JPS58155864A - Blood purifying apparatus - Google Patents

Blood purifying apparatus

Info

Publication number
JPS58155864A
JPS58155864A JP57037457A JP3745782A JPS58155864A JP S58155864 A JPS58155864 A JP S58155864A JP 57037457 A JP57037457 A JP 57037457A JP 3745782 A JP3745782 A JP 3745782A JP S58155864 A JPS58155864 A JP S58155864A
Authority
JP
Japan
Prior art keywords
blood
fluid
amount
circulating
circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57037457A
Other languages
Japanese (ja)
Other versions
JPH0422586B2 (en
Inventor
利員 石原
北野 知之
憲志 前田
徹 新里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP57037457A priority Critical patent/JPS58155864A/en
Priority to EP83102324A priority patent/EP0089003B1/en
Priority to US06/473,574 priority patent/US4469593A/en
Priority to DE8383102324T priority patent/DE3374660D1/en
Publication of JPS58155864A publication Critical patent/JPS58155864A/en
Publication of JPH0422586B2 publication Critical patent/JPH0422586B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は半透膜を介した透析あるいは濾過により血液を
浄化する装置、特に血液浄化時における患者の体内循環
−液量変化を適正に自動側軸する血液浄化装置の改良に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a blood purification device that purifies blood by dialysis or filtration through a semipermeable membrane, and particularly to a blood purification device that automatically adjusts blood circulation and fluid volume changes in a patient's body during blood purification. It is about improvement.

近年、腎臓機能障害例えば腎不全などKよって血液中の
老廃物除去機能が損われた患者の治療には体外に取出さ
れた血液を半透膜を介して透析あるいは濾過により浄化
し再びこれを体内に戻す血液浄化装置が用いられている
In recent years, in the treatment of patients whose ability to remove waste products from the blood has been impaired due to renal dysfunction, such as renal failure, blood is taken out of the body, purified by dialysis or filtration through a semipermeable membrane, and then returned to the body. A blood purification device is used to return the blood to blood.

この種の装置では、周知のように老廃物中の過剰水分を
限外濾過により除去するが、この時の除水速度は適正値
に僚友なければならない。すなわち、急激あるいは過度
の除水は患者の体内循ll―液量を急激に減少させ、こ
れによって自圧低下またはシlツクなどの合併症を引き
起す場合があり、一方、緩慢な除水では、血液浄化に長
時間を要し、充分な除水ができない場合には高内圧ある
いは心不全などの原因となることが知られている。
As is well known, in this type of apparatus, excess water in waste products is removed by ultrafiltration, but the water removal rate at this time must be at an appropriate value. In other words, rapid or excessive water removal can cause a sudden decrease in the amount of fluid circulating in the patient's body, which can lead to complications such as decreased arterial pressure or swelling, whereas slow water removal can cause It is known that blood purification takes a long time, and if sufficient water cannot be removed, it may cause high internal pressure or heart failure.

従って、従来装置においても、前記除水速度を適正に保
つため、例えば血液透析(ヘモダイアリンス)では、限
外濾過速度を透析時間中一定に保ち、あるいは、透析開
始時に予め設定された除水!ログラムに沿って限外濾過
速度を制御することが行われている。
Therefore, in conventional devices, in order to maintain the water removal rate appropriately, for example, in hemodialysis (hemodialysis), the ultrafiltration rate is kept constant during the dialysis time, or the water removal rate is set in advance at the start of dialysis. ! The ultrafiltration rate is controlled according to the program.

しかしながら、前記限外濾過速度の制御のみでは血液浄
化時に生じる種々の問題を解決できないことが近年明ら
か罠なってきえ。すなわち、これらの問題は主として体
内循環血液量の過度の減少に起因するが、この体内循環
血液量変動に対しては萌述した限外濾過速度ばかりでな
く、毛細血管曖を介する血液中の水分、溶質あるいは組
織間液中の水分、溶質の移動速度が影響し、従って、従
来の単なる限外濾過量及び限外濾過速度のみに着目し九
制御では適正な体内循環血液量の制御を行う仁とが困難
であることが明らかとなってきた。
However, in recent years, it has become clear that controlling the ultrafiltration rate alone cannot solve various problems that occur during blood purification. In other words, these problems are mainly caused by an excessive decrease in the amount of blood circulating in the body, but this fluctuation in blood volume in the body is not only caused by the ultrafiltration rate mentioned above, but also by the amount of water in the blood passing through the capillaries. , water in solutes or interstitial fluids, and the movement speed of solutes. Therefore, conventional control that focuses only on ultrafiltration rate and ultrafiltration rate is an effective way to properly control the amount of blood circulating in the body. It has become clear that this is difficult.

従来の他の血液浄化時における適正な制御手法として、
血液の電気抵抗(インピーダンス)を測定し、これによ
って−液浄化中に体内から水分が過剰に除去されること
を防止する制御を行うことが考えられており、例えば、
血液透析時に体外循iJ!回路の動脈側、あるいは動脈
側と静脈側において血液の電気抵抗変化を測定し、これ
らの抵抗変化に基づいて血液透析器の動作速度を制御し
あるいは内液循環(ロ)路中に血清剤を注入する制御が
行われている。
As an appropriate control method during other conventional blood purification,
It has been proposed to measure the electrical resistance (impedance) of blood and use this to perform control to prevent excessive removal of water from the body during fluid purification.
Extracorporeal circulation iJ during hemodialysis! The electrical resistance changes of the blood are measured on the arterial side of the circuit, or between the arterial and venous sides, and the operating speed of the hemodialyzer is controlled based on these resistance changes, or serum preparations are introduced into the internal fluid circulation path. The injection is controlled.

しかしながら、この従来装置においても、血液の電気抵
抗率は単に化学元素濃度あるいは水分量ばかりでなく、
他の要因例えば血液の温度、向流速度によっても変化し
、特に、血流によって生じる赤血球の配向、集軸現象に
よ)電気抵抗率は大きく変化し、このような種々の要因
のため正しく血液中の水分量変化を求め、これによって
適正な体内循環血液量の制御を行うことが困−であつ九
However, even in this conventional device, the electrical resistivity of blood is determined not only by the concentration of chemical elements or the amount of water;
Electrical resistivity changes greatly depending on other factors such as temperature of the blood, countercurrent velocity, and in particular the orientation of red blood cells caused by blood flow, and the phenomenon of convergence. It is difficult to determine changes in the amount of water in the body and to control the amount of blood circulating in the body appropriately based on this information.

*に詳細には、従来の血液電気抵抗率の測定は、電極を
血流方向に隔設し、この間[11定電流を通して行われ
るが、これでは静止時に比較して自流のある場合め電気
抵抗率に著しい減少が見られ、正確な一1定そのものが
困難となっていた1例えば、測定周波数19 KHIg
 、  血液のへiトクリット36−では8Mar r
ats 106 s  で静止時に対し約12−の減少
が見られえ。
*In detail, conventional blood electrical resistivity measurements are performed by placing electrodes spaced apart in the direction of blood flow and passing a constant current through the electrodes during this time. For example, the measurement frequency 19 KHIg
, blood hetocrit 36- is 8 Mar
At ats 106 s, a decrease of about 12 − compared to rest can be seen.

更に1従来の制御装置では、浄化速度を常に患者O状I
IK応じて自動制御するものではなく、単に各ItOI
II定監視出力例えば廁液中O電気抵抗率変化が所定の
危険値に違し九時のみに応急的に浄化速度その他を制御
するものであり、それまでの浄化は従来の制御の無い装
置と同様に所*om定され九浄化条件にて行うに過ぎな
いという基本的な問題があり、全体的かつ連続的な適正
な除水制御を行うことができなかった。
Furthermore, in conventional control devices, the purification rate is always adjusted to the patient's condition.
It does not automatically control according to IK, but simply controls each ItOI.
II Constant Monitoring Output For example, when the change in O electrical resistivity in the liquid exceeds a predetermined critical value, the purification speed and other parameters are temporarily controlled only at 9 o'clock. Similarly, there is a fundamental problem in that the purification is carried out under only nine predetermined purification conditions, making it impossible to perform overall and continuous appropriate water removal control.

また、血液浄化の他の網知の方法である1n液濾過(ヘ
モフィルトレージョン)において屯、適正な血液浄化を
行うために、 161液中から大量の水分を不用物質と
ともに除去する際、この除去した水分と等量かあるいは
それよりもやや少量の置換液を補充して体内循環血液量
の急激な減少を防止する必豊かある。
In addition, in order to properly purify blood in 1N liquid filtration (hemofiltration), which is another method of blood purification, when removing a large amount of water from the 161 liquid along with unnecessary substances, this It is necessary to replenish the replacement fluid in an amount equal to or slightly smaller than the amount of water removed to prevent a sudden decrease in the amount of blood circulating in the body.

このために、白液濾過装置では、濾過液量と補充液量と
を平衡させるために1両液の重量差あるいは容積差を所
定値に対応して制御する仁とが考えられているが、この
様な方法では装置が複雑大型化する上、藺述した様に、
患者の体内循環血液量は除水ilC濾過液量と置換液量
との差)のみKよっては決まらないので、体内循環血液
量の適正な制御を行うことが不可能であった。
For this reason, in white liquor filtration devices, it is considered that the weight difference or volume difference between the two liquids is controlled to a predetermined value in order to balance the amount of filtrate and the amount of replenisher. With this method, the equipment becomes complicated and large, and as mentioned above,
Since the amount of blood circulating in a patient's body is not determined solely by K (the difference between the amount of water-removed ilC filtrate and the amount of replacement fluid), it has been impossible to appropriately control the amount of blood circulating in the patient's body.

本発明は上記従来の課題に鑑みなされ友ものであり、そ
の目的は、患者の体外に血液を導出して竹う血液浄化に
おいて、患者の体内循lI画液量を適正値に保持しなが
ら効率のよい除水を安定して行うことのできる血液浄化
装置を提供することKある。
The present invention was developed in view of the above-mentioned conventional problems, and its purpose is to efficiently purify blood by extracting blood outside the patient's body while maintaining the amount of fluid circulating in the patient's body at an appropriate value. It is an object of the present invention to provide a blood purification device that can stably perform good water removal.

上記目的を達成するために、本発明の―液浸化装置は、
体内循環血液量を例えば循ll自液量と反比例の関係に
あるヘマトクリット勢から内液浄化中連続的に測定し、
この測定値あるいはこれから演算処理された値を当該患
者の各種記録に基づいて設定されえ!ログラムに一致さ
せる様除水速度あるいは補充液注入速度を自動制御する
In order to achieve the above object, the immersion device of the present invention has the following features:
The amount of circulating blood in the body is continuously measured during internal fluid purification, for example, from the hematocrit level, which is inversely proportional to the amount of circulating own fluid.
This measured value or the calculated value can be set based on various records of the patient! Automatically controls the water removal rate or replenisher injection rate to match the program.

更に、本発明においては、前配体内循Ill蟲液量測定
とともに患者の除水量を連続測定し、ζO除水速度を所
定の7’0ダラ五に沿って制御すにとにより、特に厳密
な管理を必豐とする患者に対しても最適な除水作用を行
うことを特徴とする。
Furthermore, in the present invention, in addition to measuring the amount of fluid circulating in the body, the amount of water removed from the patient is continuously measured, and the ζO water removal rate is controlled according to a predetermined 7'0. It is characterized by its optimal water removal effect even for patients who require management.

以下本発明の実施例を図面に基づいて詳細Km明する。Embodiments of the present invention will be explained in detail below based on the drawings.

第1図は本発明を血液透析に用いた第1爽施例の基本的
な構成を示し、患者体内から―液を体外へ導出循環させ
る血液循環系10と腋白液循壊系10に透析液を供給す
る透析液系1雪そして―濠循環系lOにて検出されたヘ
マトクリット値に応じて減圧Iン128を駆動制御する
ための制御系14とを含む。
FIG. 1 shows the basic configuration of a first embodiment in which the present invention is used for hemodialysis. It includes a dialysate system 1 for supplying fluid and a control system 14 for driving and controlling the vacuum inlet 128 in accordance with the hematocrit value detected in the moat circulation system IO.

白液循環系10は患者の血液を導入管16から透析器1
8へ取込み、透析液系12と協働して血液の透析及び限
外濾過−′よって浄化を行った後、浄化され友−液を返
還管20から患者体内に戻し、この時の血液循環は循環
Iン122により行われている。
A white liquor circulation system 10 transports the patient's blood from an inlet tube 16 to a dialyzer 1.
8, and after performing blood dialysis and ultrafiltration in cooperation with the dialysate system 12, the purified fluid is returned to the patient's body through the return tube 20, and the blood circulation at this time is as follows: This is done by circulation I-in 122.

本発明では、以上の一般的な透析装置に最適な除水作用
を竹わせるために、血液循環系10内にヘマトクリット
一定器24を設け、これによって血液の電気抵抗率を連
続的に測定してヘマトクリットを求め、このヘマトクリ
ットと反比例の関係にある体内循環−液量を予め設定し
た!ログラムに一致させるととKより除水速度の適正な
制御をEj能としたものである。
In the present invention, in order to provide an optimal water removal effect to the general dialysis machine described above, a hematocrit constant device 24 is provided in the blood circulation system 10, and the electrical resistivity of the blood is continuously measured by this device. The hematocrit was calculated using the formula, and the amount of fluid circulating in the body, which is inversely proportional to the hematocrit, was set in advance! If the water removal rate is made to match the Ej function, the water removal rate can be properly controlled by K.

前記透析器18の透析液系12には周知の透析液供給装
置2@が設けられておシ、透析液が透析器18に供給さ
れるとともに透析器1δには体内循環血液量調整系を形
成する減圧Iン!28が接続されている。透析器1gの
半透膜には減圧Iンゾ28による透析液側の減圧にてト
ランスメンブレンプレッシャが印加されてお勤、血液中
の水分は半透膜を通して透析液側に限外P−される。本
実施例においては減圧Iンデ!Sが発生する半透膜を社
さんだ力学的差圧を前述したヘマトクリット値に応じて
制御系14によって制御するととKより、所望の限外e
過速度を個々の患者の状態に応じて適正に制御し、―液
浄化時の合併症などを生起することのない最適な除水作
用を可能とする。
The dialysate system 12 of the dialyzer 18 is provided with a well-known dialysate supply device 2, which supplies dialysate to the dialyzer 18 and forms a body circulating blood volume adjustment system in the dialyzer 1δ. Decompression in! 28 are connected. Transmembrane pressure is applied to the semipermeable membrane of the dialyzer 1g by reducing the pressure on the dialysate side by the vacuum inlet 28, and the water in the blood is transferred to the dialysate side through the semipermeable membrane. Ru. In this example, the reduced pressure is used! If the mechanical pressure difference across the semipermeable membrane in which S is generated is controlled by the control system 14 in accordance with the hematocrit value described above, the desired limit e is determined by K.
Overspeed is appropriately controlled according to the condition of each individual patient, allowing for optimal water removal without causing complications during liquid purification.

制御系14はへマドクリット測定器24の糊定価と所定
のfOダラムとに基づいて前記減圧Iンデ2@を制御す
るための制御装置3冨と透析を受ける患者の過去の記録
に基づいて透析中の好ましいヘマトクリット変化をグa
ダラム記憶する設定53aとから成る。
The control system 14 includes a control device 3 for controlling the reduced pressure index 2 based on the glue price of the hematocrit measuring device 24 and a predetermined fO duram, and a control device 3 for controlling the reduced pressure index 2@ based on the past record of the patient undergoing dialysis. Guarantee the favorable hematocrit changes in
The settings 53a are stored in Durham.

第2図には前述したヘマトクリット測定S冨4の具体的
な構成が示されており、血液導入管1・内に導かれる―
液の電気抵抗率を測定する抵抗測部38更に演算WIA
40を含む。
FIG. 2 shows the specific configuration of the hematocrit measurement S 4 described above, which is led into the blood introduction tube 1.
Resistance measurement unit 38 that measures the electrical resistivity of the liquid and further calculation WIA
Including 40.

前記抵抗測定部36は導入管16に連通接続された測定
セル42を有し、4電極法によって電気抵抗率が測定さ
れる。本実施例においては、内液の流れによる抵抗率の
影響を除去するために、電極に特徴的な配置がなされて
いる。すなわち、絶縁′#44には一対の電流電極46
.4g及び一対の電圧電極5G、52が配置されている
が、この電流電極46,4Bは絶縁管44の中心軸に対
して対称側でかつ中心軸方向に所定距離離れ九位置に設
置されており、また電圧電極sO%S2は前記電流電極
46.41の内側に並行してそれぞれ設けられ、この結
果、血液の流れ方向に対して斜め方向の血液の抵抗率が
測定される。電流電極4@、48には交流定電流源54
から測定電流が供給され、この時の血液の電気抵抗率を
電圧電極5G、52間の電圧値として検出するために電
圧電極50,52には電圧計s6が接続され、その出力
が温度補正s38に供給されている。
The resistance measuring section 36 has a measuring cell 42 connected in communication with the introduction pipe 16, and electrical resistivity is measured by a four-electrode method. In this embodiment, the electrodes are arranged in a unique manner in order to eliminate the influence of resistivity caused by the flow of the internal fluid. That is, a pair of current electrodes 46 are connected to the insulation #44.
.. 4g and a pair of voltage electrodes 5G, 52 are arranged, and the current electrodes 46, 4B are arranged symmetrically with respect to the central axis of the insulating tube 44 and at nine positions separated by a predetermined distance in the direction of the central axis. , and the voltage electrodes sO%S2 are respectively provided in parallel inside the current electrodes 46, 41, and as a result, the resistivity of the blood in the diagonal direction with respect to the blood flow direction is measured. An AC constant current source 54 is connected to the current electrodes 4@, 48.
A measurement current is supplied from the voltmeter s6, and a voltmeter s6 is connected to the voltage electrodes 50 and 52 in order to detect the electrical resistivity of the blood at this time as a voltage value between the voltage electrodes 5G and 52, and its output is subjected to temperature correction s38. is supplied to.

また、16I液の温度による補正を行う丸め、絶縁管4
4には温度測定用のサーミスタ!I8が[1られてお抄
、その出力端は温度補正11311に接続されている。
In addition, the rounded and insulated tube 4 is corrected according to the temperature of the 16I liquid.
4 is a thermistor for temperature measurement! I8 is set to [1], and its output terminal is connected to temperature correction 11311.

本実施例Kをいては、以上のような抵抗測定部36の構
造を採ることKよ艶、血液の流れによる影響を除去する
ことができる。すなわち、―液は向球威分と非血球成分
から成り、1KHzからIMHzの周波数帯域において
は、比較的大きな導電率を持つ向漿中に電気的絶縁性の
膜をもつ九赤自球が浮遊した不均質誘電体分散系と見な
すことができる。そして、赤血球は双凹円板状であ抄、
血液の流れKより赤血球が配向した抄集軸を起しえ抄し
、この結果、血液の電気特性は異方性を有し5hear
 ratsが3008  以下であれば、血液の流れ方
向の電気抵抗率は減少し、血液の流れKll直方向の電
気抵抗本社増加するので正しいへマドクリットを求める
ことができない。従って、**施例で述べ丸ように、電
極配置を血流に対して斜め方向に設定し、自流方向及び
これに対して垂直方向成分を有する斜め方向の電気抵抗
率を測定すれば、血液の流れによって電気的な異方性が
生じている場合でも、その影響を打消して白液静止状紗
と同等の電気抵抗率を測定することが可能となる。なお
、本実施例においては、交流定電流源S4からは人体に
対する安全を保ちまた分極の影響を避けるために25K
HM、304Armsなる電流を供給し、を友電圧計5
6は交流電圧を直流電圧に変換して温度補正部38に供
給している。
In the present embodiment K, by employing the structure of the resistance measuring section 36 as described above, it is possible to eliminate the influence caused by the flow of blood. In other words, the -fluid consists of hypertrophic components and non-blood cell components, and in the frequency range from 1 KHz to IMHz, nine red corpuscles with an electrically insulating film were suspended in the hypertrophic fluid, which has a relatively high conductivity. It can be considered as a heterogeneous dielectric dispersion system. And red blood cells are biconcave disc-shaped and
The blood flow K creates a collection axis in which red blood cells are oriented, and as a result, the electrical properties of the blood are anisotropic and 5hear.
If rats is less than 3008, the electrical resistivity in the blood flow direction decreases and the electrical resistance in the direction perpendicular to the blood flow Kll increases, making it impossible to determine the correct hemadrit. Therefore, as described in the example, if the electrode arrangement is set obliquely to the blood flow and the electrical resistivity in the self-flow direction and in the oblique direction with a component perpendicular to this is measured, the blood Even if electrical anisotropy occurs due to the flow of the liquid, it is possible to cancel the effect and measure electrical resistivity equivalent to that of static white liquid gauze. In this embodiment, a current of 25K is supplied from the AC constant current source S4 in order to maintain safety for the human body and to avoid the influence of polarization.
HM, supplies a current of 304 Arms, and a friend voltmeter 5
6 converts the AC voltage into a DC voltage and supplies it to the temperature correction section 38.

以上のようにして抵抗測定部36から得られた電気抵抗
率は前記サーミスタS8の抵抗値に基づいて1i&補正
部311により所望の温度補正が施される。一般に体温
付近では温度が1’C上昇すると電気抵抗率が約2−程
度減少することを考慮して37℃における電気抵抗率に
換算する温度補正が行われている。
The electrical resistivity obtained from the resistance measuring section 36 as described above is subjected to desired temperature correction by the 1i & correction section 311 based on the resistance value of the thermistor S8. Generally, in consideration of the fact that when the temperature rises by 1'C around the body temperature, the electrical resistivity decreases by about 2 degrees, temperature correction is performed to convert the electrical resistivity to the electrical resistivity at 37°C.

史に、この温度補正された抵抗率は演算s4Gによって
ヘマトクリットに演算される。すなわち、血液の25K
Hg近辺における電気抵抗率ρb(j’l −31)と
遠心分離法によるへ!トクリットHt(1)とは但しb
 Kl ′;、47、K、;1lt4fあり、coeと
から、ヘマトクリットHtは h Kて求められ、演算部40は(鴫式を得る丸めの減衰器
@O及び対数増幅器62を含む。
Historically, this temperature-corrected resistivity is calculated into hematocrit by calculation s4G. That is, 25K of blood
Electrical resistivity ρb (j'l -31) near Hg and centrifugation method to! Tocrit Ht(1) is however b
From Kl ';, 47, K, ; 1lt4f and coe, the hematocrit Ht is determined by hK, and the arithmetic unit 40 (includes a rounding attenuator @O and a logarithmic amplifier 62 to obtain the Shizuka equation).

以上のようにして血液の電気抵抗率から求められたヘマ
トクリットを用いて本発明にお−ては制御系14が体内
循1nilli量制御を行うことを特徴とし、第3図に
は制御系の好適1*施例が示されている。
The present invention is characterized in that the control system 14 controls the amount of blood circulating in the body using the hematocrit determined from the electrical resistivity of the blood as described above. 1*Example shown.

患者の過去の1帰から求められ九透析中の好着しい体内
循環白液量便化集施例においてはへマドクリット変化を
記憶する設定器14はプログラムを入力するキーl−ド
ロ4とこれを配憶する体内循mm液看メ毫り実施例にお
いてはへマドクリットメモリ@6とを含む。
In this example, the setter 14, which stores the change in hematocrit, determines from the patient's past results and selects the desired amount of white fluid circulating in the body during dialysis. The embodiment includes a hemadcrit memory @6 for storing body fluid circulation.

制御装置30は前記ヘマトクリットメモリ66のプログ
ラムと、ヘットクリット捌定器24の測定値に基づいて
透析液系12の減圧ポンプ28を駆動制御する構成を有
し、この九めK、ヘマトクリットメそり藝・のプログラ
ムとへマドクリット測定@24から検出された透析中の
へマトクリツ) Htとの差を求める引算器68と、咳
差を積分して制@信号を発生する積分器7Gと、積分器
70の出力を電力増幅して減圧ボンデ28に駆動電力を
出力する増幅器フ2とを含む。
The control device 30 has a configuration for driving and controlling the pressure reducing pump 28 of the dialysate system 12 based on the program of the hematocrit memory 66 and the measured value of the hematocrit analyzer 24.・A subtracter 68 that calculates the difference between the hematocrit during dialysis detected from the program and the hematocrit measurement @24, Ht, an integrator 7G that integrates the cough difference and generates a control @ signal, and an integrator. 70 and outputs drive power to the decompression bonder 28.

そして、本発明においては、へiトクリットHtが!ロ
グラム設定値より小さい場合にはポンプ28の駆動電力
を漸次上昇させ逆にヘマトクリツ) Itが!ログラム
設定値より大きい場合にはIンプ28の駆動電力を漸次
減少制御している。
In the present invention, the itocrit Ht! If it is smaller than the program setting value, the driving power of the pump 28 is gradually increased and the hematocrit is reduced.) It! If the value is larger than the program setting value, the drive power of the I-amp 28 is controlled to be gradually decreased.

本発明の第1実總例は以上の構成から成り、以下にその
作用を説明する。
The first embodiment of the present invention has the above configuration, and its operation will be explained below.

白液透析開始前に患者の過去の透析記録、前回の透析終
了から今回の透析開始までの体重増加、血圧その他の患
者の配録に基づいて、患者に最適なヘマトクリットに関
するプログラムが設定器34に記録され、この* Ks
周知の血液透析が開始される。
Before starting white fluid dialysis, a program regarding the optimal hematocrit for the patient is set in the setting device 34 based on the patient's past dialysis records, weight gain from the end of the previous dialysis to the start of the current dialysis, blood pressure, and other patient records. recorded, this *Ks
Well-known hemodialysis is started.

本発明におiては、血液透析中、連続的にヘマトクリツ
) ill定が行われ、これKl参、制御系12が前記
設定され友!pグラムに従つ九除水作用を制御する。
In the present invention, during hemodialysis, the hematocrit is continuously determined, and the control system 12 is set as described above. Controls the water removal effect according to p grams.

一般に、血液透析において、透析器IIO半透膜KFJ
―液循環回路側の力学的圧力、減圧l7128による力
学的圧力そして血液及び透析液の浸透圧が加わっており
、これによって所望の限外濾過が行われている。すなわ
ち、透析液llO圧力を血液側の圧力より低く保つこと
によ砂、―液中O水分は半透膜を通して透析液11Ki
l外濾過される。
Generally, in hemodialysis, dialyzer IIO semipermeable membrane KFJ
- The mechanical pressure on the liquid circulation circuit side, the mechanical pressure from the reduced pressure 17128, and the osmotic pressure of the blood and dialysate are added, and the desired ultrafiltration is performed by this. That is, by keeping the pressure of the dialysate lower than the pressure on the blood side, the water in the dialysate passes through a semi-permeable membrane to
Externally filtered.

この際、単位時間に限外濾過される水分量は体内組織か
ら自管内に移動する水分量と離郷しくなく、こO結果、
血液透析中に患者の体内循llI―液量には変動が生じ
ることとなる。通常、x目□1kll透析(4〜@時間
S度)で、1〜SJI!度O除水が行われ、こO除水に
伴って前記体内循llI幽液量は泳少する。本発明にお
いては前記体内循環血液量を―液透析中常時所定のプロ
グラムされた値に保つ様制御することを特徴とし、透析
中の白球成分の体積を一定とじ九場合(血球は半透膜を
通過できない)、前記体内循環血液量がヘマトクリット
と反比例の関係にあるととに着目し、ヘマトクリットを
測定し、これを所定のプログラムと比較して減圧ボン1
28の制御が行われる。
At this time, the amount of water that is ultrafiltered per unit time is not comparable to the amount of water that moves from the body tissue into the own tube, and as a result,
Fluctuations occur in the amount of fluid circulating in the patient's body during hemodialysis. Normally, 1 kll dialysis (4 ~ @ hour S degree) on x eye □ 1 ~ SJI! O water removal is performed, and as a result of this O water removal, the amount of fluid circulating in the body decreases. The present invention is characterized in that the blood volume circulating in the body is controlled to be maintained at a predetermined programmed value at all times during liquid dialysis. Focusing on the fact that the blood volume circulating in the body is inversely proportional to hematocrit, the hematocrit was measured and compared with a predetermined program, and the
28 controls are performed.

従って、第11!施例では、限外濾過が急速に行われて
体内循m−液量が急激に減少すると、この時のへマドク
リットが設定値よシ大きくなることから、減圧ボンf!
8の限外濾過圧を減少させ体内循環血液量の減少を防止
し、逆の場合にも同様に循m―液量の制御が適正に行わ
れる。従って、このような所定プログラムに沿つ九制御
を行うことKより、除水を患者の状lIK合せて適正に
行うことが可能となる。
Therefore, the 11th! In this example, when ultrafiltration is performed rapidly and the amount of fluid circulating in the body decreases rapidly, the hemadocrit at this time becomes larger than the set value, so the vacuum bomb f!
The ultrafiltration pressure of 8 is reduced to prevent a decrease in the amount of blood circulating in the body, and in the reverse case, the amount of circulating m-fluid is appropriately controlled as well. Therefore, by performing control according to such a predetermined program, water removal can be performed appropriately in accordance with the patient's condition.

第4図には本発明を珈液濾過装置に用いた第2実施例が
示されており、ls’実施例と同一部材には同一符号を
付して説明を省略する。
FIG. 4 shows a second embodiment in which the present invention is applied to a lime juice filtration device, and the same members as those in the ls' embodiment are given the same reference numerals and their explanations will be omitted.

血液濾過は血液循環系10に設けられているヘモフィル
タ74及び排液系82の減圧//f@4により行われ、
それと同時に、前記―液循ll系1Gには補充液系76
からの補充液が供給され、浄化され友画液は患者体内に
戻される。このために本実紬剰において杜、―液循環系
1oのへモフイルタ14によってP遇されえ排液を排出
する排出系I2が設けられており、その減圧1/f@4
によってヘモフィルタ14内に設けられ九半透膜に圧力
を発生させ、限外P遇が行われる。
Blood filtration is performed by reducing the pressure of the hemofilter 74 and the drainage system 82 provided in the blood circulation system 10,
At the same time, the replenisher system 76 is added to the liquid circulation system 1G.
Replenishment fluid is supplied, purified, and Yuga fluid is returned to the patient's body. For this purpose, in this book, a discharge system I2 is provided for discharging the waste liquid that is treated by the hemofilter 14 of the liquid circulation system 1o, and its pressure is reduced to 1/f@4.
Pressure is generated in the semi-permeable membrane provided in the hemofilter 14, and ultrapolar treatment is performed.

を九、補充液系16には補充液供給装置1sとこの補充
液を血液循環系10に供給する供給4ンプ80とを含み
、本実施例においては、この補充液系1@の供給Iング
が体内循am液量ll1ilIl系を形成し、制御系1
4からの制御信号によって供給Iフグ5ooa転数を変
化させることにより、廁液循!l系1Gへの補充液の供
給量を調整して体内循jjIiiIl液量を所定量(制
御する仁とができる。
9. The replenisher system 16 includes a replenisher supply device 1s and a supply pump 80 for supplying the replenisher to the blood circulation system 10, and in this embodiment, the replenisher system 1's supply pump 80 forms the body circulating am fluid volume ll1ilil system, and the control system 1
By changing the supply I blowfish 5ooa rotation number according to the control signal from 4, the liquid circulation is improved! By adjusting the amount of replenishment fluid supplied to the I system 1G, the amount of fluid circulating in the body can be controlled to a predetermined amount.

本実施例において屯、白液循環系!Oo白液中ヘマトタ
リットを測定してこれにより鍵配体内循壊血液量を調整
する補充液糸)6の制御が行われるが、本実施例のよう
に、補充液系76によって体液とは異なる電解質濃度の
補充液を大量に体内に江入する等して、自漿の電解質濃
度及び電気抵抗率が変化する場合血液の電気抵抗率のみ
から(動式によりヘマトクリットHtを求めると誤差が
生ずる。このため、本実施例では、血液の電気抵抗率4
bとともKlkl漿の一部である濾過排液の電気抵抗率
ρpを求め、両電気抵抗率からヘマトクリットHtを求
める。このために、血液循環系10ではヘモフィルタ7
4の排液がヘマトクリット測定器24に供給されている
In this example, the white liquor circulation system! The replenisher system 76 is controlled by measuring the hematototal value in the white fluid and thereby adjusting the amount of circulating blood in the key body, but as in this embodiment, the replenisher system 76 is used to control electrolytes different from body fluids. If the electrolyte concentration and electrical resistivity of autologous plasma change, such as by injecting a large amount of concentrated replenishing fluid into the body, an error will occur if hematocrit Ht is determined from the electrical resistivity of blood alone (dynamic formula). Therefore, in this example, the electrical resistivity of blood is 4
The electrical resistivity ρp of the filtered waste liquid, which is a part of the Klkl plasma, is determined along with b, and the hematocrit Ht is determined from both electrical resistivities. For this purpose, in the blood circulation system 10, the hemofilter 7
The effluent of No. 4 is supplied to a hematocrit measuring device 24.

figs図には第2爽施例のへマドクリット渕定器24
の構成が示されている。
The figs show the Hemadcrit Fuchi measuring device 24 of the second example.
The configuration is shown.

第5図から倒らかなように、ヘモフィルタ74の画数入
側及びPI4排液出側にはそれぞれ抵抗測定部iia%
3−bが設けられ、これら両測定部は第2図の構造と同
一である。そして両抵抗測定5113εから得られた電
気抵抗率は温度補正部38の温度補正器ssa、s・b
Kよ抄それぞれ37℃を基準とした温度補正が施こされ
た後、血液の電気抵抗率ρbそして1通液の電気抵抗率
1’pとして演算部40に供給されて所望のへットクリ
ット演算が行われる。
As can be seen from FIG.
3-b, both of which have the same structure as in FIG. The electrical resistivity obtained from both resistance measurements 5113ε is calculated by the temperature correctors ssa, s and b of the temperature corrector 38.
After temperature correction is performed using 37° C. as a reference, the electrical resistivity of blood ρb and the electrical resistivity of one fluid 1'p are supplied to the calculation unit 40 to perform a desired hetcrit calculation. It will be done.

ここで、帥述の(2)式において、K黛はヘマトクリツ
)Ht==Qの時の血液の電気抵抗率であるから、K、
は自漿の電気抵抗率ρpK他ならない。すなわち、Kt
=ρpとして ρh となる。
Here, in Equation (2) mentioned above, K is the electrical resistivity of blood when Ht==Q, so K,
is nothing but the electrical resistivity ρpK of own plasma. That is, Kt
=ρh becomes ρh.

また、正常な血液中に塩化ナトリウムを加え九時の血液
の電気抵抗率の変化量11b (jl on )  と
へマドクリットHt (* )  の間には、なる関係
があり、K島はに、のほはイである事が知られている。
In addition, there is a relationship between the change in electrical resistivity of blood at 9 o'clock when sodium chloride is added to normal blood (11b (jl on )) and hemadrit Ht (*), and the K island is It is known that Hoha is good.

従って―液濾過あるいは白液透析勢によって血液中の塩
化ナトリウム濃度が健常人の正常値からずれ九場合、3
7℃における血液の電気抵抗ρbと37℃の自漿の電気
抵抗ρp及びヘマトクリットの関にはおおむね すなわち に1ζ41の関係が成立する。
Therefore, if the sodium chloride concentration in the blood deviates from the normal value for a healthy person due to liquid filtration or white fluid dialysis, 3
The relationship between the electrical resistance ρb of blood at 7° C., the electrical resistance ρp of autologous plasma at 37° C., and hematocrit generally holds the relationship of 1ζ41.

演算部40dこの関係を用いてρb及び−pからヘマト
クリットHtを計算し出力するものである。
The calculation unit 40d calculates and outputs the hematocrit Ht from ρb and -p using this relationship.

すなわち、まずシフト(ロ)路111により(4式のI
’pから(54−βp)を求め、減衰器SO,加算器9
2、平方器94、乗算器96、減衰器S@から成る計算
(ロ)路により(4式のρb(54−J’p)からJμ
)求め、続いて、対数増幅器100によりヘマトクリッ
トHtを求める。
That is, first, by the shift (b) path 111, (I of formula 4
' Find (54-βp) from p, attenuator SO, adder 9
2. By the calculation (b) path consisting of the squarer 94, multiplier 96, and attenuator S@, (from ρb(54-J'p) in equation 4, Jμ
), and then the hematocrit Ht is determined by the logarithmic amplifier 100.

以上のようにして、廟@濾過による―液中電解質濃度変
化の影響を考慮し九ヘマトクリッ) Htが求められる
と、このへマトタリットHtK基づいて制御系14が第
11!施例と同4110制御作用を行い、本実施例にお
ける体内循環液量調整系を形成する補充液系76の制御
が所定のプログラムに従って行われる。第意奥施例0制
御装置32は引算器6$と積分器10と0間に反転増幅
器6會が設けられて−ることを除き同一である。
As described above, when Ht is determined by taking into account the influence of changes in the electrolyte concentration in the solution due to filtration, the control system 14 operates based on this hematotalit HtK. The replenishment fluid system 76, which performs the same 4110 control action as in the embodiment and forms the body circulating fluid volume adjustment system in this embodiment, is controlled according to a predetermined program. The control device 32 of the third embodiment is the same except that an inverting amplifier 6 is provided between the subtracter 6 and the integrator 10.

本発明の第2実施3例は以上の構成から成に、以下にそ
の作用を説明する。
The second and third embodiments of the present invention are comprised of the above-described configuration, and the operation thereof will be explained below.

第2実施例において4、血液濾過の開始前に患者の状態
に合せ九所定のプログラムがへマドクリットメモリ66
に記憶され、血液濾過開始とともに患者の―液及び限外
濾過液から一定され九へマドクリットHtとこのプログ
ラムとが比較され、補充液の供給が適正に制御される。
In the second embodiment, 9 predetermined programs are stored in the hemocrit memory 66 according to the patient's condition before starting hemofiltration.
When blood filtration is started, the patient's fluid and ultrafiltrate are compared with this program, and the supply of replacement fluid is appropriately controlled.

すなわち、患者の体内循環血液量が大幅に減少してヘマ
トクリットH1が所定プログラムよに大きくなると、補
充液注入量を増加し体内循環血液量を補償し、一方、体
内循*m*量が!ログラム制限し、患者の体内に蓄積さ
れた過剰水分の除去を効果的に行うことが可能となる。
That is, when the patient's internal circulating blood volume decreases significantly and the hematocrit H1 becomes larger than the predetermined program, the amount of replacement fluid injected is increased to compensate for the internal circulating blood volume, while the internal circulating *m* volume! This makes it possible to effectively remove excess water accumulated in the patient's body.

以上のように1第2実施例においても、ヘマトクリッ)
 Htによって体内循11m’液量を各患者に適合した
状態で制御することKより合併症を発生することなく適
正な除水作用を行うことが可能となる。
As mentioned above, in the 1st and 2nd embodiments, the hematocrit
By controlling the amount of fluid circulating in the body by Ht in a state suitable for each patient, it is possible to perform appropriate water removal without causing complications.

第7図には本発明の第3実旅例が示され、前述した各実
施例と一様にへマドクリットとともに除水量を連続測定
し、この両者によって適正な除水制御を行うことを特徴
とする血液透析が行われる。
FIG. 7 shows a third practical example of the present invention, which is characterized in that, in the same way as in each of the above-described embodiments, the water removal amount is continuously measured along with the hemadcrit, and appropriate water removal control is performed using both of them. Hemodialysis is performed.

第2実施例の説明から明らかなように、血液浄化によっ
て血液中の電解質濃度が変化する場合は、ヘマトクリッ
トを高精度で測定する丸めに%血液の電気抵抗率ととも
に―漿の電気抵抗率の測定が必要となる。この点、第S
爽施例においては第1爽施例と同様に血液浄化器102
の半透膜によシ―源側と区画され丸側圧透析液系1!の
透析液供給装置26からの透析液を供給し所望の透析作
用を行うので、血漿の電気抵抗率を一定するためKは、
血液浄化器1ozと社別個に血液から自ll0一部を分
離する丸めのヘモフィルタがヘマトクリット橢定器24
内に設ゆられており、これKよって、血漿の電気抵抗率
を一定するために必要な限外濾過液が得られる。
As is clear from the explanation of the second embodiment, when the electrolyte concentration in the blood changes due to blood purification, it is necessary to measure the hematocrit with high accuracy.In addition to the electrical resistivity of the blood, the electrical resistivity of the blood plasma is measured. Is required. On this point, Section S
In the first embodiment, the blood purifier 102 is used as in the first embodiment.
Round side pressure dialysate system separated from the source side by a semi-permeable membrane 1! Since the dialysate is supplied from the dialysate supply device 26 to perform the desired dialysis action, in order to keep the electrical resistivity of plasma constant, K is:
A 1oz blood purifier and a hematocrit purifier 24 are round hemofilters that separate a portion of blood from blood.
This provides the ultrafiltrate needed to keep the electrical resistivity of plasma constant.

第3!I!施例の内液循環系10にはその返還管2)K
静脈圧調整器1・4が設けられ、制御系14からの信号
により―液浄化器1・2の半透膜に印加される圧力が調
整され、この静脈圧調整器1G4が体内循環液量調整系
を形成している。
Third! I! The internal fluid circulation system 10 of the example has its return pipe 2) K
Venous pressure regulators 1 and 4 are provided, and the pressure applied to the semipermeable membranes of the liquid purifiers 1 and 2 is adjusted by a signal from the control system 14, and this venous pressure regulator 1G4 adjusts the amount of fluid circulating in the body. forming a system.

前記内液循環系1011’3においてへマドクリットが
測定されるとと−に1第3奥論例では、透析液系12に
おいて除水量が一定され、仁の九めに1透析液系12に
は血液浄化器1020人側及び出側からそれぞれ透析液
供給量及び排液量を検出するための限外濾過量測定器t
OSが般社られ、これによって透析液供給量と排液量と
の差から限外濾過量が一定され、これが除水量信号とし
て制御系140制御装置3!へ供給される。
When the hematocrit is measured in the internal fluid circulation system 1011'3, in the third example, the amount of water removed in the dialysate system 12 is kept constant, and Blood purifier 1020 Ultrafiltration rate measuring device t for detecting dialysate supply amount and drainage amount from the patient side and outlet side, respectively
The operating system (OS) is operated, and thereby the ultrafiltration amount is fixed based on the difference between the dialysate supply amount and the drainage amount, and this is used as the water removal amount signal in the control system 140 and the control device 3! supplied to

第8図には第31!施例における制御系14の構成が示
され、設定器34にはへマドクリットメモリ66とは別
個に患者の諸配録に基づいて浄化中の好ましい除水量プ
ログラムを記憶する除水量メモリ1011が設けられて
おシ、ヘマトクリットグログラム及び除水量グログラム
が別個に制御装置32へ供給される。
Figure 8 shows number 31! The configuration of the control system 14 in the embodiment is shown, and the setter 34 is provided with a water removal amount memory 1011 that stores a preferred water removal amount program during purification based on various records of the patient, separately from the hematocrit memory 66. A hematocrit grogram and a water removal grogram are separately supplied to the controller 32.

そして、両メモリ66.108の出力はそれぞれ浄化中
に連続測定されるヘマトクリット及び限外P遇t(除水
量)と引算器ssa及び681において引算され、両引
算結果が加算器110にて加算された後積分器7o及び
増幅器72を介して前述し走靜脈圧調整器104へ制御
信号として出力されている。
Then, the outputs of both memories 66 and 108 are respectively subtracted from the hematocrit and the limit P (amount of water removed) that are continuously measured during purification in subtracters ssa and 681, and both subtraction results are sent to adder 110. After being added, the signal is outputted as a control signal to the above-mentioned running pulse pressure regulator 104 via the integrator 7o and the amplifier 72.

第3実施例の制御系14は以上の構成から成シ、浄化中
に一定されたヘマトクリット及び限外濾過量が所定の設
定値よ)小さい場合には、静脈圧調整器104により*
液循環系の静脈圧を上昇させて限外濾過量を増加制御し
、逆に各測定値が設定値より大きい場合には静脈圧を下
降させて限外P過量を減少制御する。
The control system 14 of the third embodiment has the above configuration, and when the constant hematocrit and ultrafiltration rate during purification are smaller than the predetermined set values, the venous pressure regulator 104
The amount of ultrafiltration is controlled to increase by increasing the venous pressure of the liquid circulation system, and conversely, when each measured value is larger than the set value, the venous pressure is decreased to control the amount of ultrafiltration to be decreased.

従って、第3実施例によれば、患者の体内微積血液量を
過度に減少させることなく効率のよい除水を行うことが
でき、また、浄化中O測定され友限外e過量が設定値よ
り小さいKも拘らずへマドクリット測定値が設定値よ抄
大きい鳩舎には、各測定値と所定の設定値との差に基づ
いて限外濾装置を増加あるいは減少するかの制御が任意
に決定され、この時のへマドクリットと限外濾過量との
考慮の度合は実施例における引算器・S a、61bK
適当な重み付けを行うことによ〉行うことが可能である
Therefore, according to the third embodiment, efficient water removal can be performed without excessively reducing the microvolume blood volume in the patient's body, and O is measured during purification and the excess amount outside the limit is set at the set value. For pigeon lofts in which the measured value of hemocrit is larger than the set value despite the smaller K, the control to increase or decrease the ultrafiltration device is arbitrarily determined based on the difference between each measured value and the predetermined set value. The degree of consideration of hematocrit and ultrafiltration rate at this time is determined by the subtractor S a, 61bK in the example.
This can be done by applying appropriate weighting.

前述した各実施例において、へマドクリットはそのまま
制御系に入力されるが、本発明においてへ1トクリツト
O逆数その他の演算結果を制御系に入力することも可能
である。
In each of the embodiments described above, the hemadcrit is directly input to the control system, but in the present invention, it is also possible to input the reciprocal of hemadcrit and other calculation results to the control system.

また、前記各実施例においては、体内循穣自濠普の高信
Ili度の制御を行う丸め、循llI―液量の安定した
測定手段として、へ!トクリット一定が行われているが
、本発明では、仁の他に%幽濠中の定により求め、この
たんば〈質濃度変化から循環面数緻変化を演算すること
も可能である。
In addition, in each of the above-mentioned embodiments, as a means for stably measuring the volume of rounding and circulating liquid for controlling the high degree of self-circulation in the body, H! Although the tocrit constant is used, in the present invention, it is also possible to calculate the circulation surface number minute change from the change in the concentration by calculating the constant rate in addition to the rate.

尚、この浸透圧を用いた循JjlrIR液量の測定で社
、半透膜を介して微小な圧力差(31〜351@H#)
の測定を行わなければならず、半透膜の特性管場を厳格
に行う必要がある。
In addition, by measuring the amount of circulating JjlrIR fluid using this osmotic pressure, a minute pressure difference (31 to 351 @H#) is detected through the semipermeable membrane.
must be measured, and the characteristics of the semipermeable membrane must be strictly determined.

以上説明したように、本発明によれば、内液浄化中の患
者の体内循環面液量を連続的に測定し、これによって患
者に適し友所定の!ログラムに従った除水速度制御を自
動的に行うことができ、体( 内循#1―液量を最適状態に保ちながら効率のよい除水
作用を行うことを可能とする。
As explained above, according to the present invention, the amount of fluid circulating in the body of a patient during internal fluid purification is continuously measured, and thereby a predetermined amount suitable for the patient is determined. Water removal speed can be automatically controlled according to the program, making it possible to perform efficient water removal while maintaining the body (internal circulation #1 - fluid volume in an optimal state).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る内液浄化装置の好適な第1実施例
を示すブロック回路図、 第2図は第1s論例のへマドクリット測定器を示す説明
図、 第3図は第1実施例における制御系のブロック回路図、 第4図は本発明の第2実施例のプロッタ回路図、第S図
は第2実棒例のへマドクリット測定器を示す説明図、 第6図は第2実施例の制御系を示すブロック−略図、 第7図は本発明の第3実論例のプロッタ回路図、第8図
は第sli!施例におゆる制御系を示すfaミック路図
である。 10・・・―液循環系、  l!・・・透析液系、14
・・・制御系、   l$・・・透析器、24・・・へ
マドクリット測定器、 28・・・減圧Iンf、 112−・・制御装置、34
・・・設定器、    3・・・・抵抗−宇部、42・
・・測定セル、   44・・・絶縁管、46.48・
・・電流電極、 50%s2・・・電圧電極、 54・・・交流定電流源、s6・・・電圧針、66・・
・ヘマトクリットメ篭り、 74・・・ヘモフィルタ、1・・・・補充液系、@O・
・・供給47f、  1・2・・・―液浄化器、104
・・・静脈圧―整器、 101i・・・限外e過量−j定器、 10g・・・除水量メモリ。
Fig. 1 is a block circuit diagram showing a preferred first embodiment of the internal fluid purification device according to the present invention, Fig. 2 is an explanatory diagram showing a hematocrit measuring device of the 1s example, and Fig. 3 is a first embodiment. A block circuit diagram of the control system in the example, FIG. 4 is a plotter circuit diagram of the second embodiment of the present invention, FIG. A block schematic diagram showing the control system of the embodiment, FIG. 7 is a plotter circuit diagram of the third practical example of the present invention, and FIG. 8 is the sli! It is a famic road diagram showing a control system in an example. 10...-Liquid circulation system, l! ...dialysate system, 14
...Control system, l$...Dylyzer, 24...Hematocrit measuring device, 28...Reducing pressure Inf, 112-...Control device, 34
...Setter, 3...Resistance-Ube, 42.
...Measurement cell, 44...Insulation tube, 46.48.
...Current electrode, 50%s2...Voltage electrode, 54...AC constant current source, s6...Voltage needle, 66...
・Hematocrit meter, 74...Hemofilter, 1...Replenisher system, @O・
・・Supply 47f, 1・2・・Liquid purifier, 104
... Venous pressure regulator, 101i... Ultra-e excess amount-j regulator, 10g... Water removal amount memory.

Claims (1)

【特許請求の範囲】 (1)  患者の自液を体外に循環させる白液循ll畢
と、−液循積畢に設けられ半透膜を介した透析あるい祉
f過により―液浄化を行う白液浄化器と、除水速度を制
御して体内循壌自液量を所望の値に鯛整する体内循m自
液量調整系と、体内循碩自濠量の変化を測定する循ll
−液量剣定器と、患者O状WJK応じて―液浄化中O体
内循ll廁液量変化lログラムを記憶する体内循ll愈
液量メモリを有し、内液浄化中に測定される体内循lI
自液量と所定lログラムとから体内循3J自液量調整系
を制御する制御系と、を含み、体内循S愈液量を所望値
に保持しながら最適な除水作用を行なうことを特徴とす
る白液浄化装置。 働 特許請求の範囲(1)記載の装置において、循壊血
液量欄定器は体内循3jl自液量の変化をヘマトクリッ
ト変化にて検出するヘマトクリット捌定器からなること
を特徴とする白液浄化装置。 (3)  特許請求の範囲(2)記載の装置において、
ヘマトクリット捌定器は、珈液循壌系の面数電気抵抗率
を測定する抵抗測定部と、測定された電気抵抗率を温度
補償する温度補正部と、この電気抵抗率からヘマトクリ
ットを求める演算部と、を含み、さらに、抵抗測定部は
、面数循環系に連通された絶縁管にその中心軸に対して
対称側でかつ中心軸方向に所定量離れ九位置に設けられ
た少なくとも一対の電極を有する測定セルを有すること
を特徴とする白液浄化装置。 (4)特許請求の範囲(鋤記載の装置において、抵抗測
定部には、―液中の自装成分の電気抵抗率を測定する測
定セルが設けられ、白液の電気抵抗率及び自装成分の電
気抵抗率の両者からヘマトクリットを演算することを特
徴とする―液浄化装曾。 (〜 特許請求の範FM14記載の装置において、血液
循環系の血漿の一部を限外P遇するフィルタを設け、該
フィルタの濾過廃液経路に自費成分の電気抵抗率を一1
定する測定セルが設けられていることを特徴とする血液
浄化装置。 (匈 特許請求の範囲(1)〜(5)のいずれかに記載
の装置において、体内循環幽液量調整系t′i愈液浄化
器の半透膜をはさんで力学的差圧を発生させる手段を含
むことを特徴とする―液浄化装置。 (7)特許請求の範囲(1)−四のいずれかに記載の装
置において、体内循環血液量調整系は白液循碩系に補充
液を供給する補充液系を含むことを特徴とする血液浄化
装置。 (〜 特許請求の範囲f1)〜働のいずれかに記載の装
置において、体内循環血液量調整系は画数浄化器の半透
膜をはさんで力学的差圧を発生させる手段及びms循環
系に補充液を注入する手段を含み、前記制御系は力学的
差圧発生手段又は補充液注入手段の少くともいずれか一
方な制御することを特徴とする―液浄化装置。 (−患者の血液を体外に循環させる自演循環系と、白液
循環系に設叶られt―液浄化器と、除水速度を制御して
体内循環血液量を所望の値K11lI整する体内循m−
液量調整系と、血液の体内循環−水量を測定する除水量
測定器と、患者の状態に応じて血液浄化中の体内循ll
白液量変化!ログラムを記憶する体内循環血液量メモリ
及び除水量グログラムを配憶する除水量!ログラムを有
し、−液浄化中に測定される体内循環血液量及び除水量
と轡定!ログラムとを比較して体内循環血液量調整系を
制御する制御系と、を含み、体内循環血液量を所望値に
保持しながら最適な除水作用を行なうことを特徴とする
血液浄化装置。
[Scope of Claims] (1) A white fluid circulation system that circulates the patient's own fluid outside the body; and - liquid purification through dialysis or filtering through a semipermeable membrane provided in the fluid circulation system. A white liquor purifier that controls the water removal rate, an internal fluid volume adjustment system that adjusts the internal fluid volume to a desired value by controlling the water removal rate, and a circulation system that measures changes in the internal fluid volume. ll
- Equipped with a fluid volume meter and a fluid volume memory that stores a log of fluid volume changes in the body during fluid purification according to the patient's condition, and is measured during fluid purification. body circulation lI
It is characterized by including a control system that controls the internal circulation 3J internal fluid volume adjustment system based on the internal fluid volume and a predetermined 1 log, and performs an optimal water removal action while maintaining the internal circulating S internal fluid volume at a desired value. White liquor purification equipment. In the apparatus according to claim (1), the circulating blood volume column measuring device comprises a hematocrit measuring device that detects changes in the amount of blood circulating in the body based on changes in hematocrit. Device. (3) In the device according to claim (2),
The hematocrit analyzer consists of a resistance measuring section that measures the electrical resistivity of the calyces fluid circulation system, a temperature correcting section that compensates for the measured electrical resistivity with temperature, and a calculating section that calculates the hematocrit from this electrical resistivity. The resistance measuring unit further includes at least a pair of electrodes provided on the insulating tube connected to the surface circulation system on the symmetric side with respect to the central axis thereof and nine positions apart by a predetermined distance in the direction of the central axis. A white liquor purification device characterized by having a measurement cell having: (4) Claims (In the apparatus described in the plow, the resistance measuring section is provided with a measuring cell for measuring the electric resistivity of the self-containing components in the liquid; A liquid purification device characterized in that the hematocrit is calculated from both the electrical resistivity of The electrical resistivity of the self-contained components is reduced to 11 by installing the filter in the filtration waste liquid path of the filter.
A blood purification device characterized in that it is provided with a measurement cell for determining blood purification. (匈) In the device according to any one of claims (1) to (5), a dynamic pressure difference is generated by sandwiching the semipermeable membrane of the intracorporeal circulating fluid volume adjustment system t'i fluid purifier. (7) In the device according to any one of claims (1)-4, the body circulating blood volume regulating system supplies a replenishing fluid to the white fluid circulation system. A blood purification device characterized in that it includes a replenishment fluid system for supplying blood.(~Claim f1) In the device according to any one of ~ functions, the body circulating blood volume adjustment system is a semipermeable membrane of the stroke purifier. and a means for injecting a replenisher into the MS circulation system, and the control system controls at least one of the mechanical pressure difference generating means and the replenisher injecting means. -Liquid purification device. (-A self-circulation system that circulates the patient's blood outside the body, a T-liquid purifier installed in the white liquor circulation system, and a t-liquid purifier that controls the water removal rate to control the blood circulating in the body. Body circulation m- to adjust the amount to the desired value K11lI
Fluid volume adjustment system, blood circulation in the body - water removal measuring device that measures the amount of water, and body circulation during blood purification depending on the patient's condition.
White liquid amount change! Internal circulation blood volume memory that stores the program and amount of water removed that stores the amount of water removed! It has a program that determines the amount of blood circulating in the body and the amount of water removed that is measured during liquid purification! 1. A blood purification device comprising: a control system that controls a body circulating blood volume adjustment system by comparing the blood volume with a blood purification system, and performs an optimal water removal action while maintaining a body circulating blood volume at a desired value.
JP57037457A 1982-03-10 1982-03-10 Blood purifying apparatus Granted JPS58155864A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57037457A JPS58155864A (en) 1982-03-10 1982-03-10 Blood purifying apparatus
EP83102324A EP0089003B1 (en) 1982-03-10 1983-03-09 Blood purification apparatus
US06/473,574 US4469593A (en) 1982-03-10 1983-03-09 Blood purification apparatus
DE8383102324T DE3374660D1 (en) 1982-03-10 1983-03-09 Blood purification apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57037457A JPS58155864A (en) 1982-03-10 1982-03-10 Blood purifying apparatus

Publications (2)

Publication Number Publication Date
JPS58155864A true JPS58155864A (en) 1983-09-16
JPH0422586B2 JPH0422586B2 (en) 1992-04-17

Family

ID=12498044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57037457A Granted JPS58155864A (en) 1982-03-10 1982-03-10 Blood purifying apparatus

Country Status (1)

Country Link
JP (1) JPS58155864A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277264A (en) * 1988-09-14 1990-03-16 Asahi Chem Ind Co Ltd Input device for artificial organ
JP2004512873A (en) * 2000-10-30 2004-04-30 ネフロス・インコーポレーテッド Two-stage diafiltration method and apparatus
JPWO2003004076A1 (en) * 2001-07-03 2004-10-21 株式会社ジェイ・エム・エス Hemodialysis machine with simple control means
JPWO2003009888A1 (en) * 2001-07-27 2004-11-11 株式会社ジェイ・エム・エス Hemodialysis machine
JPWO2003011367A1 (en) * 2001-08-01 2004-11-18 株式会社ジェイ・エム・エス Blood purification device that can improve purification efficiency
JP2011045767A (en) * 1998-05-28 2011-03-10 Fresenius Medical Care Deutschland Gmbh Safety device for blood treatment apparatus, and method for enhancing the safety of the blood treatment apparatus
JP2014518688A (en) * 2011-04-29 2014-08-07 メドトロニック,インコーポレイテッド Monitoring flow in patients with kidney disease
WO2018047956A1 (en) * 2016-09-08 2018-03-15 株式会社アドバンス System for managing information relating to differences between individuals in dialysis treatment
WO2021210563A1 (en) * 2020-04-15 2021-10-21 株式会社ジェイ・エム・エス Dialysis machine and control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7052480B2 (en) * 2002-04-10 2006-05-30 Baxter International Inc. Access disconnection systems and methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784063A (en) * 1980-11-14 1982-05-26 Nissho Kk Controller for concentration of solute

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784063A (en) * 1980-11-14 1982-05-26 Nissho Kk Controller for concentration of solute

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277264A (en) * 1988-09-14 1990-03-16 Asahi Chem Ind Co Ltd Input device for artificial organ
JP2011045767A (en) * 1998-05-28 2011-03-10 Fresenius Medical Care Deutschland Gmbh Safety device for blood treatment apparatus, and method for enhancing the safety of the blood treatment apparatus
JP2004512873A (en) * 2000-10-30 2004-04-30 ネフロス・インコーポレーテッド Two-stage diafiltration method and apparatus
JP2007244918A (en) * 2000-10-30 2007-09-27 Nephros Inc Two stage diafiltration method and apparatus
JP4584959B2 (en) * 2000-10-30 2010-11-24 ネフロス・インコーポレーテッド Two-stage diafiltration method and apparatus
JPWO2003004076A1 (en) * 2001-07-03 2004-10-21 株式会社ジェイ・エム・エス Hemodialysis machine with simple control means
JPWO2003009888A1 (en) * 2001-07-27 2004-11-11 株式会社ジェイ・エム・エス Hemodialysis machine
JPWO2003011367A1 (en) * 2001-08-01 2004-11-18 株式会社ジェイ・エム・エス Blood purification device that can improve purification efficiency
JP2014518688A (en) * 2011-04-29 2014-08-07 メドトロニック,インコーポレイテッド Monitoring flow in patients with kidney disease
WO2018047956A1 (en) * 2016-09-08 2018-03-15 株式会社アドバンス System for managing information relating to differences between individuals in dialysis treatment
JP2018043003A (en) * 2016-09-08 2018-03-22 株式会社アドバンス System for managing information relating to differences between individuals in dialysis treatment
WO2021210563A1 (en) * 2020-04-15 2021-10-21 株式会社ジェイ・エム・エス Dialysis machine and control method

Also Published As

Publication number Publication date
JPH0422586B2 (en) 1992-04-17

Similar Documents

Publication Publication Date Title
US4469593A (en) Blood purification apparatus
JP2885373B2 (en) Artificial kidney
US8070707B2 (en) Controller for ultrafiltration blood circuit which prevent hypotension by monitoring osmotic pressure in blood
AU2003255975B2 (en) Control apparatus and control method for a blood treatment equipment
US6331252B1 (en) Methods for priming a blood compartment of a hemodialyzer
JP6388166B2 (en) Apparatus and method for adjusting a therapeutic instrument
JP4509387B2 (en) Method for calculating the distribution of blood components during extracorporeal blood treatment and apparatus for carrying out this method
EP0547025B1 (en) Method for determining a concentration of a substance in blood or the dialysance of a dialyser
US8764987B2 (en) Device and method for determining and controlling the concentration of at least one solute in a fluid circuit
JP5587891B2 (en) Device for blood treatment outside the body and method for managing said device
US6537240B2 (en) Method for determining the recirculation of blood in a vascular access and a system for implementing same
JPS61143074A (en) Blood dialyzer
US20070066928A1 (en) Automation and optimization of CRRT treatment using regional citrate anticoagulation
JPH0214853B2 (en)
JP2516928B2 (en) Dialysis machine
JPS58155864A (en) Blood purifying apparatus
WO2020136652A1 (en) Simultaneous ecmo and crrt
US20170296726A1 (en) Method and device for extracorporeal blood treatment
JPS59115051A (en) Blood purifying apparatus
CN111225694A (en) Blood purification device
JPH05317415A (en) Ultrafiltration apparatus and method for water removal control in blood dialysis
CA1198054A (en) Dialysis method and apparatus
JPH0463707B2 (en)
JPH0531182A (en) Hemodialyzer
JPH0112501B2 (en)