
specification, illustrate several embodiments of the present disclosure and, together with the description, serve to explain the principles of the disclosure. The drawings are only for the purpose of illustrating embodiments of the disclosure and are not to be construed as limiting the disclosure.
[0012] FIGS. 1-3 are schematic block diagrams showing interaction of blood fluid removal devices with a patient showing flow of blood (dashed arrows) and fluid (solid arrows), which blood fluid removal devices may be used in various embodiments described herein.
[0013] FIG. 4 is a schematic block diagram showing some selected components of an
embodiment of a sensor device.
[0014] FIGS. 5-6 are schematic block diagrams showing sensors and blood flow between
patients and a blood fluid removal devices.
[0015] FIGS. 7-8 are schematic block diagrams showing flow paths and some control
mechanisms (closed loop: FIG. 7; open loop: FIG. 8) for controlling flow of concentrate into fluid for use in a blood fluid removal process based on monitored pH or electrolytes.
[0016] FIGS. 9-10 are schematic block diagrams of some components of blood fluid removal devices that are configured to adjust pH or electrolyte concentrations of fluids in response to data regarding monitored pH or electrolyte levels in blood.
[0017] FIGS. 11-13 are flow diagrams illustrating overviews of general uses in accordance with embodiments described herein.
The schematic drawings presented herein are not necessarily to scale. Like numbers used in the figures refer to like components, steps and the like. However, it will be understood that the use of a number to refer to a component in a given figure is not intended to limit the component in another figure labeled with the same number. In addition, the use of different numbers to refer to components is not intended to indicate that the different numbered components cannot be the same or similar.
DETAILED DESCRIPTION
[0019] In the following detailed description, reference is made to the accompanying drawings that form a part hereof, and in which are shown by way of illustration several
embodiments of devices, systems and uses. It is to be understood that other embodiments are contemplated and may be made without departing from the scope or spirit of the present disclosure. The following detailed description, therefore, is not to be taken in a limiting sense.
[0020] All scientific and technical terms used herein have meanings commonly used in the art unless otherwise specified. The definitions provided herein are to facilitate
understanding of certain terms used frequently herein and are not meant to limit the scope of the present disclosure.
[0021] As used in this specification and the appended claims, the singular forms "a", "an", and
"the" encompass embodiments having plural referents, unless the content clearly dictates otherwise.
[0022] As used in this specification and the appended claims, the term "or" is generally
employed in its sense including "and/or" unless the content clearly dictates otherwise.
[0023] As used herein, "have", "having", "include", "including", "comprise", "comprising" or the like are used in their open ended sense, and generally mean "including, but not limited to."
[0024] As used herein, a "patient for which a blood fluid removal session is indicated" is a
patient that has undergone, is undergoing, or is likely to undergo at least one blood fluid removal session. In general, such patients are fluid overloaded patients, such as patients suffering from heart failure, chronic kidney disease, or acute kidney failure. Often such patients are stage 3 to stage 5 chronic kidney disease patients, are unresponsive or under- responsive to diuretics, or the like.
[0025] As used herein, a "blood fluid removal process," or the like, refers to a process from
which fluid is removed from blood of a patient and the blood is returned to the patient. In most cases, the blood is also cleaned; i.e., waste products are removed from the blood and cleaned blood is returned to the patient. Examples of blood fluid removal processes include ultrafiltration, hemofiltration, hemodialysis, hemodiafiltration, peritoneal dialysis, and the like. Any patient for which blood fluid removal is indicated may benefit from the devices, systems and uses described herein.
[0026] This disclosure relates to, among other things, systems and uses for monitoring indicators of pH or electrolyte concentrations in patients for which a blood fluid removal process is indicated. In embodiments, the sensors are configured and positioned to monitor pH or electrolytes in one or more of (i) blood of the patient before the blood enters a fluid removal or cleaning medium of the blood fluid removal device; (ii) blood of the patient before after blood exits the medium before being returned to the patient; (iii) fluid removed from the blood of the patient after passing through the medium; (iv) fluid, such as dialysate, before entering the medium; (v) fluid upstream or downstream of the addition of a concentrate for use in altering the composition of the fluid (e.g., dialysate or replacement fluid); (vi) or the like. Additional discussion with regard to sensor placement and use of such sensors will follow. First, however, a brief discussion of
blood fluid removal devices or systems that may be used in accordance with the teachings presented herein is presented.
[0027] Any suitable device or system for removing fluid, or fluid and contaminants, from blood may be used in accordance with the teachings presented herein. The devices, or components thereof, may be traditional large counsel-type, wearable, or implantable.
[0028] Block diagrams of some example devices and systems are shown in FIGS. 1-3. As
shown in FIG. 1, blood may be removed from a patient 10 and fluid may be removed via a blood fluid removal device 100 and returned to the patient 10. Removed fluid may be diverted. In some embodiments where the blood fluid removal device 100 or system, or components thereof, are implanted, the removed fluid may be diverted to the patient' s bladder. Examples of blood fluid removal devices 100 that may operate as depicted in FIG. 1 are ultrafiltration and hemofiltration devices. Examples of such devices and components thereof that may be employed in accordance with the teachings presented herein are well known in the art. It will be understood that peritoneal dialysis, where dialysate is introduced into the peritoneal cavity, may also be employed.
[0029] With some of such devices, replacement fluid may be introduced into the patient's blood if fluid is removed from the blood by the device 100 at too great of a rate or amount. The replacement fluid may be added to the original blood before fluid removal or may be added to the blood after initial fluid removal and prior to return to the patient' s cardiovascular system. Preferably, the replacement fluid is added after initial fluid removal. The pH and electrolyte concentration of the replacement fluid may be set or adjusted, e.g. as described in more detail below, based on monitoring of pH or electrolytes of the patient.
[0030] As shown in the embodiment depicted in FIG. 2, the blood fluid removal device 100 may employ dialysate to assist in removal of contaminants from the patient's blood and in maintaining proper pH and electrolyte balance. The pH or electrolyte concentration of the dialysate may be set or adjusted, e.g. as described in more detail below, based on monitoring of pH or electrolytes. Used dialysate and fluid removed from the blood may
be diverted. In some embodiments, particularly where the blood fluid removal device 100 or system or components thereof are wearable or implantable, the used dialysate and removed fluid, or a portion thereof, may be regenerated (indicated by dashed lined regeneration system 150) to produce fresh dialysate for re-use in the blood fluid removal process. One system for regeneration of dialysate is the REDY system, such as described in Roberts, M, "The regenerative dialysis (REDY) sorbent system," Nephrology 4:275- 278, 1998, which system may be employed or readily modified for use in embodiments described herein. As shown in FIG. 2, a concentrate may be added to the regenerated dialysate to adjust the pH and electrolytes of the regenerated dialysate to an amount suitable for re-use as fresh dialysate.
[0031] Regardless of whether the dialysate is regenerated, systems and devices that operate in a manner shown in the embodiment of FIG. 2 include hemodialysis and hemodiafiltration systems. Examples of such devices and components thereof that may be employed in accordance with the teachings presented herein are well known in the art. It will be understood that peritoneal dialysis, where the dialysate is introduced into peritoneal cavity may also be employed.
[0032] As shown in FIG. 3, in cases where the blood fluid removal device 100 of FIG. 2
removes fluid from the blood at too high of a rate, replacement fluid may be introduced into the patient's blood, upstream or downstream of fluid removal, e.g. as described above with regard to FIG. 1.
[0033] Regardless of the device or blood fluid removal process employed, it is important to ensure that the blood pH and electrolyte concentrations are within suitable ranges. If blood electrolyte concentrations are not within suitable ranges, problems with cardiac contractility, efficiency and the like may occur. If the pH is not within a suitable range, acidosis may result, which can result in disruption of cell membranes and denaturation of proteins. In either case, if ranges of blood electrolytes and pH are not properly controlled, the patient's health may be at risk. For example, sudden and cardiac death (including death from congestive heart failure, myocardial infarction, and sudden death)
are common in hemodialysis patients. See Bleyer et al, "Sudden and cardiac death rated in hemodialysis patients," Kidney International, (1999), 55: 1552-1559.
Accordingly, one goal of hemodialysis, ultrafiltration, and the like is to ensure that the patient's blood pH and electrolyte concentrations are within acceptable ranges. Typical ranges of pH and blood electrolyte concentration that are desired during or following a blood fluid removal session are provided in Table 1 below. As indicated in Table 1, concentrations of various acids or bases (or salts or hydrates thereof) are often important in determining the pH of blood. Accordingly, some typical target concentrations of such acids, bases are presented in Table 1.
Table 1: Typical target ranges for pH and electrolytes (ref. Medical Surgical Nursing, 7 Ed., 2007)
However, it will be understood that the target for a particular patient may be different from the values presented in Table 1 for one or more electrolyte or pH. It will also be understood that buffers are typically employed to maintain proper blood pH.
[0036] Some suitable buffers that may be used in fluid, such as replacement fluid or dialysate, include bicarbonate, acetate, citrate, lactate, amino acid and protein buffers. The concentration and composition of the buffers and components thereof may be adjusted based on monitored pH of the patient's blood. Similarly, the concentration of electrolytes such as sodium, potassium, calcium, and chloride in replacement fluid or dialysate may be set or altered based the monitored levels of electrolytes.
[0037] Any suitable sensor may be employed to monitor pH or electrolytes. For example and referring to FIG. 4, a block diagram showing some components that a sensing device 200 may include is depicted. The sensing device 200 is shown as a stand-alone device in FIG. 4, but is will be understood that the device, one or more components thereof, may be incorporated into other devices, such as a blood fluid cleaning device. The sensor 200 depicted in FIG. 4 has a housing 299 (which can be shared with another device if the sensor, or portion thereof, is incorporated into the other device) for containing various electronic components 296, 297, 289, 295. Sensing circuitry 296, such as analog-to- digital convertor, band-pass filter, or the like, is operably coupled to power supply 297(which, again may be shared) and control electronics 295 (which may be shared), which include a processor 294 and a memory 293 for storing sensed data and processor instructions. Sensing circuitry 296 is also operably coupled to transducer 205, such as an ion selective electrode, via lead 207. In some embodiments (not shown), the device 200 is leadless, and the transducer 207 or ion selective electrode is exposed through housing 299. Control electronics 295 are operably coupled to power supply 297 and to communication circuitry 289 for communicating with another device external. In cases where the sensor 200 is a stand-alone device, communication circuitry may be used to communicate with a blood fluid removal device or a device in communication with a blood fluid removal device to transmit data acquired from the sensor to the blood fluid removal device.
[0038] Any suitable transducer may be employed to detect pH or electrolytes. In embodiments, the transducer is an ion selective electrode configured to detect H+ ions, K+ ions, Na+ ions, Ca2+ ions, CI" ions, phosphate ions, magnesium ions, acetate ions, amino acids ions, or the like. Such electrodes, and components of sensors employing such electrodes, are known in the art and may be employed, or modified to be employed, for use in the monitoring described herein. One example of a pH sensor is Medtronic, Inc.'s Bravo® pH sensor. One example of a potassium selective electrode is the Thermo Scientific Potassium Ionplus®. Other examples of ion-selective electrodes are contained in the CCX Stat Profile® produced by Nova Biomedical.
[0039] In some embodiments, one or more sensors are employed to detect one or more ions to gauge pH or electrolytes in the blood. In some embodiments, a sensor may have more than one transducer, even if leadless, that may monitor more than one ionic species. By measuring more than one ionic species, a more detailed understanding of the levels of various electrolytes or blood components may be had. For example, in some patients in some situations, one electrolyte may be at elevated levels while another may be at reduced levels. In some embodiments, more than one sensor for the same ion is employed for purposes of result confirmation and redundancy, which can improve reliability and accuracy. In some embodiments, sensors for the same ion may be configured to accurately detect different ranges of concentrations of the ion. In embodiments, more than one transducer is present in a single unit. This allows for convenient data collection and circuitry, as all the data may be collected in one place at the same time. Further, the multiple transducers may share the same fluid collection mechanism (e.g., a microdialyzer in the case of an implant), and if needed or desired, may share the same data processing and memory storage components.
[0040] A sensor (or transducer) may be placed at any suitable location for purposes of
monitoring electrolytes or pH. For example, and with reference to FIG. 5, an example of a blood fluid removal system and sensors is depicted. One or more of sensors 200A, 200B may be employed. As shown in FIG. 5, a pH or electrolyte sensor 200A may be
located external to the patient 10 and configured to monitor pH or electrolyte levels in the blood before the blood enters the blood fluid removal device 100 (or before entering blood fluid removal medium, as will be discussed below in more detail). For example, sensor 200A may be positioned such that a transducer is placed within a catheter carrying blood from the patient 10 to the blood fluid removal device 100 or blood fluid removal media.
[0041] Data acquired from a sensor 200A upstream of the fluid delivery device 100 or blood fluid removal media provides an indication of the actual status of the patient 10. As a blood fluid cleaning session progresses, data acquired from a sensor 200A upstream of the fluid delivery device 100 or medium can be used to determine whether blood pH and electrolytes are approaching target ranges or to determine the rate at which pH and electrolytes are changing in the patient as a result of the blood fluid removal process. While not intending to be bound by theory, it is possible that too rapid of a change in pH or electrolyte concentrations can lead to patient hypotension or sudden death that is seen in patient populations that undergo blood fluid removal processes. By monitoring and controlling the rate of change of pH or electrolyte changes in the blood of a patient during the blood fluid removal session, perhaps the incidence of crashing or sudden death can be reduced.
[0042] In some embodiments, a sensor 200B is located external to the patient 10 and configured to monitor pH or electrolyte levels in the blood after the blood exits the blood fluid removal device 100 (or after exiting the blood fluid removal medium) and before being returned to the patient 10. For example, sensor 200B may be positioned such that a transducer is placed within a catheter carrying blood from the blood fluid removal device 100 (or medium) to the patient 10. Such a downstream sensor 200B may be used to ensure that pH and electrolyte levels of blood to be returned to the patient are not out of range. If the detected levels are out of range or are tending towards out of range, adjustments to pH and electrolyte concentrations can be made to fluid (dialysate or replacement fluid) to avoid introducing fluid into the patient 10 that may cause or
exacerbate a cardiac problem associated with electrolyte or pH levels that are too high or too low.
[0043] In some embodiments, the system employs both an upstream sensor 200A and a
downstream sensor 200B. With such systems, the pH or electrolyte levels detected upstream and downstream may be compared, and the compared data may be used to adjust the pH or electrolyte concentration or composition of fluid employed during a blood fluid removal session. The compared data may also be used to determine the rate of change of blood electrolyte concentration or pH. By way of example, prior to a blood fluid removal session or in the early parts of such a session, the patient is typically fluid over-loaded and the concentration of electrolytes may be low (due to the increased fluid volume). It may be appropriate to allow a slightly higher than target concentration electrolyte to be introduced back into the patient when the patient's electrolyte levels are low. However, as the patient's electrolyte levels (as measured by upstream sensor 200A) approach target levels, the electrolyte levels in the returned blood (as measured by downstream sensor 200B) should within target range. Monitoring both upstream and downstream will allow for adjustments and checks on progress that may not be attainable by monitoring only one or the other.
[0044] Referring now to FIG. 6, a system employing sensors 200C, 200D, 200E, 200F in
alternative or additional locations is shown. Any one or more of such sensors 200C, 200D, 200E, 200F may be employed. The system may also employ one or more downstream sensors as described with regard to FIG. 5, but are not shown in FIG. 6. A brief discussion of some possible configurations and uses of sensors 200C, 200D, 200E, 200F is provided herein. However, it will be understood that meaningful data may be obtained from configurations other than those described below.
[0045] In embodiments, the system (e.g., the system depicted in FIG. 6) employs two upstream sensors 200C, 200D. The first upstream sensor 200C is positioned to monitor pH or electrolyte levels in the blood after it exits the blood fluid removal device 100 or medium but before replacement fluid is added. The second sensor 200D is positioned to monitor
pH or electrolyte levels of the blood after the replacement fluid is added and before the blood is returned to the patient 10. The first sensor 200C may be used to determine what adjustments may be needed to pH and electrolyte levels, and the second sensor 200D may be used to verify that the appropriate adjustments were made to achieve the desired pH and electrolyte concentrations prior to returning the blood to the patient.
[0046] In embodiments, the system employs a sensor 200E to monitor pH or electrolytes
removed from the blood of the patient after exiting the blood fluid removal device 100 or medium, and may include a sensor 200D configured and positioned to monitor pH or electrolytes of fluid (in the depicted case, dialysate) prior to entering the blood fluid device 100 or medium. By monitoring the pH or electrolytes in the fluid as it leaves the device 100 or medium (or the differential pH or electrolyte levels from before entering the device or medium and after exiting the device or medium), the pH or levels of electrolytes (or change in pH or electrolytes) exiting the device 100 or medium may be used to predict the blood pH and electrolyte levels without having to measure the levels in the blood directly. In cases where pH or electrolytes are detected in fluid other than blood and used to derive or predict pH or electrolyte levels or changes in blood, such detection serves as an "indicator" of blood pH or electrolytes. Of course, direct detection in blood also serves as an indicator of blood pH or electrolytes.
[0047] Regardless of which sensors 200A-F (see, FIGS. 4-6) are employed, data acquired from the sensors may be used to adjust the pH or electrolyte concentrations of fluid (e.g.
dialysate or replacement fluid) used during the dialysis session. In some embodiments, the concentrations of dialysate or replacement fluid are varied and the patient's response to the varying concentrations, as measured by one or more of sensors, is used to determine how best to proceed with further adjustments. In essence, the system may be configured to learn what works best for the particular patient 10. For example, dialysate or replacement fluid having different buffer concentrations or compositions or different electrolyte concentrations may be used during an initial blood fluid session or early in a blood fluid session. The patient's response to these different fluids can be monitored via
sensors, and the system can learn what works best for the patient. For example, the system can determine whether the use of the different fluids resulted in the patient's blood levels approaching target levels or deviating from target levels, as well as the rate at which the levels approach or deviate from target ranges. Based on the initial sessions or stages, the system may begin to predict how to react to a particular monitored pH or electrolyte level for the patient and adjust the fluid pH and electrolyte concentrations accordingly.
[0048] The pH and electrolyte concentration of the fluid (dialysate or replacement fluid) may be adjusted in any suitable manner. For example and with reference to FIGS. 7-8, some representative components of an example of a closed-loop system (FIG.7) and an open- loop system (FIG. 8) for adjusting pH and electrolyte concentrations of fluid are shown. With reference to FIG. 7, data from one or more sensor 200 is presented to control electronics 495, which are configured to control flow control elements 415, 425, 435, such as valves. The electronically controllable flow control elements 415, 425, 435 are in fluid communication with supplies of concentrated electrolyte or buffer solutions 410, 420, 430 and with fluid line 440, which may be a catheter for carrying fresh dialysate or a catheter for carrying replacement fluid. The electronically controllable flow control elements 415, 425, 435, via control electronics 495, control the rate at which the concentrates 410, 420, 430 flow into the fluid line 440. The concentrates 410, 420, 430 are added to bulk fluid 400 to adjust the concentration of electrolytes or the pH of the bulk fluid (and thus the blood).
[0049] Referring now to FIG. 8, data from one or more sensor 200 may be processed and
appropriate information presented on a display 600, which may be a part of the blood fluid removal device, a separate computer, or the like. A healthcare provider may use the information presented on the display 600 to adjust the concentration of electrolytes or pH. This can be done, for example, by transmitting appropriate instructions to the control electronics via an input device 500. Any suitable input device 500 may be used. For example, input device 500 may be a keyboard, a computer, a tablet, a personal data
assistant, a physician programmer, or the like. In some embodiments, the input device 500 is the display 600; e.g., where the display 600 is a touch screen device. Regardless of how the instructions are input, the control electronics 495 can control flow control elements 415, 425, 435 to control the amount of concentrate 410, 420, 430 introduced to bulk fluid 400, which may be dialysate or replacement fluid.
[0050] Any number of suitable concentrates may be used. For example, one concentrate may be sufficient with higher amounts being added when the electrolytes are determined to be low in the patient' s blood, and smaller amounts being added when the electrolytes are determined to be high in the patient's blood. More than one concentrate may be used when it is desired to, for example, control pH and electrolyte concentration independently or to control concentration of different electrolytes independently. In embodiments, the number of concentrates is the same as the number of ion species (pH and electrolytes) monitored.
[0051] Control elements 415, 425, 435, as depicted in FIGS. 7-8 and discussed above, may be any suitable control element, such as electronically controllable valves, electronically controllable pump mechanisms, or the like.
[0052] Any suitable system may be configured as depicted in FIGS. 7-8 to provide control of adjustment of pH or electrolytes based on data acquired from one or more sensors. By way of example, selected components of two example systems are illustrated in FIGS. 9- 10. The system in FIG. 9 illustrates control of flow of a concentrate into replacement fluid, and the system in FIG. 10 illustrates control of flow of a concentrate into dialysate.
[0053] Referring now to FIG. 9, the depicted device 100 includes a fluid pathway for adding replacement fluid to blood before it is returned to the patient. The device 100 includes an inlet 110 for receiving blood from the patient and an outlet 140 for returning blood to the patient. In the flow path between the inlet 110 and outlet 140 are a blood flow control element 120 and a medium for removing fluid and contaminants from the blood. The blood flow control element 120 is operably coupled to control electronics 150 which provide instructions to control the rate at which blood is passed through medium 130.
Fluids and contaminants removed from the blood by the medium 130 may exit via outlet 180.
[0054] The device 100 depicted in FIG. 9 also includes an inlet 197 for receiving bulk
replacement fluid and a replacement fluid flow control element 195 in communication with the inlet and configured to control the rate at which the replacement fluid is added to the blood. The control electronics 150 are operably coupled to the replacement fluid flow control element 195 and are configured to control the rate at which replacement fluid flow control element 195 adds fluid to the blood. The device 100 also includes (i) an inlet 401 for receiving a concentrate for adjusting the pH or electrolyte concentration of the bulk replacement fluid, and (ii) a concentrate flow control element 415 in
communication with the inlet 401 and configured to control the rate at which the concentrate is added to the replacement fluid or blood before the blood is returned to the patient. Preferably, the concentrate is added to the replacement fluid prior to the replacement fluid being added to the blood (as depicted) so that the concentrate may be mixed or diluted prior to being added to the blood. The device may include a mixer (not shown) to mix the concentrate and bulk replacement fluid prior to adding to the blood.
[0055] In the device depicted in FIG. 9, the control electronics 150 are operably coupled to the concentrate flow control element 415 and are configured to control the rate at which the concentrate flow control element 415 adds fluid to the replacement fluid or blood based on data received from one or more sensors 200 that monitor pH or electrolytes levels (e.g., as described above). By controlling the rate at which the concentrate is introduced into replacement fluid or blood, the concentration or pH (or buffering capacity) of the returned blood can be controlled.
[0056] Referring now to FIG. 10, in which components that are numbered the same as in FIG.
12 refer to the same or similar components, a schematic block diagram of selected components of a blood fluid removal device 100 is shown. In the embodiment depicted in FIG. 13, the device has an inlet 110 for receiving blood from a patient, a blood flow control element 120 in communication with the inlet 110 and configured to control the
rate at which blood flows through medium 130 for removing fluid and contaminates from the blood. The device also includes an outlet 140 in communication with the medium 130 for returning blood to the patient. In the depicted embodiment, the medium 130 component has a housing 139 defining a major chamber 131. A semipermeable filter 135, such as a hemodialysis or hemodiafiltration membrane filter, sealingly divides the major chamber into two minor chambers 133, 137; one 133 for blood flow and the other 137 for dialysate flow (as well as fluid and waste that passes through the filter 135 from the blood)
In the embodiment depicted in FIG. 10, used dialysate is regenerated by passing through dialysate regeneration medium 402 or components, such REDY regeneration medium and components, or the like, to regenerate bulk dialysate. The device also has an outlet 180 in communication with the medium 130 for diverting fluid removed from the blood out of the device. A flow regulator element 700, such as a valve, is operably coupled to control electronics 150 and is disposed in the flow path between the medium 130 and the outlet 180 to control the amount of fluid that exits the device (as a portion of the fluid is regenerated). Often, the regeneration media or components (402) remove much of the pH buffer or electrolytes from the dialysate. Accordingly, a concentrate containing concentrated electrolytes and pH buffers is added to the regenerated dialysate before the dialysate re-enters the medium 130. In some embodiments, a sensor 299 is positioned downstream of the regeneration medium 402 to monitor a level of a component of the regenerated dialysate. The sensor 299 may be a pH or electrolyte sensor and data acquired from sensor 299 may be used in determining how much concentrate to add to the regenerated fluid (which data may be provided to control electronics 150). The sensor 299 may be a sensor that monitors a blood waste product, such as urea, to determine whether the regeneration media 402 is properly functioning. Increased or detectable levels of a waste product may indicate that the regeneration media 402 or components may need replacement or regeneration.
[0058] In the depicted embodiment, the concentrate 410 is stored in a reservoir 410, having an inlet 401 that allows the concentrate supply in the reservoir 410 to be replenished from time to time. The rate at which the concentrate is added to the regenerated dialysate is controlled by concentrate flow control element 415, which is operably coupled to control electronics 150, and is based on data received from sensor 200 that monitors pH or electrolyte concentrations (e.g., as described above).
[0059] The device 100 in FIG. 10 also has a dialysis flow control element 170 for controlling the rate at which dialysis is introduced into the dialysis flow compartment of the medium 130.
[0060] In the depicted embodiment, the device 100 also includes a negative pressure control element 190 in communication with the dialysate compartment of the medium
component 130. The negative pressure control element 190, which may include a pump or the like, may be used to generate or change a pressure differential across the membrane to control the rate at which fluid is removed from blood that passes though the medium component 130.
[0061] The control electronics 150, which may include a processor, memory, etc., are operably coupled to, and configured to control, the blood flow control element 120, the dialysis flow control element 170, and the negative pressure control element 190. By controlling these elements in a coordinated manner, the rate at which fluid is removed from blood may be controlled. It will be understood that a device 100 need not have all of the controllable elements (120, 170, 190) depicted in FIG. 10 to effectively control rate of fluid removal from blood.
[0062] Any suitable control element may be used for the various control elements (120, 150,
170, 195, 415) depicted in FIGS. 9-10. For example, a variable or adjustable rate pump may be employed. Alternatively or in addition, a series of electronically controllable valves may be employed. In some embodiments, the valves are in communication flow paths having differing flow resistances.
[0063] While FIGS. 9-10 show devices that can adjust blood electrolyte or pH by adjusting the pH or electrolyte concentration of replacement fluid or dialysate, it will be understood that pH and concentration can also be adjusted by, for example, adjusting the rate at which dialysate or blood is passed over a dialysis membrane. The rate of transfer between blood and dialysate of electrolytes, etc. across the membrane will be dependent on the flow rate of the blood and the dialysate. Accordingly, in systems where dialysate electrolyte concentration or pH cannot be readily adjusted, the rate of flow of blood or dialysate flow may be altered to achieve similar effects to adjusting the concentration of electrolytes in dialysate.
[0064] While FIGS. 9-10 depict components as being within a single unit, it will be understood that one or more of the components may be housed in separate units. For example, the control electronics, or a portion thereof, may be housed in a separate device, such as a computer, tablet, physician programmer, or the like. The computer, tablet, etc. may receive input from sensors, determine appropriate action to take, and instruct appropriate components of a blood fluid removal device to take the appropriate action.
[0065] It will be understood that the blood fluid removal devices and systems, and components thereof, described herein are presented for purposes of illustration and not limitation. Components, devices and systems other than those described herein, or derivations of the components, devices and systems described herein, may be employed. Further, components of the devices depicted and discussed above may be interchanged, substituted or added to components of alternative embodiments, as appropriate. Further, it will be understood that, while many of the blood fluid removal devices depicted in a variety of the figures, such as FIGS. 1-3 and 5-6, are shown as external to the patient, the teachings presented herein apply if the device, or components thereof, were implanted in the patient.
[0066] The devices and systems described above, or components thereof, may be used to carry out the uses depicted in FIGS. 11-13 and described below, or portions thereof. Of course, any suitable device or system may be employed to carry out the uses, or portions thereof, described below. It will be understood that various steps of the uses presented with regard to any one of FIGS. 11-13 below may be interchanged, substituted, or added to steps presented with regard to any other of FIGS. 11-13.
[0067] Referring now to FIG. 11, the depicted use includes initiating a blood fluid removal session (801) and monitoring an indicator pH or electrolyte concentration of blood (810); e.g. detecting pH or electrolytes in blood or in fluid from which pH or electrolyte levels in blood can be derived. Based on the monitored indicator of pH or electrolytes, the pH or electrolyte composition or concentration of fluid (e.g., dialysate or replacement fluid) used in the blood fluid removal session may be adjusted (860). For example, based on one or more of the current value of a monitored ionic species or the rate of change in the monitored ionic species, the fluid composition may be adjusted, e.g. as discussed above.
[0068] As shown in FIG. 11, continuous, periodic or intermittent determinations may be made as to whether the pH or electrolyte concentration is out of range (830) based on data acquired during the monitoring (810). For example, a determination (830) may be made as to whether pH or electrolyte levels crossed a threshold (e.g., a ceiling or floor). If the pH or electrolytes are determined to be within range, monitoring (810) may continue. If the pH or electrolytes are determined to be out of range (e.g., cross a threshold), an alert (840) may be issued to notify the patient or a healthcare provider of the situation. In some cases, the situation may warrant stopping (890) of the blood fluid removal session; e.g., if the detected pH or electrolytes are too far out of range or cross a heightened threshold. In other cases, it may be suitable to continue with the blood fluid removal session with heightened awareness of a situation for which increased attention may be warranted.
[0069] Referring now to FIG. 12, the depicted use includes initiating a blood fluid removal session (801) and monitoring an indicator pH or electrolyte concentration upstream (815) and downstream (813) of blood fluid removal. Data acquired from upstream and downstream sensors may be compared to determine how to adjust (860) the fluid composition, e.g. as described above.
[0070] Referring now to FIG. 13, the depicted use show a use where blood electrolyte
concentration or pH is adjusted by altering the flow rate of dialysate or blood. The use includes initiating a blood fluid removal session (900), such as a hemodialysis session, and monitoring an indicator of pH or electrolyte (910), which can be in the patient, upstream of the device, downstream of the device, within the device, or the like. Based on the monitored data (910), adjustments to the flow of dialysate or blood may be made (920) to adjust the electrolyte concentration or pH in the blood that gets returned to the patient.
[0071] The uses described herein, including the uses depicted in FIGS. 11-13, may be carried out by sensor devices, blood fluid removal devices, or other devices in communication with sensor devices or blood fluid removal devices. These uses may be algorithms or instructions programmed into memory of such devices, which may be carried out by processors or other control electronics of the devices. Preferably, the processor is in communication with appropriate control elements of the devices and is configured to control such elements in a manner such that the programmed instructions are carried out by the appropriate device. It will be understood that a computer readable medium programmed with instructions that cause a sensor device, blood fluid removal device, or other suitable device to carry out a use, or a portion thereof, as described herein are contemplated. The computer readable medium may be non-transitory, i.e. lasting for more than a fleeting instant or seconds. The medium may be memory, such as RAM or ROM, a cd or dvd, flash memory, or the like.
[0072] A variety of aspects of uses, systems, devices, computer-readable media and the like are disclosure herein. A summary of some of the aspects is provided below.
[0073] In a first aspect, a system comprises: (a) a blood fluid removal device comprising (i) an inlet for receiving blood from a patient, (ii) an outlet for returning blood from the patient, (iii) a medium for removing fluid and contaminants from the blood, the medium being positioned between the inlet and the first outlet, and (iv) a fluid source for carrying a fluid, the fluid selected from dialysate and replacement fluid, wherein if the fluid is dialysate the fluid source carries the fluid to the medium, and wherein if the fluid is replacement fluid the fluid source carries the fluid to the blood after the blood exits the medium; (b) a concentrate source for housing a concentrate solution comprising concentrated electrolyte or pH buffer; (c) a concentrate flow control element for controlling the rate that the concentrate solution enters the fluid source; (d) a first sensor configured to monitor an indicator of blood electrolyte concentration or blood pH; and (e) control electronics in operable communication with the sensor and the concentrate flow control element, wherein the control electronics are configured, via the concentrate flow control element, to adjust the rate at which the concentrate solution enters the fluid source based on data obtained from the sensor.
[0074] A second aspect is a system of the first aspect, wherein the first sensor is configured to monitor blood before the blood enters the medium.
[0075] A third aspect is a system of the second aspect, further comprising a second sensor
configured to monitor an indicator of blood electrolyte concentration or blood pH, the second sensor being configured to monitor blood after the blood exits the medium.
[0076] A fourth aspect is a system of the third aspect, wherein the control electronics are in
operable communication with the second sensor and are configured to compare data acquired from the first sensor to data acquired from the second sensor, and wherein the control electronics are configured to adjust the rate at which the concentrate solution
enters the fluid source based on the comparison of the data acquired from the first sensor and the second sensor.
[0077] A fifth aspect is a system of aspect 1, wherein the first sensor is configured to monitor the indicator in fluid removed from the blood after the fluid removed from the blood exits the medium
[0078] A sixth aspect is a system of aspect 5, wherein the control electronics are configured to derive the blood pH or blood electrolyte concentration based on data acquired from the first sensor.
[0079] A seventh aspect is a system of aspect 5, further comprising a second sensor configured to monitor the indicator in dialysate in the fluid source before the dialysate enters the medium, wherein the control electronics are control electronics are in operable communication with the second sensor and are configured to compare data acquired from the first sensor to data acquired from the second sensor, and wherein the control electronics are configured to adjust the rate at which the concentrate solution enters the fluid source based on the comparison of the data acquired from the first sensor and the second sensor.
[0080] An eighth aspect is a system of the first aspect, wherein the first sensor is configured to monitor the indicator in the blood after the blood exits the medium and before
replacement fluid is added to the blood.
[0081] A ninth aspect is a system of aspect 8, further comprising a second sensor configured to monitor the indicator in the blood after the replacement fluid has been added to the blood.
[0082] A tenth aspect is a system of any of aspects 1-9, wherein the control electronics, or
components thereof, are housed within a housing of the blood fluid removal device.
[0083] An eleventh aspect is a system of any of aspects 1-10, further comprising a computer readable medium, wherein the computer readable medium comprises instructions that cause the control electronics to control the concentrate flow control element to adjust the rate at which the concentrate solution enters the fluid source based on data obtained from the sensor.
[0084] A twelfth aspect is a use carried out by a blood fluid removal device or system,
comprising: (i) initiating blood fluid removal procedure for a patient in need thereof, wherein the procedure comprise use of a fluid selected from a dialysate fluid or a replacement fluid, and wherein the fluid has an initial pH buffer composition or electrolyte composition; (ii) monitoring an indicator of blood electrolyte concentration or blood pH of the patient during the blood fluid removal session; and (iii) adjusting the pH buffer composition or the electrolyte composition of the fluid based on a value of the monitored indicator.
[0085] A thirteenth aspect is use of aspect 12, wherein monitoring the indicator comprises
monitoring the indicator in blood before passing the blood through a blood fluid removal medium and after passing the blood through the blood fluid removal medium
[0086] A fourteenth aspect is a use of aspect 13, further comprising comparing a value of the indicator monitored before the blood is passed through the medium to a value of the indicator monitored after passing the blood through the medium, wherein adjusting the pH buffer composition or the electrolyte composition comprises adjusting the
composition based on the comparison.
[0087] A fifteenth aspect is a use of any of aspects 12-14, wherein adjusting the composition comprises adding a concentrated electrolyte solution or buffer solution to the fluid.
[0088] A sixteenth aspect is a use of any of aspects 12-15, further comprising (i) determining whether a value of the monitored indicator crosses a threshold; and (ii) providing an alert if the value of the monitored indicator is determined to cross the threshold.
[0089] A seventeenth aspect is a use of aspect 12, wherein monitoring the indicator comprises monitoring the indicator in fluid removed from the blood.
[0090] An eighteenth aspect is a use of aspect 17, further comprising determining a blood
electrolyte concentration or pH from a value of the monitored indicator of the fluid removed from the blood.
[0091] A nineteenth aspect is a use of aspect 17 or aspect 18, wherein the fluid for use in the blood fluid removal procedure is dialysate, and wherein monitoring the indicator further comprises monitoring the indicator in the dialysate prior to the dialysate entering a blood fluid removal medium, and wherein the use further comprises comparing a value of the monitored indicator in fluid removed from the blood to a value of the monitored indicator in the dialysate prior to entering the blood fluid removal medium.
[0092] A twentieth aspect is a use of aspect 12, wherein the fluid for use in the blood fluid
removal procedure is replacement fluid, and wherein monitoring the indicator comprises monitoring the indicator in blood downstream of a blood fluid removal medium and upstream of addition of the replacement fluid to the blood.
[0093] A twenty-first aspect is a use of aspect 20, wherein monitoring the indicator further
comprises monitoring the indicator in the blood downstream of the addition of the replacement fluid, wherein the use further comprises comparing a value of the monitored indicator obtained upstream of the addition of replacement fluid to a value of the monitored indicator obtained downstream of the addition of replacement fluid.
[0094] A twenty-second aspect is a system comprising: (i) a medium housing defining a major chamber; (ii) a blood flow removal membrane disposed in the housing and sealingly dividing the major chamber into first and second minor chambers; (iii) a first inlet and a first outlet in fluid communication with the first minor chamber, wherein the system is configured such that blood enters the first minor chamber through the first inlet and exits the first minor chamber through the first outlet; (iv) a second inlet and a second outlet in
fluid communication with the second minor chamber, wherein the system is configured such that dialysate enters the second minor chamber through the second inlet and exits the second minor chamber through the second outlet; (v) a dialysate regeneration medium in fluid communication with and disposed in a dialysate flow path between the second inlet and the second outlet; (vi) a concentrate source for housing a concentrate solution comprising concentrated electrolyte or pH buffer; (vii) a concentrate flow control element for controlling the rate that the concentrate solution enters the dialysate flow path downstream of the dialysate regeneration medium and upstream of the second inlet; (viii) a sensor configured to monitor an indicator of electrolyte concentration or pH of dialysate in the dialysate flow path downstream of the dialysate regeneration medium and upstream of the second inlet; and (ix) control electronics in operable communication with the sensor and the concentrate flow control element, wherein the control electronics are configured, via the concentrate flow control element, to adjust the rate at which the concentrate solution enters the dialysate flow path based on data obtained from the sensor.
[0095] A twenty-third aspect is a use carried out by a blood fluid removal device or system, comprising: (i) initiating blood fluid removal procedure for a patient in need thereof, wherein the procedure comprises use of a dialysate fluid and a dialysate membrane, as at least a part of a blood fluid removal medium, across which electrolytes may be exchanged between blood and the dialysate fluid; (ii) monitoring an indicator of blood electrolyte concentration or blood pH during the blood fluid removal session; and (iii) adjusting the flow rate of the dialysate fluid or blood based on a value of the monitored indicator.
[0096] A twenty-fourth aspect is a use of aspect 23, wherein monitoring the indicator comprises monitoring the indicator in blood before passing the blood through the blood fluid removal medium and after passing the blood through the blood fluid removal medium.
[0097] A twenty-fifth aspect is a use of aspect 23, further comprising comparing a value of the indicator monitored before the blood is passed through the medium to a value of the indicator monitored after passing the blood through the medium, wherein adjusting the flow rate of the dialysate fluid or the blood comprises adjusting the composition based on the comparison.
[0098] A twenty-sixth aspect is a use of any of aspects 23-25, wherein monitoring the indicator comprises monitoring the indicator in fluid removed from the blood.
A twenty- seventh aspect is a use of aspect 23, further comprising determining a blood electrolyte concentration or pH from a value of the monitored indicator of the fluid removed from the blood.
[0099] Thus, systems, devices and uses for ELECTROLYTE AND pH MONITORING FOR
FLUID REMOVAL PROCESSES are described. Those skilled in the art will recognize that the preferred embodiments described herein may be altered or amended without departing from the true spirit and scope of the disclosure, as defined in the accompanying claims.
[00100] In the claims that follow, the designators "first", "second", "third" and the like are used for purposes of distinguishing between elements and not for purposes of enumerating the elements or for defining a sequence of the elements. For example, a "third" sensor does not necessarily imply that there are three sensors but rather that the "third" sensor is distinct from the "first" sensor. By way of further example, a "third" sensor does not necessarily come later in time than a "first" sensor.
Claims
claimed is:
A system comprising:
a blood fluid removal device comprising
(i) an inlet for receiving blood from a patient,
(ii) an outlet for returning blood from the patient,
(iii) a medium for removing fluid and contaminants from the blood, the medium being positioned between the inlet and the first outlet, and
(iv) a fluid source for carrying a fluid, the fluid selected from dialysate and replacement fluid, wherein if the fluid is dialysate the fluid source carries the fluid to the medium, and wherein if the fluid is replacement fluid the fluid source carries the fluid to the blood after the blood exits the medium;
a concentrate source for housing a concentrate solution comprising concentrated electrolyte or pH buffer;
a concentrate flow control element for controlling the rate that the concentrate solution enters the fluid source;
a first sensor configured to monitor an indicator of blood electrolyte concentration or blood pH; and
control electronics in operable communication with the sensor and the concentrate flow control element,
wherein the control electronics are configured, via the concentrate flow control element, to adjust the rate at which the concentrate solution enters the fluid source based on data obtained from the sensor.
The system of claim 1, wherein the first sensor is configured to monitor blood before the blood enters the medium.
3. The system of claim 2, further comprising a second sensor configured to monitor an indicator of blood electrolyte concentration or blood pH, the second sensor being configured to monitor blood after the blood exits the medium.
4. The system of claim 3, wherein the control electronics are in operable
communication with the second sensor and are configured to compare data acquired from the first sensor to data acquired from the second sensor, and wherein the control electronics are configured to adjust the rate at which the concentrate solution enters the fluid source based on the comparison of the data acquired from the first sensor and the second sensor.
5. The system of claim 1, wherein the first sensor is configured to monitor the indicator in fluid removed from the blood after the fluid removed from the blood exits the medium.
6. The system of claim 5, wherein the control electronics are configured to derive the blood pH or blood electrolyte concentration based on data acquired from the first sensor.
7. The system of claim 5, further comprising a second sensor configured to monitor the indicator in dialysate in the fluid source before the dialysate enters the medium, wherein the control electronics are control electronics are in operable communication with the second sensor and are configured to compare data acquired from the first sensor to data acquired from the second sensor, and wherein the control electronics are configured to adjust the rate at which the
concentrate solution enters the fluid source based on the comparison of the data acquired from the first sensor and the second sensor.
8. The system of claim 1, wherein the first sensor is configured to monitor the
indicator in the blood after the blood exits the medium and before replacement fluid is added to the blood.
9. The system of claim 8, further comprising a second sensor configured to monitor the indicator in the blood after the replacement fluid has been added to the blood.
10. The system of claim 1, wherein the control electronics, or components thereof, are housed within a housing of the blood fluid removal device.
11. The system of claim 1, further comprising a computer readable medium, wherein the computer readable medium comprises instructions that cause the control electronics to control the concentrate flow control element to adjust the rate at which the concentrate solution enters the fluid source based on data obtained from the sensor.
12. A use carried out by a blood fluid removal device or system, comprising:
initiating blood fluid removal procedure for a patient in need thereof, wherein the procedure comprise use of a fluid selected from a dialysate fluid or a replacement fluid, and wherein the fluid has an initial pH buffer composition or electrolyte composition;
monitoring an indicator of blood electrolyte concentration or blood pH of the patient during the blood fluid removal session; and
adjusting the pH buffer composition or the electrolyte composition of the fluid based on a value of the monitored indicator.
13. The use of claim 12, wherein monitoring the indicator comprises monitoring the indicator in blood before passing the blood through a blood fluid removal medium and after passing the blood through the blood fluid removal medium.
14. The use of claim 13, further comprising comparing a value of the indicator
monitored before the blood is passed through the medium to a value of the indicator monitored after passing the blood through the medium, wherein adjusting the pH buffer composition or the electrolyte composition comprises adjusting the composition based on the comparison.
15. The use of claim 12, wherein adjusting the composition comprises adding a concentrated electrolyte solution or buffer solution to the fluid.
16. The use of claim 12, further comprising (i) determining whether a value of the monitored indicator crosses a threshold; and (ii) providing an alert if the value of the monitored indicator is determined to cross the threshold.
17. The use of claim 12, wherein monitoring the indicator comprises monitoring the indicator in fluid removed from the blood.
18. The use of claim 17, further comprising determining a blood electrolyte
concentration or pH from a value of the monitored indicator of the fluid removed from the blood.
19. The use of claim 17, wherein the fluid for use in the blood fluid removal
procedure is dialysate, and wherein monitoring the indicator further comprises monitoring the indicator in the dialysate prior to the dialysate entering a blood fluid removal medium, and wherein the use further comprises comparing a value of the monitored indicator in fluid removed from the blood to a value of the monitored indicator in the dialysate prior to entering the blood fluid removal medium.
20. The use of claim 12, wherein the fluid for use in the blood fluid removal
procedure is replacement fluid, and wherein monitoring the indicator comprises monitoring the indicator in blood downstream of a blood fluid removal medium and upstream of addition of the replacement fluid to the blood.
The use of claim 20, wherein monitoring the indicator further comprises monitoring the indicator in the blood downstream of the addition of the replacement fluid, wherein the use further comprises comparing a value of the monitored indicator obtained upstream of the addition of replacement fluid to a value of the monitored indicator obtained downstream of the addition of replacement fluid.
A system comprising:
a medium housing defining a major chamber;
a blood flow removal membrane disposed in the housing and sealingly dividing the major chamber into first and second minor chambers;
a first inlet and a first outlet in fluid communication with the first minor chamber, wherein the system is configured such that blood enters the first minor chamber through the first inlet and exits the first minor chamber through the first outlet;
a second inlet and a second outlet in fluid communication with the second minor chamber, wherein the system is configured such that dialysate enters the second minor chamber through the second inlet and exits the second minor chamber through the second outlet;
a dialysate regeneration medium in fluid communication with and disposed in a dialysate flow path between the second inlet and the second outlet;
a concentrate source for housing a concentrate solution comprising concentrated electrolyte or pH buffer;
a concentrate flow control element for controlling the rate that the concentrate solution enters the dialysate flow path downstream of the dialysate regeneration medium and upstream of the second inlet;
a sensor configured to monitor an indicator of electrolyte concentration or pH of dialysate in the dialysate flow path downstream of the dialysate regeneration medium and upstream of the second inlet; and control electronics in operable communication with the sensor and the concentrate flow control element,
wherein the control electronics are configured, via the concentrate flow control element, to adjust the rate at which the concentrate solution enters the dialysate flow path based on data obtained from the sensor.
A use carried out by a blood fluid removal device or system, comprising:
initiating blood fluid removal procedure for a patient in need thereof, wherein the procedure comprises use of a dialysate fluid and a dialysate membrane, as at least a part of a blood fluid removal medium, across which electrolytes may be exchanged between blood and the dialysate fluid; monitoring an indicator of blood electrolyte concentration or blood pH during the blood fluid removal session; and
adjusting the flow rate of the dialysate fluid or blood based on a value of the monitored indicator.
24. The use of claim 23, wherein monitoring the indicator comprises monitoring the indicator in blood before passing the blood through the blood fluid removal medium and after passing the blood through the blood fluid removal medium.
25. The use of claim 23, further comprising comparing a value of the indicator monitored before the blood is passed through the medium to a value of the indicator monitored after passing the blood through the medium, wherein adjusting the flow rate of the dialysate fluid or the blood comprises adjusting the composition based on the comparison.
26. The use of claim 23, wherein monitoring the indicator comprises monitoring the indicator in fluid removed from the blood.
27. The use of claim 23, further comprising determining a blood electrolyte
concentration or pH from a value of the monitored indicator of the fluid removed from the blood.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19167435.7A EP3527134A1 (en) | 2011-04-29 | 2012-04-19 | Electrolyte and ph monitoring for fluid removal processes |
CN201280020932.1A CN103717132B (en) | 2011-04-29 | 2012-04-19 | The electrolyte of alveolar fluid clearance treatment and the monitoring of pH value |
JP2014508435A JP6153923B2 (en) | 2011-04-29 | 2012-04-19 | Electrolyte and pH monitoring for fluid removal processes |
EP12722951.6A EP2701596B1 (en) | 2011-04-29 | 2012-04-19 | Electrolyte and ph monitoring for fluid removal processes |
Applications Claiming Priority (16)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161480539P | 2011-04-29 | 2011-04-29 | |
US201161480544P | 2011-04-29 | 2011-04-29 | |
US201161480541P | 2011-04-29 | 2011-04-29 | |
US201161480528P | 2011-04-29 | 2011-04-29 | |
US201161480532P | 2011-04-29 | 2011-04-29 | |
US201161480535P | 2011-04-29 | 2011-04-29 | |
US201161480530P | 2011-04-29 | 2011-04-29 | |
US61/480,528 | 2011-04-29 | ||
US61/480,532 | 2011-04-29 | ||
US61/480,535 | 2011-04-29 | ||
US61/480,541 | 2011-04-29 | ||
US61/480,544 | 2011-04-29 | ||
US61/480,530 | 2011-04-29 | ||
US61/480,539 | 2011-04-29 | ||
US13/424,479 US9192707B2 (en) | 2011-04-29 | 2012-03-20 | Electrolyte and pH monitoring for fluid removal processes |
US13/424,479 | 2012-03-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012148786A1 true WO2012148786A1 (en) | 2012-11-01 |
Family
ID=47067087
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2012/034335 WO2012148791A1 (en) | 2011-04-29 | 2012-04-19 | Intersession monitoring for blood fluid removal therapy |
PCT/US2012/034331 WO2012148787A1 (en) | 2011-04-29 | 2012-04-19 | Blood fluid removal system performance monitoring |
PCT/US2012/034333 WO2012148789A1 (en) | 2011-04-29 | 2012-04-19 | Chronic ph or electrolyte monitoring |
PCT/US2012/034330 WO2012148786A1 (en) | 2011-04-29 | 2012-04-19 | ELECTROLYTE AND pH MONITORING FOR FLUID REMOVAL PROCESSES |
PCT/US2012/034329 WO2012148785A2 (en) | 2011-04-29 | 2012-04-19 | Monitoring fluid volume for patients with renal disease |
PCT/US2012/034332 WO2012148788A1 (en) | 2011-04-29 | 2012-04-19 | Cardiovascular monitoring for fluid removal processes |
PCT/US2012/034327 WO2013101292A2 (en) | 2011-04-29 | 2012-04-19 | Fluid volume monitoring for patients with renal disease |
PCT/US2012/034334 WO2012148790A1 (en) | 2011-04-29 | 2012-04-19 | Adaptive system for blood fluid removal |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2012/034335 WO2012148791A1 (en) | 2011-04-29 | 2012-04-19 | Intersession monitoring for blood fluid removal therapy |
PCT/US2012/034331 WO2012148787A1 (en) | 2011-04-29 | 2012-04-19 | Blood fluid removal system performance monitoring |
PCT/US2012/034333 WO2012148789A1 (en) | 2011-04-29 | 2012-04-19 | Chronic ph or electrolyte monitoring |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2012/034329 WO2012148785A2 (en) | 2011-04-29 | 2012-04-19 | Monitoring fluid volume for patients with renal disease |
PCT/US2012/034332 WO2012148788A1 (en) | 2011-04-29 | 2012-04-19 | Cardiovascular monitoring for fluid removal processes |
PCT/US2012/034327 WO2013101292A2 (en) | 2011-04-29 | 2012-04-19 | Fluid volume monitoring for patients with renal disease |
PCT/US2012/034334 WO2012148790A1 (en) | 2011-04-29 | 2012-04-19 | Adaptive system for blood fluid removal |
Country Status (6)
Country | Link |
---|---|
US (17) | US9061099B2 (en) |
EP (10) | EP2701595B1 (en) |
JP (11) | JP2014518688A (en) |
CN (10) | CN105286787B (en) |
ES (1) | ES2785107T3 (en) |
WO (8) | WO2012148791A1 (en) |
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8951219B2 (en) | 2011-04-29 | 2015-02-10 | Medtronic, Inc. | Fluid volume monitoring for patients with renal disease |
US9289165B2 (en) | 2005-02-07 | 2016-03-22 | Medtronic, Inc. | Ion imbalance detector |
US9456755B2 (en) | 2011-04-29 | 2016-10-04 | Medtronic, Inc. | Method and device to monitor patients with kidney disease |
US9526822B2 (en) | 2013-02-01 | 2016-12-27 | Medtronic, Inc. | Sodium and buffer source cartridges for use in a modular controlled compliant flow path |
JP2017516572A (en) * | 2014-05-29 | 2017-06-22 | フレセニウス メディカル ケア ホールディングス インコーポレーテッド | Method for treating dialysate, dialysis system and method for pre-evaluating a dialysis patient for treatment with the dialysis system |
US9707328B2 (en) | 2013-01-09 | 2017-07-18 | Medtronic, Inc. | Sorbent cartridge to measure solute concentrations |
US9713665B2 (en) | 2014-12-10 | 2017-07-25 | Medtronic, Inc. | Degassing system for dialysis |
US9713668B2 (en) | 2012-01-04 | 2017-07-25 | Medtronic, Inc. | Multi-staged filtration system for blood fluid removal |
US9827361B2 (en) | 2013-02-02 | 2017-11-28 | Medtronic, Inc. | pH buffer measurement system for hemodialysis systems |
US9848778B2 (en) | 2011-04-29 | 2017-12-26 | Medtronic, Inc. | Method and device to monitor patients with kidney disease |
US9855379B2 (en) | 2013-02-02 | 2018-01-02 | Medtronic, Inc. | Sorbent cartridge configurations for improved dialysate regeneration |
US9872949B2 (en) | 2013-02-01 | 2018-01-23 | Medtronic, Inc. | Systems and methods for multifunctional volumetric fluid control |
US9895479B2 (en) | 2014-12-10 | 2018-02-20 | Medtronic, Inc. | Water management system for use in dialysis |
US9943633B2 (en) | 2009-09-30 | 2018-04-17 | Medtronic Inc. | System and method to regulate ultrafiltration |
US10010663B2 (en) | 2013-02-01 | 2018-07-03 | Medtronic, Inc. | Fluid circuit for delivery of renal replacement therapies |
US10076283B2 (en) | 2013-11-04 | 2018-09-18 | Medtronic, Inc. | Method and device to manage fluid volumes in the body |
US10098993B2 (en) | 2014-12-10 | 2018-10-16 | Medtronic, Inc. | Sensing and storage system for fluid balance |
US10478545B2 (en) | 2013-11-26 | 2019-11-19 | Medtronic, Inc. | Parallel modules for in-line recharging of sorbents using alternate duty cycles |
US10543052B2 (en) | 2013-02-01 | 2020-01-28 | Medtronic, Inc. | Portable dialysis cabinet |
US10595775B2 (en) | 2013-11-27 | 2020-03-24 | Medtronic, Inc. | Precision dialysis monitoring and synchronization system |
US10695481B2 (en) | 2011-08-02 | 2020-06-30 | Medtronic, Inc. | Hemodialysis system having a flow path with a controlled compliant volume |
US10850016B2 (en) | 2013-02-01 | 2020-12-01 | Medtronic, Inc. | Modular fluid therapy system having jumpered flow paths and systems and methods for cleaning and disinfection |
US10857277B2 (en) | 2011-08-16 | 2020-12-08 | Medtronic, Inc. | Modular hemodialysis system |
US10874787B2 (en) | 2014-12-10 | 2020-12-29 | Medtronic, Inc. | Degassing system for dialysis |
US10881777B2 (en) | 2013-01-09 | 2021-01-05 | Medtronic, Inc. | Recirculating dialysate fluid circuit for blood measurement |
US10905816B2 (en) | 2012-12-10 | 2021-02-02 | Medtronic, Inc. | Sodium management system for hemodialysis |
US10926017B2 (en) | 2014-06-24 | 2021-02-23 | Medtronic, Inc. | Modular dialysate regeneration assembly |
US10981148B2 (en) | 2016-11-29 | 2021-04-20 | Medtronic, Inc. | Zirconium oxide module conditioning |
US10994064B2 (en) | 2016-08-10 | 2021-05-04 | Medtronic, Inc. | Peritoneal dialysate flow path sensing |
US11013843B2 (en) | 2016-09-09 | 2021-05-25 | Medtronic, Inc. | Peritoneal dialysis fluid testing system |
US11033667B2 (en) | 2018-02-02 | 2021-06-15 | Medtronic, Inc. | Sorbent manifold for a dialysis system |
US11045790B2 (en) | 2014-06-24 | 2021-06-29 | Medtronic, Inc. | Stacked sorbent assembly |
US11110215B2 (en) | 2018-02-23 | 2021-09-07 | Medtronic, Inc. | Degasser and vent manifolds for dialysis |
US11154648B2 (en) | 2013-01-09 | 2021-10-26 | Medtronic, Inc. | Fluid circuits for sorbent cartridge with sensors |
US11213616B2 (en) | 2018-08-24 | 2022-01-04 | Medtronic, Inc. | Recharge solution for zirconium phosphate |
US11219880B2 (en) | 2013-11-26 | 2022-01-11 | Medtronic, Inc | System for precision recharging of sorbent materials using patient and session data |
US11278654B2 (en) | 2017-12-07 | 2022-03-22 | Medtronic, Inc. | Pneumatic manifold for a dialysis system |
US11395868B2 (en) | 2015-11-06 | 2022-07-26 | Medtronic, Inc. | Dialysis prescription optimization for decreased arrhythmias |
US11565029B2 (en) | 2013-01-09 | 2023-01-31 | Medtronic, Inc. | Sorbent cartridge with electrodes |
US11806457B2 (en) | 2018-11-16 | 2023-11-07 | Mozarc Medical Us Llc | Peritoneal dialysis adequacy meaurements |
US11806456B2 (en) | 2018-12-10 | 2023-11-07 | Mozarc Medical Us Llc | Precision peritoneal dialysis therapy based on dialysis adequacy measurements |
US11850344B2 (en) | 2021-08-11 | 2023-12-26 | Mozarc Medical Us Llc | Gas bubble sensor |
US11883794B2 (en) | 2017-06-15 | 2024-01-30 | Mozarc Medical Us Llc | Zirconium phosphate disinfection recharging and conditioning |
US11883576B2 (en) | 2016-08-10 | 2024-01-30 | Mozarc Medical Us Llc | Peritoneal dialysis intracycle osmotic agent adjustment |
US11944733B2 (en) | 2021-11-18 | 2024-04-02 | Mozarc Medical Us Llc | Sodium and bicarbonate control |
US11965763B2 (en) | 2021-11-12 | 2024-04-23 | Mozarc Medical Us Llc | Determining fluid flow across rotary pump |
Families Citing this family (254)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9867530B2 (en) | 2006-08-14 | 2018-01-16 | Volcano Corporation | Telescopic side port catheter device with imaging system and method for accessing side branch occlusions |
US9596993B2 (en) | 2007-07-12 | 2017-03-21 | Volcano Corporation | Automatic calibration systems and methods of use |
WO2009009802A1 (en) | 2007-07-12 | 2009-01-15 | Volcano Corporation | Oct-ivus catheter for concurrent luminal imaging |
JP5524835B2 (en) | 2007-07-12 | 2014-06-18 | ヴォルカノ コーポレイション | In vivo imaging catheter |
EP2502115A4 (en) | 2009-11-20 | 2013-11-06 | Pelican Imaging Corp | Capturing and processing of images using monolithic camera array with heterogeneous imagers |
US11141063B2 (en) | 2010-12-23 | 2021-10-12 | Philips Image Guided Therapy Corporation | Integrated system architectures and methods of use |
US11040140B2 (en) | 2010-12-31 | 2021-06-22 | Philips Image Guided Therapy Corporation | Deep vein thrombosis therapeutic methods |
US9132217B2 (en) | 2011-04-29 | 2015-09-15 | Medtronic, Inc. | Multimodal dialysis system |
WO2013033592A1 (en) | 2011-08-31 | 2013-03-07 | Volcano Corporation | Optical-electrical rotary joint and methods of use |
US20130070060A1 (en) | 2011-09-19 | 2013-03-21 | Pelican Imaging Corporation | Systems and methods for determining depth from multiple views of a scene that include aliasing using hypothesized fusion |
EP2761534B1 (en) | 2011-09-28 | 2020-11-18 | FotoNation Limited | Systems for encoding light field image files |
EP2817955B1 (en) | 2012-02-21 | 2018-04-11 | FotoNation Cayman Limited | Systems and methods for the manipulation of captured light field image data |
EP2653178A1 (en) * | 2012-04-16 | 2013-10-23 | Zentrum für biomedizinische Technologie der Donau- Universität Krems | Safety device for extracorporeal blood treatment |
US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
JP2015534734A (en) | 2012-06-28 | 2015-12-03 | ペリカン イメージング コーポレイション | System and method for detecting defective camera arrays, optical arrays, and sensors |
US20140055632A1 (en) | 2012-08-23 | 2014-02-27 | Pelican Imaging Corporation | Feature based high resolution motion estimation from low resolution images captured using an array source |
US9968306B2 (en) * | 2012-09-17 | 2018-05-15 | Abbott Diabetes Care Inc. | Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems |
US9324141B2 (en) | 2012-10-05 | 2016-04-26 | Volcano Corporation | Removal of A-scan streaking artifact |
US10568586B2 (en) | 2012-10-05 | 2020-02-25 | Volcano Corporation | Systems for indicating parameters in an imaging data set and methods of use |
US9286673B2 (en) | 2012-10-05 | 2016-03-15 | Volcano Corporation | Systems for correcting distortions in a medical image and methods of use thereof |
US9307926B2 (en) | 2012-10-05 | 2016-04-12 | Volcano Corporation | Automatic stent detection |
US10070827B2 (en) | 2012-10-05 | 2018-09-11 | Volcano Corporation | Automatic image playback |
US9858668B2 (en) | 2012-10-05 | 2018-01-02 | Volcano Corporation | Guidewire artifact removal in images |
US9367965B2 (en) | 2012-10-05 | 2016-06-14 | Volcano Corporation | Systems and methods for generating images of tissue |
US11272845B2 (en) | 2012-10-05 | 2022-03-15 | Philips Image Guided Therapy Corporation | System and method for instant and automatic border detection |
EP2904671B1 (en) | 2012-10-05 | 2022-05-04 | David Welford | Systems and methods for amplifying light |
US9292918B2 (en) | 2012-10-05 | 2016-03-22 | Volcano Corporation | Methods and systems for transforming luminal images |
US9840734B2 (en) | 2012-10-22 | 2017-12-12 | Raindance Technologies, Inc. | Methods for analyzing DNA |
US9143711B2 (en) | 2012-11-13 | 2015-09-22 | Pelican Imaging Corporation | Systems and methods for array camera focal plane control |
CA2894403A1 (en) | 2012-12-13 | 2014-06-19 | Volcano Corporation | Devices, systems, and methods for targeted cannulation |
US10942022B2 (en) | 2012-12-20 | 2021-03-09 | Philips Image Guided Therapy Corporation | Manual calibration of imaging system |
US10939826B2 (en) | 2012-12-20 | 2021-03-09 | Philips Image Guided Therapy Corporation | Aspirating and removing biological material |
US11406498B2 (en) | 2012-12-20 | 2022-08-09 | Philips Image Guided Therapy Corporation | Implant delivery system and implants |
CA2895989A1 (en) | 2012-12-20 | 2014-07-10 | Nathaniel J. Kemp | Optical coherence tomography system that is reconfigurable between different imaging modes |
DE102012025052A1 (en) * | 2012-12-20 | 2014-06-26 | Fresenius Medical Care Deutschland Gmbh | Hämodiafiltrationsverfahren |
WO2014099899A1 (en) | 2012-12-20 | 2014-06-26 | Jeremy Stigall | Smooth transition catheters |
EP2934282B1 (en) | 2012-12-20 | 2020-04-29 | Volcano Corporation | Locating intravascular images |
EP2936426B1 (en) | 2012-12-21 | 2021-10-13 | Jason Spencer | System and method for graphical processing of medical data |
WO2014100606A1 (en) | 2012-12-21 | 2014-06-26 | Meyer, Douglas | Rotational ultrasound imaging catheter with extended catheter body telescope |
US10191220B2 (en) | 2012-12-21 | 2019-01-29 | Volcano Corporation | Power-efficient optical circuit |
US10166003B2 (en) | 2012-12-21 | 2019-01-01 | Volcano Corporation | Ultrasound imaging with variable line density |
EP2936626A4 (en) | 2012-12-21 | 2016-08-17 | David Welford | Systems and methods for narrowing a wavelength emission of light |
US9612105B2 (en) | 2012-12-21 | 2017-04-04 | Volcano Corporation | Polarization sensitive optical coherence tomography system |
US10058284B2 (en) | 2012-12-21 | 2018-08-28 | Volcano Corporation | Simultaneous imaging, monitoring, and therapy |
US9486143B2 (en) | 2012-12-21 | 2016-11-08 | Volcano Corporation | Intravascular forward imaging device |
WO2014100579A1 (en) * | 2012-12-21 | 2014-06-26 | David Anderson | Functional gain measurement technique and representation |
CA2895940A1 (en) | 2012-12-21 | 2014-06-26 | Andrew Hancock | System and method for multipath processing of image signals |
US10413317B2 (en) | 2012-12-21 | 2019-09-17 | Volcano Corporation | System and method for catheter steering and operation |
WO2014121162A1 (en) * | 2013-02-01 | 2014-08-07 | Medtronic, Inc. | Sorbent cartridge to measure solute concentrations |
US9374512B2 (en) | 2013-02-24 | 2016-06-21 | Pelican Imaging Corporation | Thin form factor computational array cameras and modular array cameras |
CN113705586A (en) | 2013-03-07 | 2021-11-26 | 飞利浦影像引导治疗公司 | Multi-modal segmentation in intravascular images |
US10226597B2 (en) | 2013-03-07 | 2019-03-12 | Volcano Corporation | Guidewire with centering mechanism |
CN105228518B (en) | 2013-03-12 | 2018-10-09 | 火山公司 | System and method for diagnosing coronal microvascular diseases |
US11154313B2 (en) | 2013-03-12 | 2021-10-26 | The Volcano Corporation | Vibrating guidewire torquer and methods of use |
CN105120759B (en) | 2013-03-13 | 2018-02-23 | 火山公司 | System and method for producing image from rotation intravascular ultrasound equipment |
US9301687B2 (en) | 2013-03-13 | 2016-04-05 | Volcano Corporation | System and method for OCT depth calibration |
US11026591B2 (en) | 2013-03-13 | 2021-06-08 | Philips Image Guided Therapy Corporation | Intravascular pressure sensor calibration |
US20160030151A1 (en) | 2013-03-14 | 2016-02-04 | Volcano Corporation | Filters with echogenic characteristics |
US10292677B2 (en) | 2013-03-14 | 2019-05-21 | Volcano Corporation | Endoluminal filter having enhanced echogenic properties |
US10219887B2 (en) | 2013-03-14 | 2019-03-05 | Volcano Corporation | Filters with echogenic characteristics |
GB201305755D0 (en) | 2013-03-28 | 2013-05-15 | Quanta Fluid Solutions Ltd | Re-Use of a Hemodialysis Cartridge |
WO2014162330A1 (en) * | 2013-04-01 | 2014-10-09 | テルモ株式会社 | Circulation device and method for controlling same |
EP2799009A1 (en) * | 2013-04-29 | 2014-11-05 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Non-invasive method for prediction of opioid-analgesia and opioid-blood-concentrations |
US20150025449A1 (en) * | 2013-07-22 | 2015-01-22 | Fresenius Medical Care Holdings, Inc. | Activating Peripheral Devices in a Dialysis System |
DE102013108543A1 (en) * | 2013-08-07 | 2015-02-26 | B. Braun Avitum Ag | Apparatus and method for predicting intradialytic parameters |
GB201314512D0 (en) | 2013-08-14 | 2013-09-25 | Quanta Fluid Solutions Ltd | Dual Haemodialysis and Haemodiafiltration blood treatment device |
WO2015048694A2 (en) | 2013-09-27 | 2015-04-02 | Pelican Imaging Corporation | Systems and methods for depth-assisted perspective distortion correction |
EP2856941B1 (en) * | 2013-10-01 | 2020-11-25 | Fresenius Medical Care Deutschland GmbH | Method and apparatuses for determining a patient's daily loss of iron |
DE102013018284B4 (en) * | 2013-10-31 | 2015-08-27 | Fresenius Medical Care Deutschland Gmbh | Method and device for detecting hemolysis or for determining a correction factor which corrects the influence of hemolysis on a measurement of the hematocrit |
US10119808B2 (en) | 2013-11-18 | 2018-11-06 | Fotonation Limited | Systems and methods for estimating depth from projected texture using camera arrays |
ES2615632T3 (en) * | 2014-03-13 | 2017-06-07 | Oertli-Instrumente Ag | Cassette module |
GB201409796D0 (en) | 2014-06-02 | 2014-07-16 | Quanta Fluid Solutions Ltd | Method of heat sanitization of a haemodialysis water circuit using a calculated dose |
DE102014012024B3 (en) * | 2014-08-13 | 2016-02-04 | Fresenius Medical Care Deutschland Gmbh | Apparatus for the determination of peritoneal pressure |
US11992594B2 (en) | 2014-08-20 | 2024-05-28 | Senko Medical Instrument Mfg. Co., Ltd. | Blood circulation system |
JP5839212B1 (en) * | 2014-08-20 | 2016-01-06 | 泉工医科工業株式会社 | Blood circulation system |
CN104174080B (en) * | 2014-09-16 | 2016-02-03 | 王卫国 | A kind of haemodialysis control unit that independently can adjust dialysate concentration |
KR101517072B1 (en) * | 2014-10-08 | 2015-05-04 | 이의호 | Method to measure glomerular filtration rate of the kidney and device thereof |
US11504192B2 (en) | 2014-10-30 | 2022-11-22 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
CN104437099B (en) * | 2014-12-19 | 2016-09-07 | 山东中保康医疗器具有限公司 | The detection method of single use filter for removing white blood cell film material water for cleaning |
US10842926B2 (en) * | 2015-01-14 | 2020-11-24 | Fresenius Medical Care Deutschland Gmbh | Medical fluid treatment machines and related systems and methods |
KR102358589B1 (en) | 2015-02-12 | 2022-02-03 | 파운드리 이노베이션 앤드 리서치 1 리미티드 | Implantable devices and related methods for monitoring heart failure |
WO2018031714A1 (en) | 2016-08-11 | 2018-02-15 | Foundry Innovation & Research 1, Ltd. | Systems and methods for patient fluid management |
JP6827634B2 (en) * | 2015-02-27 | 2021-02-10 | マッケ カーディオパルモナリー ゲーエムベーハー | Fluid flow measurement and bubble detector |
EP3331426B1 (en) | 2015-08-03 | 2024-07-24 | Foundry Innovation&Research 1, Ltd. | Catheter for measurement of vena cava dimension |
GB2544509B (en) | 2015-11-19 | 2020-12-09 | Spectrum Medical Ltd | Blood flow rate control apparatus for an extracorporeal perfusion system |
US10406269B2 (en) | 2015-12-29 | 2019-09-10 | Fresenius Medical Care Holdings, Inc. | Electrical sensor for fluids |
US10617809B2 (en) | 2015-12-29 | 2020-04-14 | Fresenius Medical Care Holdings, Inc. | Electrical sensor for fluids |
GB201523104D0 (en) * | 2015-12-30 | 2016-02-10 | Quanta Fluid Solutions Ltd | Dialysis machine |
CN105999451A (en) * | 2016-06-17 | 2016-10-12 | 中国人民武装警察部队后勤学院附属医院 | Portable blood purifier for field operations |
US10744253B2 (en) * | 2016-08-10 | 2020-08-18 | Medtronic, Inc. | Adaptive peritoneal dialysis intra-session adjustments for overall session optimization |
US10537673B2 (en) | 2016-08-10 | 2020-01-21 | Medtronic, Inc. | Intersession adaptive peritoneal dialysis fluid removal for multiple session optimization |
US10758659B2 (en) † | 2016-08-10 | 2020-09-01 | Medtronic, Inc. | Peritoneal dialysis filtrate sampling and adaptive prescription |
US11701018B2 (en) | 2016-08-11 | 2023-07-18 | Foundry Innovation & Research 1, Ltd. | Wireless resonant circuit and variable inductance vascular monitoring implants and anchoring structures therefore |
US11206992B2 (en) | 2016-08-11 | 2021-12-28 | Foundry Innovation & Research 1, Ltd. | Wireless resonant circuit and variable inductance vascular monitoring implants and anchoring structures therefore |
WO2018045102A1 (en) * | 2016-08-30 | 2018-03-08 | Nxstage Medical, Inc. | Parameter monitoring in medical treatment systems |
EP3511033A4 (en) * | 2016-09-08 | 2020-04-22 | Kabushiki Kaisya Advance | System for managing information relating to differences between individuals in dialysis treatment |
JP6716428B2 (en) * | 2016-11-11 | 2020-07-01 | 日機装株式会社 | Blood purification treatment support system |
JP7241405B2 (en) | 2016-11-29 | 2023-03-17 | ファウンドリー イノベーション アンド リサーチ 1,リミテッド | Wireless resonant circuit and variable inductance vascular implant for monitoring vascular and fluid status in patients, and systems and methods utilizing same |
GB201622119D0 (en) | 2016-12-23 | 2017-02-08 | Quanta Dialysis Tech Ltd | Improved valve leak detection system |
US11439310B2 (en) * | 2017-01-11 | 2022-09-13 | Cypher Medical, Llc | Method of estimating blood volume |
GB201701740D0 (en) | 2017-02-02 | 2017-03-22 | Quanta Dialysis Tech Ltd | Phased convective operation |
EP3629937A1 (en) | 2017-05-31 | 2020-04-08 | Foundry Innovation & Research 1, Ltd. | Implantable ultrasonic vascular sensor |
US11779238B2 (en) | 2017-05-31 | 2023-10-10 | Foundry Innovation & Research 1, Ltd. | Implantable sensors for vascular monitoring |
EP3646337B1 (en) | 2017-06-28 | 2023-06-28 | Gambro Lundia AB | A system and a method for renal replacement therapy |
EP3646336B1 (en) | 2017-06-28 | 2023-06-28 | Gambro Lundia AB | A system and a method for renal replacement therapy |
US10842924B2 (en) | 2017-06-29 | 2020-11-24 | Fresenius Medical Care Deutschland Gmbh | Therapy control by comprehensive feedback |
CN107273705A (en) * | 2017-07-25 | 2017-10-20 | 北京品驰医疗设备有限公司 | The determination of human body implantation type medical treatment device parameter, method to set up and equipment |
US11317919B2 (en) | 2017-10-30 | 2022-05-03 | Cilag Gmbh International | Clip applier comprising a clip crimping system |
US11311342B2 (en) | 2017-10-30 | 2022-04-26 | Cilag Gmbh International | Method for communicating with surgical instrument systems |
US11564756B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11229436B2 (en) | 2017-10-30 | 2022-01-25 | Cilag Gmbh International | Surgical system comprising a surgical tool and a surgical hub |
US11291510B2 (en) | 2017-10-30 | 2022-04-05 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11801098B2 (en) | 2017-10-30 | 2023-10-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11510741B2 (en) | 2017-10-30 | 2022-11-29 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
US11406390B2 (en) | 2017-10-30 | 2022-08-09 | Cilag Gmbh International | Clip applier comprising interchangeable clip reloads |
US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
US11793537B2 (en) | 2017-10-30 | 2023-10-24 | Cilag Gmbh International | Surgical instrument comprising an adaptive electrical system |
CN107982621B (en) * | 2017-12-21 | 2023-04-18 | 中国人民解放军总医院 | Sputum suction tube |
US11045591B2 (en) | 2017-12-28 | 2021-06-29 | Cilag Gmbh International | Dual in-series large and small droplet filters |
US11051876B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Surgical evacuation flow paths |
US11633237B2 (en) | 2017-12-28 | 2023-04-25 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
US10849697B2 (en) | 2017-12-28 | 2020-12-01 | Ethicon Llc | Cloud interface for coupled surgical devices |
US11234756B2 (en) | 2017-12-28 | 2022-02-01 | Cilag Gmbh International | Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter |
US11937769B2 (en) | 2017-12-28 | 2024-03-26 | Cilag Gmbh International | Method of hub communication, processing, storage and display |
US11419667B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location |
US11273001B2 (en) | 2017-12-28 | 2022-03-15 | Cilag Gmbh International | Surgical hub and modular device response adjustment based on situational awareness |
US11969216B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
US12062442B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Method for operating surgical instrument systems |
US10987178B2 (en) | 2017-12-28 | 2021-04-27 | Ethicon Llc | Surgical hub control arrangements |
US11540855B2 (en) | 2017-12-28 | 2023-01-03 | Cilag Gmbh International | Controlling activation of an ultrasonic surgical instrument according to the presence of tissue |
US11602393B2 (en) | 2017-12-28 | 2023-03-14 | Cilag Gmbh International | Surgical evacuation sensing and generator control |
US11324557B2 (en) | 2017-12-28 | 2022-05-10 | Cilag Gmbh International | Surgical instrument with a sensing array |
US11109866B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Method for circular stapler control algorithm adjustment based on situational awareness |
US11464535B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Detection of end effector emersion in liquid |
US11832899B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical systems with autonomously adjustable control programs |
US11678881B2 (en) | 2017-12-28 | 2023-06-20 | Cilag Gmbh International | Spatial awareness of surgical hubs in operating rooms |
US11896443B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Control of a surgical system through a surgical barrier |
US10892899B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Self describing data packets generated at an issuing instrument |
US11069012B2 (en) | 2017-12-28 | 2021-07-20 | Cilag Gmbh International | Interactive surgical systems with condition handling of devices and data capabilities |
US11364075B2 (en) | 2017-12-28 | 2022-06-21 | Cilag Gmbh International | Radio frequency energy device for delivering combined electrical signals |
US11278281B2 (en) | 2017-12-28 | 2022-03-22 | Cilag Gmbh International | Interactive surgical system |
US11832840B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical instrument having a flexible circuit |
US11786245B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Surgical systems with prioritized data transmission capabilities |
US20190206569A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Method of cloud based data analytics for use with the hub |
US11666331B2 (en) | 2017-12-28 | 2023-06-06 | Cilag Gmbh International | Systems for detecting proximity of surgical end effector to cancerous tissue |
US11266468B2 (en) | 2017-12-28 | 2022-03-08 | Cilag Gmbh International | Cooperative utilization of data derived from secondary sources by intelligent surgical hubs |
US11026751B2 (en) | 2017-12-28 | 2021-06-08 | Cilag Gmbh International | Display of alignment of staple cartridge to prior linear staple line |
US11423007B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Adjustment of device control programs based on stratified contextual data in addition to the data |
US11559308B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method for smart energy device infrastructure |
US11576677B2 (en) | 2017-12-28 | 2023-02-14 | Cilag Gmbh International | Method of hub communication, processing, display, and cloud analytics |
US11410259B2 (en) | 2017-12-28 | 2022-08-09 | Cilag Gmbh International | Adaptive control program updates for surgical devices |
US11529187B2 (en) | 2017-12-28 | 2022-12-20 | Cilag Gmbh International | Surgical evacuation sensor arrangements |
US11304699B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11179208B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Cloud-based medical analytics for security and authentication trends and reactive measures |
US11308075B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity |
US11056244B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks |
US10932872B2 (en) | 2017-12-28 | 2021-03-02 | Ethicon Llc | Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set |
US11903601B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Surgical instrument comprising a plurality of drive systems |
US11424027B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Method for operating surgical instrument systems |
US11132462B2 (en) | 2017-12-28 | 2021-09-28 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
US11376002B2 (en) | 2017-12-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
US11446052B2 (en) | 2017-12-28 | 2022-09-20 | Cilag Gmbh International | Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue |
US10943454B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Detection and escalation of security responses of surgical instruments to increasing severity threats |
US11304763B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use |
US11311306B2 (en) | 2017-12-28 | 2022-04-26 | Cilag Gmbh International | Surgical systems for detecting end effector tissue distribution irregularities |
US11257589B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
US11304720B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Activation of energy devices |
US11096693B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing |
US11864728B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
US11589888B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Method for controlling smart energy devices |
US11896322B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
US11744604B2 (en) | 2017-12-28 | 2023-09-05 | Cilag Gmbh International | Surgical instrument with a hardware-only control circuit |
US11013563B2 (en) | 2017-12-28 | 2021-05-25 | Ethicon Llc | Drive arrangements for robot-assisted surgical platforms |
US11147607B2 (en) | 2017-12-28 | 2021-10-19 | Cilag Gmbh International | Bipolar combination device that automatically adjusts pressure based on energy modality |
US10892995B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11213359B2 (en) | 2017-12-28 | 2022-01-04 | Cilag Gmbh International | Controllers for robot-assisted surgical platforms |
US11100631B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Use of laser light and red-green-blue coloration to determine properties of back scattered light |
US11818052B2 (en) | 2017-12-28 | 2023-11-14 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US10944728B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Interactive surgical systems with encrypted communication capabilities |
US11304745B2 (en) * | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical evacuation sensing and display |
US10966791B2 (en) | 2017-12-28 | 2021-04-06 | Ethicon Llc | Cloud-based medical analytics for medical facility segmented individualization of instrument function |
US11659023B2 (en) | 2017-12-28 | 2023-05-23 | Cilag Gmbh International | Method of hub communication |
US11464559B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
US12096916B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US11559307B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method of robotic hub communication, detection, and control |
US11432885B2 (en) | 2017-12-28 | 2022-09-06 | Cilag Gmbh International | Sensing arrangements for robot-assisted surgical platforms |
US11786251B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11317937B2 (en) | 2018-03-08 | 2022-05-03 | Cilag Gmbh International | Determining the state of an ultrasonic end effector |
US11571234B2 (en) | 2017-12-28 | 2023-02-07 | Cilag Gmbh International | Temperature control of ultrasonic end effector and control system therefor |
US11179175B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Controlling an ultrasonic surgical instrument according to tissue location |
US11166772B2 (en) | 2017-12-28 | 2021-11-09 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
US11076921B2 (en) | 2017-12-28 | 2021-08-03 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
US20190201087A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Smoke evacuation system including a segmented control circuit for interactive surgical platform |
US11612444B2 (en) | 2017-12-28 | 2023-03-28 | Cilag Gmbh International | Adjustment of a surgical device function based on situational awareness |
US11253315B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Increasing radio frequency to create pad-less monopolar loop |
US10695081B2 (en) | 2017-12-28 | 2020-06-30 | Ethicon Llc | Controlling a surgical instrument according to sensed closure parameters |
US11389164B2 (en) | 2017-12-28 | 2022-07-19 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
US11202570B2 (en) | 2017-12-28 | 2021-12-21 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
US11771487B2 (en) | 2017-12-28 | 2023-10-03 | Cilag Gmbh International | Mechanisms for controlling different electromechanical systems of an electrosurgical instrument |
US11419630B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Surgical system distributed processing |
US11969142B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
US11291495B2 (en) | 2017-12-28 | 2022-04-05 | Cilag Gmbh International | Interruption of energy due to inadvertent capacitive coupling |
US20190201146A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Safety systems for smart powered surgical stapling |
US11857152B2 (en) | 2017-12-28 | 2024-01-02 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
US10758310B2 (en) | 2017-12-28 | 2020-09-01 | Ethicon Llc | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
US11284936B2 (en) | 2017-12-28 | 2022-03-29 | Cilag Gmbh International | Surgical instrument having a flexible electrode |
US11160605B2 (en) | 2017-12-28 | 2021-11-02 | Cilag Gmbh International | Surgical evacuation sensing and motor control |
US10881347B2 (en) | 2017-12-29 | 2021-01-05 | Fresenius Medical Care Holdings, Inc. | Closed loop dialysis treatment using adaptive ultrafiltration rates |
WO2019138917A1 (en) * | 2018-01-10 | 2019-07-18 | ニプロ株式会社 | Apparatus for calculating amount of extracellular fluid and method for calculating amount of extracellular fluid |
US11259830B2 (en) | 2018-03-08 | 2022-03-01 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
US11399858B2 (en) | 2018-03-08 | 2022-08-02 | Cilag Gmbh International | Application of smart blade technology |
US11678927B2 (en) | 2018-03-08 | 2023-06-20 | Cilag Gmbh International | Detection of large vessels during parenchymal dissection using a smart blade |
US11259806B2 (en) | 2018-03-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein |
US10973520B2 (en) | 2018-03-28 | 2021-04-13 | Ethicon Llc | Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature |
US11278280B2 (en) | 2018-03-28 | 2022-03-22 | Cilag Gmbh International | Surgical instrument comprising a jaw closure lockout |
US11213294B2 (en) | 2018-03-28 | 2022-01-04 | Cilag Gmbh International | Surgical instrument comprising co-operating lockout features |
US11471156B2 (en) | 2018-03-28 | 2022-10-18 | Cilag Gmbh International | Surgical stapling devices with improved rotary driven closure systems |
US11090047B2 (en) | 2018-03-28 | 2021-08-17 | Cilag Gmbh International | Surgical instrument comprising an adaptive control system |
US11219453B2 (en) | 2018-03-28 | 2022-01-11 | Cilag Gmbh International | Surgical stapling devices with cartridge compatible closure and firing lockout arrangements |
US11096688B2 (en) | 2018-03-28 | 2021-08-24 | Cilag Gmbh International | Rotary driven firing members with different anvil and channel engagement features |
US11207067B2 (en) | 2018-03-28 | 2021-12-28 | Cilag Gmbh International | Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing |
EP3815725A4 (en) | 2018-06-29 | 2022-07-13 | Kabushiki Kaisya Advance | Percutaneous terminal for hemodialysis and individualized hemodialysis system |
JP7472099B2 (en) | 2018-07-26 | 2024-04-22 | バクスター・インターナショナル・インコーポレイテッド | Peritoneal dialysis system with a sensor and configured to diagnose peritonitis - Patent Application 20070123633 |
US11491267B2 (en) | 2018-07-27 | 2022-11-08 | Fresenius Medical Care Holdings, Inc. | Method for tailoring dialysis treatment based on sensed potassium concentration in blood serum or dialysate |
WO2020073042A1 (en) * | 2018-10-05 | 2020-04-09 | Pharmacophotonics, Inc., D/B/A Fast Biomedical | Method and apparatus for determining interstitial volume |
JP7183006B2 (en) * | 2018-11-22 | 2022-12-05 | 旭化成メディカル株式会社 | Bodily fluid separation system and method of operating the bodily fluid separation system |
CN109394200B (en) * | 2018-12-16 | 2021-10-19 | 冯兴怀 | Microcirculation pulse blood flow monitoring system and method for liquid treatment and volume management |
US11369377B2 (en) | 2019-02-19 | 2022-06-28 | Cilag Gmbh International | Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout |
US11357503B2 (en) | 2019-02-19 | 2022-06-14 | Cilag Gmbh International | Staple cartridge retainers with frangible retention features and methods of using same |
US11331100B2 (en) | 2019-02-19 | 2022-05-17 | Cilag Gmbh International | Staple cartridge retainer system with authentication keys |
US11751872B2 (en) | 2019-02-19 | 2023-09-12 | Cilag Gmbh International | Insertable deactivator element for surgical stapler lockouts |
US11317915B2 (en) | 2019-02-19 | 2022-05-03 | Cilag Gmbh International | Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers |
CN110152087A (en) * | 2019-04-19 | 2019-08-23 | 暨南大学 | A kind of monitoring method of blood dialysis |
CN110124138B (en) * | 2019-04-19 | 2022-05-10 | 暨南大学 | Dry weight control system in hemodialysis process |
US11160503B2 (en) * | 2019-04-23 | 2021-11-02 | Fresenius Medical Care Holdings, Inc. | Wearable continuous vascular access monitor |
US11684503B2 (en) | 2019-05-15 | 2023-06-27 | Syn LLC | Gastric reduction apparatus and related methods |
US10926019B2 (en) | 2019-06-05 | 2021-02-23 | Choon Kee Lee | Gradient dialysate hemodiafiltration |
USD964564S1 (en) | 2019-06-25 | 2022-09-20 | Cilag Gmbh International | Surgical staple cartridge retainer with a closure system authentication key |
USD950728S1 (en) | 2019-06-25 | 2022-05-03 | Cilag Gmbh International | Surgical staple cartridge |
USD952144S1 (en) | 2019-06-25 | 2022-05-17 | Cilag Gmbh International | Surgical staple cartridge retainer with firing system authentication key |
US11510614B1 (en) | 2019-12-02 | 2022-11-29 | Express Scripts Strategic Development, Inc. | Wearable devices and systems for prescription adherence |
EP3834860B1 (en) * | 2019-12-11 | 2024-08-14 | Infomed SA | Device for extracorporeal circulation of blood |
US20230138912A1 (en) * | 2020-03-31 | 2023-05-04 | Asahi Kasei Medical Co., Ltd. | Blood purification system, controlling method, controlling program, learning device, and learning method |
WO2021201168A1 (en) * | 2020-03-31 | 2021-10-07 | 旭化成メディカル株式会社 | Blood purification system, controlling method, controlling program, learning device, and learning method |
US20220047793A1 (en) * | 2020-08-12 | 2022-02-17 | Medtronic, Inc. | Dialysis catheter including pressure and impedance sensors |
DE102020122936A1 (en) | 2020-09-02 | 2022-03-03 | B.Braun Avitum Ag | Automatic reinfusion of blood after blood treatment therapy |
DE102020128298A1 (en) | 2020-10-28 | 2022-04-28 | Fresenius Medical Care Deutschland Gmbh | Patient monitor system for collecting data from a patient, display device, medical treatment device and method |
EP4085940A1 (en) * | 2021-05-07 | 2022-11-09 | Imec VZW | A method and a maintenance device for automatic maintenance of an autonomous dialysis system |
JP2024517095A (en) * | 2021-05-14 | 2024-04-19 | フレセニウス メディカル ケア ホールディングス インコーポレーテッド | Extracorporeal device and method for removing secondary membranes - Patents.com |
US20220392621A1 (en) * | 2021-06-08 | 2022-12-08 | Medtronic, Inc. | Artificially intelligent smart home assistant for home-based medical therapy |
WO2023107591A1 (en) * | 2021-12-08 | 2023-06-15 | Orrum Clinical Analytics, Inc. | Blood volume sensor system |
US12004874B2 (en) * | 2022-10-24 | 2024-06-11 | Applied Cognition, Inc. | Wearable device and method for non-invasive assessment of glymphatic flow |
CN115998253B (en) * | 2022-12-22 | 2023-08-04 | 北大荒集团总医院 | Monitoring method and monitoring device for peritoneal effusion change condition |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040019312A1 (en) * | 2002-07-19 | 2004-01-29 | Childers Robert W. | Systems and methods for performing peritoneal dialysis |
US20050236330A1 (en) * | 2000-12-22 | 2005-10-27 | Fresenius Medical Care Deutschland Gmbh. | Method for determining concentration; a dialyser |
US7077819B1 (en) * | 1998-12-24 | 2006-07-18 | Fresenius Medical Care Deutschland Gmbh | Method for determining the distribution volume of a blood component during an extracorporeal blood treatment and device for carrying out the method |
US20070066928A1 (en) * | 2005-09-22 | 2007-03-22 | Jean-Michel Lannoy | Automation and optimization of CRRT treatment using regional citrate anticoagulation |
WO2009026603A1 (en) * | 2007-08-31 | 2009-03-05 | Zentrum Für Biomedizinische Technologie Der Donau-Universität Krems | Method for detecting the ion concentrations of citrate anti-coagulated extracorporeal blood purification |
Family Cites Families (402)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2002A (en) | 1841-03-12 | Tor and planter for plowing | ||
US1383728A (en) | 1921-07-05 | new yobk | ||
GB1189458A (en) | 1967-09-27 | 1970-04-29 | Nat Res Dev | Improvements in or relating to dialysers |
US3602222A (en) | 1968-09-16 | 1971-08-31 | Honeywell Inc | Rate meter, particularly a beat-by-beat cardiotachometer |
US3669878A (en) | 1968-12-02 | 1972-06-13 | Health Education And Welfare U | Treatment of dialysate solution for removal of urea |
GB1280521A (en) | 1969-06-28 | 1972-07-05 | Whitely Lang And Neill Ltd | Peritoneal dialysis apparatus |
US3669880A (en) | 1969-06-30 | 1972-06-13 | Cci Aerospace Corp | Recirculation dialysate system for use with an artificial kidney machine |
US3754867A (en) | 1970-12-11 | 1973-08-28 | Bjorksten Res Lab Inc | Carbon dioxide sensing system |
DE2239254C2 (en) | 1970-12-30 | 1983-08-04 | Organon Teknika Corp., Oklahoma City, Okla. | "Column for regenerating a circulating dialysate solution and using this column". |
US3850835A (en) | 1971-11-08 | 1974-11-26 | Cci Life Systems Inc | Method of making granular zirconium hydrous oxide ion exchangers, such as zirconium phosphate and hydrous zirconium oxide, particularly for column use |
US3884808A (en) | 1973-06-20 | 1975-05-20 | Res Dev Systems Inc | Wearable, self-regenerating dialysis appliance |
US3930181A (en) | 1973-12-28 | 1975-12-30 | Ibm | Lens and deflection unit arrangement for electron beam columns |
US3990973A (en) | 1974-11-04 | 1976-11-09 | Cobe Laboratories, Inc. | Apparatus for measuring ultrafiltration rate |
US3989625A (en) | 1975-02-25 | 1976-11-02 | Ma-De Inc. | Detector for air in blood dialysis systems |
US4060485A (en) | 1975-06-09 | 1977-11-29 | I T L Technology, Inc. | Dialysis apparatus |
US4581141A (en) | 1978-02-27 | 1986-04-08 | Purdue Research Foundation | Dialysis material and method for removing uremic substances |
JPS55138462A (en) * | 1979-04-18 | 1980-10-29 | Mediks Kk | Living body installing type hydrogen ion concentration asjusting device |
US4556063A (en) | 1980-10-07 | 1985-12-03 | Medtronic, Inc. | Telemetry system for a medical device |
US4374382A (en) | 1981-01-16 | 1983-02-15 | Medtronic, Inc. | Marker channel telemetry system for a medical device |
US4371385A (en) | 1981-04-28 | 1983-02-01 | Cobe Laboratories, Inc. | Deaerating liquid |
US4381999A (en) | 1981-04-28 | 1983-05-03 | Cobe Laboratories, Inc. | Automatic ultrafiltration control system |
US4750494A (en) | 1981-05-12 | 1988-06-14 | Medtronic, Inc. | Automatic implantable fibrillation preventer |
JPS58155864A (en) * | 1982-03-10 | 1983-09-16 | 株式会社豊田中央研究所 | Blood purifying apparatus |
EP0097366B1 (en) | 1982-06-21 | 1988-09-07 | Fresenius AG | Dialysis device with controlled composition of dialysis solution |
DE3224823A1 (en) | 1982-07-02 | 1984-01-05 | Lentia GmbH Chem. u. pharm. Erzeugnisse - Industriebedarf, 8000 München | Process for the preparation of an electrolyte solution, which is optimised for the particular patient, for use in haemodialysis |
US4460555A (en) | 1983-08-25 | 1984-07-17 | Organon Teknika Corporation | Ammonia scavenger |
US4650587A (en) | 1982-09-09 | 1987-03-17 | Akzona Incorporated | Ammonia scavenger |
US4562751A (en) | 1984-01-06 | 1986-01-07 | Nason Clyde K | Solenoid drive apparatus for an external infusion pump |
US4685903A (en) | 1984-01-06 | 1987-08-11 | Pacesetter Infusion, Ltd. | External infusion pump apparatus |
US4678408A (en) | 1984-01-06 | 1987-07-07 | Pacesetter Infusion, Ltd. | Solenoid drive apparatus for an external infusion pump |
US4718891A (en) * | 1984-05-03 | 1988-01-12 | Henry Ford Hospital | Automated hemodialysis control based upon patient blood pressure and heart rate |
US4747822A (en) | 1984-07-09 | 1988-05-31 | Peabody Alan M | Continuous flow peritoneal dialysis system and method |
US5643201A (en) | 1984-07-09 | 1997-07-01 | Peabody; Alan M. | Continuous peritoneal dialysis apparatus |
US4661246A (en) | 1984-10-01 | 1987-04-28 | Ash Medical Systems, Inc. | Dialysis instrument with dialysate side pump for moving body fluids |
JPS61119276A (en) | 1984-11-14 | 1986-06-06 | 株式会社 ニツシヨ− | Apparatus and method for controlling ultrafiltration amount |
IT1191613B (en) | 1985-05-15 | 1988-03-23 | Eniricerche Spa | ZIRCONIUM PHOSPHATE AND ITS PREPARATION METHOD |
US5091094A (en) * | 1985-06-24 | 1992-02-25 | Veech Richard L | Hemodialysis processes & hemodialysis solutions |
US4772560A (en) | 1985-11-18 | 1988-09-20 | Attar Amir J | Laminated wafer for sensing and monitoring exposure to gases |
US4976683A (en) | 1986-06-20 | 1990-12-11 | Abbott Laboratories | Peritoneal dialysis method |
DE3785147T2 (en) | 1986-11-07 | 1996-09-19 | Asahi Chemical Ind | Regenerated cellulose membrane and process for its manufacture. |
DE3640089A1 (en) * | 1986-11-24 | 1988-06-01 | Fresenius Ag | METHOD AND DEVICE FOR DETERMINING THE INTRAVASAL BLOOD VOLUME DURING HAEMODIALYSIS |
US4799493A (en) | 1987-03-13 | 1989-01-24 | Cardiac Pacemakers, Inc. | Dual channel coherent fibrillation detection system |
US4828693A (en) | 1987-09-22 | 1989-05-09 | Baxter Travenol Laboratories, Inc. | Water pressure regulator for hemodialysis apparatus |
GB8722854D0 (en) | 1987-09-29 | 1987-11-04 | Hardy S M | Implantable artificial kidney |
SE465404B (en) * | 1988-03-03 | 1991-09-09 | Gambro Ab | DIALYSIS SYSTEM |
CA1327838C (en) | 1988-06-13 | 1994-03-15 | Fred Zacouto | Implantable device to prevent blood clotting disorders |
US5092838A (en) | 1989-11-30 | 1992-03-03 | Baxter International Inc. | Histidine buffered peritoneal dialysis solution |
EP0402505B1 (en) | 1989-06-15 | 1993-12-15 | Alan M. Peabody | Continuous cyclic peritoneal dialysis system |
US5127404A (en) | 1990-01-22 | 1992-07-07 | Medtronic, Inc. | Telemetry format for implanted medical device |
US5141493A (en) | 1990-01-26 | 1992-08-25 | Sarcos Group | Peritoneal dialysis system |
FR2660866B1 (en) * | 1990-04-13 | 1992-06-12 | Hogamed | PROCESS AND DEVICE FOR PREPARING A SUBSTITUTION LIQUID. |
US5097122A (en) | 1990-04-16 | 1992-03-17 | Pacesetter Infusion, Ltd. | Medication infusion system having optical motion sensor to detect drive mechanism malfunction |
US5080653A (en) | 1990-04-16 | 1992-01-14 | Pacesetter Infusion, Ltd. | Infusion pump with dual position syringe locator |
US5091642A (en) | 1990-05-11 | 1992-02-25 | Mda Scientific, Inc. | Colorimetric detection apparatus |
US5032265A (en) | 1990-06-20 | 1991-07-16 | Millipore Corporation | Method and system for producing sterile aqueous solutions |
FR2680975B1 (en) * | 1991-09-10 | 1998-12-31 | Hospal Ind | ARTIFICIAL KIDNEY WITH MEANS FOR DETERMINING A SUBSTANCE IN BLOOD. |
FR2680976B1 (en) | 1991-09-10 | 1998-12-31 | Hospal Ind | ARTIFICIAL KIDNEY PROVIDED WITH BLOOD CHARACTERISTIC MEANS OF DETERMINATION AND CORRESPONDING DETERMINATION METHOD. |
JPH0599464A (en) | 1991-10-08 | 1993-04-20 | Nec Corp | Air shower device |
FR2687307B1 (en) | 1992-02-14 | 1999-06-04 | Lascombes Jean Jacques | DEVICE FOR THE PREPARATION OF A SOLUTION FOR MEDICAL USE. |
US5284470A (en) | 1992-11-02 | 1994-02-08 | Beltz Alex D | Wearable, portable, light-weight artificial kidney |
DE4303860C2 (en) | 1993-02-10 | 1995-11-09 | Draegerwerk Ag | Carrier for colorimetric gas detection in composite film construction |
US5302288A (en) | 1993-03-19 | 1994-04-12 | Zimpro Environmental, Inc. | Treatment of highly colored wastewaters |
JPH06327767A (en) * | 1993-05-10 | 1994-11-29 | Shinton Chem Ind Corp Ltd | Device and method for conducting dialysis immediately and properly |
DE4321927C2 (en) | 1993-07-01 | 1998-07-09 | Sartorius Gmbh | Filter unit with degassing device |
US5364593A (en) | 1993-07-26 | 1994-11-15 | Mihaylov Gueorgui M | Direct-read colorimetric exposimeter |
US5308315A (en) | 1993-07-27 | 1994-05-03 | Raja N. Khuri | Method for determining the adequacy of dialysis |
US5507723A (en) * | 1994-05-24 | 1996-04-16 | Baxter International, Inc. | Method and system for optimizing dialysis clearance |
FR2723002B1 (en) * | 1994-07-26 | 1996-09-06 | Hospal Ind | DEVICE AND METHOD FOR PREPARING A FILTRATION PROCESSING LIQUID |
US5591344A (en) | 1995-02-13 | 1997-01-07 | Aksys, Ltd. | Hot water disinfection of dialysis machines, including the extracorporeal circuit thereof |
US5944684A (en) | 1995-08-31 | 1999-08-31 | The Regents Of The University Of California | Wearable peritoneum-based system for continuous renal function replacement and other biomedical applications |
US6363279B1 (en) | 1996-01-08 | 2002-03-26 | Impulse Dynamics N.V. | Electrical muscle controller |
US5683432A (en) | 1996-01-11 | 1997-11-04 | Medtronic, Inc. | Adaptive, performance-optimizing communication system for communicating with an implanted medical device |
US5819007A (en) | 1996-03-15 | 1998-10-06 | Siemens Medical Systems, Inc. | Feature-based expert system classifier |
JPH09327511A (en) * | 1996-06-12 | 1997-12-22 | A S A Sangyo Kk | Method for recovering and regenerating peritoneal dialysis liquid and treating device and ancillary appliance for this purpose |
CA2260209C (en) | 1996-07-11 | 2005-08-30 | Medtronic, Inc. | Minimally invasive implantable device for monitoring physiologic events |
US5902336A (en) * | 1996-10-15 | 1999-05-11 | Mirimedical, Inc. | Implantable device and method for removing fluids from the blood of a patient method for implanting such a device and method for treating a patient experiencing renal failure |
US6048732A (en) | 1996-10-16 | 2000-04-11 | Board Of Regents, The University Of Texas System | Receptor and method for citrate determination |
AU7722398A (en) | 1997-05-29 | 1998-12-30 | Joseph P. D'angelo | Estimation of active infection by helicobacter pylori |
US6042721A (en) | 1997-07-23 | 2000-03-28 | Fabco Industries, Inc. | Effluent treatment apparatus |
CA2211848C (en) | 1997-07-28 | 2002-06-11 | Joseph E. Dadson | Peritoneal dialysis apparatus |
SE9703600D0 (en) | 1997-10-02 | 1997-10-02 | Pacesetter Ab | Heart stimulator |
US6088608A (en) * | 1997-10-20 | 2000-07-11 | Alfred E. Mann Foundation | Electrochemical sensor and integrity tests therefor |
DE19747360B8 (en) | 1997-10-27 | 2007-05-16 | Fresenius Medical Care De Gmbh | Method for measuring performance parameters of mass and energy exchange modules |
SE9703958D0 (en) | 1997-10-29 | 1997-10-29 | Pacesetter Ab | Method and device for determination of concentration |
US6648845B1 (en) | 1998-01-07 | 2003-11-18 | Fresenius Medical Care North America | Method and apparatus for determining hemodialysis parameters |
SE520638C2 (en) | 1998-01-21 | 2003-08-05 | Gambro Lundia Ab | Safety device for dialysis machine |
SE9800407D0 (en) | 1998-02-12 | 1998-02-12 | Pacesetter Ab | Heart stimulator |
US6074315A (en) | 1998-02-19 | 2000-06-13 | Linda C. Yimoyines | Racquet with visually differentiated grommets and method of stringing thereof |
US6197197B1 (en) | 1998-04-23 | 2001-03-06 | Dialysis Systems, Inc. | Method for fluid delivery in a dialysis clinic |
US6058331A (en) | 1998-04-27 | 2000-05-02 | Medtronic, Inc. | Apparatus and method for treating peripheral vascular disease and organ ischemia by electrical stimulation with closed loop feedback control |
US6561996B1 (en) * | 1998-05-19 | 2003-05-13 | Transvivo, Inc. | Apparatus and method for in vivo hemodialysis |
DE19823570A1 (en) | 1998-05-27 | 1999-12-02 | Kfh Kuratorium Fuer Dialyse Un | Device for exchange of fluids and/or dissolved substances, particularly dialysis apparatus |
US6554798B1 (en) | 1998-08-18 | 2003-04-29 | Medtronic Minimed, Inc. | External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities |
US7670491B2 (en) | 1998-10-20 | 2010-03-02 | Advanced Renal Technologies | Buffered compositions for dialysis |
CA2345965C (en) | 1998-10-23 | 2010-12-14 | Jan Sternby | Method and device for measuring access flow |
US6726647B1 (en) | 1998-10-23 | 2004-04-27 | Gambro Ab | Method and device for measuring access flow |
EP2204203A3 (en) | 1998-10-29 | 2016-07-13 | Medtronic MiniMed, Inc. | Compact pump drive system |
US6248093B1 (en) | 1998-10-29 | 2001-06-19 | Minimed Inc. | Compact pump drive system |
US6254567B1 (en) | 1999-02-26 | 2001-07-03 | Nxstage Medical, Inc. | Flow-through peritoneal dialysis systems and methods with on-line dialysis solution regeneration |
US6274103B1 (en) | 1999-03-26 | 2001-08-14 | Prismedical Corporation | Apparatus and method for preparation of a peritoneal dialysis solution |
US6230059B1 (en) | 1999-03-17 | 2001-05-08 | Medtronic, Inc. | Implantable monitor |
SE9901165D0 (en) | 1999-03-30 | 1999-03-30 | Gambro Lundia Ab | Method, apparatus and components of dialysis systems |
ATE316391T1 (en) | 1999-04-30 | 2006-02-15 | Childrens Hosp Medical Center | HEMOFILTRATION SYSTEM |
US6669663B1 (en) * | 1999-04-30 | 2003-12-30 | Medtronic, Inc. | Closed loop medicament pump |
US6505075B1 (en) | 1999-05-29 | 2003-01-07 | Richard L. Weiner | Peripheral nerve stimulation method |
IT1310659B1 (en) * | 1999-07-30 | 2002-02-19 | Hospal Dasco Spa | METHOD OF CONTROL OF A DIALYSIS MACHINE WITH A SEMI-PERMANENT FILTER. |
DE19938691A1 (en) | 1999-08-14 | 2001-02-15 | Volkswagen Ag | Traffic-guided influencing and/or support of motor vehicles involves detecting objects, including relative speed, using distance measurements to detect traffic situations |
US6272377B1 (en) | 1999-10-01 | 2001-08-07 | Cardiac Pacemakers, Inc. | Cardiac rhythm management system with arrhythmia prediction and prevention |
FR2799727B1 (en) | 1999-10-19 | 2001-11-23 | Entpr De Mecanique Et D Outil | APPARATUS FOR DISTRIBUTING TABLETS OR THE LIKE FOR PACKAGING INSTALLATION IN MOVING HAVING SHEETS |
IT1308861B1 (en) | 1999-11-02 | 2002-01-11 | Gambro Dasco Spa | METHOD OF CONTROL OF A DIALYSIS EQUIPMENT DEDICATED TO THE IMPLEMENTATION OF THE AFBK DIALYTIC TECHNIQUE AND RELATED |
DE19955578C1 (en) | 1999-11-18 | 2001-09-06 | Fresenius Medical Care De Gmbh | Multi-chamber container, with glucose concentrate compartment and hydrochloric acid concentrate compartment |
FR2804265B1 (en) | 2000-01-25 | 2003-06-27 | Centre Nat Rech Scient | SYSTEM FOR REMOTE PATIENT MONITORING |
US6602399B1 (en) | 2000-03-22 | 2003-08-05 | Max-Planck-Gesellschaft Zur Forderung Der Wissenchaften E.V. | Signal recording of a receptor-effector-system by an extracellular planar potential-sensitive electrode |
US20010041869A1 (en) | 2000-03-23 | 2001-11-15 | Causey James D. | Control tabs for infusion devices and methods of using the same |
IL136079A0 (en) | 2000-04-19 | 2001-05-20 | Cheetah Medical Inc C O Pepper | Method and apparatus for monitoring the cardiovascular condition, particularly the degree of arteriosclerosis in individuals |
WO2001085295A2 (en) | 2000-05-05 | 2001-11-15 | Hemocleanse, Inc. | Use of magnetic particles or other particles having relatively high density in a fluid for mixing and/or leak detection |
US6887214B1 (en) | 2000-09-12 | 2005-05-03 | Chf Solutions, Inc. | Blood pump having a disposable blood passage cartridge with integrated pressure sensors |
US6890315B1 (en) | 2000-05-23 | 2005-05-10 | Chf Solutions, Inc. | Method and apparatus for vein fluid removal in heart failure |
US20010048637A1 (en) | 2000-05-24 | 2001-12-06 | Weigl Bernhard H. | Microfluidic system and method |
AU2001274525A1 (en) * | 2000-06-15 | 2001-12-24 | Jms Co., Ltd. | Automatic dialyzer and dialyzing method |
US6589229B1 (en) | 2000-07-31 | 2003-07-08 | Becton, Dickinson And Company | Wearable, self-contained drug infusion device |
US6615077B1 (en) | 2000-08-14 | 2003-09-02 | Renal Research Institute, Llc | Device and method for monitoring and controlling physiologic parameters of a dialysis patient using segmental bioimpedence |
US6689083B1 (en) | 2000-11-27 | 2004-02-10 | Chf Solutions, Inc. | Controller for ultrafiltration blood circuit which prevents hypotension by monitoring osmotic pressure in blood |
US6627164B1 (en) | 2000-11-28 | 2003-09-30 | Renal Solutions, Inc. | Sodium zirconium carbonate and zirconium basic carbonate and methods of making the same |
US7033498B2 (en) | 2000-11-28 | 2006-04-25 | Renal Solutions, Inc. | Cartridges useful in cleaning dialysis solutions |
JP4230223B2 (en) | 2000-12-12 | 2009-02-25 | ユラク セパレーション アクティーゼルスカブ | Method and apparatus for isolating ionic species from a liquid |
EP1351756B1 (en) | 2000-12-20 | 2013-07-24 | Nephros, Inc. | Multistage hemodiafiltration/hemofiltration apparatus |
JP4276834B2 (en) | 2000-12-27 | 2009-06-10 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Biological information and blood processing apparatus information management system |
US6706007B2 (en) | 2000-12-29 | 2004-03-16 | Chf Solutions, Inc. | Feedback control of ultrafiltration to prevent hypotension |
SE523860C2 (en) | 2001-01-08 | 2004-05-25 | Gambro Lundia Ab | Coupling device and medical wiring set with such coupling device |
JP2003010319A (en) * | 2001-07-03 | 2003-01-14 | Nippon Colin Co Ltd | Dialyzer |
US6544212B2 (en) | 2001-07-31 | 2003-04-08 | Roche Diagnostics Corporation | Diabetes management system |
US6960179B2 (en) | 2001-11-16 | 2005-11-01 | National Quality Care, Inc | Wearable continuous renal replacement therapy device |
SE525132C2 (en) | 2001-11-23 | 2004-12-07 | Gambro Lundia Ab | Method of operation of dialysis device |
US6878283B2 (en) | 2001-11-28 | 2005-04-12 | Renal Solutions, Inc. | Filter cartridge assemblies and methods for filtering fluids |
US20030114787A1 (en) | 2001-12-13 | 2003-06-19 | Victor Gura | Wearable peritoneal dialysis system |
US20030113931A1 (en) | 2001-12-14 | 2003-06-19 | Li Pan | Ammonia and ammonium sensors |
DE10204963A1 (en) | 2002-02-06 | 2003-08-14 | Isco Inc | Photometric probe for investigations on liquids and methods therefor |
US6711439B1 (en) | 2002-02-14 | 2004-03-23 | Pacesetter, Inc. | Evoked response variability as an indicator of autonomic tone and surrogate for patient condition |
US7076299B2 (en) | 2002-03-28 | 2006-07-11 | Tran Thong | Method and apparatus for preventing heart tachyarrhythmia |
US20030199951A1 (en) | 2002-04-22 | 2003-10-23 | Pardo Xavier E. | Implantable lead with improved conductor lumens |
US7207946B2 (en) | 2002-05-09 | 2007-04-24 | Spiration, Inc. | Automated provision of information related to air evacuation from a chest cavity |
US20030216677A1 (en) * | 2002-05-15 | 2003-11-20 | Li Pan | Biosensor for dialysis therapy |
US7153286B2 (en) | 2002-05-24 | 2006-12-26 | Baxter International Inc. | Automated dialysis system |
US20040001931A1 (en) * | 2002-06-25 | 2004-01-01 | 3M Innovative Properties Company | Linerless printable adhesive tape |
JP4129866B2 (en) * | 2002-07-18 | 2008-08-06 | 日機装株式会社 | Blood processing equipment |
JP2004049492A (en) * | 2002-07-18 | 2004-02-19 | Jms Co Ltd | Reference weight computing method and hemodialyzer |
US7238164B2 (en) | 2002-07-19 | 2007-07-03 | Baxter International Inc. | Systems, methods and apparatuses for pumping cassette-based therapies |
ES2339239T3 (en) | 2002-07-19 | 2010-05-18 | Baxter International Inc. | SYSTEM FOR PERITONEAL DIALYSIS. |
ES2366781T3 (en) | 2002-07-19 | 2011-10-25 | Baxter International Inc. | SYSTEMS AND METHODS FOR PERITONEAL DIALYSIS. |
US6609023B1 (en) | 2002-09-20 | 2003-08-19 | Angel Medical Systems, Inc. | System for the detection of cardiac events |
US7144384B2 (en) | 2002-09-30 | 2006-12-05 | Insulet Corporation | Dispenser components and methods for patient infusion device |
US7128727B2 (en) | 2002-09-30 | 2006-10-31 | Flaherty J Christopher | Components and methods for patient infusion device |
US20040099593A1 (en) | 2002-11-25 | 2004-05-27 | Potito De Paolis | Concurrent dialysate purification cartridge |
US9700663B2 (en) | 2005-01-07 | 2017-07-11 | Nxstage Medical, Inc. | Filtration system for preparation of fluids for medical applications |
ATE434454T1 (en) | 2003-01-07 | 2009-07-15 | Nxstage Medical Inc | BATCH FILTRATION SYSTEM FOR PRODUCING A STERILE REPLACEMENT LIQUID FOR KIDNEY TREATMENTS |
US7276042B2 (en) | 2003-01-23 | 2007-10-02 | National Quality Care, Inc. | Low hydraulic resistance cartridge |
WO2004072613A2 (en) | 2003-02-07 | 2004-08-26 | Board Of Regents, The University Of Texas System | Multi-shell microspheres with integrated chomatographic and detection layers for use in array sensors |
AU2003900572A0 (en) | 2003-02-10 | 2003-02-20 | Metal Storm Limited | Electronically selectable kinetic energy projectile |
US7330750B2 (en) | 2003-04-25 | 2008-02-12 | Instrumentarium Corp. | Estimation of cardiac death risk |
US7920906B2 (en) | 2005-03-10 | 2011-04-05 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
DE10339342B3 (en) | 2003-08-25 | 2005-01-20 | Fresenius Medical Care Deutschland Gmbh | Blood treatment system comprises an analysis unit which provides a control unit with information allowing blood treatment to be carried out with process parameters maintained within set value ranges |
US8026729B2 (en) | 2003-09-16 | 2011-09-27 | Cardiomems, Inc. | System and apparatus for in-vivo assessment of relative position of an implant |
US8086323B2 (en) * | 2003-09-23 | 2011-12-27 | Medtronic Minimed, Inc. | Implantable multi-parameter sensing system and method |
US20050065760A1 (en) | 2003-09-23 | 2005-03-24 | Robert Murtfeldt | Method for advising patients concerning doses of insulin |
KR101112117B1 (en) | 2003-10-13 | 2012-02-22 | 프레제니우스 메디칼 케어 도이칠란드 게엠베하 | A device for carrying out a peritoneal dialysis treatment |
SE0302698L (en) | 2003-10-13 | 2005-04-14 | Gambro Lundia Ab | Device for performing a peritoneal dialysis treatment |
EP1680155B2 (en) | 2003-10-28 | 2015-11-04 | Baxter International Inc. | Dialysis machine with improved integrity test |
US8029454B2 (en) | 2003-11-05 | 2011-10-04 | Baxter International Inc. | High convection home hemodialysis/hemofiltration and sorbent system |
AU2004300168A1 (en) | 2003-12-11 | 2005-06-30 | Board Of Regents, The University Of Texas System | Method and system for the analysis of saliva using a sensor array |
US7744553B2 (en) | 2003-12-16 | 2010-06-29 | Baxter International Inc. | Medical fluid therapy flow control systems and methods |
WO2005062973A2 (en) | 2003-12-24 | 2005-07-14 | Chemica Technologies, Inc. | Dialysate regeneration system for portable human dialysis |
CA2555807A1 (en) * | 2004-02-12 | 2005-08-25 | Biopeak Corporation | Non-invasive method and apparatus for determining a physiological parameter |
DE102004013814A1 (en) | 2004-03-20 | 2005-10-13 | B. Braun Medizintechnologie Gmbh | A method of allowing operator input on a medical device |
US20050234354A1 (en) | 2004-04-15 | 2005-10-20 | Rowlandson G I | System and method for assessing a patient's risk of sudden cardiac death |
US7509159B2 (en) | 2004-04-15 | 2009-03-24 | Ge Medical Systems Information Technologies, Inc. | Method and apparatus for detecting cardiac repolarization abnormality |
US7247493B2 (en) | 2004-05-18 | 2007-07-24 | Virbac Corporation | Reusable pH sensor device and related methods |
US7776210B2 (en) | 2004-06-09 | 2010-08-17 | Renal Solutions, Inc. | Dialysis system |
ITMO20040191A1 (en) * | 2004-07-23 | 2004-10-23 | Gambro Lundia Ab | MACHINE AND METHOD FOR EXTRA-BODY BLOOD TREATMENT. |
US7373195B2 (en) * | 2004-07-30 | 2008-05-13 | Medtronic, Inc. | Ion sensor for long term use in complex medium |
US7356366B2 (en) | 2004-08-02 | 2008-04-08 | Cardiac Pacemakers, Inc. | Device for monitoring fluid status |
US8202248B2 (en) | 2004-08-18 | 2012-06-19 | Sequana Medical Ag | Dialysis implant and methods of use |
JP4094600B2 (en) * | 2004-10-06 | 2008-06-04 | 日機装株式会社 | Blood purification equipment |
CN103357450B (en) | 2004-12-28 | 2016-08-10 | 雷纳尔溶液公司 | The method of synthesizing zirconium phosphate particles |
US7756572B1 (en) | 2005-01-25 | 2010-07-13 | Pacesetter, Inc. | System and method for efficiently distinguishing among cardiac ischemia, hypoglycemia and hyperglycemia using an implantable medical device and an external system |
EP1850910A1 (en) | 2005-02-07 | 2007-11-07 | Medtronic, Inc. | Ion imbalance detector |
US20060195064A1 (en) | 2005-02-28 | 2006-08-31 | Fresenius Medical Care Holdings, Inc. | Portable apparatus for peritoneal dialysis therapy |
US7404799B1 (en) | 2005-04-05 | 2008-07-29 | Pacesetter, Inc. | System and method for detection of respiration patterns via integration of intracardiac electrogram signals |
JP4726045B2 (en) | 2005-04-08 | 2011-07-20 | 日機装株式会社 | Hemodialysis machine |
US7537569B2 (en) | 2005-04-29 | 2009-05-26 | Medtronic, Inc. | Method and apparatus for detection of tachyarrhythmia using cycle lengths |
US20060257500A1 (en) * | 2005-05-05 | 2006-11-16 | Duke University | TRPC6 involved in glomerulonephritis |
AU2006245567A1 (en) | 2005-05-06 | 2006-11-16 | Imi Vision Limited | Dialysis machine |
US7569050B2 (en) | 2005-05-06 | 2009-08-04 | Medtronic Minimed, Inc. | Infusion device and method with drive device in infusion device and method with drive device in separable durable housing portion |
JP4452660B2 (en) | 2005-06-28 | 2010-04-21 | トヨタ自動車株式会社 | Knocking state determination device |
US20070007184A1 (en) | 2005-07-07 | 2007-01-11 | Delphi Technologies, Inc. | Specialized sensor-assisted dialysis |
US20070031972A1 (en) | 2005-08-05 | 2007-02-08 | Attar Amir J | Detection of poisons in materials such as food using colorimetric detection |
US7529580B2 (en) | 2005-08-11 | 2009-05-05 | Pacesetter, Inc. | Detection of renal failure by cardiac implantable medical device |
US7674231B2 (en) | 2005-08-22 | 2010-03-09 | Massachusetts Institute Of Technology | Wearable pulse wave velocity blood pressure sensor and methods of calibration thereof |
US7775983B2 (en) | 2005-09-16 | 2010-08-17 | Cardiac Pacemakers, Inc. | Rapid shallow breathing detection for use in congestive heart failure status determination |
US7658884B2 (en) | 2005-10-05 | 2010-02-09 | Swan Analytische Instrumente Ag | Photometric method and apparatus for measuring a liquid's turbidity, fluorescence, phosphorescence and/or absorption coefficient |
US20100137693A1 (en) | 2005-11-01 | 2010-06-03 | Fresenius Medical Care Holdings, Inc. | Methods and systems for patient care |
JP4822258B2 (en) * | 2005-11-11 | 2011-11-24 | 日機装株式会社 | Hemodialysis machine |
DE102005060866B4 (en) | 2005-12-20 | 2009-01-15 | Bruker Biospin Gmbh | Combined titration and pH electrode for the preparation of liquid samples, especially for NMR spectroscopy |
US8034017B2 (en) | 2005-12-29 | 2011-10-11 | Flexdialysis Aps | Method and apparatus for home dialysis |
US8409864B2 (en) | 2006-01-06 | 2013-04-02 | Renal Solutions, Inc. | Ammonia sensor and system for use |
JP4548349B2 (en) * | 2006-01-20 | 2010-09-22 | 株式会社ジェイ・エム・エス | Hemodialysis machine |
US8187250B2 (en) | 2006-01-30 | 2012-05-29 | The Regents Of The University Of California | Peritoneal dialysis methods and apparatus |
US8246563B2 (en) * | 2006-02-02 | 2012-08-21 | Cardiac Pacemakers, Inc. | Cardiac rhythm management device and sensor-suite for the optimal control of ultrafiltration and renal replacement therapies |
US7842243B2 (en) | 2006-02-21 | 2010-11-30 | Sergey Sergeyevich Sarkisov | Chemical sensor with an indicator dye |
US8012118B2 (en) * | 2006-03-08 | 2011-09-06 | Fresenius Medical Care Holdings, Inc. | Artificial kidney dialysis system |
US7785463B2 (en) | 2006-03-17 | 2010-08-31 | Children's Hospital Medical Center | Extracorporeal renal replacement modeling system |
JP2007255995A (en) | 2006-03-22 | 2007-10-04 | Nec Corp | Color discrimination device and gas specification device |
US7610086B1 (en) | 2006-03-31 | 2009-10-27 | Pacesetter, Inc. | System and method for detecting cardiac ischemia in real-time using a pattern classifier implemented within an implanted medical device |
US7790113B2 (en) | 2006-04-04 | 2010-09-07 | Photonic Biosystems, Inc. | Visual, continuous and simultaneous measurement of solution ammonia and hydrogen ion concentration |
US8366316B2 (en) | 2006-04-14 | 2013-02-05 | Deka Products Limited Partnership | Sensor apparatus systems, devices and methods |
US20080058697A1 (en) | 2006-04-14 | 2008-03-06 | Deka Products Limited Partnership | Heat exchange systems, devices and methods |
US7942844B2 (en) | 2006-04-28 | 2011-05-17 | Medtronic Minimed, Inc. | Remote monitoring for networked fluid infusion systems |
US7558622B2 (en) | 2006-05-24 | 2009-07-07 | Bao Tran | Mesh network stroke monitoring appliance |
US8496809B2 (en) | 2006-06-05 | 2013-07-30 | Baxter International Inc. | Dynamic weight balancing of flow in kidney failure treatment systems |
CN101460092B (en) * | 2006-06-07 | 2011-06-01 | 甘布罗伦迪亚股份公司 | Prediction of rapid symptomatic blood pressure decrease |
DE102006028172A1 (en) | 2006-06-16 | 2007-12-20 | Universität Hannover | Elimination of arsenic from water by contacting with ferrous hydroxide, comprises contacting with oxygen and then contacting with ferrous ion in oxygen-free solution |
US7572232B2 (en) | 2006-07-24 | 2009-08-11 | Cardiac Pacemakers, Inc. | Cardiac signal display and event detection using multiresolution Z-score transform |
US8980641B2 (en) | 2006-07-26 | 2015-03-17 | Detectachem, Llc | Method for detection of chemicals on a surface |
SE532971C2 (en) | 2006-08-16 | 2010-05-25 | Triomed Ab | Liquid regeneration system |
US7887502B2 (en) | 2006-09-15 | 2011-02-15 | University Of Florida Research Foundation, Inc. | Method for using photoplethysmography to optimize fluid removal during renal replacement therapy by hemodialysis or hemofiltration |
EP2068971B1 (en) | 2006-09-19 | 2016-11-23 | Gambro Lundia AB | Estimation of propensity to symptomatic hypotension |
DE102006045437A1 (en) | 2006-09-26 | 2008-04-03 | Fresenius Medical Care Deutschland Gmbh | Apparatus and method for prescribing a dialysis fluid rate or blood flow rate for extracorporeal blood treatment |
AU2007309232B2 (en) | 2006-10-19 | 2013-09-26 | Second Sight Medical Products, Inc. | Visual prosthesis |
DE102006050272B4 (en) | 2006-10-23 | 2008-07-24 | Fresenius Medical Care Deutschland Gmbh | Hemodialysis machine, hemodiafiltration device, method of sampling such devices, and sampling set for use with such devices and methods |
WO2008052358A1 (en) | 2006-11-03 | 2008-05-08 | The Governors Of The University Of Alberta | Microfluidic device having an array of spots |
US9968266B2 (en) | 2006-12-27 | 2018-05-15 | Cardiac Pacemakers, Inc. | Risk stratification based heart failure detection algorithm |
US8183046B2 (en) | 2007-01-11 | 2012-05-22 | The Board Of Trustees Of The University Of Illinois | Temperature resistant pH buffers for use at low temperatures |
US8202241B2 (en) | 2007-02-15 | 2012-06-19 | Asahi Kasei Medical Co., Ltd. | Blood purification system |
US7731689B2 (en) | 2007-02-15 | 2010-06-08 | Baxter International Inc. | Dialysis system having inductive heating |
CA2681912C (en) | 2007-02-27 | 2015-09-29 | Deka Products Limited Partnership | Hemodialysis systems and methods |
US8491184B2 (en) | 2007-02-27 | 2013-07-23 | Deka Products Limited Partnership | Sensor apparatus systems, devices and methods |
US8317492B2 (en) | 2007-02-27 | 2012-11-27 | Deka Products Limited Partnership | Pumping cassette |
US8409441B2 (en) | 2007-02-27 | 2013-04-02 | Deka Products Limited Partnership | Blood treatment systems and methods |
US8042563B2 (en) | 2007-02-27 | 2011-10-25 | Deka Products Limited Partnership | Cassette system integrated apparatus |
JP2010523230A (en) | 2007-04-05 | 2010-07-15 | ベロメディックス,インク | Automatic treatment system and method |
US7775986B2 (en) | 2007-04-10 | 2010-08-17 | B. Braun Medizintechnologie Gmbh | Therapy device with a time-variable blood regulation |
AU2008260230B2 (en) | 2007-05-29 | 2013-09-19 | Fresenius Medical Care Holdings, Inc. | Solutions, dialysates, and related methods |
CN101541957B (en) | 2007-07-20 | 2013-08-14 | 梅约医学教育与研究基金会 | Natriuretic polypeptides |
US7981082B2 (en) | 2007-08-21 | 2011-07-19 | Hospira, Inc. | System and method for reducing air bubbles in a fluid delivery line |
DE102007039939B4 (en) | 2007-08-23 | 2013-03-14 | Albutec Gmbh | Device for saving diafiltrate |
US20090101577A1 (en) | 2007-09-28 | 2009-04-23 | Fulkerson Barry N | Methods and Systems for Controlling Ultrafiltration Using Central Venous Pressure Measurements |
DE102007052571A1 (en) * | 2007-11-03 | 2009-05-07 | Fresenius Medical Care Deutschland Gmbh | Method and device for monitoring the supply of substitution fluid during extracorporeal blood treatment |
TWI400062B (en) | 2007-11-08 | 2013-07-01 | 私立中原大學 | Medical devices that record physiological signals |
US9415150B2 (en) | 2007-11-09 | 2016-08-16 | Baxter Healthcare S.A. | Balanced flow dialysis machine |
EP2219704B1 (en) | 2007-11-16 | 2018-08-29 | Fresenius Medical Care Holdings, Inc. | Dialysis systems and methods |
US8889004B2 (en) | 2007-11-16 | 2014-11-18 | Fresenius Medical Care Holdings, Inc. | Dialysis systems and methods |
CA2960103C (en) | 2007-11-29 | 2020-03-10 | Fredenius Medical Care Holdings, Inc. | System and method for conducting hemodialysis and hemofiltration |
US20090149776A1 (en) | 2007-12-05 | 2009-06-11 | Adams Scott C | Optical sensor for detecting infection and other anomalous conditions associated with catheter systems |
JP5350810B2 (en) | 2008-01-11 | 2013-11-27 | 株式会社東芝 | Automatic analyzer and automatic analysis method |
CN104307210B (en) | 2008-01-18 | 2017-09-29 | 弗雷塞尼斯医疗保健控股公司 | Carbon dioxide is removed from the fluid circuit of dialysis apparatus |
CA3017406C (en) | 2008-01-23 | 2023-08-22 | Deka Products Limited Partnership | Fluid handling cassette for use with a peritoneal dialysis system |
WO2009094035A1 (en) | 2008-01-25 | 2009-07-30 | Fresenius Medical Care Holdings, Inc. | Apparatus and methods for early stage peritonitis detection and for in vivo testing of bodily fluids |
WO2009094700A1 (en) * | 2008-01-31 | 2009-08-06 | Applied Physiology Pty. Ltd. | Systems, methods and devices for maintenance, guidance and/or control |
US8019406B2 (en) | 2008-03-10 | 2011-09-13 | Biotronik Crm Patent Ag | Apparatus and method to assess the risk of R-on-T event |
JP2009247724A (en) * | 2008-04-09 | 2009-10-29 | Jms Co Ltd | Hemodialyzer |
US20090264776A1 (en) | 2008-04-17 | 2009-10-22 | Terence Vardy | Measurement of physiological characteristics |
AU2009242369A1 (en) | 2008-04-30 | 2009-11-05 | Gambro Lundia Ab | Hydrophobic deaeration membrane |
US8233973B2 (en) | 2008-05-02 | 2012-07-31 | Spacelabs Healthcare, Llc | Methods for detection of cardiac arrhythmias |
US8882700B2 (en) | 2008-05-02 | 2014-11-11 | Baxter International Inc. | Smart patient transfer set for peritoneal dialysis |
US8449495B2 (en) | 2008-05-28 | 2013-05-28 | Baxter Healthcare Inc. | Dialysis system having automated effluent sampling and peritoneal equilibration test |
US8220643B2 (en) | 2008-06-06 | 2012-07-17 | Fresenius Medical Care Holdings, Inc. | Urea sorbent |
RU2525205C2 (en) | 2008-06-23 | 2014-08-10 | Темасек Политехник | Flow system of dialysis device and portable dialysis device |
US9821105B2 (en) | 2008-07-01 | 2017-11-21 | Baxter International Inc. | Nanoclay sorbents for dialysis |
US9147045B2 (en) | 2008-07-09 | 2015-09-29 | Baxter International Inc. | Peritoneal equilibration test and dialysis system using same |
US8057679B2 (en) * | 2008-07-09 | 2011-11-15 | Baxter International Inc. | Dialysis system having trending and alert generation |
US8696626B2 (en) | 2008-07-30 | 2014-04-15 | Claudia F. E. Kirsch | Debubbler |
CN101644667A (en) | 2008-08-05 | 2010-02-10 | 长春吉大·小天鹅仪器有限公司 | Quick detector for quality and safety of tea |
US20100051552A1 (en) | 2008-08-28 | 2010-03-04 | Baxter International Inc. | In-line sensors for dialysis applications |
EP2163272B1 (en) | 2008-09-15 | 2014-06-25 | B. Braun Avitum AG | Device to early predict the Kt/V parameter in kidney substitution treatments |
WO2010033314A1 (en) * | 2008-09-19 | 2010-03-25 | Cardiac Pacemakers, Inc. | Central venous pressure sensor and method to control a fluid or volume overload therapy |
JP5373915B2 (en) * | 2008-09-19 | 2013-12-18 | カーディアック ペースメイカーズ, インコーポレイテッド | Deteriorated HF warning based on indicators |
US8409444B2 (en) | 2008-09-30 | 2013-04-02 | Fresenius Medical Care Holdings, Inc. | Acid zirconium phosphate and alkaline hydrous zirconium oxide materials for sorbent dialysis |
US8497107B2 (en) | 2008-09-30 | 2013-07-30 | Fresenius Medical Care Holdings, Inc. | Covalently immobilized enzyme and method to make the same |
JP5712131B2 (en) | 2008-10-03 | 2015-05-07 | フレセニウス メディカル ケア ホールディングス インコーポレーテッド | Zirconium phosphate particles with improved adsorption capacity and method for synthesizing the zirconium phosphate particles |
US9883799B2 (en) | 2008-10-16 | 2018-02-06 | Fresenius Medical Care Holdings, Inc. | Method of identifying when a patient undergoing hemodialysis is at increased risk of death |
CN102202702B (en) | 2008-11-03 | 2014-05-21 | 弗雷泽纽斯医疗保健控股有限公司 | Portable peritoneal dialysis system |
US9370324B2 (en) | 2008-11-05 | 2016-06-21 | Fresenius Medical Care Holdings, Inc. | Hemodialysis patient data acquisition, management and analysis system |
DE102008061122A1 (en) | 2008-12-09 | 2010-06-17 | Fresenius Medical Care Deutschland Gmbh | Method and device for determining and / or monitoring a physical condition, in particular a cardiovascular size, of a patient based on an amplitude of a pressure signal |
EP2375968B1 (en) | 2008-12-15 | 2018-11-14 | Medtronic Monitoring, Inc. | Patient monitoring systems and methods |
CN201342127Y (en) | 2008-12-25 | 2009-11-11 | 贺心雅 | Online peritoneum dialysis apparatus |
EA201170961A1 (en) | 2009-01-23 | 2012-02-28 | Пайонир Хай-Бред Интернэшнл, Инк. | NEW BACILLUS THURINGIENSIS GENE WITH ACTIVITY AGAINST LEPIDOPTERA |
US8521482B2 (en) | 2009-02-20 | 2013-08-27 | Baxter International Inc. | Simulation of patient drain phase in peritoneal dialysis |
EP2403554B1 (en) | 2009-03-06 | 2017-07-05 | Baxter International Inc. | Hemodialysis and peritoneal dialysis systems having electrodeionization capabilities |
US9005440B2 (en) | 2009-03-06 | 2015-04-14 | Baxter International Inc. | Hemodialysis and peritoneal dialysis systems having electrodialysis and electrodeionization capabilities |
EP2411069B1 (en) | 2009-03-24 | 2015-07-22 | Gambro Lundia AB | Dialysis device |
US8480581B2 (en) * | 2009-03-24 | 2013-07-09 | Cardiac Pacemakers, Inc. | Systems and methods for anemia detection, monitoring, and treatment |
DE102009018806A1 (en) | 2009-04-24 | 2010-11-25 | Fresenius Medical Care Deutschland Gmbh | A computer system and method for generating at least one machine-readable file for a medical treatment device |
US20100298670A1 (en) * | 2009-05-20 | 2010-11-25 | Pacesetter, Inc. | Electrolyte monitoring using implanted cardiac rhythm management device |
US20100312174A1 (en) | 2009-06-06 | 2010-12-09 | Hoffman Josef C A | Peritoneal Dialysis System |
US20100312172A1 (en) | 2009-06-06 | 2010-12-09 | Hoffman Josef C A | Method of Peritoneal Dialysis |
CN104689402B (en) | 2009-06-26 | 2017-06-13 | 甘布罗伦迪亚股份公司 | Dialysis machine and the apparatus and method for being processed signal |
AU2010266335A1 (en) | 2009-07-01 | 2012-02-02 | Board Of Regents, The University Of Texas System | Methods of determining the presence and/or concentration of an analyte in a sample |
US8404091B2 (en) | 2009-08-27 | 2013-03-26 | Baxter International Inc. | Dialysis treatment devices for removing urea |
EP2292283A1 (en) | 2009-09-04 | 2011-03-09 | B. Braun Avitum AG | Method and device to obtain physiological parameters and detect clinical or subclinical abnormalities during a kidney substitution treatment |
EP2295097A1 (en) | 2009-09-09 | 2011-03-16 | Fresenius Medical Care Deutschland GmbH | Method and apparatus for evaluating values representing a mass or a concentration of a substance present within the body of a patient |
US8239010B2 (en) | 2009-09-14 | 2012-08-07 | Sotera Wireless, Inc. | System for measuring vital signs during hemodialysis |
US20110066043A1 (en) | 2009-09-14 | 2011-03-17 | Matt Banet | System for measuring vital signs during hemodialysis |
US9943236B2 (en) * | 2009-09-30 | 2018-04-17 | Medtronic, Inc. | Methods for guiding heart failure decompensation therapy |
US9399091B2 (en) | 2009-09-30 | 2016-07-26 | Medtronic, Inc. | System and method to regulate ultrafiltration |
US8518260B2 (en) | 2009-10-01 | 2013-08-27 | Fresenius Medical Care Holdings, Inc. | Method of controlling diffusive sodium transport in dialysis |
EP2316334A1 (en) | 2009-10-22 | 2011-05-04 | Fresenius Medical Care Deutschland GmbH | A method for assessing a patient's fluid status and /or sensitivity to fluid removal, controller, and devices |
US20110130666A1 (en) | 2009-11-30 | 2011-06-02 | Yanting Dong | Enhanced reporting of pathological episodes |
US20110141116A1 (en) | 2009-12-16 | 2011-06-16 | Baxter International Inc. | Methods and apparatus for displaying flow rate graphs and alarms on a dialysis system |
CN101726465B (en) | 2009-12-25 | 2011-07-06 | 重庆大学 | Mini-array poisonous gas detecting instrument |
US9132219B2 (en) | 2010-04-16 | 2015-09-15 | Baxter International Inc. | Therapy prediction and optimization of serum potassium for renal failure blood therapy, especially home hemodialysis |
US8868350B2 (en) * | 2010-04-16 | 2014-10-21 | Baxter International Inc. | Therapy prediction and optimization for renal failure blood therapy, especially home hemodialysis |
EP2377563B1 (en) | 2010-04-19 | 2012-05-30 | Gambro Lundia AB | Dialysis apparatus |
US20110272337A1 (en) | 2010-05-04 | 2011-11-10 | C-Tech Biomedical, Inc. | Dual mode hemodialysis machine |
CN101958264B (en) | 2010-05-06 | 2012-06-20 | 东莞宏威数码机械有限公司 | Dustless vacuum power transfer unit |
DE102010022201A1 (en) | 2010-05-20 | 2011-11-24 | Fresenius Medical Care Deutschland Gmbh | Medical treatment arrangement |
EP2388030B2 (en) | 2010-05-20 | 2022-03-16 | B. Braun Avitum AG | Kidney substitution device to automate blood sampling procedure in a kidney substitution treatment machine |
EP2576453B1 (en) | 2010-05-24 | 2018-08-22 | Baxter International Inc. | Systems and methods for removing hydrogen peroxide from water purification systems |
US20110301447A1 (en) | 2010-06-07 | 2011-12-08 | Sti Medical Systems, Llc | Versatile video interpretation, visualization, and management system |
ES2677603T3 (en) | 2010-06-23 | 2018-08-03 | Gambro Lundia Ab | Precursor Dialysis Composition |
US8395213B2 (en) | 2010-08-27 | 2013-03-12 | Acorn Technologies, Inc. | Strained semiconductor using elastic edge relaxation of a stressor combined with buried insulating layer |
CA2810650C (en) | 2010-09-07 | 2019-12-03 | Nextteq Llc | System for visual and electronic reading of colorimetric tubes |
NZ609581A (en) * | 2010-09-20 | 2014-10-31 | Gambro Lundia Ab | Obtaining control settings for a dialysis machine |
PL2433662T3 (en) | 2010-09-27 | 2014-10-31 | Gambro Lundia Ab | Apparatus for extracorporeal treatment of blood |
US8784668B2 (en) | 2010-10-12 | 2014-07-22 | Fresenius Medical Care Holdings, Inc. | Systems and methods for compensation of compliant behavior in regenerative dialysis systems |
DE102010048771A1 (en) | 2010-10-14 | 2012-05-16 | B. Braun Avitum Ag | Method and device for measuring and correcting system changes in a device for treating blood |
JP4803318B1 (en) | 2010-12-02 | 2011-10-26 | 横浜ゴム株式会社 | Pneumatic tire |
US9694125B2 (en) | 2010-12-20 | 2017-07-04 | Fresenius Medical Care Holdings, Inc. | Medical fluid cassettes and related systems and methods |
DE102011008185A1 (en) | 2011-01-10 | 2012-07-12 | Fresenius Medical Care Deutschland Gmbh | Production of individual concentrate |
DE102011003720A1 (en) | 2011-02-07 | 2012-08-09 | Robert Bosch Gmbh | Arrangement and method for detecting hydrogen peroxide |
EP2678028A2 (en) | 2011-02-25 | 2014-01-01 | Medtronic, Inc. | Systems and methods for therapy of kidney disease and/or heart failure using chimeric natriuretic peptides |
CN202048893U (en) | 2011-03-21 | 2011-11-23 | 东华大学 | System for detecting bubbles of spinning solution in real time |
ITMI20110441A1 (en) | 2011-03-21 | 2012-09-22 | Gambro Lundia Ab | EQUIPMENT FOR EXTRACORPROUS TREATMENT OF BLOOD. |
AU2012230767A1 (en) | 2011-03-23 | 2013-10-31 | Nxstage Medical, Inc. | Peritoneal dialysis systems, devices, and methods |
US8945936B2 (en) | 2011-04-06 | 2015-02-03 | Fresenius Medical Care Holdings, Inc. | Measuring chemical properties of a sample fluid in dialysis systems |
US20120258546A1 (en) | 2011-04-08 | 2012-10-11 | Life Technologies Corporation | Automated On-Instrument pH Adjustment |
WO2012148784A2 (en) | 2011-04-29 | 2012-11-01 | Medtronic, Inc. | Method and device to monitor patients with kidney disease |
US9848778B2 (en) | 2011-04-29 | 2017-12-26 | Medtronic, Inc. | Method and device to monitor patients with kidney disease |
US9061099B2 (en) | 2011-04-29 | 2015-06-23 | Medtronic, Inc. | Cardiovascular monitoring for fluid removal processes |
US9320842B2 (en) | 2011-04-29 | 2016-04-26 | Medtronic, Inc. | Multimodal dialysis system |
EP2701758A1 (en) | 2011-04-29 | 2014-03-05 | Medtronic, Inc. | Multimodal dialysis system |
US9132217B2 (en) | 2011-04-29 | 2015-09-15 | Medtronic, Inc. | Multimodal dialysis system |
US9456755B2 (en) | 2011-04-29 | 2016-10-04 | Medtronic, Inc. | Method and device to monitor patients with kidney disease |
US20120303079A1 (en) | 2011-05-23 | 2012-11-29 | Deepa Mahajan | Apparatus and method for combined cardiac function management and renal therapies |
CA3166031A1 (en) | 2011-05-24 | 2012-11-29 | Deka Products Limited Partnership | Hemodialysis system |
CA2840715C (en) | 2011-07-29 | 2018-07-31 | Baxter International Inc. | Sodium management for dialysis systems |
EP3165245B1 (en) | 2011-08-02 | 2019-02-20 | Medtronic, Inc. | Hemodialysis system having a flow path with a controlled compliant volume |
US20150169840A1 (en) | 2011-08-05 | 2015-06-18 | Alere San Diego, Inc. | Methods and compositions for monitoring heart failure |
US10857277B2 (en) | 2011-08-16 | 2020-12-08 | Medtronic, Inc. | Modular hemodialysis system |
CN103842004B (en) | 2011-08-22 | 2016-11-23 | 美敦力公司 | Double fluid adsorbent box |
US8811290B2 (en) | 2011-09-29 | 2014-08-19 | Lg Electronics Inc. | Method and apparatus for transmitting paging message in wireless communication system |
AU2012336423B2 (en) | 2011-11-08 | 2017-08-03 | Temasek Polytechnic | Sensing system for detecting a substance in a dialysate |
JP5099464B1 (en) | 2011-12-29 | 2012-12-19 | 富田製薬株式会社 | Bicarbonate ion concentration-variable dialysate preparation device and preparation method, bicarbonate ion concentration-variable dialysate, and bicarbonate ion concentration-variable dialyzing system |
EP2800591B1 (en) | 2012-01-04 | 2016-01-13 | Fresenius Medical Care Holdings, Inc. | Method and system of enhancing removal of toxic anions and organic solutes in sorbent dialysis |
US9713668B2 (en) | 2012-01-04 | 2017-07-25 | Medtronic, Inc. | Multi-staged filtration system for blood fluid removal |
GB201201330D0 (en) | 2012-01-26 | 2012-03-14 | Quanta Fluid Solutions Ltd | Dialysis machine |
US20140276100A1 (en) | 2012-02-01 | 2014-09-18 | Invoy Technologies | System for measuring breath analytes |
US10076597B2 (en) | 2012-02-02 | 2018-09-18 | Quanta Fluid Systems Ltd. | Dialysis machine |
EP2814535B1 (en) | 2012-02-14 | 2018-05-30 | Quanta Dialysis Technologies Limited | Dialysis machine |
EP2641624B1 (en) | 2012-03-21 | 2016-03-02 | Gambro Lundia AB | Treatment solution delivery in an extracorporeal blood treatment apparatus |
EP2827916B1 (en) | 2012-03-23 | 2017-08-09 | NxStage Medical, Inc. | Peritoneal dialysis system |
US9610392B2 (en) | 2012-06-08 | 2017-04-04 | Fresenius Medical Care Holdings, Inc. | Medical fluid cassettes and related systems and methods |
US9500188B2 (en) | 2012-06-11 | 2016-11-22 | Fresenius Medical Care Holdings, Inc. | Medical fluid cassettes and related systems and methods |
DE102012014504A1 (en) | 2012-07-20 | 2014-01-23 | Dräger Safety AG & Co. KGaA | Gas Detection System |
US9231692B2 (en) | 2012-09-04 | 2016-01-05 | Viasat Inc. | Paired-beam transponder satellite communication |
US9162021B2 (en) | 2012-10-22 | 2015-10-20 | Baxter International Inc. | Integrated water testing system and method for ultra-low total chlorine detection |
US9138520B2 (en) | 2012-10-22 | 2015-09-22 | Baxter International Inc. | Total chlorine water detection system and method for medical fluid treatments |
US9523642B2 (en) | 2012-11-09 | 2016-12-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated electro-microfluidic probe card, system and method for using the same |
JP2014097224A (en) | 2012-11-15 | 2014-05-29 | Tatsunori Kato | Dialysis unit and method for measuring access recirculation rate |
US9399090B2 (en) | 2012-12-10 | 2016-07-26 | Medtronic, Inc. | Potassium loaded ion-exchange material for use in a dialysate regeneration system |
US10905816B2 (en) | 2012-12-10 | 2021-02-02 | Medtronic, Inc. | Sodium management system for hemodialysis |
US20140158588A1 (en) | 2012-12-10 | 2014-06-12 | Medtronic, Inc. | pH AND BUFFER MANAGEMENT SYSTEM FOR HEMODIALYSIS SYSTEMS |
CN103901025A (en) | 2012-12-27 | 2014-07-02 | 中国科学院烟台海岸带研究所 | Color detection device and method of portable paper-base micro fluidic chip |
US9707328B2 (en) | 2013-01-09 | 2017-07-18 | Medtronic, Inc. | Sorbent cartridge to measure solute concentrations |
US10010663B2 (en) | 2013-02-01 | 2018-07-03 | Medtronic, Inc. | Fluid circuit for delivery of renal replacement therapies |
US9526822B2 (en) | 2013-02-01 | 2016-12-27 | Medtronic, Inc. | Sodium and buffer source cartridges for use in a modular controlled compliant flow path |
WO2014121161A1 (en) | 2013-02-01 | 2014-08-07 | Medtronic, Inc. | Recirculating dialysate fluid circuit for blood measurement |
WO2014121162A1 (en) | 2013-02-01 | 2014-08-07 | Medtronic, Inc. | Sorbent cartridge to measure solute concentrations |
US9173987B2 (en) | 2013-02-01 | 2015-11-03 | Medtronic, Inc. | Degassing module for a controlled compliant flow path |
US9827361B2 (en) | 2013-02-02 | 2017-11-28 | Medtronic, Inc. | pH buffer measurement system for hemodialysis systems |
US9144640B2 (en) | 2013-02-02 | 2015-09-29 | Medtronic, Inc. | Sorbent cartridge configurations for improved dialysate regeneration |
ES2867532T5 (en) | 2013-03-14 | 2024-07-09 | Baxter Int | Peritoneal dialysis facility |
CN103439230B (en) | 2013-09-13 | 2015-07-01 | 山东省科学院海洋仪器仪表研究所 | Bubble parameter measurement method and device |
CN105848581B (en) | 2013-11-04 | 2019-01-01 | 美敦力公司 | Method and apparatus for managing the body fluid volume in body |
US9884145B2 (en) | 2013-11-26 | 2018-02-06 | Medtronic, Inc. | Parallel modules for in-line recharging of sorbents using alternate duty cycles |
CN105992552B (en) | 2013-11-27 | 2019-06-18 | 美敦力公司 | Accurate dialysis monitoring and synchronization system |
SE538124C2 (en) | 2014-02-28 | 2016-03-08 | Triomed Ab | Apparatus for peritoneal ultrafiltration including control of glucose concentration in the peritoneal cavity |
WO2015159280A1 (en) | 2014-04-13 | 2015-10-22 | Spectrophon Ltd | Wireless colorimetric sensor |
US10155076B2 (en) | 2014-05-29 | 2018-12-18 | Fresenius Medical Care Holdings, Inc. | Method for treating dialysate, dialysis system, and method for pre-evaluating dialysis patients for treatment with same |
US9278536B2 (en) | 2014-07-22 | 2016-03-08 | Xyzprinting, Inc. | Printing head module |
EP3220975B1 (en) | 2014-11-21 | 2024-01-24 | Triomed AB | Apparatus for performing peritoneal ultrafiltration |
US9895479B2 (en) | 2014-12-10 | 2018-02-20 | Medtronic, Inc. | Water management system for use in dialysis |
EP3233152B1 (en) | 2014-12-17 | 2021-02-03 | Newsol Technologies Inc. | System and method for peritoneal dialysis |
CN104833635B (en) | 2015-04-23 | 2018-03-16 | 东北大学 | A kind of miniature quartz hollow pipe compound fiber structure for detecting concentration of glucose |
SE539744C2 (en) | 2015-08-27 | 2017-11-14 | Triomed Ab | Apparatus for performing peritoneal ultrafiltration |
CN105115921B (en) | 2015-09-09 | 2017-10-20 | 浙江大学 | A kind of detection means for being used to detect gas concentration in water |
CN105692957B (en) | 2016-02-26 | 2018-11-13 | 宁波惠士康健康科技有限公司 | Water purifier with sterilizing function |
US20170281846A1 (en) | 2016-04-04 | 2017-10-05 | Medtronic, Inc. | Peritoneal dialysate fluid generation system with integrated cycler |
WO2017176687A1 (en) | 2016-04-04 | 2017-10-12 | Medtronic, Inc. | Regenerative peritoneal dialysis system |
CN205672288U (en) | 2016-04-08 | 2016-11-09 | 福州东泽医疗器械有限公司 | A kind of automated peritoneal dialysis machine heating and temperature control system |
WO2017193065A1 (en) | 2016-05-06 | 2017-11-09 | Gambro Lundia Ab | Systems and methods for peritoneal dialysis having point of use dialysis fluid preparation including testing thereof |
CN106124491A (en) | 2016-06-15 | 2016-11-16 | 安徽有果信息技术服务有限公司 | A kind of online Concentration Detection of Formaldehyde Production |
WO2018031711A2 (en) | 2016-08-10 | 2018-02-15 | Medtronic, Inc. | Catheter and peritoneum health monitoring |
-
2012
- 2012-03-20 US US13/424,490 patent/US9061099B2/en active Active
- 2012-03-20 US US13/424,525 patent/US9700661B2/en active Active
- 2012-03-20 US US13/424,467 patent/US8926542B2/en active Active
- 2012-03-20 US US13/424,429 patent/US9561316B2/en active Active
- 2012-03-20 US US13/424,517 patent/US9302036B2/en active Active
- 2012-03-20 US US13/424,533 patent/US9750862B2/en active Active
- 2012-03-20 US US13/424,454 patent/US8951219B2/en active Active
- 2012-03-20 US US13/424,479 patent/US9192707B2/en active Active
- 2012-04-19 CN CN201510593695.3A patent/CN105286787B/en active Active
- 2012-04-19 WO PCT/US2012/034335 patent/WO2012148791A1/en active Application Filing
- 2012-04-19 EP EP12719170.8A patent/EP2701595B1/en active Active
- 2012-04-19 CN CN201510511657.9A patent/CN105169509B/en active Active
- 2012-04-19 CN CN201280020937.4A patent/CN103747817B/en active Active
- 2012-04-19 CN CN201280022405.4A patent/CN103717244B/en active Active
- 2012-04-19 CN CN201280022402.0A patent/CN103747819B/en active Active
- 2012-04-19 EP EP12717019.9A patent/EP2701759A2/en not_active Withdrawn
- 2012-04-19 EP EP12717021.5A patent/EP2701766A1/en not_active Withdrawn
- 2012-04-19 WO PCT/US2012/034331 patent/WO2012148787A1/en active Application Filing
- 2012-04-19 JP JP2014508434A patent/JP2014518688A/en active Pending
- 2012-04-19 EP EP12717020.7A patent/EP2701760B1/en active Active
- 2012-04-19 JP JP2014508435A patent/JP6153923B2/en not_active Expired - Fee Related
- 2012-04-19 CN CN201610315692.8A patent/CN106063701A/en active Pending
- 2012-04-19 JP JP2014508438A patent/JP6138762B2/en not_active Expired - Fee Related
- 2012-04-19 EP EP12850737.3A patent/EP2701765B1/en active Active
- 2012-04-19 EP EP21184573.0A patent/EP3932444A1/en not_active Withdrawn
- 2012-04-19 CN CN201280020932.1A patent/CN103717132B/en active Active
- 2012-04-19 EP EP12722951.6A patent/EP2701596B1/en active Active
- 2012-04-19 WO PCT/US2012/034333 patent/WO2012148789A1/en active Application Filing
- 2012-04-19 WO PCT/US2012/034330 patent/WO2012148786A1/en active Application Filing
- 2012-04-19 EP EP12719842.2A patent/EP2701764B1/en active Active
- 2012-04-19 EP EP19167435.7A patent/EP3527134A1/en active Pending
- 2012-04-19 WO PCT/US2012/034329 patent/WO2012148785A2/en active Application Filing
- 2012-04-19 CN CN201280020933.6A patent/CN103747816B/en active Active
- 2012-04-19 CN CN201280020938.9A patent/CN103747731B/en active Active
- 2012-04-19 JP JP2014508436A patent/JP5837679B2/en active Active
- 2012-04-19 EP EP12719841.4A patent/EP2701761B1/en active Active
- 2012-04-19 WO PCT/US2012/034332 patent/WO2012148788A1/en active Application Filing
- 2012-04-19 JP JP2014508437A patent/JP5841238B2/en active Active
- 2012-04-19 JP JP2014508433A patent/JP5705373B2/en active Active
- 2012-04-19 WO PCT/US2012/034327 patent/WO2013101292A2/en active Application Filing
- 2012-04-19 WO PCT/US2012/034334 patent/WO2012148790A1/en active Application Filing
- 2012-04-19 CN CN201280020931.7A patent/CN103717243B/en active Active
- 2012-04-19 ES ES12717020T patent/ES2785107T3/en active Active
-
2014
- 2014-11-26 US US14/554,272 patent/US9642960B2/en active Active
- 2014-11-26 US US14/554,338 patent/US9968721B2/en active Active
-
2015
- 2015-02-04 US US14/613,725 patent/US9597440B2/en active Active
- 2015-02-24 JP JP2015033800A patent/JP2015134176A/en active Pending
- 2015-08-18 US US14/828,979 patent/US10179198B2/en active Active
- 2015-08-18 US US14/828,990 patent/US10293092B2/en active Active
-
2016
- 2016-03-11 US US15/067,559 patent/US10406268B2/en active Active
- 2016-12-20 US US15/384,912 patent/US10064985B2/en active Active
-
2017
- 2017-05-15 JP JP2017096258A patent/JP2017176847A/en active Pending
- 2017-05-31 JP JP2017107671A patent/JP2017164547A/en active Pending
- 2017-09-01 US US15/693,535 patent/US10967112B2/en active Active
- 2017-09-04 JP JP2017169162A patent/JP2018008091A/en active Pending
-
2019
- 2019-05-21 JP JP2019095089A patent/JP2019150651A/en active Pending
-
2020
- 2020-09-28 US US17/034,250 patent/US11759557B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7077819B1 (en) * | 1998-12-24 | 2006-07-18 | Fresenius Medical Care Deutschland Gmbh | Method for determining the distribution volume of a blood component during an extracorporeal blood treatment and device for carrying out the method |
US20050236330A1 (en) * | 2000-12-22 | 2005-10-27 | Fresenius Medical Care Deutschland Gmbh. | Method for determining concentration; a dialyser |
US20040019312A1 (en) * | 2002-07-19 | 2004-01-29 | Childers Robert W. | Systems and methods for performing peritoneal dialysis |
US20070066928A1 (en) * | 2005-09-22 | 2007-03-22 | Jean-Michel Lannoy | Automation and optimization of CRRT treatment using regional citrate anticoagulation |
WO2009026603A1 (en) * | 2007-08-31 | 2009-03-05 | Zentrum Für Biomedizinische Technologie Der Donau-Universität Krems | Method for detecting the ion concentrations of citrate anti-coagulated extracorporeal blood purification |
Non-Patent Citations (2)
Title |
---|
BLEYER ET AL.: "Sudden and cardiac death rated in hemodialysis patients", KIDNEY INTERNATIONAL, vol. 55, 1999, pages 1552 - 1559 |
ROBERTS, M: "The regenerative dialysis (REDY) sorbent system", NEPHROLOGY, vol. 4, 1998, pages 275 - 278 |
Cited By (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9289165B2 (en) | 2005-02-07 | 2016-03-22 | Medtronic, Inc. | Ion imbalance detector |
US9943633B2 (en) | 2009-09-30 | 2018-04-17 | Medtronic Inc. | System and method to regulate ultrafiltration |
US10835656B2 (en) | 2011-04-29 | 2020-11-17 | Medtronic, Inc. | Method and device to monitor patients with kidney disease |
US8951219B2 (en) | 2011-04-29 | 2015-02-10 | Medtronic, Inc. | Fluid volume monitoring for patients with renal disease |
US9456755B2 (en) | 2011-04-29 | 2016-10-04 | Medtronic, Inc. | Method and device to monitor patients with kidney disease |
US11759557B2 (en) | 2011-04-29 | 2023-09-19 | Mozarc Medical Us Llc | Adaptive system for blood fluid removal |
US9597440B2 (en) | 2011-04-29 | 2017-03-21 | Medtronic, Inc. | Fluid volume monitoring for patients with renal disease |
US9642960B2 (en) | 2011-04-29 | 2017-05-09 | Medtronic, Inc. | Monitoring fluid volume for patients with renal disease |
US10967112B2 (en) | 2011-04-29 | 2021-04-06 | Medtronic, Inc. | Adaptive system for blood fluid removal |
US9700661B2 (en) | 2011-04-29 | 2017-07-11 | Medtronic, Inc. | Chronic pH or electrolyte monitoring |
US10064985B2 (en) | 2011-04-29 | 2018-09-04 | Medtronic, Inc. | Precision blood fluid removal therapy based on patient monitoring |
US9302036B2 (en) | 2011-04-29 | 2016-04-05 | Medtronic, Inc. | Blood fluid removal system performance monitoring |
US10506933B2 (en) | 2011-04-29 | 2019-12-17 | Medtronic, Inc. | Method and device to monitor patients with kidney disease |
US9750862B2 (en) | 2011-04-29 | 2017-09-05 | Medtronic, Inc. | Adaptive system for blood fluid removal |
US10406268B2 (en) | 2011-04-29 | 2019-09-10 | Medtronic, Inc. | Blood fluid removal system performance monitoring |
US9848778B2 (en) | 2011-04-29 | 2017-12-26 | Medtronic, Inc. | Method and device to monitor patients with kidney disease |
US10293092B2 (en) | 2011-04-29 | 2019-05-21 | Medtronic, Inc. | Electrolyte and pH monitoring for fluid removal processes |
US10207041B2 (en) | 2011-04-29 | 2019-02-19 | Medtronic, Inc. | Method and device to monitor patients with kidney disease |
US10179198B2 (en) | 2011-04-29 | 2019-01-15 | Medtronic, Inc. | Electrolyte and pH monitoring for fluid removal processes |
US9192707B2 (en) | 2011-04-29 | 2015-11-24 | Medtronic, Inc. | Electrolyte and pH monitoring for fluid removal processes |
US9968721B2 (en) | 2011-04-29 | 2018-05-15 | Medtronic, Inc. | Monitoring fluid volume for patients with renal disease |
US10722636B2 (en) | 2011-08-02 | 2020-07-28 | Medtronic, Inc. | Hemodialysis system having a flow path with a controlled compliant volume |
US10695481B2 (en) | 2011-08-02 | 2020-06-30 | Medtronic, Inc. | Hemodialysis system having a flow path with a controlled compliant volume |
US10857277B2 (en) | 2011-08-16 | 2020-12-08 | Medtronic, Inc. | Modular hemodialysis system |
US9713668B2 (en) | 2012-01-04 | 2017-07-25 | Medtronic, Inc. | Multi-staged filtration system for blood fluid removal |
US10905816B2 (en) | 2012-12-10 | 2021-02-02 | Medtronic, Inc. | Sodium management system for hemodialysis |
US10532142B2 (en) | 2013-01-09 | 2020-01-14 | Medtronic, Inc. | Sorbent cartridge to measure solute concentrations |
US11857712B2 (en) | 2013-01-09 | 2024-01-02 | Mozarc Medical Us Llc | Recirculating dialysate fluid circuit for measurement of blood solute species |
US10881777B2 (en) | 2013-01-09 | 2021-01-05 | Medtronic, Inc. | Recirculating dialysate fluid circuit for blood measurement |
US11154648B2 (en) | 2013-01-09 | 2021-10-26 | Medtronic, Inc. | Fluid circuits for sorbent cartridge with sensors |
US9707328B2 (en) | 2013-01-09 | 2017-07-18 | Medtronic, Inc. | Sorbent cartridge to measure solute concentrations |
US11565029B2 (en) | 2013-01-09 | 2023-01-31 | Medtronic, Inc. | Sorbent cartridge with electrodes |
US10543052B2 (en) | 2013-02-01 | 2020-01-28 | Medtronic, Inc. | Portable dialysis cabinet |
US11786645B2 (en) | 2013-02-01 | 2023-10-17 | Mozarc Medical Us Llc | Fluid circuit for delivery of renal replacement therapies |
US10561776B2 (en) | 2013-02-01 | 2020-02-18 | Medtronic, Inc. | Fluid circuit for delivery of renal replacement therapies |
US10532141B2 (en) | 2013-02-01 | 2020-01-14 | Medtronic, Inc. | Systems and methods for multifunctional volumetric fluid control |
US10010663B2 (en) | 2013-02-01 | 2018-07-03 | Medtronic, Inc. | Fluid circuit for delivery of renal replacement therapies |
US9526822B2 (en) | 2013-02-01 | 2016-12-27 | Medtronic, Inc. | Sodium and buffer source cartridges for use in a modular controlled compliant flow path |
US10850016B2 (en) | 2013-02-01 | 2020-12-01 | Medtronic, Inc. | Modular fluid therapy system having jumpered flow paths and systems and methods for cleaning and disinfection |
US9872949B2 (en) | 2013-02-01 | 2018-01-23 | Medtronic, Inc. | Systems and methods for multifunctional volumetric fluid control |
US9827361B2 (en) | 2013-02-02 | 2017-11-28 | Medtronic, Inc. | pH buffer measurement system for hemodialysis systems |
US9855379B2 (en) | 2013-02-02 | 2018-01-02 | Medtronic, Inc. | Sorbent cartridge configurations for improved dialysate regeneration |
US11064894B2 (en) | 2013-11-04 | 2021-07-20 | Medtronic, Inc. | Method and device to manage fluid volumes in the body |
US10076283B2 (en) | 2013-11-04 | 2018-09-18 | Medtronic, Inc. | Method and device to manage fluid volumes in the body |
US10478545B2 (en) | 2013-11-26 | 2019-11-19 | Medtronic, Inc. | Parallel modules for in-line recharging of sorbents using alternate duty cycles |
US11219880B2 (en) | 2013-11-26 | 2022-01-11 | Medtronic, Inc | System for precision recharging of sorbent materials using patient and session data |
US11471100B2 (en) | 2013-11-27 | 2022-10-18 | Medtronic, Inc. | Precision dialysis monitoring and synchonization system |
US10595775B2 (en) | 2013-11-27 | 2020-03-24 | Medtronic, Inc. | Precision dialysis monitoring and synchronization system |
US11471099B2 (en) | 2013-11-27 | 2022-10-18 | Medtronic, Inc. | Precision dialysis monitoring and synchronization system |
US10617349B2 (en) | 2013-11-27 | 2020-04-14 | Medtronic, Inc. | Precision dialysis monitoring and synchronization system |
JP2017516572A (en) * | 2014-05-29 | 2017-06-22 | フレセニウス メディカル ケア ホールディングス インコーポレーテッド | Method for treating dialysate, dialysis system and method for pre-evaluating a dialysis patient for treatment with the dialysis system |
US11045790B2 (en) | 2014-06-24 | 2021-06-29 | Medtronic, Inc. | Stacked sorbent assembly |
US11673118B2 (en) | 2014-06-24 | 2023-06-13 | Mozarc Medical Us Llc | Stacked sorbent assembly |
US10926017B2 (en) | 2014-06-24 | 2021-02-23 | Medtronic, Inc. | Modular dialysate regeneration assembly |
US9895479B2 (en) | 2014-12-10 | 2018-02-20 | Medtronic, Inc. | Water management system for use in dialysis |
US10874787B2 (en) | 2014-12-10 | 2020-12-29 | Medtronic, Inc. | Degassing system for dialysis |
US10098993B2 (en) | 2014-12-10 | 2018-10-16 | Medtronic, Inc. | Sensing and storage system for fluid balance |
US9713665B2 (en) | 2014-12-10 | 2017-07-25 | Medtronic, Inc. | Degassing system for dialysis |
US10420872B2 (en) | 2014-12-10 | 2019-09-24 | Medtronic, Inc. | Degassing system for dialysis |
US11395868B2 (en) | 2015-11-06 | 2022-07-26 | Medtronic, Inc. | Dialysis prescription optimization for decreased arrhythmias |
US11883576B2 (en) | 2016-08-10 | 2024-01-30 | Mozarc Medical Us Llc | Peritoneal dialysis intracycle osmotic agent adjustment |
US10994064B2 (en) | 2016-08-10 | 2021-05-04 | Medtronic, Inc. | Peritoneal dialysate flow path sensing |
US11013843B2 (en) | 2016-09-09 | 2021-05-25 | Medtronic, Inc. | Peritoneal dialysis fluid testing system |
US11679186B2 (en) | 2016-09-09 | 2023-06-20 | Mozarc Medical Us Llc | Peritoneal dialysis fluid testing system |
US10981148B2 (en) | 2016-11-29 | 2021-04-20 | Medtronic, Inc. | Zirconium oxide module conditioning |
US11642654B2 (en) | 2016-11-29 | 2023-05-09 | Medtronic, Inc | Zirconium oxide module conditioning |
US11883794B2 (en) | 2017-06-15 | 2024-01-30 | Mozarc Medical Us Llc | Zirconium phosphate disinfection recharging and conditioning |
US11278654B2 (en) | 2017-12-07 | 2022-03-22 | Medtronic, Inc. | Pneumatic manifold for a dialysis system |
US11033667B2 (en) | 2018-02-02 | 2021-06-15 | Medtronic, Inc. | Sorbent manifold for a dialysis system |
US11110215B2 (en) | 2018-02-23 | 2021-09-07 | Medtronic, Inc. | Degasser and vent manifolds for dialysis |
US11213616B2 (en) | 2018-08-24 | 2022-01-04 | Medtronic, Inc. | Recharge solution for zirconium phosphate |
US11806457B2 (en) | 2018-11-16 | 2023-11-07 | Mozarc Medical Us Llc | Peritoneal dialysis adequacy meaurements |
US11806456B2 (en) | 2018-12-10 | 2023-11-07 | Mozarc Medical Us Llc | Precision peritoneal dialysis therapy based on dialysis adequacy measurements |
US11850344B2 (en) | 2021-08-11 | 2023-12-26 | Mozarc Medical Us Llc | Gas bubble sensor |
US11965763B2 (en) | 2021-11-12 | 2024-04-23 | Mozarc Medical Us Llc | Determining fluid flow across rotary pump |
US11944733B2 (en) | 2021-11-18 | 2024-04-02 | Mozarc Medical Us Llc | Sodium and bicarbonate control |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10293092B2 (en) | Electrolyte and pH monitoring for fluid removal processes | |
EP3302606B1 (en) | Apparatus for extracorporeal blood treatment ii | |
EP3302605B1 (en) | Apparatus for extracorporeal blood treatment i | |
US20210015984A1 (en) | Apparatus for performing an extracorporeal blood treatment | |
EP2377563A1 (en) | Dialysis apparatus and method for controlling a dialysis apparatus | |
WO2012148781A1 (en) | Multimodal dialysis system | |
US20170304516A1 (en) | Dialysate potassium control during a dialysis session | |
EP3544652B1 (en) | Apparatus for extracorporeal blood treatment | |
EP1810703B1 (en) | Dialysis machine with arterial pressure monitoring by measuring blood oxygen saturation and sodium concentration | |
EP3427773A1 (en) | Dialysate potassium control during a dialysis session |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12722951 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014508435 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012722951 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |