WO2021210563A1 - Dialysis machine and control method - Google Patents

Dialysis machine and control method Download PDF

Info

Publication number
WO2021210563A1
WO2021210563A1 PCT/JP2021/015262 JP2021015262W WO2021210563A1 WO 2021210563 A1 WO2021210563 A1 WO 2021210563A1 JP 2021015262 W JP2021015262 W JP 2021015262W WO 2021210563 A1 WO2021210563 A1 WO 2021210563A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
rate
replenisher
water removal
dialysate
Prior art date
Application number
PCT/JP2021/015262
Other languages
French (fr)
Japanese (ja)
Inventor
尋智 長尾
正岡 勝則
Original Assignee
株式会社ジェイ・エム・エス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイ・エム・エス filed Critical 株式会社ジェイ・エム・エス
Priority to CN202180015727.5A priority Critical patent/CN115151283A/en
Publication of WO2021210563A1 publication Critical patent/WO2021210563A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits

Definitions

  • the present invention relates to a dialysis machine and a control method using the dialysis machine.
  • dialysis treatment blood is taken out from the patient's arterial side using a pump and sent to a blood purification means such as a dialyzer or hemodiafilter, and the blood from which waste products and excess water have been removed is sent to the patient's vein side. The return is done.
  • a blood purification means such as a dialyzer or hemodiafilter
  • the blood from which waste products and excess water have been removed is sent to the patient's vein side.
  • the return is done.
  • blood is purified over a period of about 4 hours in one treatment, and as the dialysis time elapses, the blood is purified and excess water in the body is removed. Since this blood purification reduces the amount of circulating blood flowing through the patient's body, it is not uncommon for patients to exhibit symptoms of decreased blood pressure in the latter half of dialysis treatment.
  • the amount of water increased by the replacement fluid is added to the original amount of water to be removed to remove water, so no replacement fluid is involved.
  • the rate of water removal is increased compared to dialysis treatment. Since the circulatory dynamics of blood during dialysis treatment (circulating blood volume, plasma refill rate, etc.) differ from patient to patient, if water is removed at an increased water removal rate, the rate of change in circulating blood volume may decrease significantly. There is a risk of burdening the patient.
  • an object of the present invention is to provide a dialysis apparatus capable of reducing the burden on the patient and a method for controlling the water removal rate according to the circulatory dynamics of blood after injection of the replacement solution.
  • the present invention is a blood circuit, a blood purification means arranged in the blood circuit and capable of removing water in the blood, and a dialysate connected to the blood purification means to introduce and derive a dialysate into the blood purification means.
  • a circuit a measuring means for measuring the rate of change of the circulating blood volume, a replenisher injection means for injecting a replenisher for recovering the circulating blood volume decreased by water removal into the blood circuit, and a predetermined blood circuit.
  • a dialysis apparatus including a control unit that controls the replenisher injection means so as to intermittently inject a predetermined amount of the replenisher solution at intervals.
  • the control unit is a water content in blood by the blood purification means.
  • the dialysis apparatus that reduces the rate of water removal of the blood purification means.
  • the rate of change in circulating blood volume may be determined by measuring the hematocrit value. Then, it is possible to control the blood purification process in the same manner as the circulating blood volume by using the change in the hematocrit value (for example, the rate of increase) as an index.
  • the blood purification means and the dialysate circuit are used as the replenisher injection means, and the dialysate that is back-filtered by the blood purification means is used as the replenisher.
  • the present invention is connected to a blood circuit, a blood purification means arranged in the blood circuit and capable of removing water in the blood, and the blood purification means, and introduces and derives a dialysate into the blood purification means.
  • a method for controlling a water removal rate using a dialysis apparatus including a control unit for controlling the replenisher solution injection means so as to intermittently inject a predetermined amount of the replenisher solution at predetermined intervals.
  • the rate of decrease of the rate of change after the injection of the latest replenisher is calculated using the rate of change measured in, and when the calculated rate of decrease of the rate of change exceeds the first threshold value, the blood purification
  • the present invention relates to a control method for reducing the water removal rate of the means.
  • the first threshold value is preferably 2% / min.
  • the rate of decrease of the rate of change after the completion of injection of the latest replenisher measured by the measuring means after reducing the rate of water removal of the blood purification means is less than the second threshold value, it is described. It is preferable to return the water removal rate of the blood purification means to the speed before the decrease.
  • the second threshold value is preferably 1% / min.
  • the water removal rate of the blood purification means is reduced, it is preferable to control to reduce the injection amount of the next replenisher and / or to extend the injection interval.
  • the burden on the patient can be reduced according to the movement of the circulating body of blood by controlling the water removal rate according to the rate of decrease in the rate of change in the circulating blood volume.
  • control method of the present invention can be applied when supplementation is intermittently performed during dialysis treatment such as hemodialysis (so-called HD) or hemodiafiltration (so-called HDF).
  • dialysis treatment such as hemodialysis (so-called HD) or hemodiafiltration (so-called HDF).
  • HD hemodialysis
  • HDF hemodiafiltration
  • a case where intermittent replenishment type hemodiafiltration is performed by using a back-filtered dialysate to intermittently replenish the fluid will be described.
  • the dialysis apparatus 100 controls a blood circuit 110 for flowing blood, a blood purification means 120, a dialysate circuit 130, and a circulating blood volume measuring means 140 arranged in the blood circuit 110.
  • a unit 150 is provided.
  • the blood circuit 110 has an arterial side line 111, a venous side line 112, a drug line 113, and a priming fluid discharge line 114.
  • the arterial side line 111, the venous side line 112, the drug line 113, and the priming liquid discharge line 114 are all mainly composed of a flexible and soft tube through which a liquid can flow.
  • One end of the arterial line 111 is connected to the blood inlet 122a of the blood purification means 120, which will be described later.
  • An arterial side connection portion 111a, an arterial side bubble detector 111b, a blood pump 111c, and a circulating blood volume measuring means 140 are arranged on the arterial side line 111.
  • the arterial side connecting portion 111a is arranged on the other end side of the arterial side line 111.
  • a needle that punctures the patient's blood vessel is connected to the arterial connection portion 111a.
  • the arterial bubble detector 111b detects the presence or absence of bubbles in the tube.
  • the blood pump 111c is arranged downstream of the arterial bubble detector 111b in the arterial line 111.
  • the blood pump 111c delivers a liquid such as blood or priming fluid inside the arterial line 111 by squeezing the tube constituting the arterial line 111 with a roller.
  • the venous line 112 is connected to the blood outlet 122b of the blood purification means 120, which will be described later.
  • the venous side connection portion 112a, the venous side bubble detector 112b, the drip chamber 112c, and the venous side clamp 112d are arranged on the venous side line 112.
  • the venous side connecting portion 112a is arranged on the other end side of the venous side line 112.
  • a needle that punctures the patient's blood vessel is connected to the venous side connection portion 112a.
  • the venous air bubble detector 112b detects the presence or absence of air bubbles in the tube.
  • the drip chamber 112c is arranged on the upstream side of the vein side bubble detector 112b.
  • the drip chamber 112c stores a certain amount of blood in order to remove air bubbles, coagulated thrombi / clots, etc. mixed in the venous side line 112, and to measure venous pressure.
  • the venous side clamp 112d is arranged on the downstream side of the venous side bubble detector 112b. The venous side clamp 112d is controlled according to the result of detecting air bubbles by the venous side air bubble detector 112b, and opens and closes the flow path of the venous side line 112.
  • the drug line 113 supplies the drug required during hemodialysis to the arterial side line 111.
  • One end of the drug line 113 is connected to the drug solution pump 113a for delivering the drug, and the other end is connected to the arterial line 111.
  • the drug line 113 is provided with a clamping means (not shown), and the flow path is closed by the clamping means except when the drug is injected.
  • the other end side of the drug line 113 is connected to the upstream side of the circulating blood volume measuring means 140 in the arterial side line 122.
  • the priming liquid discharge line 114 is connected to the drip chamber 112c.
  • a priming liquid discharge line clamp 114a is arranged on the priming liquid discharge line 114.
  • the priming liquid discharge line 114 is a line for draining the priming liquid in the priming step described later.
  • the blood purification means 120 includes a container body 121 formed in a tubular shape and a dialysis membrane (not shown) housed inside the container body 121, and the inside of the container body 121 is made of blood by the dialysis membrane. It is divided into a side flow path and a dialysate side flow path (neither is shown).
  • the container body 121 is formed with a blood inlet 122a and a blood outlet 122b communicating with the blood circuit 110, and a dialysate inlet 123a and a dialysate outlet 123b communicating with the dialysate circuit 130.
  • the blood taken out from the artery of the subject flows through the arterial side line 111 by the blood pump 111c and flows through the blood side flow path of the blood purification means 120.
  • the blood introduced into the blood purification means 120 is purified by the dialysate flowing through the dialysate circuit 130 described later via the dialysate membrane.
  • the blood purified by the blood purification means 120 passes through the vein side line 112 and is returned to the vein of the subject.
  • the dialysate circuit 130 is composed of a so-called closed capacity control type dialysate circuit 130.
  • the dialysate circuit 130 includes a dialysate supply line 131a, a dialysate drainage line 131b, a dialysate introduction line 132a, a dialysate lead-out line 132b, and a dialysate delivery unit 133.
  • the dialysate delivery unit 133 includes a dialysate chamber 1331, a bypass line 1332, and a water removal / reverse filtration pump 1333.
  • the dialysate chamber 1331 is composed of a hard container capable of accommodating a constant volume (for example, 300 ml to 500 ml) of dialysate, and the inside of the container is formed by a soft diaphragm (diaphragm) to provide a liquid feed accommodating portion 1331a and drainage. It is partitioned into the accommodating portion 1331b.
  • the bypass line 1332 connects the dialysate lead-out line 132b and the dialysate drainage line 131b.
  • the water removal / reverse filtration pump 1333 is arranged on the bypass line 1332.
  • the water removal / reverse filtration pump 1333 has a direction in which the dialysate inside the bypass line 1332 is circulated to the dialysate drainage line 131b side (water removal direction) and a direction in which the dialysate is circulated to the dialysate discharge line 132b side (back filtration direction). It is composed of a pump that is driven so that the liquid can be sent to the dialysis machine.
  • the dialysate supply line 131a is connected to the dialysate supply device (not shown) at the proximal end side and to the dialysate chamber 1331 at the distal end side.
  • the dialysate supply line 131a supplies the dialysate to the fluid delivery accommodating portion 1331a of the dialysate chamber 1331.
  • the dialysate introduction line 132a connects the dialysate chamber 1331 and the dialysate introduction port 123a of the blood purification means 120, and dialysates the dialysate contained in the liquid delivery accommodating portion 1331a of the dialysate chamber 1331 to the blood purification means 120. Introduce into the liquid side flow path.
  • the dialysate lead-out line 132b connects the dialysate outlet 123b of the blood purification means 120 and the dialysate chamber 1331, and leads the dialysate discharged from the blood purification means 120 to the drainage accommodating portion 1331b of the dialysate chamber 1331. do.
  • the base end side of the dialysate drainage line 131b is connected to the dialysate chamber 1331, and the dialysate drainage stored in the drainage storage unit 1331b is discharged.
  • the amount of dialysate derived from the dialysate chamber 1331 (liquid feeding accommodation).
  • the amount of dialysate supplied to section 1331a) and the amount of drainage collected in the dialysate chamber 1331 (drainage accommodating section 1331b) can be made equal.
  • the flow rate of the dialysate introduced into the blood purification means 120 and the amount of the dialysate (drainage) derived from the blood purification means 120 are the same. Can be done.
  • the amount of dialysate derived from the blood purification means 120 is the amount of dialysate collected in the dialysate chamber 1331 (that is, the amount of dialysate flowing through the dialysate introduction line 132a), and the amount of dialysate flowing through the bypass line 1332. The amount is obtained by subtracting the amount of liquid.
  • the amount of dialysate derived from the blood purification means 120 flows through the dialysate introduction line 132a by the amount of dialysate (drainage) collected again in the dialysate chamber 1331 through the bypass line 1332. It will be less than the flow rate of dialysate. That is, when the water removal / back filtration pump 1333 is driven so as to send the liquid in the back filtration direction, a predetermined amount of dialysate is injected (back filtration) into the blood circuit 110 in the blood purification means 120 (FIG. 3).
  • the blood purification means 120 and the dialysate circuit 130 are used as the replenisher injection means, and the back-filtered dialysate is used as the replenisher.
  • the dialysate as the replenisher is injected from the dialysate circuit 130 into the blood circuit 110 via the blood purification means 120 by driving the water removal / backfiltration pump 1333 in the backfiltration direction.
  • a replenisher line may be connected to the blood circuit 110 to serve as a replenisher injection means, and physiological saline or the like may be used as the replenisher.
  • a replenisher line provided with a replenisher pump may be connected from the dialysate introduction line 132a to the arterial side line 111 or the vein side line 112 to serve as a replenisher solution injection means, and the dialysate may be used as the replenisher solution.
  • the amount of dialysate flowing through the dialysate lead-out line 132b is the dialysate collected in the dialysate chamber 1331. (That is, the amount of dialysate flowing through the dialysate introduction line 132a) plus the amount of dialysate flowing through the bypass line 1332.
  • the amount of dialysate flowing through the dialysate lead-out line 132b is the same as the amount of dialysate (drainage) discharged to the dialysate drainage line 131b through the bypass line 1332. It will be larger than the amount of dialysate in circulation. That is, when the water removal / reverse filtration pump 1333 is driven so as to send the liquid in the water removal direction, the blood purification means 120 removes a predetermined amount of water from the blood (see FIG. 2).
  • the circulating blood volume measuring means 140 is a sensor that measures the hematocrit value of blood flowing in the blood circuit 110.
  • the hematocrit value can be measured based on the light transmittance of blood obtained by irradiating blood with near infrared rays.
  • the rate of change in the circulating blood volume in the patient's body can be calculated based on the hematocrit value measured over time by the circulating blood volume measuring means 140.
  • the circulating blood volume measuring means 140 is located on the downstream side of the blood pump 111c in the arterial side line 111 and on the blood purifying means 120 so as not to be affected by the water removal and fluid replacement by the blood purifying means 120. It is located on the upstream side.
  • the control unit 150 is composed of an information processing device (computer), and controls the operation of the dialysis machine 100 by executing a control program. In addition, the control unit 150 calculates the rate of change in the circulating blood volume based on the hematocrit value measured by the circulating blood volume measuring means 140. In addition, the control unit 150 calculates the rate of decrease in the rate of change in the circulating blood volume after the injection of the replacement fluid is completed. Specifically, the control unit 150 controls the operations of various pumps, clamps, and the like arranged in the blood circuit 110 and the dialysate circuit 130, and performs various steps performed by the dialyzer 100, such as a priming step and a removal step. Perform blood steps, dialysis steps, replenishment steps, blood return steps, etc.
  • the blood circuit 110 and the blood purification means 120 are washed and cleaned using a back-filtration dialysate as the priming liquid.
  • the blood removal step the patient's blood is aspirated to fill the arterial line 111 and the venous line 112 with blood.
  • a dialysis step is performed to purify the blood and remove water (see FIG. 2).
  • excess water of the patient is removed, and the amount of replacement fluid recovered is also removed.
  • the fluid replacement process is intermittently performed in the middle of the dialysis process (see FIG. 3).
  • a blood return process is performed to return the blood to the patient.
  • the dialysis step and the fluid replacement step related to the change in the circulating blood volume will be described in detail below.
  • the dialysis process will be described with reference to FIG.
  • the patient's blood introduced from the arterial connection 111a is purified by the blood purification means 120 through the arterial line 111 and returned to the patient from the venous connection 112a through the venous line 112. ..
  • the arterial side connection portion 111a and the venous side connection portion 112a are respectively connected to the needle punctured in the patient's blood vessel, and the priming fluid discharge line clamp 114a is closed. State, the venous side clamp 112d is in the open state.
  • the dialysate supply device (not shown) supplies and discharges dialysate to the dialysate chamber 1331 at an average liquid feed rate of 500 ml / min, and feeds the water removal / reverse filtration pump 1333 in the water removal direction.
  • the blood purification means 120 removes water at 10 ml / min.
  • the blood pump 111c gradually increases the flow rate from 40 to 50 ml / min at the start of the dialysis process to, for example, about 200 ml / min, and discharges blood from the arterial side connection portion 111a side to the blood purification means 120 side.
  • the fluid replacement step is a step of injecting a reverse filtration dialysate into the blood circuit 110, and in the present embodiment, it is intermittent at predetermined intervals in order to prevent a decrease in blood pressure due to a decrease in circulating blood volume due to water removal. It is done in.
  • the arterial side connection portion 111a and the venous side connection portion 112a are each connected to the needle punctured in the blood vessel of the patient as in the dialysis step, and the priming fluid discharge line.
  • the dialysis clamp 114a is in the closed state, and the vein side clamp 112d is in the open state.
  • the dialysate supply device (not shown) supplies and discharges dialysate to the dialysate chamber 1331 at an average flow rate of 500 ml / min, and sends the water removal / reverse filtration pump 1333 in the reverse filtration direction.
  • the dialysate supply device supplies and discharges dialysate to the dialysate chamber 1331 at an average flow rate of 500 ml / min, and sends the water removal / reverse filtration pump 1333 in the reverse filtration direction.
  • the blood purification means 120 can perform the fluid replacement of 150 ml / min in about 80 seconds. It is said.
  • the blood pump 111c gradually reduces the flow rate from 200 ml / min to about 50 ml / min during the dialysis process, and discharges blood from the arterial side connection portion 111a side to the blood purification means 120 side.
  • Blood flows into the blood purification means 120 at a flow rate of 50 ml / min from the blood inlet 122a, the reverse filtration dialysate is replenished at a flow rate of 150 ml / min, and 200 ml of diluted blood is supplied from the blood outlet 122b. Derived at a flow rate of / min. In this way, the dialysate is rapidly replenished into the blood in about 80 seconds in the fluid replacement step.
  • fluid replacement is performed intermittently.
  • a decrease in blood pressure is prevented, peripheral circulation is improved, and the rate of plasma refilling is maintained.
  • the rate of decrease in the circulating blood volume after the completion of dialysis can be reduced even at the same water removal rate (excluding the amount of fluid replacement) as compared with the case where fluid replacement is not performed.
  • the increase in the circulating blood volume due to the implementation of the replacement fluid is removed by increasing the water removal rate of the blood purification means 120 from the start to the end of dialysis. Therefore, the total amount of water removed is the sum of the patient's excess water (body weight removal) and the amount of fluid replacement recovered.
  • INDUSTRIAL APPLICABILITY The present invention makes it possible to carry out a dialysis process in which the burden on the patient is reduced by appropriately controlling the water removal rate after injecting the replacement fluid while obtaining the above-mentioned effects by carrying out the replacement fluid.
  • FIG. 4 is a diagram showing the transition of the rate of change in the circulating blood volume when replacement fluid is performed under the conditions of an injection volume of 200 ml and an injection interval of 30 minutes, which are generally performed. As shown in FIG. 4, it can be seen that the rate of change in the circulating blood volume increased by performing the replacement fluid every 30 minutes, and started to decrease after the injection of the replacement fluid was completed and the water removal was resumed. .. The slope of the white arrow shown in FIG. 4 indicates the rate of decrease in the rate of change in circulating blood volume.
  • the average rate of decrease is used as the rate of decrease of the rate of change.
  • the average rate of decrease of the rate of change is calculated from the amount of decrease in the rate of change and the elapsed time at a certain point in time, starting from the time when the rate of change changes from increasing to decreasing after the completion of the injection of the latest replenisher.
  • the average rate of decrease of the rate of change is set to 2% / min as the first threshold value. It is considered desirable not to exceed. Therefore, the water removal rate is reduced so that the average rate of decrease of the rate of change is equal to or less than the first threshold value.
  • the water removal rate can be increased, for example, to recover the replenisher, or reduced by a predetermined percentage (eg, 50%).
  • the plasma refilling rate becomes the water removal rate. Therefore, it is desirable to return the water removal rate to the original rate in order to increase the amount of water recovered due to the increase in the replenisher solution.
  • the second threshold value is 1% / min.
  • the blood purification means so that the rate of decrease in the rate of change in circulating blood volume after the completion of injection of the replacement fluid does not exceed the first threshold value (2% / min) and is less than the second threshold value.
  • the method of controlling the water removal rate in 120 will be specifically described.
  • the control unit 150 measures the hematocrit value by the circulating blood volume measuring means 140, and calculates the rate of change of the circulating blood volume over time based on the measured hematocrit value. In addition, after the injection of the replenisher solution is completed, the average rate of decrease in the rate of change is calculated.
  • the dialysis apparatus 100 removes water at a predetermined water removal rate (S100). After a lapse of a predetermined time (S110), replacement fluid is performed with a predetermined injection amount (S120).
  • the predetermined water removal rate in S100 indicates the water removal rate at the start of the dialysis treatment, which is set based on the amount of water (water removal amount) to be removed from the patient by the dialysis treatment.
  • the water removal rate is controlled until a predetermined time elapses, based on the rate of decrease in the rate of change in circulating blood volume (S130).
  • the predetermined dialysis time in S140 similarly indicates the dialysis time at the start of dialysis treatment.
  • the end of the dialysis treatment is determined by the passage of a predetermined dialysis time, but if the scheduled water removal is not completed within the water removal time scheduled at the start of the dialysis treatment, The dialysis time may be extended until the scheduled water removal is complete.
  • a method of setting the water removal rate will be described with reference to FIG. After the injection of the replenisher by the most recent replacement fluid, the water removal rate is increased more than the water removal rate in S100 in order to recover the water corresponding to the injection amount of the replenisher (S131). Next, it is determined whether or not the average decrease rate of the rate of change exceeds the first threshold value (S132), and if the average decrease rate exceeds the first threshold value, the water removal rate is decreased (S133). If it does not exceed, the water removal rate is maintained (S134).
  • the water removal rate is decreased (S133)
  • the rate of water removal is maintained at a reduced rate (S137), and the determination of S135 is repeated until a predetermined time in S138 elapses.
  • the control of the water removal rate is terminated.
  • the predetermined time in S138 is the time until the next fluid replacement is performed, and even when the predetermined dialysis time has elapsed, it is assumed that the predetermined time in S138 has elapsed.
  • the water removal rate is returned to the original rate before the decrease (water removal rate in S131) (S136).
  • the determination is made by returning to S132 until a predetermined time elapses (S139). It is determined whether or not the rate of decrease of the average rate of change is less than the second threshold value, which is smaller than the first threshold value (S135).
  • the rate of water removal is maintained at a reduced rate (S137), and the determination of S135 is repeated until a predetermined time in S139 elapses.
  • the predetermined time in S139 is the time until the next fluid replacement is performed as in the case of S138, and even when the predetermined dialysis time has elapsed, it is assumed that the predetermined time in S139 has elapsed.
  • water is removed at an increased water removal rate for replacement fluid recovery, and the water removal rate is reduced when the average rate of decrease in the rate of change in circulating blood volume exceeds the first threshold value.
  • the rate of decrease in the average rate of change can be reduced, and the burden on the patient can be reduced.
  • next replacement fluid or dialysis treatment is completed while the water removal rate is reduced, it will be difficult to recover the water injected as the replacement fluid. Therefore, by reducing the water removal rate, when the average decrease rate of the rate of change is less than the second threshold value, the water removal rate is returned to the rate before the decrease, so that the amount of water corresponding to the increase in the replenisher solution is increased. Uncollected can be reduced.
  • the next replacement fluid may be performed as scheduled while remaining uncollected, but only the uncollected portion of the next replacement fluid is collected. Fluid replacement may be performed by reducing the injection volume. Further, the injection interval may be extended by extending the time until the next fluid replacement is performed until the uncollected water is removed. Further, by performing both of them, the unrecovered water content may be adjusted.
  • the dialysis apparatus 100 includes a blood circuit 110, a blood purification means 120, a dialysate circuit 130, a circulating blood volume measuring means 140, a replacement liquid injection means for injecting a replacement liquid into the blood circuit 110, and the like.
  • a control unit 150 that controls the replenisher injection means so as to intermittently inject a predetermined amount of the replenisher solution into the blood circuit 110 at a predetermined interval is included, and the control unit 150 is provided with the blood purification means 120.
  • the rate of decrease in the rate of change after the completion of the injection of the latest replenisher measured by the circulating blood volume measuring means 140 exceeds the first threshold value, the water is removed from the blood purifying means 120. Reduced speed.
  • the rate of decrease in the rate of change in the circulating blood volume can be set to be equal to or lower than the first threshold value, so that the burden on the patient can be reduced.
  • the rate of decrease of the rate of change after the completion of the injection of the latest replenisher measured by the circulating blood volume measuring means 140 is the second.
  • the water removal rate of the blood purification means 120 was returned to the speed before the decrease. As a result, it is possible to reduce the amount of unrecovered water due to the increase in the replenishing liquid due to the decrease in the water removal rate.
  • the control unit 150 was made to perform a control to reduce the injection amount of the next replenisher and / or a control to extend the injection interval. As a result, it is possible to further reduce the amount of unrecovered water due to the increase in the replenishing liquid due to the decrease in the water removal rate.
  • the control method using the dialysis apparatus 100 is calculated by calculating the rate of decrease in the rate of change in the circulating blood volume due to the injection of the latest replacement solution using the rate of change measured by the circulating blood volume measuring means 140.
  • the rate of decrease of the rate of change exceeds the first threshold value, the rate of water removal of the blood purification means 120 is reduced.
  • the rate of decrease in the rate of change in the circulating blood volume can be set to be equal to or lower than the first threshold value, so that the burden on the patient can be reduced.
  • the present invention is not limited to the above-described embodiments and can be appropriately modified.
  • physiological saline may be used as the replenisher, or the dialysate may be replenished from the dialysate line directly connected to the blood circuit without using a blood purification means. If this happens, it is not necessary to stop the water removal in the blood purification means. That is, the replenisher may be injected while maintaining the water removal rate.
  • the water removal rate is increased after the replacement fluid is performed and the water removal rate is controlled so as to recover the water corresponding to the increase in the replacement fluid
  • the present invention is not limited to this.
  • the recovery of the increased amount of water in the replacement fluid may be started ahead of schedule before the replacement fluid is carried out. Since the water removal rate is increased, if the rate of decrease in the rate of change in the circulating blood volume exceeds the first threshold value, the water removal rate may be controlled to decrease as in the above-described embodiment.
  • the average rate of decrease is used as the rate of decrease in the rate of change in circulating blood volume, but the rate of decrease is not limited to this.
  • the rate of decrease of the rate of change the rate of decrease at a certain point in time after the completion of injection of the replenisher may be used.
  • the feedback control may be performed by increasing or decreasing the water removal rate so that the rate of decrease at the moment of the rate of change becomes equal to or less than the first threshold value.
  • the upper limit of the water removal rate is the original water removal rate (the water removal rate increased to recover the increased amount of replenisher), and the water removal rate is within the range in which the instantaneous decrease rate does not exceed the first threshold value.
  • Dialysis apparatus 110 Blood circuit 111 Arterial side line 111c Blood pump 112 Vein side line 120 Blood purification means 130 Dialysate circuit 140 Circulating blood volume measuring means (measuring means) 150 control unit

Abstract

Provided are a dialysis machine capable of reducing the burden on a patient in accordance with blood circulatory dynamics following infusion of a replenishing fluid, and a water removal control method. A dialysis machine 100 according to the present invention comprises a blood circuit 110, a blood cleaning means 120, a dialysate circuit 130, a circulating blood volume measurement means 140, a replenishing fluid infusion means for infusing replenishing fluid into the blood circuit 110, and a control unit 150 that controls the replenishing fluid infusion means so as to intermittently infuse a prescribed volume of replenishing fluid into the blood circuit 110 at prescribed intervals. When the blood cleaning means 120 is removing water from the blood, the control unit 150 reduces the water removal rate of the blood cleaning means 120 if the rate of reduction in the post-infusion rate of change in replenishing fluid most recently measured by the circulating blood volume measurement means 140 exceeds a first threshold.

Description

透析装置及び制御方法Dialysis equipment and control method
 本発明は、透析装置及び該透析装置を用いた制御方法に関する。 The present invention relates to a dialysis machine and a control method using the dialysis machine.
 透析治療においては、ポンプを用いて患者の動脈側から血液を取り出してダイアライザやヘモダイアフィルタ等の血液浄化手段に送血し、老廃物や余分な水分が除去された血液が患者の静脈側へ戻すことが行われる。
 一般的に透析治療では、1回の治療で4時間前後の時間をかけて血液の浄化が行われ、透析時間の経過に伴い血液が浄化されて体内の余分な水分が取り除かれて行く。この血液浄化によって患者の体内を流れる循環血液量は減少していくため、透析治療の後半において血圧低下の症状を呈する患者は珍しくない。
In dialysis treatment, blood is taken out from the patient's arterial side using a pump and sent to a blood purification means such as a dialyzer or hemodiafilter, and the blood from which waste products and excess water have been removed is sent to the patient's vein side. The return is done.
Generally, in dialysis treatment, blood is purified over a period of about 4 hours in one treatment, and as the dialysis time elapses, the blood is purified and excess water in the body is removed. Since this blood purification reduces the amount of circulating blood flowing through the patient's body, it is not uncommon for patients to exhibit symptoms of decreased blood pressure in the latter half of dialysis treatment.
 循環血液量が減少した場合、正常な生体反応では、自律神経の働きにより末梢の血管を収縮させることで、中枢側の循環血液量が維持される。また、除水により血液が濃縮されると浸透圧の差により間質から血管内へ血漿成分が移動する血漿再充填が生じて、循環血液量が維持される。しかしながら患者によってそのような生体反応が正常に行われない場合があり、血圧低下により透析治療を継続することが困難となることがある。 When the circulating blood volume decreases, in a normal biological reaction, the circulating blood volume on the central side is maintained by constricting peripheral blood vessels by the action of the autonomic nerves. In addition, when blood is concentrated by removing water, plasma refilling occurs in which plasma components move from the interstitium into blood vessels due to the difference in osmotic pressure, and the circulating blood volume is maintained. However, depending on the patient, such a biological reaction may not be performed normally, and it may be difficult to continue dialysis treatment due to a decrease in blood pressure.
 このような血圧低下の症状に陥った場合には、循環血液量を速やかに増加させるため、血液中に生理食塩水や清浄化された透析液を用いて補液を実施する等の処置が取られる。
 また、近年では、除水に伴う循環血液量減少による血圧低下の発生を予防するため、血液透析(いわゆるHD)や血液濾過透析(いわゆるHDF)の治療において、例えば30分毎に150mL~200mLの補液を繰り返し実施し、補液相当分の水分を本来の除水量に上乗せして除水する「間歇補充型血液透析濾過法」が提案されている(非特許文献1、非特許文献2参照)。
In the event of such a symptom of decreased blood pressure, in order to rapidly increase the circulating blood volume, measures such as replacement fluid with physiological saline or purified dialysate in the blood are taken. ..
Further, in recent years, in order to prevent the occurrence of a decrease in blood pressure due to a decrease in circulating blood volume due to water removal, in the treatment of hemodialysis (so-called HD) or hemofiltration dialysis (so-called HDF), for example, 150 mL to 200 mL every 30 minutes. A "intermittent replenishment type hemodialysis filtration method" has been proposed in which the replenishment solution is repeatedly carried out and the water equivalent to the replenishment solution is added to the original amount of water removal to remove water (see Non-Patent Document 1 and Non-Patent Document 2).
 上述のように、透析治療中に計画的に補液を行うことにより血圧低下の発生を抑制できる反面、補充液増加分の水分を本来の除水量に上乗せして除水するため、補液を伴わない透析治療に比べて除水速度が増加する。透析治療中の血液の循環動態(循環血液量や血漿再充填の速度等)は患者によって異なるため、増加した除水速度で除水すると、循環血液量の変化率の減少速度が大きくなる場合があり、患者の負担となるおそれがある。 As described above, while it is possible to suppress the occurrence of a decrease in blood pressure by systematically performing fluid replacement during dialysis treatment, the amount of water increased by the replacement fluid is added to the original amount of water to be removed to remove water, so no replacement fluid is involved. The rate of water removal is increased compared to dialysis treatment. Since the circulatory dynamics of blood during dialysis treatment (circulating blood volume, plasma refill rate, etc.) differ from patient to patient, if water is removed at an increased water removal rate, the rate of change in circulating blood volume may decrease significantly. There is a risk of burdening the patient.
 従って、本発明は、補充液注入後の血液の循環動態に応じて、患者の負担を低減可能な透析装置及び除水速度の制御方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a dialysis apparatus capable of reducing the burden on the patient and a method for controlling the water removal rate according to the circulatory dynamics of blood after injection of the replacement solution.
 本発明は、血液回路と、前記血液回路に配置され、血液中の水分を除去可能な血液浄化手段と、前記血液浄化手段に接続され、該血液浄化手段に透析液を導入及び導出する透析液回路と、循環血液量の変化率を測定する測定手段と、除水により減少する循環血液量を回復させるための補充液を前記血液回路に注入する補充液注入手段と、前記血液回路に所定の間隔で間歇的に所定の量の補充液を注入するように前記補充液注入手段を制御する制御部と、を備える透析装置であって、前記制御部は、前記血液浄化手段により血液中の水分を除去する場合に、前記測定手段により測定される直近の補充液の注入終了後における前記変化率の減少速度が第1の閾値を超えると、前記血液浄化手段の除水速度を減少させる透析装置に関する。尚、循環血液量の変化率は、ヘマトクリット値を測定することによって行ってもよい。そして、へマトクリット値の変化(例えば、上昇速度)を指標として、循環血液量と同様に血液浄化処理を制御することが可能である。 The present invention is a blood circuit, a blood purification means arranged in the blood circuit and capable of removing water in the blood, and a dialysate connected to the blood purification means to introduce and derive a dialysate into the blood purification means. A circuit, a measuring means for measuring the rate of change of the circulating blood volume, a replenisher injection means for injecting a replenisher for recovering the circulating blood volume decreased by water removal into the blood circuit, and a predetermined blood circuit. A dialysis apparatus including a control unit that controls the replenisher injection means so as to intermittently inject a predetermined amount of the replenisher solution at intervals. The control unit is a water content in blood by the blood purification means. When the rate of decrease of the rate of change after the completion of injection of the latest replenisher measured by the measuring means exceeds the first threshold value, the dialysis apparatus that reduces the rate of water removal of the blood purification means. Regarding. The rate of change in circulating blood volume may be determined by measuring the hematocrit value. Then, it is possible to control the blood purification process in the same manner as the circulating blood volume by using the change in the hematocrit value (for example, the rate of increase) as an index.
 また、前記補充液注入手段として前記血液浄化手段及び前記透析液回路が用いられ、前記補充液として前記血液浄化手段で逆濾過される透析液が用いられることが好ましい。 Further, it is preferable that the blood purification means and the dialysate circuit are used as the replenisher injection means, and the dialysate that is back-filtered by the blood purification means is used as the replenisher.
 また、本発明は、血液回路と、前記血液回路に配置され、血液中の水分を除去可能な血液浄化手段と、前記血液浄化手段に接続され、該血液浄化手段に透析液を導入及び導出する透析液回路と、循環血液量の変化率を測定する測定手段と、除水により減少する循環血液量を回復させるための補充液を前記血液回路に注入する補充液注入手段と、前記血液回路に所定の間隔で間歇的に所定の量の補充液を注入するように前記補充液注入手段を制御する制御部と、を備える透析装置を用いた除水速度の制御方法であって、前記測定手段で測定される前記変化率を用いて直近の補充液の注入後における前記変化率の減少速度を算出し、算出された前記変化率の減少速度が第1の閾値を超える場合に、前記血液浄化手段の除水速度を減少させる制御方法に関する。 Further, the present invention is connected to a blood circuit, a blood purification means arranged in the blood circuit and capable of removing water in the blood, and the blood purification means, and introduces and derives a dialysate into the blood purification means. The dialysate circuit, the measuring means for measuring the rate of change of the circulating blood volume, the replenisher injection means for injecting the replenisher for recovering the circulating blood volume decreased by water removal into the blood circuit, and the blood circuit. A method for controlling a water removal rate using a dialysis apparatus including a control unit for controlling the replenisher solution injection means so as to intermittently inject a predetermined amount of the replenisher solution at predetermined intervals. The rate of decrease of the rate of change after the injection of the latest replenisher is calculated using the rate of change measured in, and when the calculated rate of decrease of the rate of change exceeds the first threshold value, the blood purification The present invention relates to a control method for reducing the water removal rate of the means.
 また、前記第1の閾値は、2%/分であることが好ましい。 Further, the first threshold value is preferably 2% / min.
 また、前記血液浄化手段の除水速度を減少させた後、前記測定手段により測定される直近の補充液の注入終了後における前記変化率の減少速度が第2の閾値未満となる場合に、記血液浄化手段の除水速度を減少前の速さに戻すことが好ましい。 Further, when the rate of decrease of the rate of change after the completion of injection of the latest replenisher measured by the measuring means after reducing the rate of water removal of the blood purification means is less than the second threshold value, it is described. It is preferable to return the water removal rate of the blood purification means to the speed before the decrease.
 また、前記第2の閾値は、1%/分であることが好ましい。 Further, the second threshold value is preferably 1% / min.
 また、前記血液浄化手段の除水速度を減少させた場合、次回の補充液の注入量を減少させる制御及び/又は注入間隔を延ばす制御を行うことが好ましい。 Further, when the water removal rate of the blood purification means is reduced, it is preferable to control to reduce the injection amount of the next replenisher and / or to extend the injection interval.
 本発明によれば、循環血液量の変化率の減少速度に応じて除水速度を制御することにより、血液の循環体動に応じて患者の負担を低減することができる。 According to the present invention, the burden on the patient can be reduced according to the movement of the circulating body of blood by controlling the water removal rate according to the rate of decrease in the rate of change in the circulating blood volume.
透析装置の概略構成を示す図である。It is a figure which shows the schematic structure of the dialysis apparatus. 透析装置で実施される透析工程を示す図である。It is a figure which shows the dialysis process performed by a dialysis machine. 透析装置で実施される補液工程を示す図である。It is a figure which shows the fluid replacement process performed by a dialysis machine. 透析中に補液を行った場合における循環血液量の変化率を示す図である。It is a figure which shows the rate of change of the circulating blood volume at the time of performing fluid replacement during dialysis. 本発明の透析治療の流れを説明するためのフローチャートである。It is a flowchart for demonstrating the flow of the dialysis treatment of this invention. 本発明の除水速度の制御方法を説明するためのフローチャートである。It is a flowchart for demonstrating the control method of the water removal rate of this invention.
 以下、本発明の透析装置及び制御方法の好ましい各実施形態について、図面を参照しながら説明する。
 本発明の制御方法は、血液透析(いわゆるHD)や血液濾過透析(いわゆるHDF)等の透析治療中に間歇的に補液を実施する場合に適用できる。本発明の適用例として、逆濾過された透析液を利用して間歇的に補液を行う間歇補充型血液濾過透析を行う場合について説明する。
Hereinafter, preferred embodiments of the dialysis machine and the control method of the present invention will be described with reference to the drawings.
The control method of the present invention can be applied when supplementation is intermittently performed during dialysis treatment such as hemodialysis (so-called HD) or hemodiafiltration (so-called HDF). As an application example of the present invention, a case where intermittent replenishment type hemodiafiltration is performed by using a back-filtered dialysate to intermittently replenish the fluid will be described.
<第1実施形態> <First Embodiment>
 図1に示すように、透析装置100は、血液を流すための血液回路110と、血液浄化手段120と、透析液回路130と、血液回路110に配置される循環血液量測定手段140と、制御部150と、を備える。 As shown in FIG. 1, the dialysis apparatus 100 controls a blood circuit 110 for flowing blood, a blood purification means 120, a dialysate circuit 130, and a circulating blood volume measuring means 140 arranged in the blood circuit 110. A unit 150 is provided.
 血液回路110は、動脈側ライン111と、静脈側ライン112と、薬剤ライン113と、プライミング液排出ライン114と、を有する。動脈側ライン111、静脈側ライン112、薬剤ライン113及びプライミング液排出ライン114は、いずれも液体が流通可能な可撓性を有する軟質のチューブを主体として構成される。 The blood circuit 110 has an arterial side line 111, a venous side line 112, a drug line 113, and a priming fluid discharge line 114. The arterial side line 111, the venous side line 112, the drug line 113, and the priming liquid discharge line 114 are all mainly composed of a flexible and soft tube through which a liquid can flow.
 動脈側ライン111は、一端側が後述する血液浄化手段120の血液導入口122aに接続される。動脈側ライン111には、動脈側接続部111a、動脈側気泡検知器111b、血液ポンプ111c及び循環血液量測定手段140が配置される。
 動脈側接続部111aは、動脈側ライン111の他端側に配置される。動脈側接続部111aには、患者の血管に穿刺される針が接続される。
 動脈側気泡検知器111bは、チューブ内の気泡の有無を検出する。
 血液ポンプ111cは、動脈側ライン111における動脈側気泡検知器111bよりも下流側に配置される。血液ポンプ111cは、動脈側ライン111を構成するチューブをローラーでしごくことにより、動脈側ライン111の内部の血液やプライミング液等の液体を送出する。
One end of the arterial line 111 is connected to the blood inlet 122a of the blood purification means 120, which will be described later. An arterial side connection portion 111a, an arterial side bubble detector 111b, a blood pump 111c, and a circulating blood volume measuring means 140 are arranged on the arterial side line 111.
The arterial side connecting portion 111a is arranged on the other end side of the arterial side line 111. A needle that punctures the patient's blood vessel is connected to the arterial connection portion 111a.
The arterial bubble detector 111b detects the presence or absence of bubbles in the tube.
The blood pump 111c is arranged downstream of the arterial bubble detector 111b in the arterial line 111. The blood pump 111c delivers a liquid such as blood or priming fluid inside the arterial line 111 by squeezing the tube constituting the arterial line 111 with a roller.
 静脈側ライン112は、一端側が後述する血液浄化手段120の血液導出口122bに接続される。静脈側ライン112には、静脈側接続部112a、静脈側気泡検知器112b、ドリップチャンバ112c、及び静脈側クランプ112dが配置される。
 静脈側接続部112aは、静脈側ライン112の他端側に配置される。静脈側接続部112aには、患者の血管に穿刺される針が接続される。
 静脈側気泡検知器112bは、チューブ内の気泡の有無を検出する。
 ドリップチャンバ112cは、静脈側気泡検知器112bよりも上流側に配置される。ドリップチャンバ112cは、静脈側ライン112に混入した気泡や凝固した血栓/凝血塊等を除去するため、また、静脈圧を測定するため、一定量の血液を貯留する。
 静脈側クランプ112dは、静脈側気泡検知器112bよりも下流側に配置される。静脈側クランプ112dは、静脈側気泡検知器112bによる気泡の検出結果に応じて制御され、静脈側ライン112の流路を開閉する。
One end of the venous line 112 is connected to the blood outlet 122b of the blood purification means 120, which will be described later. The venous side connection portion 112a, the venous side bubble detector 112b, the drip chamber 112c, and the venous side clamp 112d are arranged on the venous side line 112.
The venous side connecting portion 112a is arranged on the other end side of the venous side line 112. A needle that punctures the patient's blood vessel is connected to the venous side connection portion 112a.
The venous air bubble detector 112b detects the presence or absence of air bubbles in the tube.
The drip chamber 112c is arranged on the upstream side of the vein side bubble detector 112b. The drip chamber 112c stores a certain amount of blood in order to remove air bubbles, coagulated thrombi / clots, etc. mixed in the venous side line 112, and to measure venous pressure.
The venous side clamp 112d is arranged on the downstream side of the venous side bubble detector 112b. The venous side clamp 112d is controlled according to the result of detecting air bubbles by the venous side air bubble detector 112b, and opens and closes the flow path of the venous side line 112.
 薬剤ライン113は、血液透析中に必要な薬剤を動脈側ライン111に供給する。薬剤ライン113は、一端側が薬剤を送り出す薬液ポンプ113aに接続され、他端側が動脈側ライン111に接続される。また、薬剤ライン113には不図示のクランプ手段が設けられており、薬剤を注入するとき以外は、クランプ手段により流路は閉鎖された状態である。本実施形態では、薬剤ライン113の他端側は、動脈側ライン122における循環血液量測定手段140よりも上流側に接続される。 The drug line 113 supplies the drug required during hemodialysis to the arterial side line 111. One end of the drug line 113 is connected to the drug solution pump 113a for delivering the drug, and the other end is connected to the arterial line 111. Further, the drug line 113 is provided with a clamping means (not shown), and the flow path is closed by the clamping means except when the drug is injected. In the present embodiment, the other end side of the drug line 113 is connected to the upstream side of the circulating blood volume measuring means 140 in the arterial side line 122.
 プライミング液排出ライン114は、ドリップチャンバ112cに接続される。プライミング液排出ライン114には、プライミング液排出ライン用クランプ114aが配置される。プライミング液排出ライン114は、後述するプライミング工程でプライミング液を排液するためのラインである。 The priming liquid discharge line 114 is connected to the drip chamber 112c. A priming liquid discharge line clamp 114a is arranged on the priming liquid discharge line 114. The priming liquid discharge line 114 is a line for draining the priming liquid in the priming step described later.
 血液浄化手段120は、筒状に形成された容器本体121と、この容器本体121の内部に収容された透析膜(図示せず)と、を備え、容器本体121の内部は、透析膜により血液側流路と透析液側流路とに区画される(いずれも図示せず)。容器本体121には、血液回路110に連通する血液導入口122a及び血液導出口122bと、透析液回路130に連通する透析液導入口123a及び透析液導出口123bと、が形成される。 The blood purification means 120 includes a container body 121 formed in a tubular shape and a dialysis membrane (not shown) housed inside the container body 121, and the inside of the container body 121 is made of blood by the dialysis membrane. It is divided into a side flow path and a dialysate side flow path (neither is shown). The container body 121 is formed with a blood inlet 122a and a blood outlet 122b communicating with the blood circuit 110, and a dialysate inlet 123a and a dialysate outlet 123b communicating with the dialysate circuit 130.
 以上の血液回路110及び血液浄化手段120によれば、対象者(透析患者)の動脈から取り出された血液は、血液ポンプ111cにより動脈側ライン111を流通して血液浄化手段120の血液側流路に導入される。血液浄化手段120に導入された血液は、透析膜を介して後述する透析液回路130を流通する透析液により浄化される。血液浄化手段120において浄化された血液は、静脈側ライン112を流通して対象者の静脈に返血される。 According to the above blood circuit 110 and blood purification means 120, the blood taken out from the artery of the subject (dialysis patient) flows through the arterial side line 111 by the blood pump 111c and flows through the blood side flow path of the blood purification means 120. Introduced in. The blood introduced into the blood purification means 120 is purified by the dialysate flowing through the dialysate circuit 130 described later via the dialysate membrane. The blood purified by the blood purification means 120 passes through the vein side line 112 and is returned to the vein of the subject.
 透析液回路130は、本実施形態では、いわゆる密閉容量制御方式の透析液回路130により構成される。この透析液回路130は、透析液供給ライン131aと、透析液排液ライン131bと、透析液導入ライン132aと、透析液導出ライン132bと、透析液送液部133と、を備える。 In the present embodiment, the dialysate circuit 130 is composed of a so-called closed capacity control type dialysate circuit 130. The dialysate circuit 130 includes a dialysate supply line 131a, a dialysate drainage line 131b, a dialysate introduction line 132a, a dialysate lead-out line 132b, and a dialysate delivery unit 133.
 透析液送液部133は、透析液チャンバ1331と、バイパスライン1332と、除水/逆濾過ポンプ1333と、を備える。
 透析液チャンバ1331は、一定容量(例えば、300ml~500ml)の透析液を収容可能な硬質の容器で構成され、この容器の内部は軟質の隔膜(ダイアフラム)により、送液収容部1331a及び排液収容部1331bに区画される。
 バイパスライン1332は、透析液導出ライン132bと透析液排液ライン131bとを接続する。
The dialysate delivery unit 133 includes a dialysate chamber 1331, a bypass line 1332, and a water removal / reverse filtration pump 1333.
The dialysate chamber 1331 is composed of a hard container capable of accommodating a constant volume (for example, 300 ml to 500 ml) of dialysate, and the inside of the container is formed by a soft diaphragm (diaphragm) to provide a liquid feed accommodating portion 1331a and drainage. It is partitioned into the accommodating portion 1331b.
The bypass line 1332 connects the dialysate lead-out line 132b and the dialysate drainage line 131b.
 除水/逆濾過ポンプ1333は、バイパスライン1332に配置される。除水/逆濾過ポンプ1333は、バイパスライン1332の内部の透析液を透析液排液ライン131b側に流通させる方向(除水方向)及び透析液導出ライン132b側に流通させる方向(逆濾過方向)に送液可能に駆動するポンプにより構成される。 The water removal / reverse filtration pump 1333 is arranged on the bypass line 1332. The water removal / reverse filtration pump 1333 has a direction in which the dialysate inside the bypass line 1332 is circulated to the dialysate drainage line 131b side (water removal direction) and a direction in which the dialysate is circulated to the dialysate discharge line 132b side (back filtration direction). It is composed of a pump that is driven so that the liquid can be sent to the dialysis machine.
 透析液供給ライン131aは、基端側が透析液供給装置(図示せず)に接続され、先端側が透析液チャンバ1331に接続される。透析液供給ライン131aは透析液チャンバ1331の送液収容部1331aに透析液を供給する。 The dialysate supply line 131a is connected to the dialysate supply device (not shown) at the proximal end side and to the dialysate chamber 1331 at the distal end side. The dialysate supply line 131a supplies the dialysate to the fluid delivery accommodating portion 1331a of the dialysate chamber 1331.
 透析液導入ライン132aは、透析液チャンバ1331と血液浄化手段120の透析液導入口123aとを接続し、透析液チャンバ1331の送液収容部1331aに収容された透析液を血液浄化手段120の透析液側流路に導入する。 The dialysate introduction line 132a connects the dialysate chamber 1331 and the dialysate introduction port 123a of the blood purification means 120, and dialysates the dialysate contained in the liquid delivery accommodating portion 1331a of the dialysate chamber 1331 to the blood purification means 120. Introduce into the liquid side flow path.
 透析液導出ライン132bは、血液浄化手段120の透析液導出口123bと透析液チャンバ1331とを接続し、血液浄化手段120から排出された透析液を透析液チャンバ1331の排液収容部1331bに導出する。 The dialysate lead-out line 132b connects the dialysate outlet 123b of the blood purification means 120 and the dialysate chamber 1331, and leads the dialysate discharged from the blood purification means 120 to the drainage accommodating portion 1331b of the dialysate chamber 1331. do.
 透析液排液ライン131bは、基端側が透析液チャンバ1331に接続され、排液収容部1331bに収容された透析液の排液を排出する。 The base end side of the dialysate drainage line 131b is connected to the dialysate chamber 1331, and the dialysate drainage stored in the drainage storage unit 1331b is discharged.
 以上の透析液回路130によれば、透析液チャンバ1331を構成する硬質の容器の内部を軟質の隔膜(ダイアフラム)により区画することで、透析液チャンバ1331からの透析液の導出量(送液収容部1331aへの透析液の供給量)と、透析液チャンバ1331(排液収容部1331b)に回収される排液の量と、を同量にできる。
 これにより、除水/逆濾過ポンプ1333を停止させた状態では、血液浄化手段120に導入される透析液の流量と血液浄化手段120から導出される透析液(排液)の量とを同量にできる。
According to the above dialysate circuit 130, by partitioning the inside of the hard container constituting the dialysate chamber 1331 with a soft diaphragm (diaphragm), the amount of dialysate derived from the dialysate chamber 1331 (liquid feeding accommodation). The amount of dialysate supplied to section 1331a) and the amount of drainage collected in the dialysate chamber 1331 (drainage accommodating section 1331b) can be made equal.
As a result, when the water removal / reverse filtration pump 1333 is stopped, the flow rate of the dialysate introduced into the blood purification means 120 and the amount of the dialysate (drainage) derived from the blood purification means 120 are the same. Can be done.
 また、除水/逆濾過ポンプ1333を逆濾過方向に送液するように駆動させた場合には、透析液チャンバ1331から排出された排液の一部がバイパスライン1332及び透析液導出ライン132bを通って再び透析液チャンバ1331に回収される。そのため、血液浄化手段120から導出される透析液の量は、透析液チャンバ1331に回収される量(即ち、透析液導入ライン132aを流通する透析液の量)から、バイパスライン1332を流通する透析液の量を減じた量となる。これにより、血液浄化手段120から導出される透析液の量は、バイパスライン1332を通って再び透析液チャンバ1331に回収される透析液(排液)の量分だけ、透析液導入ライン132aを流通する透析液の流量よりも少なくなる。即ち、除水/逆濾過ポンプ1333を逆濾過方向に送液するように駆動させた場合は、血液浄化手段120において、血液回路110に所定量の透析液が注入(逆濾過)される(図3参照)。 Further, when the water removal / reverse filtration pump 1333 is driven so as to send the liquid in the reverse filtration direction, a part of the drainage discharged from the dialysate chamber 1331 passes through the bypass line 1332 and the dialysate lead-out line 132b. It passes through and is collected again in the dialysate chamber 1331. Therefore, the amount of dialysate derived from the blood purification means 120 is the amount of dialysate collected in the dialysate chamber 1331 (that is, the amount of dialysate flowing through the dialysate introduction line 132a), and the amount of dialysate flowing through the bypass line 1332. The amount is obtained by subtracting the amount of liquid. As a result, the amount of dialysate derived from the blood purification means 120 flows through the dialysate introduction line 132a by the amount of dialysate (drainage) collected again in the dialysate chamber 1331 through the bypass line 1332. It will be less than the flow rate of dialysate. That is, when the water removal / back filtration pump 1333 is driven so as to send the liquid in the back filtration direction, a predetermined amount of dialysate is injected (back filtration) into the blood circuit 110 in the blood purification means 120 (FIG. 3).
 このように、本実施形態では、血液浄化手段120及び透析液回路130(除水/逆濾過ポンプ1333)は補充液注入手段として用いられ、逆濾過された透析液が補充液として用いられる。言い換えれば、補充液としての透析液は、除水/逆濾過ポンプ1333を逆濾過方向に駆動させることにより、透析液回路130から血液浄化手段120を介して血液回路110に注入される。なお、血液回路110に補充液ラインを接続して補充液注入手段とし、生理食塩水等を補充液として用いる構成としてもよい。また、透析液導入ライン132aから動脈側ライン111又は静脈側ライン112に補充液ポンプが設けられた補充液ラインを接続して補充液注入手段とし、透析液を補充液として用いる構成としてもよい。 As described above, in the present embodiment, the blood purification means 120 and the dialysate circuit 130 (water removal / reverse filtration pump 1333) are used as the replenisher injection means, and the back-filtered dialysate is used as the replenisher. In other words, the dialysate as the replenisher is injected from the dialysate circuit 130 into the blood circuit 110 via the blood purification means 120 by driving the water removal / backfiltration pump 1333 in the backfiltration direction. A replenisher line may be connected to the blood circuit 110 to serve as a replenisher injection means, and physiological saline or the like may be used as the replenisher. Further, a replenisher line provided with a replenisher pump may be connected from the dialysate introduction line 132a to the arterial side line 111 or the vein side line 112 to serve as a replenisher solution injection means, and the dialysate may be used as the replenisher solution.
 一方、除水/逆濾過ポンプ1333を除水方向に送液するように駆動させた場合には、透析液導出ライン132bを流通する透析液の量は、透析液チャンバ1331に回収される透析液の量(即ち、透析液導入ライン132aを流通する透析液の量)に、バイパスライン1332を流通する透析液の量を加えた量となる。これにより、透析液導出ライン132bを流通する透析液の量は、バイパスライン1332を通って透析液排液ライン131bに排出される透析液(排液)の量分だけ、透析液導入ライン132aを流通する透析液の量よりも多くなる。即ち、除水/逆濾過ポンプ1333を除水方向に送液するように駆動させた場合は、血液浄化手段120において、血液から所定量の除水が行われる(図2参照)。 On the other hand, when the water removal / reverse filtration pump 1333 is driven to send the liquid in the water removal direction, the amount of dialysate flowing through the dialysate lead-out line 132b is the dialysate collected in the dialysate chamber 1331. (That is, the amount of dialysate flowing through the dialysate introduction line 132a) plus the amount of dialysate flowing through the bypass line 1332. As a result, the amount of dialysate flowing through the dialysate lead-out line 132b is the same as the amount of dialysate (drainage) discharged to the dialysate drainage line 131b through the bypass line 1332. It will be larger than the amount of dialysate in circulation. That is, when the water removal / reverse filtration pump 1333 is driven so as to send the liquid in the water removal direction, the blood purification means 120 removes a predetermined amount of water from the blood (see FIG. 2).
 循環血液量測定手段140は、血液回路110内を流れる血液のヘマトクリット値を測定するセンサである。例えば、近赤外線を血液に照射して得られる血液の光透過度に基づいてヘマトクリット値を測定することができる。循環血液量測定手段140により経時的に測定されたヘマトクリット値に基づいて、患者の体内の循環血液量の変化率を算出することができる。図1に示すように、循環血液量測定手段140は、血液浄化手段120による除水や補液の影響を受けにくいように、動脈側ライン111における血液ポンプ111cよりも下流側かつ血液浄化手段120の上流側に配置される。 The circulating blood volume measuring means 140 is a sensor that measures the hematocrit value of blood flowing in the blood circuit 110. For example, the hematocrit value can be measured based on the light transmittance of blood obtained by irradiating blood with near infrared rays. The rate of change in the circulating blood volume in the patient's body can be calculated based on the hematocrit value measured over time by the circulating blood volume measuring means 140. As shown in FIG. 1, the circulating blood volume measuring means 140 is located on the downstream side of the blood pump 111c in the arterial side line 111 and on the blood purifying means 120 so as not to be affected by the water removal and fluid replacement by the blood purifying means 120. It is located on the upstream side.
 制御部150は、情報処理装置(コンピュータ)により構成され、制御プログラムを実行することにより、透析装置100の動作を制御する。また、制御部150は、循環血液量測定手段140で測定されたヘマトクリット値に基づいて、循環血液量の変化率を算出する。また、制御部150は、補充液の注入終了後における循環血液量の変化率の減少速度を算出する。
 具体的には、制御部150は、血液回路110及び透析液回路130に配置された各種のポンプやクランプ等の動作を制御して、透析装置100により行われる各種工程、例えば、プライミング工程、脱血工程、透析工程、補液工程、返血工程等を実行する。
The control unit 150 is composed of an information processing device (computer), and controls the operation of the dialysis machine 100 by executing a control program. In addition, the control unit 150 calculates the rate of change in the circulating blood volume based on the hematocrit value measured by the circulating blood volume measuring means 140. In addition, the control unit 150 calculates the rate of decrease in the rate of change in the circulating blood volume after the injection of the replacement fluid is completed.
Specifically, the control unit 150 controls the operations of various pumps, clamps, and the like arranged in the blood circuit 110 and the dialysate circuit 130, and performs various steps performed by the dialyzer 100, such as a priming step and a removal step. Perform blood steps, dialysis steps, replenishment steps, blood return steps, etc.
 各種工程について図2及び図3を参照して簡単に説明する。
 プライミング工程では、プライミング液として逆濾過透析液を用いて血液回路110及び血液浄化手段120を洗浄して清浄化する。
 脱血工程では、患者の血液を吸引して動脈側ライン111及び静脈側ライン112に血液を充填させる。脱血工程の後、血液を浄化すると共に水分を除去する透析工程が行われる(図2参照)。透析工程では、患者の余剰水分の除水が行われ、また、補液回収分の除水も合わせて行われる。
 透析工程の途中で間歇的に補液工程が行われる(図3参照)。透析工程終了後、患者に血液を戻す返血工程が行われる。
Various processes will be briefly described with reference to FIGS. 2 and 3.
In the priming step, the blood circuit 110 and the blood purification means 120 are washed and cleaned using a back-filtration dialysate as the priming liquid.
In the blood removal step, the patient's blood is aspirated to fill the arterial line 111 and the venous line 112 with blood. After the blood removal step, a dialysis step is performed to purify the blood and remove water (see FIG. 2). In the dialysis process, excess water of the patient is removed, and the amount of replacement fluid recovered is also removed.
The fluid replacement process is intermittently performed in the middle of the dialysis process (see FIG. 3). After the dialysis process is completed, a blood return process is performed to return the blood to the patient.
 以下に、透析装置100により行われる各種工程のうち、循環血液量の変化に関わる透析工程及び補液工程について、詳しく説明する。 Among the various steps performed by the dialysis apparatus 100, the dialysis step and the fluid replacement step related to the change in the circulating blood volume will be described in detail below.
 図2を参照して透析工程について説明する。
 透析工程において、動脈側接続部111aから導入される患者の血液は、動脈側ライン111を通って血液浄化手段120で浄化され、静脈側ライン112を通って静脈側接続部112aから患者に戻される。
The dialysis process will be described with reference to FIG.
In the dialysis step, the patient's blood introduced from the arterial connection 111a is purified by the blood purification means 120 through the arterial line 111 and returned to the patient from the venous connection 112a through the venous line 112. ..
 透析工程では、図2に示すように、動脈側接続部111a及び静脈側接続部112aは、それぞれ患者の血管に穿刺される針に接続された状態であり、プライミング液排出ライン用クランプ114aは閉状態、静脈側クランプ112dは開状態である。 In the dialysis step, as shown in FIG. 2, the arterial side connection portion 111a and the venous side connection portion 112a are respectively connected to the needle punctured in the patient's blood vessel, and the priming fluid discharge line clamp 114a is closed. State, the venous side clamp 112d is in the open state.
 不図示の透析液供給装置は、透析液チャンバ1331に対して平均500ml/minの送液量で透析液を供給及び排出し、除水/逆濾過ポンプ1333を、除水方向に送液するように作動させる。除水/逆濾過ポンプ1333の送給量を一例として10ml/minとすることで、血液浄化手段120において、10ml/minの除水が行われる。
 血液ポンプ111cは、透析工程開始時の40~50ml/minから例えば200ml/min程度まで流量を徐々に増加させ、動脈側接続部111a側から血液浄化手段120側に血液を送出する。
 血液浄化手段120内には、血液導入口122aから200ml/minの流量で血液が流入し、10ml/minの流量で除水されて、血液導出口122bから190ml/minの流量で導出される。また、透析排液は、透析液導出口123bから導出される。
 このようにして、透析工程において血液中から徐々に水分が除去され、それに伴い循環血液量も徐々に減少していく。
The dialysate supply device (not shown) supplies and discharges dialysate to the dialysate chamber 1331 at an average liquid feed rate of 500 ml / min, and feeds the water removal / reverse filtration pump 1333 in the water removal direction. To operate. By setting the feed rate of the water removal / reverse filtration pump 1333 to 10 ml / min as an example, the blood purification means 120 removes water at 10 ml / min.
The blood pump 111c gradually increases the flow rate from 40 to 50 ml / min at the start of the dialysis process to, for example, about 200 ml / min, and discharges blood from the arterial side connection portion 111a side to the blood purification means 120 side.
Blood flows into the blood purification means 120 at a flow rate of 200 ml / min from the blood inlet 122a, is drained at a flow rate of 10 ml / min, and is drawn out from the blood outlet 122b at a flow rate of 190 ml / min. Further, the dialysate drainage is led out from the dialysate outlet 123b.
In this way, water is gradually removed from the blood in the dialysis step, and the circulating blood volume is gradually reduced accordingly.
 次に図3を参照して補液工程について説明する。
 補液工程は、血液回路110に逆濾過透析液を注入する工程であり、本実施形態では、除水による循環血液量の減少に起因する血圧低下を予防する等のため、所定の間隔で間歇的に行われる。
Next, the fluid replacement step will be described with reference to FIG.
The fluid replacement step is a step of injecting a reverse filtration dialysate into the blood circuit 110, and in the present embodiment, it is intermittent at predetermined intervals in order to prevent a decrease in blood pressure due to a decrease in circulating blood volume due to water removal. It is done in.
 補液工程では、図3に示すように、透析工程と同様に動脈側接続部111a及び静脈側接続部112aは、それぞれ患者の血管に穿刺される針に接続された状態であり、プライミング液排出ライン用クランプ114aは閉状態、静脈側クランプ112dは開状態である。 In the fluid replenishment step, as shown in FIG. 3, the arterial side connection portion 111a and the venous side connection portion 112a are each connected to the needle punctured in the blood vessel of the patient as in the dialysis step, and the priming fluid discharge line. The dialysis clamp 114a is in the closed state, and the vein side clamp 112d is in the open state.
 不図示の透析液供給装置は、透析液チャンバ1331に対して平均500ml/minの送液量で透析液を供給及び排出し、除水/逆濾過ポンプ1333を、逆濾過方向に送液するように作動させる。例えば、200mlの補液を行う場合には、除水/逆濾過ポンプ1333の送給量を一例として150ml/minとすることで、血液浄化手段120において、150ml/minの補液が約80秒で行われる。
 血液ポンプ111cは、透析工程中の200ml/minから50ml/min程度まで流量を徐々に減少させ、動脈側接続部111a側から血液浄化手段120側に血液を送出する。
 血液浄化手段120内には、血液導入口122aから50ml/minの流量で血液が流入し、逆濾過透析液が150ml/minの流量で補液されて、血液導出口122bから希釈された血液が200ml/minの流量で導出される。このようにして、補液工程において約80秒で血液中に急速に透析液が補充される。
The dialysate supply device (not shown) supplies and discharges dialysate to the dialysate chamber 1331 at an average flow rate of 500 ml / min, and sends the water removal / reverse filtration pump 1333 in the reverse filtration direction. To operate. For example, in the case of performing 200 ml of fluid replacement, by setting the feed rate of the water removal / reverse filtration pump 1333 to 150 ml / min as an example, the blood purification means 120 can perform the fluid replacement of 150 ml / min in about 80 seconds. It is said.
The blood pump 111c gradually reduces the flow rate from 200 ml / min to about 50 ml / min during the dialysis process, and discharges blood from the arterial side connection portion 111a side to the blood purification means 120 side.
Blood flows into the blood purification means 120 at a flow rate of 50 ml / min from the blood inlet 122a, the reverse filtration dialysate is replenished at a flow rate of 150 ml / min, and 200 ml of diluted blood is supplied from the blood outlet 122b. Derived at a flow rate of / min. In this way, the dialysate is rapidly replenished into the blood in about 80 seconds in the fluid replacement step.
 次に、本実施形態における具体的な除水速度の制御方法について図4及び図5を参照して説明する。 Next, a specific method for controlling the water removal rate in the present embodiment will be described with reference to FIGS. 4 and 5.
 まず、間歇的に補液を実施することによる効果について簡単に説明する。
 透析治療中は、除水の進行に伴い血液中の水分(血漿)が取り除かれていき、循環血液量が減少していく。循環血液量が減少して血液中の蛋白濃度が上がると、血管内と血管外(間質)との浸透圧の差により、間質から血管内に水分(血漿)が徐々に移動して(血漿再充填)、循環血液量が回復して血圧が維持される。しかしながら、血漿再充填の速度が除水速度に追いつかずに、循環血液量が減少して血圧が低下してくると、自律神経の働きにより末梢血管を収縮させて血圧を維持しようとする生体反応が起こる。このように末梢血管が収縮することにより、血漿再充填の速度が低下し、血漿再充填の速度が除水速度を大きく下回ることとなり、循環血液量の減少率が大きくなり、急激な血圧の低下を招く。
First, the effect of intermittent fluid replacement will be briefly described.
During dialysis treatment, water (plasma) in the blood is removed as the water removal progresses, and the circulating blood volume decreases. When the circulating blood volume decreases and the protein concentration in the blood rises, water (plasma) gradually moves from the interstitium to the inside of the blood vessel due to the difference in osmotic pressure between the inside and outside of the blood vessel (interstitium) ( Plasma refilling), circulating blood volume is restored and blood vessels are maintained. However, when the rate of plasma refilling cannot keep up with the rate of water removal and the circulating blood volume decreases and the blood pressure decreases, the biological reaction that attempts to maintain the blood pressure by constricting peripheral blood vessels by the action of the autonomic nerves. Occurs. Due to the contraction of peripheral blood vessels in this way, the rate of plasma refilling decreases, the rate of plasma refilling is significantly lower than the rate of water removal, the rate of decrease in circulating blood volume increases, and the blood pressure drops sharply. Invite.
 このような急激な血圧低下を予防するため、間歇的に補液が実施される。補液を実施して血液循環量を回復させながら透析を行うことにより、血圧の低下を予防すると共に、末梢循環も改善され、血漿再充填の速度も維持される。その結果、補液を実施しない場合に比べて、同じ除水速度(補液回収分は除外)であっても、透析終了後の循環血液量の減少率を小さくすることができる。なお、補液の実施による循環血液量の増加分は、透析開始から終了までの間に、血液浄化手段120の除水速度を増加させることにより除水される。よって、総除水量は、患者の余剰水分(体重除水分)と補液回収分とを合わせたものとなる。
 本発明は、補液の実施による上述の効果を得つつ、補充液注入後の除水速度を適切に制御することで、患者の負担を低減した透析工程を実施可能とするものである。
In order to prevent such a rapid decrease in blood pressure, fluid replacement is performed intermittently. By performing dialysis while restoring blood circulation by performing fluid replacement, a decrease in blood pressure is prevented, peripheral circulation is improved, and the rate of plasma refilling is maintained. As a result, the rate of decrease in the circulating blood volume after the completion of dialysis can be reduced even at the same water removal rate (excluding the amount of fluid replacement) as compared with the case where fluid replacement is not performed. The increase in the circulating blood volume due to the implementation of the replacement fluid is removed by increasing the water removal rate of the blood purification means 120 from the start to the end of dialysis. Therefore, the total amount of water removed is the sum of the patient's excess water (body weight removal) and the amount of fluid replacement recovered.
INDUSTRIAL APPLICABILITY The present invention makes it possible to carry out a dialysis process in which the burden on the patient is reduced by appropriately controlling the water removal rate after injecting the replacement fluid while obtaining the above-mentioned effects by carrying out the replacement fluid.
 次に、一般的な条件で補液を実施した場合における、循環血液量の変化率の推移について説明する。
 図4は、一般的に実施されている注入量200ml、注入間隔30分の条件で、補液を実施した場合の循環血液量の変化率の推移を示す図である。図4で示されるように、30分毎の補液の実施により循環血液量の変化率は増加し、補充液の注入が終了して除水が再開された後、減少に転じていることが分かる。図4に示す白抜きの矢印の傾きは、循環血液量の変化率の減少速度を示す。矢印の傾きが急であるほど、変化率の減少速度が大きく、緩やかであるほど減少速度が小さいことを示す。尚、本実施形態では、変化率の減少速度として、平均の減少速度を用いる。ここで、変化率の平均の減少速度は、直近の補充液の注入終了後、変化率が増加から減少に転じる時点を起点として、ある時点における変化率の減少量と経過時間から算出される。
Next, the transition of the rate of change in the circulating blood volume when the fluid replacement is performed under general conditions will be described.
FIG. 4 is a diagram showing the transition of the rate of change in the circulating blood volume when replacement fluid is performed under the conditions of an injection volume of 200 ml and an injection interval of 30 minutes, which are generally performed. As shown in FIG. 4, it can be seen that the rate of change in the circulating blood volume increased by performing the replacement fluid every 30 minutes, and started to decrease after the injection of the replacement fluid was completed and the water removal was resumed. .. The slope of the white arrow shown in FIG. 4 indicates the rate of decrease in the rate of change in circulating blood volume. The steeper the slope of the arrow, the larger the rate of decrease of the rate of change, and the gentler the slope, the smaller the rate of decrease. In this embodiment, the average rate of decrease is used as the rate of decrease of the rate of change. Here, the average rate of decrease of the rate of change is calculated from the amount of decrease in the rate of change and the elapsed time at a certain point in time, starting from the time when the rate of change changes from increasing to decreasing after the completion of the injection of the latest replenisher.
 適正な循環血液量の変化率の減少速度について本発明者らが検討した結果、患者の負担を低減するためには、変化率の平均の減少速度が、第1の閾値として、2%/分を超えないことが望ましいと考えられる。よって、変化率の平均の減少速度が第1の閾値以下となるように除水速度を低下させる。除水速度は、例えば、補充液を回収するために増加させた分、又は所定の割合(例えば50%)低下させることができる。また、除水速度を低下させたことにより変化率の平均の減少速度が小さくなり、第1の閾値よりも小さい第2の閾値未満となった場合には、血漿再充填の速度が除水速度に追い付いてきたと考えられるので、補充液増加分の水分の回収量を多くするため、除水速度を元の速度に戻すことが望ましい。ここで、第2の閾値を1%/分とすることが好ましい。 As a result of the present inventions examining the rate of decrease of the appropriate rate of change in circulating blood volume, in order to reduce the burden on the patient, the average rate of decrease of the rate of change is set to 2% / min as the first threshold value. It is considered desirable not to exceed. Therefore, the water removal rate is reduced so that the average rate of decrease of the rate of change is equal to or less than the first threshold value. The water removal rate can be increased, for example, to recover the replenisher, or reduced by a predetermined percentage (eg, 50%). Further, when the average decrease rate of the rate of change becomes smaller due to the decrease in the water removal rate and becomes less than the second threshold value smaller than the first threshold value, the plasma refilling rate becomes the water removal rate. Therefore, it is desirable to return the water removal rate to the original rate in order to increase the amount of water recovered due to the increase in the replenisher solution. Here, it is preferable that the second threshold value is 1% / min.
 そこで、補充液の注入終了後の循環血液量の変化率の減少速度が第1の閾値(2%/分)を超えないように、また、第2の閾値未満となるように、血液浄化手段120における除水速度を制御する方法について、具体的に説明する。 Therefore, the blood purification means so that the rate of decrease in the rate of change in circulating blood volume after the completion of injection of the replacement fluid does not exceed the first threshold value (2% / min) and is less than the second threshold value. The method of controlling the water removal rate in 120 will be specifically described.
 (除水速度の制御方法)
 本実施形態では、一例として補充液の注入間隔を30分で一定とし、4時間の治療のうち、合計7回の補液を実施する場合について図5及び図6を参照して説明する。
(Control method of water removal speed)
In the present embodiment, as an example, a case where the injection interval of the replacement fluid is constant at 30 minutes and the replacement fluid is performed a total of 7 times out of the treatment for 4 hours will be described with reference to FIGS. 5 and 6.
 制御部150は、循環血液量測定手段140によりヘマトクリット値を測定し、この測定されたヘマトクリット値に基づいて、経時的に循環血液量の変化率を算出する。また、補充液注入終了後は、変化率の平均の減少速度を算出する。 The control unit 150 measures the hematocrit value by the circulating blood volume measuring means 140, and calculates the rate of change of the circulating blood volume over time based on the measured hematocrit value. In addition, after the injection of the replenisher solution is completed, the average rate of decrease in the rate of change is calculated.
 図5を参照して、透析治療の流れについて説明する。
 透析装置100は、透析開始後、所定の除水速度で除水を行う(S100)。所定の時間が経過した後(S110)、所定の注入量で補液を実施する(S120)。ここで、S100における所定の除水速度とは、透析治療により患者から取り除くべく水分量(除水量)に基づいて設定された透析治療開始時の除水速度を示す。
 補液の実施後、循環血液量の変化率の減少速度に基づいて、所定の時間が経過するまで、除水速度を制御する(S130)。
 次に、所定の透析時間が経過したか否かを判定し(S140)、所定の透析時間が経過するまで繰り返し、所定の注入量で補液を実施し(S120)、除水速度を制御する。所定の時間が経過した後(S140)は、透析治療を終了する。ここで、S140における所定の透析時間とは、同様に、透析治療開始時の透析時間を示す。
 尚、本実施形態では、一例として透析治療の終了を所定の透析時間の経過により判定したが、透析治療開始時に予定していた除水時間では、予定の除水が完了していない場合は、予定の除水が完了するまで透析時間を延長してもよい。
The flow of dialysis treatment will be described with reference to FIG.
After the start of dialysis, the dialysis apparatus 100 removes water at a predetermined water removal rate (S100). After a lapse of a predetermined time (S110), replacement fluid is performed with a predetermined injection amount (S120). Here, the predetermined water removal rate in S100 indicates the water removal rate at the start of the dialysis treatment, which is set based on the amount of water (water removal amount) to be removed from the patient by the dialysis treatment.
After the replacement fluid is performed, the water removal rate is controlled until a predetermined time elapses, based on the rate of decrease in the rate of change in circulating blood volume (S130).
Next, it is determined whether or not the predetermined dialysis time has elapsed (S140), repeated until the predetermined dialysis time elapses, replacement fluid is performed with a predetermined injection amount (S120), and the water removal rate is controlled. After the lapse of a predetermined time (S140), the dialysis treatment is terminated. Here, the predetermined dialysis time in S140 similarly indicates the dialysis time at the start of dialysis treatment.
In the present embodiment, as an example, the end of the dialysis treatment is determined by the passage of a predetermined dialysis time, but if the scheduled water removal is not completed within the water removal time scheduled at the start of the dialysis treatment, The dialysis time may be extended until the scheduled water removal is complete.
 図6を参照して、除水速度の設定方法について説明する。
 直近の補液の実施による補充液の注入後において、補充液の注入量に相当する水分を回収するため、S100における除水速度よりも除水速度を増加させる(S131)。
 次に、変化率の平均の減少速度が第1の閾値を超えるか否かを判定し(S132)、平均の減少速度が第1の閾値を超える場合は、除水速度を低下させ(S133)、超えない場合は、除水速度を維持する(S134)。
A method of setting the water removal rate will be described with reference to FIG.
After the injection of the replenisher by the most recent replacement fluid, the water removal rate is increased more than the water removal rate in S100 in order to recover the water corresponding to the injection amount of the replenisher (S131).
Next, it is determined whether or not the average decrease rate of the rate of change exceeds the first threshold value (S132), and if the average decrease rate exceeds the first threshold value, the water removal rate is decreased (S133). If it does not exceed, the water removal rate is maintained (S134).
 除水速度を低下させた場合(S133)は、変化率の平均の減少速度が第2の閾値未満となるか否かを判定する(S135)。平均の減少速度が第2の閾値以上であると判定された場合は、除水速度は低下させたまま維持し(S137)、S138における所定の時間が経過するまでS135の判定を繰り返す。S138における所定の時間が経過した場合は、除水速度の制御を終了する。このS138における所定の時間とは、次回補液実施までの時間であり、所定の透析時間が経過した場合も、S138における所定の時間が経過したものとする。平均の減少速度が第2の閾値未満であると判定された場合は、除水速度を元の速度である低下前の速度(S131における除水速度)に戻す(S136)。
 除水速度を維持した場合(S134)は、所定の時間が経過するまで(S139)、S132に戻って判定を行う。変化率の平均の減少速度が第1の閾値よりも小さい第2の閾値未満となるか否かを判定する(S135)。平均の減少速度が第2の閾値以上であると判定された場合は、除水速度は低下させたまま維持し(S137)、S139における所定の時間が経過するまでS135の判定を繰り返す。このS139における所定の時間とは、S138の場合と同様に次回補液実施までの時間であり、所定の透析時間が経過した場合も、S139における所定の時間が経過したものとする。
When the water removal rate is decreased (S133), it is determined whether or not the average decrease rate of the rate of change is less than the second threshold value (S135). When it is determined that the average rate of decrease is equal to or greater than the second threshold value, the rate of water removal is maintained at a reduced rate (S137), and the determination of S135 is repeated until a predetermined time in S138 elapses. When the predetermined time in S138 has elapsed, the control of the water removal rate is terminated. The predetermined time in S138 is the time until the next fluid replacement is performed, and even when the predetermined dialysis time has elapsed, it is assumed that the predetermined time in S138 has elapsed. When it is determined that the average decrease rate is less than the second threshold value, the water removal rate is returned to the original rate before the decrease (water removal rate in S131) (S136).
When the water removal rate is maintained (S134), the determination is made by returning to S132 until a predetermined time elapses (S139). It is determined whether or not the rate of decrease of the average rate of change is less than the second threshold value, which is smaller than the first threshold value (S135). When it is determined that the average rate of decrease is equal to or greater than the second threshold value, the rate of water removal is maintained at a reduced rate (S137), and the determination of S135 is repeated until a predetermined time in S139 elapses. The predetermined time in S139 is the time until the next fluid replacement is performed as in the case of S138, and even when the predetermined dialysis time has elapsed, it is assumed that the predetermined time in S139 has elapsed.
 以上、説明したように、補液回収のために増加させた除水速度で除水し、循環血液量の変化率の平均の減少速度が第1の閾値を超える場合に、除水速度を低下させることで、変化率の平均の減少速度を小さくして、患者の負担を低減することができる。 As described above, water is removed at an increased water removal rate for replacement fluid recovery, and the water removal rate is reduced when the average rate of decrease in the rate of change in circulating blood volume exceeds the first threshold value. As a result, the rate of decrease in the average rate of change can be reduced, and the burden on the patient can be reduced.
 また、除水速度を低下させたまま次回の補液や透析治療の終了を迎えてしまうと、補充液として注入された水分の回収が困難になってしまう。そのため、除水速度を低下させることで、変化率の平均の減少速度が第2の閾値未満となった場合に、除水速度を低下させる前の速度に戻すことで、補充液増加分の水分の未回収を少なくすることができる。また、次回の補液開始予定時間の時点で、補充液増加分の水分の未回収がある場合、未回収のままとして次回の補液を予定通り行ってもよいが、その未回収分だけ次回の補液注入量を減じて補液を行ってもよい。また、未回収分の水分を除水するまで、次回補液実施までの時間を延長して注入間隔を延ばしてもよい。また、それら両方を行うことで、未回収分の水分の調整を行ってもよい。 In addition, if the next replacement fluid or dialysis treatment is completed while the water removal rate is reduced, it will be difficult to recover the water injected as the replacement fluid. Therefore, by reducing the water removal rate, when the average decrease rate of the rate of change is less than the second threshold value, the water removal rate is returned to the rate before the decrease, so that the amount of water corresponding to the increase in the replenisher solution is increased. Uncollected can be reduced. In addition, if there is uncollected water for the increased amount of replacement fluid at the time when the next replacement fluid is scheduled to start, the next replacement fluid may be performed as scheduled while remaining uncollected, but only the uncollected portion of the next replacement fluid is collected. Fluid replacement may be performed by reducing the injection volume. Further, the injection interval may be extended by extending the time until the next fluid replacement is performed until the uncollected water is removed. Further, by performing both of them, the unrecovered water content may be adjusted.
 以上説明した第1実施形態の透析装置100及び第1の制御方法によれば、以下の効果を奏する。 According to the dialysis apparatus 100 of the first embodiment and the first control method described above, the following effects are obtained.
 (1)透析装置100を、血液回路110と、血液浄化手段120と、透析液回路130と、循環血液量測定手段140と、補充液を血液回路110に注入するための補充液注入手段と、血液回路110に所定の間隔で間歇的に所定の量の補充液を注入するように補充液注入手段を制御する制御部150と、を含んで構成し、制御部150に、血液浄化手段120により血液中の水分を除去する場合に、循環血液量測定手段140により測定される直近の補充液の注入終了後における変化率の減少速度が第1の閾値を超えると、血液浄化手段120の除水速度を減少させた。これにより、循環血液量の変化率の減少速度を第1の閾値以下とすることができるので、患者の負担を低減することができる。 (1) The dialysis apparatus 100 includes a blood circuit 110, a blood purification means 120, a dialysate circuit 130, a circulating blood volume measuring means 140, a replacement liquid injection means for injecting a replacement liquid into the blood circuit 110, and the like. A control unit 150 that controls the replenisher injection means so as to intermittently inject a predetermined amount of the replenisher solution into the blood circuit 110 at a predetermined interval is included, and the control unit 150 is provided with the blood purification means 120. When removing water in the blood, when the rate of decrease in the rate of change after the completion of the injection of the latest replenisher measured by the circulating blood volume measuring means 140 exceeds the first threshold value, the water is removed from the blood purifying means 120. Reduced speed. As a result, the rate of decrease in the rate of change in the circulating blood volume can be set to be equal to or lower than the first threshold value, so that the burden on the patient can be reduced.
 (2)制御部150に、血液浄化手段120の除水速度を減少させた後、循環血液量測定手段140により測定される直近の補充液の注入終了後における変化率の減少速度が第2の閾値未満となる場合に、血液浄化手段120の除水速度を減少前の速さに戻させた。これにより、除水速度を低下させることに伴う補充液増加分の水分の未回収を少なくすることができる。 (2) After reducing the water removal rate of the blood purification means 120 to the control unit 150, the rate of decrease of the rate of change after the completion of the injection of the latest replenisher measured by the circulating blood volume measuring means 140 is the second. When it became less than the threshold value, the water removal rate of the blood purification means 120 was returned to the speed before the decrease. As a result, it is possible to reduce the amount of unrecovered water due to the increase in the replenishing liquid due to the decrease in the water removal rate.
 (3)制御部150に、血液浄化手段120の除水速度を減少させた場合、次回の補充液の注入量を減少させる制御及び/又は注入間隔を延ばす制御を行わせた。これにより、除水速度を低下させることに伴う補充液増加分の水分の未回収をさらに少なくすることができる。 (3) When the water removal rate of the blood purification means 120 was reduced, the control unit 150 was made to perform a control to reduce the injection amount of the next replenisher and / or a control to extend the injection interval. As a result, it is possible to further reduce the amount of unrecovered water due to the increase in the replenishing liquid due to the decrease in the water removal rate.
 (4)透析装置100を用いた制御方法を、循環血液量測定手段140で測定される変化率を用いて直近の補充液の注入による循環血液量の変化率の減少速度を算出し、算出された変化率の減少速度が第1の閾値を超える場合に、血液浄化手段120の除水速度を減少させるものとした。これにより、循環血液量の変化率の減少速度を第1の閾値以下とすることができるので、患者の負担を低減することができる。 (4) The control method using the dialysis apparatus 100 is calculated by calculating the rate of decrease in the rate of change in the circulating blood volume due to the injection of the latest replacement solution using the rate of change measured by the circulating blood volume measuring means 140. When the rate of decrease of the rate of change exceeds the first threshold value, the rate of water removal of the blood purification means 120 is reduced. As a result, the rate of decrease in the rate of change in the circulating blood volume can be set to be equal to or lower than the first threshold value, so that the burden on the patient can be reduced.
 以上、本発明の透析装置及び制御方法の好ましい実施形態について説明したが、本発明は、上述した実施形態に制限されるものではなく、適宜変更が可能である。
 例えば、上述の実施形態では、補充液として逆濾過された透析液を利用する場合について説明したが、これに限らない。例えば、補充液として生理食塩水を用いてもよいし、血液浄化手段を介さずに血液回路に直接接続された透析液ラインから透析液を補充する構成としてもよく、また、このような構成とした場合に、血液浄化手段における除水を停止しなくてもよい。つまり、除水速度を維持したまま、補充液の注入を行ってもよい。
Although the preferred embodiments of the dialysis machine and the control method of the present invention have been described above, the present invention is not limited to the above-described embodiments and can be appropriately modified.
For example, in the above-described embodiment, the case of using the back-filtered dialysate as the replenisher has been described, but the present invention is not limited to this. For example, physiological saline may be used as the replenisher, or the dialysate may be replenished from the dialysate line directly connected to the blood circuit without using a blood purification means. If this happens, it is not necessary to stop the water removal in the blood purification means. That is, the replenisher may be injected while maintaining the water removal rate.
 また、上述の実施形態では、補液の実施後に除水速度を増加させて、補充液増加分の水分を回収するように除水速度を制御する例を示したがこれに限らない。例えば、補液の実施前から前倒しで補充液増加分の水分の回収を開始してもよい。除水速度を増加させるので、上述の実施形態と同様に循環血液量の変化率の減少速度が第1の閾値を超える場合は、除水速度を低下させるよう制御すればよい。 Further, in the above-described embodiment, an example is shown in which the water removal rate is increased after the replacement fluid is performed and the water removal rate is controlled so as to recover the water corresponding to the increase in the replacement fluid, but the present invention is not limited to this. For example, the recovery of the increased amount of water in the replacement fluid may be started ahead of schedule before the replacement fluid is carried out. Since the water removal rate is increased, if the rate of decrease in the rate of change in the circulating blood volume exceeds the first threshold value, the water removal rate may be controlled to decrease as in the above-described embodiment.
 また、上述の実施形態では、循環血液量の変化率の減少速度として、平均の減少速度を用いたがこれに限らない。例えば、変化率の減少速度として、補充液の注入終了後におけるある時点の瞬間の減少速度を用いてもよい。この場合、変化率の瞬間の減少速度が第1の閾値以下となるように、除水速度を増減させてフィードバック制御を行えばよい。また、除水速度の上限は、元の除水速度(補充液増加分の回収のため増加させた除水速度)とし、瞬間の減少速度が第1の閾値を超えない範囲で、除水速度を元の除水速度に近づけるように制御することで、補充液増加分の水分の未回収を少なくすることができる。 Further, in the above-described embodiment, the average rate of decrease is used as the rate of decrease in the rate of change in circulating blood volume, but the rate of decrease is not limited to this. For example, as the rate of decrease of the rate of change, the rate of decrease at a certain point in time after the completion of injection of the replenisher may be used. In this case, the feedback control may be performed by increasing or decreasing the water removal rate so that the rate of decrease at the moment of the rate of change becomes equal to or less than the first threshold value. The upper limit of the water removal rate is the original water removal rate (the water removal rate increased to recover the increased amount of replenisher), and the water removal rate is within the range in which the instantaneous decrease rate does not exceed the first threshold value. By controlling the water removal rate so as to approach the original water removal rate, it is possible to reduce the amount of unrecovered water due to the increase in the replenisher solution.
100 透析装置
110 血液回路
111 動脈側ライン
111c 血液ポンプ
112 静脈側ライン
120 血液浄化手段
130 透析液回路
140 循環血液量測定手段(測定手段)
150 制御部
100 Dialysis apparatus 110 Blood circuit 111 Arterial side line 111c Blood pump 112 Vein side line 120 Blood purification means 130 Dialysate circuit 140 Circulating blood volume measuring means (measuring means)
150 control unit

Claims (10)

  1.  血液回路と、
     前記血液回路に配置され、血液中の水分を除去可能な血液浄化手段と、
     前記血液浄化手段に接続され、該血液浄化手段に透析液を導入及び導出する透析液回路と、
     循環血液量の変化率を測定する測定手段と、
     除水により減少する循環血液量を回復させるための補充液を前記血液回路に注入する補充液注入手段と、
     前記血液回路に所定の間隔で間歇的に所定の量の補充液を注入するように前記補充液注入手段を制御する制御部と、を備える透析装置であって、
     前記制御部は、前記血液浄化手段により血液中の水分を除去する場合に、前記測定手段により測定される直近の補充液の注入終了後における前記変化率の減少速度が第1の閾値を超えると、前記血液浄化手段の除水速度を減少させる透析装置。
    Blood circuit and
    A blood purification means arranged in the blood circuit and capable of removing water in the blood,
    A dialysate circuit that is connected to the blood purification means and that introduces and derives dialysate into the blood purification means.
    A measuring means for measuring the rate of change in circulating blood volume,
    A replenisher injection means for injecting a replenisher into the blood circuit to recover the circulating blood volume decreased by water removal, and
    A dialysis apparatus including a control unit that controls the replenisher injection means so as to intermittently inject a predetermined amount of replenisher solution into the blood circuit at predetermined intervals.
    When the control unit removes water in the blood by the blood purification means, when the rate of decrease of the rate of change after the completion of the injection of the latest replenisher measured by the measuring means exceeds the first threshold value. , A dialysis apparatus that reduces the water removal rate of the blood purification means.
  2.  前記制御部は、前記血液浄化手段の除水速度を減少させた後、前記測定手段により測定される直近の補充液の注入終了後における前記変化率の減少速度が前記第1の閾値よりも小さい第2の閾値未満となる場合に、前記血液浄化手段の除水速度を減少前の速さに戻すように制御する請求項1に記載の透析装置。 After reducing the water removal rate of the blood purification means, the control unit reduces the rate of decrease of the rate of change after the completion of injection of the latest replenisher measured by the measuring means, which is smaller than the first threshold value. The dialysis apparatus according to claim 1, wherein when the value is less than the second threshold value, the water removal rate of the blood purification means is controlled to return to the rate before the decrease.
  3.  前記制御部は、前記血液浄化手段の除水速度を減少させた場合、次回の補充液の注入量を減少させる制御、及び/又は注入間隔を延ばす制御を行う請求項1又は2に記載の透析装置。 The dialysis according to claim 1 or 2, wherein the control unit controls to reduce the injection amount of the next replenisher and / or to extend the injection interval when the water removal rate of the blood purification means is reduced. Device.
  4.  前記補充液注入手段として前記血液浄化手段及び前記透析液回路が用いられ、前記補充液として前記血液浄化手段で逆濾過される透析液が用いられる請求項1~3のいずれかに記載の透析装置。 The dialysis apparatus according to any one of claims 1 to 3, wherein the blood purification means and the dialysate circuit are used as the replacement liquid injection means, and the dialysate back-filtered by the blood purification means is used as the replacement liquid. ..
  5.  血液回路と、
     前記血液回路に配置され、血液中の水分を除去可能な血液浄化手段と、
     前記血液浄化手段に接続され、該血液浄化手段に透析液を導入及び導出する透析液回路と、
     循環血液量の変化率を測定する測定手段と、
     除水により減少する循環血液量を回復させるための補充液を前記血液回路に注入する補充液注入手段と、
     前記血液回路に所定の間隔で間歇的に所定の量の補充液を注入するように前記補充液注入手段を制御する制御部と、を備える透析装置を用いた除水速度の制御方法であって、
     前記測定手段で測定される前記変化率を用いて直近の補充液の注入後における前記変化率の減少速度を算出し、
     算出された前記変化率の減少速度が第1の閾値を超える場合に、前記血液浄化手段の除水速度を減少させる制御方法。
    Blood circuit and
    A blood purification means arranged in the blood circuit and capable of removing water in the blood,
    A dialysate circuit that is connected to the blood purification means and that introduces and derives dialysate into the blood purification means.
    A measuring means for measuring the rate of change in circulating blood volume,
    A replenisher injection means for injecting a replenisher into the blood circuit to recover the circulating blood volume decreased by water removal, and
    A method for controlling a water removal rate using a dialysis apparatus including a control unit that controls the replenisher injection means so as to intermittently inject a predetermined amount of replenisher into the blood circuit at predetermined intervals. ,
    Using the rate of change measured by the measuring means, the rate of decrease of the rate of change after the injection of the latest replenisher is calculated.
    A control method for reducing the water removal rate of the blood purification means when the calculated rate of decrease of the rate of change exceeds the first threshold value.
  6.  前記第1の閾値は、2%/分である請求項5に記載の制御方法。 The control method according to claim 5, wherein the first threshold value is 2% / min.
  7.  前記血液浄化手段の除水速度を減少させた後、前記測定手段により測定される直近の補充液の注入終了後における前記変化率の減少速度が第2の閾値未満となる場合に、前記血液浄化手段の除水速度を減少前の速さに戻す請求項5又は6に記載の制御方法。 After reducing the water removal rate of the blood purification means, when the rate of decrease of the rate of change after the completion of the injection of the latest replenisher measured by the measuring means is less than the second threshold value, the blood purification means. The control method according to claim 5 or 6, wherein the water removal speed of the means is returned to the speed before the reduction.
  8.  前記第2の閾値は、1%/分である請求項7に記載の制御方法。 The control method according to claim 7, wherein the second threshold value is 1% / min.
  9.  前記血液浄化手段の除水速度を減少させた場合、次回の補充液の注入量を減少させる制御及び/又は注入間隔を延ばす制御を行う請求項5~8のいずれかに記載の制御方法。 The control method according to any one of claims 5 to 8, wherein when the water removal rate of the blood purification means is reduced, the control for reducing the injection amount of the next replenisher and / or the control for extending the injection interval is performed.
  10.  血液回路と、
     前記血液回路に配置され、血液中の水分を除去可能な血液浄化手段と、
     前記血液浄化手段に接続され、該血液浄化手段に透析液を導入及び導出する透析液回路と、
     血液回路を流れる血液のヘマトクリット値を測定する測定手段と、
     除水により減少する循環血液量を回復させる補充液を前記血液回路に注入する補充液注入手段と、
     前記血液回路に所定の間隔で間歇的に所定の量の補充液を注入するように前記補充液注入手段を制御する制御部と、を備える透析装置であって、
     前記制御部は、前記血液浄化手段により血液中の水分を除去する場合に、前記測定手段により測定される直近の補充液の注入終了後におけるヘマトクリット値の上昇速度が所定の閾値を超えると、前記血液浄化手段の除水速度を減少させる透析装置。
    Blood circuit and
    A blood purification means arranged in the blood circuit and capable of removing water in the blood,
    A dialysate circuit that is connected to the blood purification means and that introduces and derives dialysate into the blood purification means.
    A measuring means for measuring the hematocrit value of blood flowing through a blood circuit,
    A replenisher injection means for injecting a replenisher solution for recovering the circulating blood volume decreased by water removal into the blood circuit, and a replenisher solution injection means.
    A dialysis apparatus including a control unit that controls the replenisher injection means so as to intermittently inject a predetermined amount of replenisher solution into the blood circuit at predetermined intervals.
    When the control unit removes water in the blood by the blood purification means, when the rate of increase in the hematocrit value after the completion of the injection of the latest replenisher measured by the measuring means exceeds a predetermined threshold value, the control unit said. A dialysis machine that reduces the rate of water removal of blood purification means.
PCT/JP2021/015262 2020-04-15 2021-04-13 Dialysis machine and control method WO2021210563A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180015727.5A CN115151283A (en) 2020-04-15 2021-04-13 Dialysis apparatus and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020073069A JP7396180B2 (en) 2020-04-15 2020-04-15 Dialysis device and control method
JP2020-073069 2020-04-15

Publications (1)

Publication Number Publication Date
WO2021210563A1 true WO2021210563A1 (en) 2021-10-21

Family

ID=78084844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015262 WO2021210563A1 (en) 2020-04-15 2021-04-13 Dialysis machine and control method

Country Status (3)

Country Link
JP (1) JP7396180B2 (en)
CN (1) CN115151283A (en)
WO (1) WO2021210563A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58155864A (en) * 1982-03-10 1983-09-16 株式会社豊田中央研究所 Blood purifying apparatus
JP2002165877A (en) * 2000-12-01 2002-06-11 Nipro Corp Hemocatharsis apparatus
JP2007268257A (en) * 2006-03-10 2007-10-18 Asahi Kasei Medical Co Ltd Hemodialysis unit
JP2011239866A (en) * 2010-05-17 2011-12-01 Nipro Corp Blood purifying apparatus
JP2011239860A (en) * 2010-05-17 2011-12-01 Nipro Corp Intermittent infusion method for preventing lowering of blood, and blood purifying apparatus
WO2020004602A1 (en) * 2018-06-27 2020-01-02 株式会社ジェイ・エム・エス Dialysis device, and fluid replacement control method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58155864A (en) * 1982-03-10 1983-09-16 株式会社豊田中央研究所 Blood purifying apparatus
JP2002165877A (en) * 2000-12-01 2002-06-11 Nipro Corp Hemocatharsis apparatus
JP2007268257A (en) * 2006-03-10 2007-10-18 Asahi Kasei Medical Co Ltd Hemodialysis unit
JP2011239866A (en) * 2010-05-17 2011-12-01 Nipro Corp Blood purifying apparatus
JP2011239860A (en) * 2010-05-17 2011-12-01 Nipro Corp Intermittent infusion method for preventing lowering of blood, and blood purifying apparatus
WO2020004602A1 (en) * 2018-06-27 2020-01-02 株式会社ジェイ・エム・エス Dialysis device, and fluid replacement control method

Also Published As

Publication number Publication date
CN115151283A (en) 2022-10-04
JP2021168786A (en) 2021-10-28
JP7396180B2 (en) 2023-12-12

Similar Documents

Publication Publication Date Title
JP6900756B2 (en) Method and device for determining the connection status of the replenisher line to the blood circuit in the hemodialysis machine
JP7210471B2 (en) Method for operating a blood processing device, control unit and processing device for carrying out the method
CN109789262B (en) Device for removing blood from an extracorporeal blood circuit after completion of a blood treatment session
JP6305993B2 (en) Device for extracorporeal blood treatment and method for predefining initial blood treatment mode of extracorporeal blood treatment device
CN112312941B (en) Dialysis device and fluid replacement control method
WO2021210563A1 (en) Dialysis machine and control method
US20040262226A1 (en) Blood purification apparatus for elevating purification efficiency
WO2021059818A1 (en) Blood purification device
JP7183585B2 (en) dialysis machine
WO2021059817A1 (en) Blood purification device
JP7081085B2 (en) Chamber and hemodialysis machine
JP2019187789A (en) Replenishment control method, control device and dialyzer
JP6642695B2 (en) Hemodialysis machine and control program
US11938258B2 (en) Extracorporeal device and method for removal of secondary membrane
JP7396362B2 (en) blood purification device
JP2022137868A (en) Blood purification device
JP7293761B2 (en) Determining method for dialysis machine and circuit set
JP2022185796A (en) Blood purification device
JP2023005175A (en) Blood purification device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21787674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21787674

Country of ref document: EP

Kind code of ref document: A1