WO2020004602A1 - Dialysis device, and fluid replacement control method - Google Patents
Dialysis device, and fluid replacement control method Download PDFInfo
- Publication number
- WO2020004602A1 WO2020004602A1 PCT/JP2019/025756 JP2019025756W WO2020004602A1 WO 2020004602 A1 WO2020004602 A1 WO 2020004602A1 JP 2019025756 W JP2019025756 W JP 2019025756W WO 2020004602 A1 WO2020004602 A1 WO 2020004602A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blood
- replenisher
- rate
- injection
- amount
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/14—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
- A61M1/16—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/34—Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
Definitions
- the present invention relates to a dialysis device and a replacement fluid control method using the dialysis device.
- dialysis treatment blood is removed from the patient's arterial side using a pump and sent to blood purification means such as a dialyzer or hemodiafilter, and blood from which waste and excess water have been removed is transferred to the patient's arterial side. A return is made.
- blood purification is performed over a period of about four hours in one treatment, and blood is purified and excess water in the body is removed as the dialysis time elapses. Because of this blood purification, the amount of circulating blood flowing through the body of the patient decreases, and it is not uncommon for patients to exhibit a symptom of lowering blood pressure in the latter half of dialysis treatment.
- the occurrence of a decrease in blood pressure can be suppressed by systematically replenishing fluid during dialysis treatment.However, since conditions such as basal weight and water removal amount vary depending on the patient, an appropriate replenisher for stabilizing blood pressure is used. It is considered that the injection amount and the injection interval are different. In addition, even in the same patient, the circulatory dynamics of blood (circulating blood volume, plasma refilling rate, etc.) change during the course of dialysis treatment. Therefore, when rehydration is performed under uniform conditions that do not depend on the condition of the patient, the replenishment may be excessive and cause a rapid increase in blood pressure, or the effect of suppressing the rapid decrease in blood pressure due to insufficient rehydration may be sufficient. May not be obtained.
- an object of the present invention is to provide a dialysis apparatus and a replacement fluid control method capable of performing appropriate replacement fluid.
- the present invention relates to a blood circuit, a blood purification means arranged in the blood circuit, capable of removing water in blood, and a dialysate connected to the blood purification means for introducing and discharging a dialysate into the blood purification means.
- a circuit a measuring means for measuring a change rate of a circulating blood volume, a replenishing solution injecting means for injecting a replenishing solution for restoring a circulating blood volume reduced by water removal into the blood circuit, and a predetermined
- a control unit that controls the replenisher injecting means so as to inject a predetermined amount of replenisher intermittently at intervals, wherein the control unit is configured to control the latest replenishment measured by the measurement unit.
- the next infusion amount and / or infusion interval of the replenisher solution such that the change rate of the circulating blood volume due to the next infusion of the replenisher is within a predetermined range. From the start to the end of dialysis.
- dialysis apparatus for controlling the water removal speed of the blood purification unit to recover the water that corresponds to the total amount of the replenisher to be injected into at least the blood circuit.
- the blood purifying means and the dialysate circuit are used as the replenisher injecting means, and a dialysate which is back-filtered by the blood purifying means is used as the replenisher.
- the present invention also provides a blood circuit, a blood purification unit disposed in the blood circuit, capable of removing water in blood, the blood purification unit is connected, and a dialysate circuit for introducing and leading a dialysate, Measuring means for measuring the rate of change of the circulating blood volume, replenishing solution injecting means for injecting a replenishing solution for restoring the circulating blood volume reduced by water removal into the blood circuit, and intermittently at predetermined intervals in the blood circuit
- a control unit for controlling the replenisher injecting means so as to inject a predetermined amount of replenisher, and a replenisher control method using a dialysis device comprising: The rate of change in circulating blood volume due to the most recent replenisher injection is calculated, and based on the rate of change, the rate of change in circulating blood volume due to the next infusion of replenisher falls within a predetermined range.
- a time period from the start to the end dialysis relates replacement fluid control method for controlling the water removal speed of the blood purification unit to recover the water that corresponds to the total amount of the replenisher to be injected into at least the blood circuit.
- the next infusion amount of the replenisher is set to the same amount as the most recent infusion amount, and the change rate is in the predetermined range. If the change rate is smaller than the latest range, the next injection amount of the replenisher is set to an amount smaller than the latest injection amount according to the change rate. It is preferable that the injection amount of the replenisher be larger than the latest injection amount.
- an interval until the next infusion of the replenisher is a predetermined infusion interval, and the change rate is in the predetermined range. If it is larger, the interval until the next replenisher is injected is made longer than the predetermined injection interval according to the change rate, and if the change rate is smaller than the predetermined value, the next time according to the change rate, The interval between injections of the replenisher is shorter than the predetermined injection interval, and is equivalent to the amount of the replenisher injected last between the injection of the latest replenisher and the injection of the next replenisher. It is preferable to control the water removal rate of the blood purification means so as to collect the removed water as a replacement fluid.
- the predetermined range is 5% to 10%.
- an appropriate replacement fluid can be performed according to the circulatory movement of blood during dialysis treatment, so that a rapid change in blood pressure can be reduced.
- FIG. 4 is a diagram for explaining a method of injecting and collecting a replenisher in the first embodiment.
- FIG. 6 is a diagram for explaining another method of injecting and collecting a replenisher in the first embodiment.
- It is a flowchart for demonstrating the setting method of the replacement fluid condition in 2nd Embodiment. It is a figure for explaining an injection and recovery method of a replenisher in a 2nd embodiment.
- the fluid replacement control method of the present invention can be applied to a case where fluid replacement is performed intermittently during dialysis treatment such as hemodialysis (so-called HD) or hemofiltration dialysis (so-called HDF).
- hemodialysis so-called HD
- HDF hemofiltration dialysis
- a case will be described in which intermittent replenishment-type hemofiltration dialysis is performed in which replenishment is performed intermittently using a back-filtered dialysate.
- FIG. 1 is a diagram showing a schematic configuration of a dialysis device 100 according to the first embodiment of the present invention.
- the dialysis apparatus 100 includes a blood circuit 110 for flowing blood, a blood purification unit 120, a dialysate circuit 130, a circulating blood volume measurement unit 140 arranged in the blood circuit 110, A unit 150.
- the blood circuit 110 has an arterial line 111, a venous line 112, a drug line 113, and a priming fluid discharge line 114.
- the arterial line 111, the venous line 112, the drug line 113, and the priming liquid discharge line 114 are each mainly composed of a flexible soft tube through which a liquid can flow.
- One end of the arterial line 111 is connected to a blood inlet 122a of a blood purification unit 120 described later.
- an arterial connection section 111a In the arterial line 111, an arterial connection section 111a, an arterial bubble detector 111b, a blood pump 111c, and a circulating blood volume measuring means 140 described later are arranged.
- the arterial connection 111a is arranged on the other end of the arterial line 111.
- a needle inserted into a blood vessel of a patient is connected to the artery-side connection portion 111a.
- the arterial-side bubble detector 111b detects the presence or absence of bubbles in the tube.
- the blood pump 111c is arranged downstream of the arterial-side air bubble detector 111b in the arterial-side line 111.
- the blood pump 111c delivers a liquid such as blood or priming liquid inside the arterial line 111 by squeezing a tube constituting the arterial line 111 with a roller.
- the venous line 112 is connected to a blood outlet 122b of the blood purification means 120 described later.
- the venous line 112 includes a venous connection 112a, a venous bubble detector 112b, a drip chamber 112c, and a venous clamp 112d.
- the vein-side connection part 112a is arranged on the other end side of the vein-side line.
- a needle inserted into a blood vessel of a patient is connected to the vein-side connecting portion 112a.
- the vein side bubble detector 112b detects the presence or absence of bubbles in the tube.
- the drip chamber 112c is disposed upstream of the vein-side bubble detector 112b.
- the drip chamber 112c stores a certain amount of blood in order to remove bubbles, coagulated thrombus / clot, and the like mixed in the venous line 112, and to measure venous pressure.
- the vein-side clamp 112d is disposed downstream of the vein-side bubble detector 112b. The vein-side clamp 112d is controlled in accordance with the detection result of bubbles by the vein-side bubble detector 112b, and opens and closes the flow path of the vein-side line 112.
- the drug line 113 supplies a drug required during hemodialysis to the arterial line 111.
- One end of the drug line 113 is connected to the drug solution pump 113a for sending out a drug, and the other end is connected to the arterial line 111.
- the medicine line 113 is provided with a clamp means (not shown), and the flow path is closed by the clamp means except when the medicine is injected.
- the other end of the drug line 113 is connected to the arterial line 122 on the upstream side of the circulating blood volume measuring means 140.
- the priming liquid discharge line 114 is connected to the drip chamber 112c.
- the priming liquid discharge line 114 is provided with a priming liquid discharge line clamp 114a.
- the priming liquid discharge line 114 is a line for discharging the priming liquid in a priming step described later.
- the blood purification means 120 includes a cylindrical container body 121 and a dialysis membrane (not shown) housed inside the container body 121. It is divided into a side channel and a dialysate side channel (neither is shown).
- a blood inlet 122a and a blood outlet 122b communicating with the blood circuit 110, and a dialysate inlet 123a and a dialysate outlet 123b communicating with the dialysate circuit 130 are formed.
- the blood extracted from the artery of the subject flows through the arterial line 111 by the blood pump 111c, and the blood-side flow path of the blood purification means 120 Will be introduced.
- the blood introduced into the blood purification means 120 is purified by a dialysate flowing through a dialysate circuit 130 described later via a dialysis membrane.
- the blood purified by the blood purification means 120 flows through the venous line 112 and is returned to the subject's vein.
- the dialysate circuit 130 is constituted by a so-called closed volume control type dialysate circuit 130.
- the dialysate circuit 130 includes a dialysate supply line 131a, a dialysate drain line 131b, a dialysate introduction line 132a, a dialysate derivation line 132b, and a dialysate delivery unit 133.
- the dialysate sending section 133 includes a dialysate chamber 1331, a bypass line 1332, and a water removal / back-filtration pump 1333.
- the dialysate chamber 1331 is formed of a hard container capable of storing a fixed volume (for example, 300 ml to 500 ml) of dialysate, and the inside of this container is formed by a soft diaphragm (diaphragm) and a liquid sending container 1331 a and a drain. It is partitioned into a housing 1331b.
- the bypass line 1332 connects the dialysate outlet line 132b and the dialysate drain line 131b.
- Water removal / back-filtration pump 1333 is arranged in bypass line 1332.
- the water removal / back-filtration pump 1333 is a direction in which the dialysate in the bypass line 1332 flows toward the dialysate drain line 131b (water removal direction) and a direction in which the dialysate flows through the dialysate discharge line 132b (back filtration direction). It is constituted by a pump driven so as to be able to send liquid.
- the dialysate supply line 131a has a proximal end connected to a dialysate supply device (not shown) and a distal end connected to the dialysate chamber 1331.
- the dialysis fluid supply line 131a supplies the dialysis fluid to the fluid supply storage unit 1331a of the dialysis fluid chamber 1331.
- the dialysate introduction line 132a connects the dialysate chamber 1331 and the dialysate inlet 123a of the blood purification means 120, and dialyses the dialysate stored in the liquid supply storage part 1331a of the dialysate chamber 1331 by the dialysis of the blood purification means 120. Introduce into the liquid side flow path.
- the dialysate outlet line 132b connects the dialysate outlet 123b of the blood purification unit 120 and the dialysate chamber 1331 and leads the dialysate discharged from the blood purification unit 120 to the drainage storage unit 1331b of the dialysate chamber 1331. I do.
- the dialysate drain line 131b has a proximal end connected to the dialysate chamber 1331 and discharges the dialysate drain contained in the drain reservoir 1331b.
- the inside of the hard container constituting the dialysate chamber 1331 is partitioned by the soft diaphragm (diaphragm), so that the amount of dialysate drawn out from the dialysate chamber 1331 (liquid sending accommodation)
- the amount of dialysate supplied to the portion 1331a) and the amount of drainage collected in the dialysate chamber 1331 (drainage storage portion 1331b) can be made equal. Accordingly, in a state where the water removal / back-filtration pump 1333 is stopped, the flow rate of the dialysate introduced into the blood purification means 120 and the amount of the dialysate (effluent) derived from the blood purification means 120 are equalized. Can be.
- the amount of dialysate discharged from the blood purification means 120 is changed from the amount recovered in the dialysate chamber 1331 (that is, the amount of dialysate flowing through the dialysate introduction line 132a) to the amount of dialysate flowing through the bypass line 1332. It becomes the amount which reduced the amount of liquid.
- the amount of dialysate discharged from the blood purification means 120 flows through the dialysate introduction line 132a by the amount of the dialysate (drained liquid) collected again in the dialysate chamber 1331 through the bypass line 1332.
- the flow rate of the dialysate to be used is smaller. That is, when the water removal / back-filtration pump 1333 is driven to feed in the back-filtration direction, a predetermined amount of dialysate is injected (back-filtered) into the blood circuit 110 in the blood purification means 120 (FIG. 3).
- the blood purification means 120 and the dialysate circuit 130 are used as replenisher injection means, and the back-filtered dialysate is used as the replenisher.
- the dialysate as a replenisher is injected from the dialysate circuit 130 into the blood circuit 110 via the blood purification means 120 by driving the dewatering / reverse filtration pump 1333 in the reverse filtration direction.
- a replenisher line may be connected to the blood circuit 110 to serve as a replenisher injecting means, and a physiological saline solution or the like may be used as the replenisher.
- a replenisher line provided with a replenisher pump may be connected from the dialysate introduction line 132a to the arterial line 111 or the venous line 112 to serve as a replenisher injecting means, and the dialysate may be used as a replenisher.
- the amount of the dialysate flowing through the dialysate outlet line 132 b is equal to the amount of the dialysate collected in the dialysate chamber 1331. (Ie, the amount of dialysate flowing through the dialysate introduction line 132a) and the amount of dialysate flowing through the bypass line 1332.
- the amount of dialysate flowing through the dialysate outlet line 132b is equal to the amount of dialysate (drained liquid) discharged to the dialysate drain line 131b through the bypass line 1332, and the dialysate inlet line 132a is thus reduced. It is larger than the volume of dialysate flowing. That is, when the water removal / back-filtration pump 1333 is driven to feed in the water removal direction, a predetermined amount of water is removed from the blood in the blood purification means 120 (see FIG. 2).
- the circulating blood volume measuring means 140 is a sensor for measuring a hematocrit value of blood flowing in the blood circuit 110. For example, a hematocrit value can be measured based on the light transmittance of blood obtained by irradiating blood with near infrared rays. Based on the hematocrit value measured over time by the circulating blood volume measuring means 140, the rate of change of the circulating blood volume in the patient's body can be calculated. As shown in FIG. 1, the circulating blood volume measurement unit 140 is located downstream of the blood pump 111 c in the arterial line 111 and is located on the blood purification unit 120 so that the blood purification unit 120 is not easily affected by water removal or replacement fluid. It is located upstream.
- the control unit 150 is configured by an information processing device (computer), and controls the operation of the dialysis device 100 by executing a control program. Further, the control unit 150 calculates a change rate of the circulating blood volume based on the hematocrit value measured by the circulating blood volume measuring means 140. Specifically, the control unit 150 controls operations of various pumps and clamps arranged in the blood circuit 110 and the dialysate circuit 130, and controls various processes performed by the dialysis device 100, for example, a priming process, A blood step, a dialysis step, a replacement fluid step, a blood return step, and the like are performed.
- the blood circuit 110 and the blood purification means 120 are washed and cleaned using a back-filtration dialysate as a priming solution.
- the blood removal step the blood of the patient is suctioned to fill the arterial line 111 and the venous line 112 with blood.
- a dialysis step for purifying the blood and removing water is performed (see FIG. 2).
- excess water of the patient is removed, and the replacement fluid is also removed.
- the fluid replacement step is performed intermittently during the dialysis step (see FIG. 3).
- a blood return step of returning blood to the patient is performed.
- the dialysis step will be described with reference to FIG.
- the blood of the patient introduced from the arterial connection 111a is purified by the blood purification means 120 through the arterial line 111, and returned to the patient from the venous connection 112a through the venous line 112. .
- the arterial-side connecting portion 111a and the venous-side connecting portion 112a are each connected to a needle punctured in a patient's blood vessel, and the priming fluid discharge line clamp 114a is closed. In the state, the vein side clamp 112d is open.
- the dialysate supply device (not shown) supplies and discharges the dialysate to and from the dialysate chamber 1331 at an average flow rate of 500 ml / min, and sends the water removal / reverse filtration pump 1333 in the water removal direction.
- the dialysate supply device supplies and discharges the dialysate to and from the dialysate chamber 1331 at an average flow rate of 500 ml / min, and sends the water removal / reverse filtration pump 1333 in the water removal direction.
- the blood purification means 120 performs water removal at 10 ml / min.
- the blood pump 111c gradually increases the flow rate from 40 to 50 ml / min at the start of the dialysis step to, for example, about 200 ml / min, and sends the blood from the arterial side connection part 111a to the blood purification means 120 side.
- the fluid replacement step is a step of injecting the back-filtration dialysate into the blood circuit 110.
- the fluid replacement step in order to prevent a decrease in blood pressure due to a decrease in circulating blood volume due to water removal, the fluid replacement step is intermittent at predetermined intervals. Done in
- the artery-side connection part 111a and the vein-side connection part 112a are each connected to a needle punctured in a blood vessel of the patient, as in the dialysis step, and are provided with a priming liquid discharge line.
- the clamp 114a is closed, and the venous clamp 112d is open.
- the dialysate supply device (not shown) supplies and discharges the dialysate to and from the dialysate chamber 1331 at an average flow rate of 500 ml / min, and sends the water removal / back-filtration pump 1333 in the reverse filtration direction.
- the supply rate of the water removal / back-filtration pump 1333 is set to 150 ml / min as an example, so that the blood purification means 120 performs a 150 ml / min replacement fluid in about 80 seconds.
- the blood pump 111c gradually reduces the flow rate from 200 ml / min to about 50 ml / min during the dialysis step, and sends out the blood from the artery-side connection portion 111a to the blood purification means 120.
- Blood flows into the blood purification means 120 at a flow rate of 50 ml / min from the blood inlet 122 a, the back-filtration dialysate is supplemented at a flow rate of 150 ml / min, and 200 ml of blood diluted from the blood outlet 122 b is supplied. / Min.
- the dialysate is rapidly replenished into the blood in about 80 seconds in the rehydration step.
- fluid replacement is performed intermittently.
- dialysis By performing dialysis while recovering blood circulation by performing fluid replacement, blood pressure is prevented from lowering, peripheral circulation is improved, and the speed of plasma refilling is maintained.
- the rate of decrease in the amount of circulating blood after dialysis can be reduced even at the same water removal rate (excluding the replacement fluid collection) as compared to the case where no replacement fluid is performed.
- the increase in the amount of circulating blood due to the replacement fluid is removed by the blood purification means 120 from the start to the end of the dialysis. Therefore, the total water removal amount is the sum of the patient's excess water (weight removal water) and the replacement fluid collection.
- the present invention makes it possible to carry out rehydration at an appropriate injection amount and injection interval in order to sufficiently obtain the above-mentioned effects by performing rehydration.
- FIG. 4 is a diagram showing the rate of change in the amount of circulating blood when a replacement fluid is performed under the conditions of a commonly performed injection volume of 200 ml and an injection interval of 30 minutes.
- the amount of circulating blood is increased by performing the replacement fluid every 30 minutes.
- the rate of increase in the amount of circulating blood due to the replacement fluid depends on the replacement fluid from outside the body and the amount of plasma that moves into the blood vessel due to refilling of the plasma in the body. Since the rate of plasma refilling varies from patient to patient and also during dialysis, the proper replenishment rate will vary from one rehydration to another.
- the water removal by the blood purification means 120 is not performed during the infusion of the replenisher, it is not necessary to consider the decrease due to the water removal.
- the rate of change (increase rate) of the circulating blood volume after one replacement fluid is within the range of 5 to 10%. If the rate of change exceeds 10%, the circulating blood volume rises rapidly, which may lead to a rapid rise in blood pressure.
- the upper limit of the rate of change is set to a value lower than 10%, and the amount of infusion per replenisher is reduced. Adjustment may be made to increase the number of injections.
- the infusion amount of the replacement fluid is excessive, the water removal amount for the replacement fluid recovery increases, and the total water removal amount increases together with the excess water of the patient. As a result, the water removal rate increases, and the risk of lowering blood pressure increases. On the other hand, if the rate of change is less than 5%, the above-described effect of the replacement fluid cannot be sufficiently obtained.
- the control unit 150 measures the hematocrit value by the circulating blood volume measuring means 140, and calculates the change rate of the circulating blood volume over time based on the measured hematocrit value.
- the first replenishment solution can be determined according to the patient's basal weight.
- the infusion amount of the replenisher can be determined by setting the amount of replenisher to 200 ml for a patient weighing 50 kg or more and 150 ml for a patient less than 50 kg at a time.
- the dialysis device 100 After the start of dialysis, the dialysis device 100 performs water removal at a predetermined speed (S100). After a predetermined time has elapsed (S110), replacement fluid is performed at a predetermined injection amount (S120). It is determined whether or not the latest replacement fluid is the last replacement fluid (S130). If it is not the last replacement fluid, the next replacement fluid condition is set based on the latest change rate (increase rate) of the circulating blood volume (S140). If it is the last replacement fluid, water is removed at a predetermined water removal rate (S150), and after a predetermined dialysis time has elapsed (S160), the dialysis treatment is terminated.
- S100 a predetermined speed
- S110 replacement fluid is performed at a predetermined injection amount
- S130 It is determined whether or not the latest replacement fluid is the last replacement fluid (S130). If it is not the last replacement fluid, the next replacement fluid condition is set based on the latest change rate (increase rate) of the circulating blood volume (
- the predetermined water removal rate in S150 indicates a water removal rate at the start of dialysis treatment set based on the amount of water (water removal amount) to be removed from the patient by dialysis treatment.
- the predetermined dialysis time in S160 indicates the water removal time at the start of the dialysis treatment.
- the rate of change in circulating blood volume before the start of infusion of the replenisher and after the end of infusion due to the most recent rehydration is calculated (S141), and it is determined whether the rate of change by the rehydration is within a predetermined range (S142). . If the rate of change due to the replacement fluid is within the range of 5 to 10%, it is determined that the injection amount of the replenisher is an appropriate amount, and the replacement fluid 30 minutes after the next time is used as the same injection amount as the first injection. (S143).
- the rate of change due to the replacement fluid exceeds 10%, it is determined that the injection amount is excessive, and the injection amount of the replacement fluid 30 minutes after the next time is reduced (S144).
- the larger the rate of change of the circulating blood volume the smaller the amount of replacement fluid to be infused, and the lower the rate of change of the circulating blood volume, the lower the rate of infusion of the replacement fluid at a fixed rate.
- the ratio of the change rate of the circulating blood volume to the actual change rate with respect to the upper limit of 10% is calculated, and the replacement fluid amount to be reduced by multiplying the initial replacement fluid amount by 200 ml is calculated.
- control when the change rate of the circulating blood volume due to replacement fluid exceeds a predetermined range, control is performed so as to change both the injection amount and the injection interval of replacement fluid, but one is not changed and only the other is changed. Control may be performed. If the change rate due to the replacement fluid is less than 5%, it is determined that the injection amount is too small, and the injection amount of the replacement fluid 30 minutes after the next time is increased (S145). Specifically, the smaller the rate of change in circulating blood volume, the greater the amount of replacement fluid to be infused, or the greater the rate of infusion of replacement fluid at a constant rate regardless of the rate of change in circulating blood volume.
- the ratio of the change rate of the circulating blood volume to the actual change rate with respect to the upper limit of 10% is calculated, and the initial replacement fluid amount is multiplied by the calculated ratio to 200 ml to calculate the replacement fluid amount to be increased.
- the control unit 150 sets the change rate of the circulating blood volume by the next replacement fluid on the basis of the change rate of the circulating blood volume by the latest replacement fluid in the range of 5 to 10%. Adjust the injection volume.
- the increased amount of the replenisher in the circulating blood volume may be collected by adjusting the water removal rate from the start to the end of the dialysis, and in the present embodiment, the amount injected with the latest replenisher as shown in FIG. By the next rehydration, it was to be collected in addition to the patient's excess water (dehydrated water).
- the last replacement fluid injection amount may be set to a predetermined amount, and water removal may be performed ahead of time.
- the injection amount of the replacement fluid other than the final replacement fluid injection amount depends on the rate of change of the circulating blood volume due to the latest replacement fluid. Fluctuate based on
- the dialysis apparatus 100 includes a blood circuit 110, a blood purification means 120, a dialysate circuit 130, a circulating blood volume measuring means 140, a replenisher injecting means for injecting a replenisher into the blood circuit 110, A control unit 150 for controlling the replenisher injecting means so as to intermittently inject a predetermined amount of replenisher into the blood circuit 110 at predetermined intervals. Based on the rate of change of the circulating blood volume due to the most recent replenishment infusion measured by 140, the rate of change of the circulating blood volume due to the next infusion of the replenishment is within a predetermined range.
- the injection amount and the injection interval are adjusted, and during the period from the start to the end of the dialysis, the water removal rate of the blood purification means 120 is controlled so as to collect at least the water equivalent to the total amount of the replenisher to be injected into the blood circuit 110.
- the water removal rate of the blood purification means 120 is controlled so as to collect at least the water equivalent to the total amount of the replenisher to be injected into the blood circuit 110.
- This makes it possible to realize an appropriate replacement fluid that matches the circulatory dynamics of the patient's blood, so that a rapid increase in blood pressure due to replacement fluid can be suppressed, and a decrease in blood pressure due to removal of water can be suppressed. Therefore, the change in blood pressure during dialysis can be reduced, and dialysis treatment with a reduced burden on the patient can be performed.
- the injection amount of the replacement fluid so as not to be excessive, it is possible to reduce the water removal rate for the replacement fluid collection and to suppress the decrease in blood pressure caused by the water removal rate being too high.
- the change rate of the circulating blood volume due to the injection of the latest replenisher is calculated using the change rate measured by the circulating blood volume measuring means 140, and the latest replenisher solution is calculated. If the change rate of the circulating blood volume due to the injection is within a predetermined range, the next injection amount of the replenisher is the same as the latest injection amount, and if the change rate is larger than the predetermined range, the change rate The next injection amount of the replenisher is set to a smaller amount than the latest injection amount according to the above, and if the change rate is smaller than the predetermined range, the next injection amount of the replenisher is changed according to the change rate. The amount was set to be larger than the injection amount.
- the infusion interval of the reference replenisher is set to 30 minutes, and the second and subsequent infusion intervals are adjusted based on the rate of change in circulating blood volume due to the most recent replenishment.
- the rate of change of the circulating blood volume before the start of infusion of the replenisher and after the end of infusion by the most recent rehydration is calculated (S141), and whether or not the rate of change by the rehydration is within a predetermined range. Is determined (S142). If the rate of change due to the replacement fluid is in the range of 5 to 10%, it is determined that the injection amount of the replenisher is an appropriate amount, and the next replacement fluid is set to the same injection amount as the first time, and the time until the next replacement fluid is changed.
- the injection interval is set as a reference injection interval (30 minutes). (S146). If the rate of change due to rehydration exceeds 10%, it is determined that the injection amount is excessive, and the injection amount of the next replacement fluid is reduced and the injection interval based on the injection interval until the next replacement fluid is set as a reference.
- the interval is longer than the interval (30 minutes) (S147). Specifically, the greater the rate of change in circulating blood volume, the longer the infusion interval may be, or the longer the infusion interval may be a constant rate regardless of the rate of change in circulating blood volume.
- the ratio of the change rate of the circulating blood volume to the upper limit of 10% and the actual change rate is calculated, and the reference injection interval 30 minutes is multiplied by the calculated ratio to calculate the increase time of the injection interval.
- the rate of change due to rehydration is less than 5%, it is determined that the injection amount is too small, and the injection amount of the next replacement fluid is increased and the injection interval until the next replacement fluid is set as a reference.
- the injection is performed at a time shorter than the injection interval (30 minutes) (S148).
- the smaller the rate of change in circulating blood volume the shorter the injection interval may be, or the shorter the rate of infusion interval may be, regardless of the rate of change in circulating blood volume.
- the ratio of the change rate of the circulating blood volume to the upper limit of 10% of the actual change rate is calculated, and the reference injection interval of 30 minutes is multiplied by the calculated ratio to calculate the decrease time of the injection interval.
- control unit 150 injects the next replenisher so that the change rate of the circulating blood volume by the next replacement fluid is in the range of 5 to 10% based on the change rate of the circulating blood volume by the latest replacement fluid. Adjust the volume and adjust the interval between injections until the next fluid replacement. Further, as shown in FIG. 10, the injection amount of the final replacement fluid may be appropriately increased or decreased according to the remaining time of the dialysis after the last replacement fluid.
- the increased amount of the replenisher in the circulating blood volume may be collected by adjusting the water removal rate between the start and the end of the dialysis.
- the latest replenisher is used.
- the amount injected in (1) was collected by the next replacement fluid (see FIG. 10).
- the replacement fluid control method using the dialysis device 100 may be configured such that, if the rate of change of the circulating blood volume due to the most recent replenisher injection is within the above-mentioned predetermined range, the interval until the next replenisher is injected is set to a predetermined value. If the change rate is larger than a predetermined range, the interval between injections of the next replenisher is set longer according to the change rate than the predetermined injection interval, and the change rate is smaller than the predetermined range. For example, the interval between the injections of the next replenisher is set shorter than the predetermined injection interval in accordance with the change rate, and the interval between the injection of the most recent replenisher and the injection of the next replenisher is made.
- the water removal rate of the blood purification means 120 is controlled so as to collect water corresponding to the amount of the replenisher added. In this way, when the injection amount by the latest replacement fluid is excessive, by increasing the injection interval until the next replacement fluid, the removal rate of the replacement fluid can be reduced, and the removal rate is too high. Can reduce the occurrence of blood pressure drop due to, and, if the latest infusion volume is too small, shorten the interval between infusions until the next rehydration to speed up the sufficient recovery of circulating blood volume In addition, the occurrence of a decrease in blood pressure can be suppressed.
- the present invention is not limited to the above-described embodiments, and can be appropriately changed.
- a case has been described in which a back-filtered dialysate is used as a replenisher.
- physiological saline may be used as a replenisher, or directly into a blood circuit without passing through a blood purification unit. It may be configured to replenish the dialysate from the connected dialysate line.
- Reference Signs List 100 dialyzer 110 blood circuit 111 arterial line 111c blood pump 112 venous line 120 blood purification means 130 dialysate circuit 140 circulating blood volume measuring means 150 control unit
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Urology & Nephrology (AREA)
- Emergency Medicine (AREA)
- Cardiology (AREA)
- External Artificial Organs (AREA)
Abstract
The objective of the present invention is to provide a dialysis device and a fluid replacement control method capable of carrying out appropriate fluid replacement.
A dialysis device 100 is provided with a blood circuit 110, a blood purifying means 120, a dialysate circuit 130, a circulating blood quantity measuring means 140, a replenishing liquid injecting means for injecting into the blood circuit replenishing liquid for restoring the circulating blood quantity, and a control unit 150 for controlling the replenishing liquid injecting means in such a way that a predetermined quantity of the replenishing liquid is injected intermittently into the blood circuit at predetermined intervals, wherein the control unit adjusts the next replenishing liquid injection quantity and/or injection interval in such a way that a rate of change in the circulating blood quantity resulting from the next replenishing liquid injection lies in a predetermined range, on the basis of the rate of change in the circulating blood quantity resulting from the most recent injection of replenishing liquid, measured using the measuring means, and controls a rate of water removal by the blood purifying means in such a way that water content corresponding to the entire quantity of replenishing liquid injected into the blood circuit is recovered during the period from the start to the end of the dialysis.
Description
本発明は、透析装置及び該透析装置を用いた補液制御方法に関する。
The present invention relates to a dialysis device and a replacement fluid control method using the dialysis device.
透析治療においては、ポンプを用いて患者の動脈側から血液を取り出してダイアライザやヘモダイアフィルタ等の血液浄化手段に送血し、老廃物や余分な水分が除去された血液が患者の動脈側へ戻すことが行われる。
一般的に透析治療では、1回の治療で4時間前後の時間をかけて血液の浄化が行われ、透析時間の経過に伴い血液が浄化されて体内の余分な水分が取り除かれて行く。この血液浄化によって患者の体内を流れる循環血液量は減少していくため、透析治療の後半において血圧低下の症状を呈する患者は珍しくない。 In dialysis treatment, blood is removed from the patient's arterial side using a pump and sent to blood purification means such as a dialyzer or hemodiafilter, and blood from which waste and excess water have been removed is transferred to the patient's arterial side. A return is made.
Generally, in dialysis treatment, blood purification is performed over a period of about four hours in one treatment, and blood is purified and excess water in the body is removed as the dialysis time elapses. Because of this blood purification, the amount of circulating blood flowing through the body of the patient decreases, and it is not uncommon for patients to exhibit a symptom of lowering blood pressure in the latter half of dialysis treatment.
一般的に透析治療では、1回の治療で4時間前後の時間をかけて血液の浄化が行われ、透析時間の経過に伴い血液が浄化されて体内の余分な水分が取り除かれて行く。この血液浄化によって患者の体内を流れる循環血液量は減少していくため、透析治療の後半において血圧低下の症状を呈する患者は珍しくない。 In dialysis treatment, blood is removed from the patient's arterial side using a pump and sent to blood purification means such as a dialyzer or hemodiafilter, and blood from which waste and excess water have been removed is transferred to the patient's arterial side. A return is made.
Generally, in dialysis treatment, blood purification is performed over a period of about four hours in one treatment, and blood is purified and excess water in the body is removed as the dialysis time elapses. Because of this blood purification, the amount of circulating blood flowing through the body of the patient decreases, and it is not uncommon for patients to exhibit a symptom of lowering blood pressure in the latter half of dialysis treatment.
循環血液量が減少した場合、正常な生体反応では、自律神経の働きにより末梢の血管を収縮させることで、中枢側の循環血液量が維持される。また、除水により血液が濃縮されると浸透圧の差により間質から血管内へ血漿成分が移動する血漿再充填が生じて、循環血液量が維持される。しかしながら患者によってそのような生体反応が正常に行われない場合があり、血圧低下により透析治療を継続することが困難となることがある。
(4) When the circulating blood volume decreases, in a normal biological reaction, peripheral blood vessels are contracted by the action of autonomic nerves, thereby maintaining the central circulating blood volume. In addition, when blood is concentrated by removing water, plasma refilling in which plasma components move from the interstitium into the blood vessel occurs due to the difference in osmotic pressure, and the circulating blood volume is maintained. However, such a biological reaction may not be performed normally depending on the patient, and it may be difficult to continue the dialysis treatment due to a decrease in blood pressure.
このような血圧低下の症状に陥った場合には、循環血液量を速やかに増加させるため、血液中に生理食塩水や清浄化された透析液を用いて補液を実施する等の処置が取られる。
また、近年では、除水に伴う循環血液量減少による血圧低下の発生を予防するため、血液透析(いわゆるHD)や血液濾過透析(いわゆるHDF)の治療において、例えば30分毎に150mL~200mLの補液を繰り返し実施し、補液相当分の水分を本来の除水量に上乗せして除水する「間歇補充型血液透析濾過法」が提案されている(非特許文献1、非特許文献2参照)。 When such a decrease in blood pressure occurs, measures such as performing replacement fluid using physiological saline or purified dialysate in the blood are taken in order to rapidly increase the amount of circulating blood. .
In recent years, in order to prevent the occurrence of a decrease in blood pressure due to a decrease in circulating blood volume accompanying water removal, in the treatment of hemodialysis (so-called HD) or hemofiltration dialysis (so-called HDF), for example, 150 mL to 200 mL every 30 minutes is used. An “intermittent replenishment type hemodiafiltration method” has been proposed in which rehydration is repeatedly performed, and water equivalent to the replenisher is added to the original water removal amount to remove water (see Non-Patent Documents 1 and 2).
また、近年では、除水に伴う循環血液量減少による血圧低下の発生を予防するため、血液透析(いわゆるHD)や血液濾過透析(いわゆるHDF)の治療において、例えば30分毎に150mL~200mLの補液を繰り返し実施し、補液相当分の水分を本来の除水量に上乗せして除水する「間歇補充型血液透析濾過法」が提案されている(非特許文献1、非特許文献2参照)。 When such a decrease in blood pressure occurs, measures such as performing replacement fluid using physiological saline or purified dialysate in the blood are taken in order to rapidly increase the amount of circulating blood. .
In recent years, in order to prevent the occurrence of a decrease in blood pressure due to a decrease in circulating blood volume accompanying water removal, in the treatment of hemodialysis (so-called HD) or hemofiltration dialysis (so-called HDF), for example, 150 mL to 200 mL every 30 minutes is used. An “intermittent replenishment type hemodiafiltration method” has been proposed in which rehydration is repeatedly performed, and water equivalent to the replenisher is added to the original water removal amount to remove water (see Non-Patent Documents 1 and 2).
上述のように、透析治療中に計画的に補液を行うことにより血圧低下の発生を抑制できる反面、患者によって基礎体重、除水量等の条件が異なるため、血圧を安定させるための適正な補充液の注入量や注入間隔は異なるものと考えられる。また、同じ患者であっても血液の循環動態(循環血液量や血漿再充填の速度等)は透析治療の経過中に変化する。よって、患者の状態によらない一律な条件で補液を行うと、補液が過剰となって急激な血圧の上昇を招くおそれや、補液が過少となって急激な血圧の低下を抑制する効果が十分に得られないおそれがある。
As described above, the occurrence of a decrease in blood pressure can be suppressed by systematically replenishing fluid during dialysis treatment.However, since conditions such as basal weight and water removal amount vary depending on the patient, an appropriate replenisher for stabilizing blood pressure is used. It is considered that the injection amount and the injection interval are different. In addition, even in the same patient, the circulatory dynamics of blood (circulating blood volume, plasma refilling rate, etc.) change during the course of dialysis treatment. Therefore, when rehydration is performed under uniform conditions that do not depend on the condition of the patient, the replenishment may be excessive and cause a rapid increase in blood pressure, or the effect of suppressing the rapid decrease in blood pressure due to insufficient rehydration may be sufficient. May not be obtained.
従って、本発明は、適正な補液を実施可能な透析装置及び補液制御方法を提供することを目的とする。
Accordingly, an object of the present invention is to provide a dialysis apparatus and a replacement fluid control method capable of performing appropriate replacement fluid.
本発明は、血液回路と、前記血液回路に配置され、血液中の水分を除去可能な血液浄化手段と、前記血液浄化手段に接続され、該血液浄化手段に透析液を導入及び導出する透析液回路と、循環血液量の変化率を測定する測定手段と、除水により減少する循環血液量を回復させるための補充液を前記血液回路に注入する補充液注入手段と、前記血液回路に所定の間隔で間歇的に所定の量の補充液を注入するように前記補充液注入手段を制御する制御部と、を備える透析装置であって、前記制御部は、前記測定手段により測定される直近の補充液の注入による循環血液量の変化率に基づいて、次回の補充液の注入による循環血液量の変化率が所定の範囲内となるように、次回の補充液の注入量及び/又は注入間隔を調整し、透析開始から終了までの間に、少なくとも前記血液回路に注入される補充液の全量に相当する水分を回収するように前記血液浄化手段の除水速度を制御する透析装置に関する。
The present invention relates to a blood circuit, a blood purification means arranged in the blood circuit, capable of removing water in blood, and a dialysate connected to the blood purification means for introducing and discharging a dialysate into the blood purification means. A circuit, a measuring means for measuring a change rate of a circulating blood volume, a replenishing solution injecting means for injecting a replenishing solution for restoring a circulating blood volume reduced by water removal into the blood circuit, and a predetermined A control unit that controls the replenisher injecting means so as to inject a predetermined amount of replenisher intermittently at intervals, wherein the control unit is configured to control the latest replenishment measured by the measurement unit. Based on the change rate of the circulating blood volume due to the infusion of the replenisher, the next infusion amount and / or infusion interval of the replenisher solution such that the change rate of the circulating blood volume due to the next infusion of the replenisher is within a predetermined range. From the start to the end of dialysis. During relates dialysis apparatus for controlling the water removal speed of the blood purification unit to recover the water that corresponds to the total amount of the replenisher to be injected into at least the blood circuit.
また、前記補充液注入手段として前記血液浄化手段及び前記透析液回路が用いられ、前記補充液として前記血液浄化手段で逆濾過される透析液が用いられることが好ましい。
Preferably, the blood purifying means and the dialysate circuit are used as the replenisher injecting means, and a dialysate which is back-filtered by the blood purifying means is used as the replenisher.
また、本発明は、血液回路と、前記血液回路に配置され、血液中の水分を除去可能な血液浄化手段と、前記血液浄化手段が接続され、透析液を導入及び導出する透析液回路と、循環血液量の変化率を測定する測定手段と、除水により減少する循環血液量を回復させるための補充液を前記血液回路に注入する補充液注入手段と、前記血液回路に所定の間隔で間歇的に所定の量の補充液を注入するように前記補充液注入手段を制御する制御部と、を備える透析装置を用いた補液制御方法であって、前記測定手段で測定される変化率を用いて直近の補充液の注入による循環血液量の変化率を算出し、前記変化率に基づいて、次回の補充液の注入による循環血液量の変化率が所定の範囲内となるように、次回の補充液の注入量及び/又は注入間隔を調整し、透析開始から終了までの間に、少なくとも前記血液回路に注入される補充液の全量に相当する水分を回収するように前記血液浄化手段の除水速度を制御する補液制御方法に関する。
The present invention also provides a blood circuit, a blood purification unit disposed in the blood circuit, capable of removing water in blood, the blood purification unit is connected, and a dialysate circuit for introducing and leading a dialysate, Measuring means for measuring the rate of change of the circulating blood volume, replenishing solution injecting means for injecting a replenishing solution for restoring the circulating blood volume reduced by water removal into the blood circuit, and intermittently at predetermined intervals in the blood circuit A control unit for controlling the replenisher injecting means so as to inject a predetermined amount of replenisher, and a replenisher control method using a dialysis device comprising: The rate of change in circulating blood volume due to the most recent replenisher injection is calculated, and based on the rate of change, the rate of change in circulating blood volume due to the next infusion of replenisher falls within a predetermined range. The amount and / or interval of replenishment And integer, a time period from the start to the end dialysis relates replacement fluid control method for controlling the water removal speed of the blood purification unit to recover the water that corresponds to the total amount of the replenisher to be injected into at least the blood circuit.
また、直近の補充液の注入による循環血液量の変化率が前記所定の範囲内であれば、次回の補充液の注入量を直近の注入量と同量とし、前記変化率が前記所定の範囲よりも大きければ、該変化率に応じて次回の補充液の注入量を直近の注入量よりも少ない量とし、前記変化率が前記所定の範囲よりも小さければ、該変化率に応じて次回の補充液の注入量を直近の注入量よりも多い量とすることが好ましい。
Further, if the change rate of the circulating blood volume due to the most recent infusion of the replenisher is within the predetermined range, the next infusion amount of the replenisher is set to the same amount as the most recent infusion amount, and the change rate is in the predetermined range. If the change rate is smaller than the latest range, the next injection amount of the replenisher is set to an amount smaller than the latest injection amount according to the change rate. It is preferable that the injection amount of the replenisher be larger than the latest injection amount.
また、直近の補充液の注入による循環血液量の変化率が前記所定の範囲内であれば、次回の補充液を注入するまでの間隔を所定の注入間隔とし、前記変化率が前記所定の範囲より大きければ、該変化率に応じて次回の補充液を注入するまでの間隔を前記所定の注入間隔よりも長くし、前記変化率が前記所定の値より小さければ、該変化率に応じて次回の補充液を注入するまでの間隔を前記所定の注入間隔よりも短くし、直近の補充液の注入から次回の補充液の注入までの間に、直近に注入された補充液の注入量に相当する水分を補液回収分として回収するように、前記血液浄化手段の除水速度を制御することが好ましい。
Further, if the change rate of the circulating blood volume due to the most recent infusion of the replenisher is within the predetermined range, an interval until the next infusion of the replenisher is a predetermined infusion interval, and the change rate is in the predetermined range. If it is larger, the interval until the next replenisher is injected is made longer than the predetermined injection interval according to the change rate, and if the change rate is smaller than the predetermined value, the next time according to the change rate, The interval between injections of the replenisher is shorter than the predetermined injection interval, and is equivalent to the amount of the replenisher injected last between the injection of the latest replenisher and the injection of the next replenisher. It is preferable to control the water removal rate of the blood purification means so as to collect the removed water as a replacement fluid.
また、前記所定の範囲は、5%~10%であることが好ましい。
Preferably, the predetermined range is 5% to 10%.
本発明によれば、透析治療中の血液の循環体動に応じた適正な補液を実施できるので、急激な血圧の変動を低減することができる。
According to the present invention, an appropriate replacement fluid can be performed according to the circulatory movement of blood during dialysis treatment, so that a rapid change in blood pressure can be reduced.
以下、本発明の透析装置及び補液制御方法の好ましい各実施形態について、図面を参照しながら説明する。
本発明の補液制御方法は、血液透析(いわゆるHD)や血液濾過透析(いわゆるHDF)等の透析治療中に間歇的に補液を実施する場合に適用できる。本発明の適用例として、逆濾過された透析液を利用して間歇的に補液を行う間歇補充型血液濾過透析を行う場合について説明する。 Hereinafter, preferred embodiments of the dialysis device and the replacement fluid control method of the present invention will be described with reference to the drawings.
The fluid replacement control method of the present invention can be applied to a case where fluid replacement is performed intermittently during dialysis treatment such as hemodialysis (so-called HD) or hemofiltration dialysis (so-called HDF). As an application example of the present invention, a case will be described in which intermittent replenishment-type hemofiltration dialysis is performed in which replenishment is performed intermittently using a back-filtered dialysate.
本発明の補液制御方法は、血液透析(いわゆるHD)や血液濾過透析(いわゆるHDF)等の透析治療中に間歇的に補液を実施する場合に適用できる。本発明の適用例として、逆濾過された透析液を利用して間歇的に補液を行う間歇補充型血液濾過透析を行う場合について説明する。 Hereinafter, preferred embodiments of the dialysis device and the replacement fluid control method of the present invention will be described with reference to the drawings.
The fluid replacement control method of the present invention can be applied to a case where fluid replacement is performed intermittently during dialysis treatment such as hemodialysis (so-called HD) or hemofiltration dialysis (so-called HDF). As an application example of the present invention, a case will be described in which intermittent replenishment-type hemofiltration dialysis is performed in which replenishment is performed intermittently using a back-filtered dialysate.
<第1実施形態>
図1は、本発明の第1実施形態に係る透析装置100の概略構成を示す図である。 <First embodiment>
FIG. 1 is a diagram showing a schematic configuration of adialysis device 100 according to the first embodiment of the present invention.
図1は、本発明の第1実施形態に係る透析装置100の概略構成を示す図である。 <First embodiment>
FIG. 1 is a diagram showing a schematic configuration of a
図1に示すように、透析装置100は、血液を流すための血液回路110と、血液浄化手段120と、透析液回路130と、血液回路110に配置される循環血液量測定手段140と、制御部150と、を備える。
As shown in FIG. 1, the dialysis apparatus 100 includes a blood circuit 110 for flowing blood, a blood purification unit 120, a dialysate circuit 130, a circulating blood volume measurement unit 140 arranged in the blood circuit 110, A unit 150.
血液回路110は、動脈側ライン111と、静脈側ライン112と、薬剤ライン113と、プライミング液排出ライン114と、を有する。動脈側ライン111、静脈側ライン112、薬剤ライン113及びプライミング液排出ライン114は、いずれも液体が流通可能な可撓性を有する軟質のチューブを主体として構成される。
The blood circuit 110 has an arterial line 111, a venous line 112, a drug line 113, and a priming fluid discharge line 114. The arterial line 111, the venous line 112, the drug line 113, and the priming liquid discharge line 114 are each mainly composed of a flexible soft tube through which a liquid can flow.
動脈側ライン111は、一端側が後述する血液浄化手段120の血液導入口122aに接続される。動脈側ライン111には、動脈側接続部111a、動脈側気泡検知器111b、血液ポンプ111c及び後述の循環血液量測定手段140が配置される。
動脈側接続部111aは、動脈側ライン111の他端側に配置される。動脈側接続部111aには、患者の血管に穿刺される針が接続される。
動脈側気泡検知器111bは、チューブ内の気泡の有無を検出する。
血液ポンプ111cは、動脈側ライン111における動脈側気泡検知器111bよりも下流側に配置される。血液ポンプ111cは、動脈側ライン111を構成するチューブをローラーでしごくことにより、動脈側ライン111の内部の血液やプライミング液等の液体を送出する。 One end of thearterial line 111 is connected to a blood inlet 122a of a blood purification unit 120 described later. In the arterial line 111, an arterial connection section 111a, an arterial bubble detector 111b, a blood pump 111c, and a circulating blood volume measuring means 140 described later are arranged.
Thearterial connection 111a is arranged on the other end of the arterial line 111. A needle inserted into a blood vessel of a patient is connected to the artery-side connection portion 111a.
The arterial-side bubble detector 111b detects the presence or absence of bubbles in the tube.
Theblood pump 111c is arranged downstream of the arterial-side air bubble detector 111b in the arterial-side line 111. The blood pump 111c delivers a liquid such as blood or priming liquid inside the arterial line 111 by squeezing a tube constituting the arterial line 111 with a roller.
動脈側接続部111aは、動脈側ライン111の他端側に配置される。動脈側接続部111aには、患者の血管に穿刺される針が接続される。
動脈側気泡検知器111bは、チューブ内の気泡の有無を検出する。
血液ポンプ111cは、動脈側ライン111における動脈側気泡検知器111bよりも下流側に配置される。血液ポンプ111cは、動脈側ライン111を構成するチューブをローラーでしごくことにより、動脈側ライン111の内部の血液やプライミング液等の液体を送出する。 One end of the
The
The arterial-
The
静脈側ライン112は、一端側が後述する血液浄化手段120の血液導出口122bに接続される。静脈側ライン112には、静脈側接続部112a、静脈側気泡検知器112b、ドリップチャンバ112c、及び静脈側クランプ112dが配置される。
静脈側接続部112aは、静脈側ラインの他端側に配置される。静脈側接続部112aには、患者の血管に穿刺される針が接続される。
静脈側気泡検知器112bは、チューブ内の気泡の有無を検出する。
ドリップチャンバ112cは、静脈側気泡検知器112bよりも上流側に配置される。ドリップチャンバ112cは、静脈側ライン112に混入した気泡や凝固した血栓/凝血塊等を除去するため、また、静脈圧を測定するため、一定量の血液を貯留する。
静脈側クランプ112dは、静脈側気泡検知器112bよりも下流側に配置される。静脈側クランプ112dは、静脈側気泡検知器112bによる気泡の検出結果に応じて制御され、静脈側ライン112の流路を開閉する。 One end of thevenous line 112 is connected to a blood outlet 122b of the blood purification means 120 described later. The venous line 112 includes a venous connection 112a, a venous bubble detector 112b, a drip chamber 112c, and a venous clamp 112d.
The vein-side connection part 112a is arranged on the other end side of the vein-side line. A needle inserted into a blood vessel of a patient is connected to the vein-side connecting portion 112a.
The veinside bubble detector 112b detects the presence or absence of bubbles in the tube.
Thedrip chamber 112c is disposed upstream of the vein-side bubble detector 112b. The drip chamber 112c stores a certain amount of blood in order to remove bubbles, coagulated thrombus / clot, and the like mixed in the venous line 112, and to measure venous pressure.
The vein-side clamp 112d is disposed downstream of the vein-side bubble detector 112b. The vein-side clamp 112d is controlled in accordance with the detection result of bubbles by the vein-side bubble detector 112b, and opens and closes the flow path of the vein-side line 112.
静脈側接続部112aは、静脈側ラインの他端側に配置される。静脈側接続部112aには、患者の血管に穿刺される針が接続される。
静脈側気泡検知器112bは、チューブ内の気泡の有無を検出する。
ドリップチャンバ112cは、静脈側気泡検知器112bよりも上流側に配置される。ドリップチャンバ112cは、静脈側ライン112に混入した気泡や凝固した血栓/凝血塊等を除去するため、また、静脈圧を測定するため、一定量の血液を貯留する。
静脈側クランプ112dは、静脈側気泡検知器112bよりも下流側に配置される。静脈側クランプ112dは、静脈側気泡検知器112bによる気泡の検出結果に応じて制御され、静脈側ライン112の流路を開閉する。 One end of the
The vein-side connection part 112a is arranged on the other end side of the vein-side line. A needle inserted into a blood vessel of a patient is connected to the vein-side connecting portion 112a.
The vein
The
The vein-
薬剤ライン113は、血液透析中に必要な薬剤を動脈側ライン111に供給する。薬剤ライン113は、一端側が薬剤を送り出す薬液ポンプ113aに接続され、他端側が動脈側ライン111に接続される。また、薬剤ライン113には不図示のクランプ手段が設けられており、薬剤を注入するとき以外は、クランプ手段により流路は閉鎖された状態である。本実施形態では、薬剤ライン113の他端側は、動脈側ライン122における循環血液量測定手段140よりも上流側に接続される。
The drug line 113 supplies a drug required during hemodialysis to the arterial line 111. One end of the drug line 113 is connected to the drug solution pump 113a for sending out a drug, and the other end is connected to the arterial line 111. The medicine line 113 is provided with a clamp means (not shown), and the flow path is closed by the clamp means except when the medicine is injected. In the present embodiment, the other end of the drug line 113 is connected to the arterial line 122 on the upstream side of the circulating blood volume measuring means 140.
プライミング液排出ライン114は、ドリップチャンバ112cに接続される。プライミング液排出ライン114には、プライミング液排出ライン用クランプ114aが配置される。プライミング液排出ライン114は、後述するプライミング工程でプライミング液を排液するためのラインである。
The priming liquid discharge line 114 is connected to the drip chamber 112c. The priming liquid discharge line 114 is provided with a priming liquid discharge line clamp 114a. The priming liquid discharge line 114 is a line for discharging the priming liquid in a priming step described later.
血液浄化手段120は、筒状に形成された容器本体121と、この容器本体121の内部に収容された透析膜(図示せず)と、を備え、容器本体121の内部は、透析膜により血液側流路と透析液側流路とに区画される(いずれも図示せず)。容器本体121には、血液回路110に連通する血液導入口122a及び血液導出口122bと、透析液回路130に連通する透析液導入口123a及び透析液導出口123bと、が形成される。
The blood purification means 120 includes a cylindrical container body 121 and a dialysis membrane (not shown) housed inside the container body 121. It is divided into a side channel and a dialysate side channel (neither is shown). In the container body 121, a blood inlet 122a and a blood outlet 122b communicating with the blood circuit 110, and a dialysate inlet 123a and a dialysate outlet 123b communicating with the dialysate circuit 130 are formed.
以上の血液回路110及び血液浄化手段120によれば、対象者(透析患者)の動脈から取り出された血液は、血液ポンプ111cにより動脈側ライン111を流通して血液浄化手段120の血液側流路に導入される。血液浄化手段120に導入された血液は、透析膜を介して後述する透析液回路130を流通する透析液により浄化される。血液浄化手段120において浄化された血液は、静脈側ライン112を流通して対象者の静脈に返血される。
According to the blood circuit 110 and the blood purification means 120 described above, the blood extracted from the artery of the subject (dialysis patient) flows through the arterial line 111 by the blood pump 111c, and the blood-side flow path of the blood purification means 120 Will be introduced. The blood introduced into the blood purification means 120 is purified by a dialysate flowing through a dialysate circuit 130 described later via a dialysis membrane. The blood purified by the blood purification means 120 flows through the venous line 112 and is returned to the subject's vein.
透析液回路130は、本実施形態では、いわゆる密閉容量制御方式の透析液回路130により構成される。この透析液回路130は、透析液供給ライン131aと、透析液排液ライン131bと、透析液導入ライン132aと、透析液導出ライン132bと、透析液送液部133と、を備える。
In the present embodiment, the dialysate circuit 130 is constituted by a so-called closed volume control type dialysate circuit 130. The dialysate circuit 130 includes a dialysate supply line 131a, a dialysate drain line 131b, a dialysate introduction line 132a, a dialysate derivation line 132b, and a dialysate delivery unit 133.
透析液送液部133は、透析液チャンバ1331と、バイパスライン1332と、除水/逆濾過ポンプ1333と、を備える。
透析液チャンバ1331は、一定容量(例えば、300ml~500ml)の透析液を収容可能な硬質の容器で構成され、この容器の内部は軟質の隔膜(ダイアフラム)により、送液収容部1331a及び排液収容部1331bに区画される。
バイパスライン1332は、透析液導出ライン132bと透析液排液ライン131bとを接続する。 Thedialysate sending section 133 includes a dialysate chamber 1331, a bypass line 1332, and a water removal / back-filtration pump 1333.
Thedialysate chamber 1331 is formed of a hard container capable of storing a fixed volume (for example, 300 ml to 500 ml) of dialysate, and the inside of this container is formed by a soft diaphragm (diaphragm) and a liquid sending container 1331 a and a drain. It is partitioned into a housing 1331b.
Thebypass line 1332 connects the dialysate outlet line 132b and the dialysate drain line 131b.
透析液チャンバ1331は、一定容量(例えば、300ml~500ml)の透析液を収容可能な硬質の容器で構成され、この容器の内部は軟質の隔膜(ダイアフラム)により、送液収容部1331a及び排液収容部1331bに区画される。
バイパスライン1332は、透析液導出ライン132bと透析液排液ライン131bとを接続する。 The
The
The
除水/逆濾過ポンプ1333は、バイパスライン1332に配置される。除水/逆濾過ポンプ1333は、バイパスライン1332の内部の透析液を透析液排液ライン131b側に流通させる方向(除水方向)及び透析液導出ライン132b側に流通させる方向(逆濾過方向)に送液可能に駆動するポンプにより構成される。
水 Water removal / back-filtration pump 1333 is arranged in bypass line 1332. The water removal / back-filtration pump 1333 is a direction in which the dialysate in the bypass line 1332 flows toward the dialysate drain line 131b (water removal direction) and a direction in which the dialysate flows through the dialysate discharge line 132b (back filtration direction). It is constituted by a pump driven so as to be able to send liquid.
透析液供給ライン131aは、基端側が透析液供給装置(図示せず)に接続され、先端側が透析液チャンバ1331に接続される。透析液供給ライン131aは透析液チャンバ1331の送液収容部1331aに透析液を供給する。
The dialysate supply line 131a has a proximal end connected to a dialysate supply device (not shown) and a distal end connected to the dialysate chamber 1331. The dialysis fluid supply line 131a supplies the dialysis fluid to the fluid supply storage unit 1331a of the dialysis fluid chamber 1331.
透析液導入ライン132aは、透析液チャンバ1331と血液浄化手段120の透析液導入口123aとを接続し、透析液チャンバ1331の送液収容部1331aに収容された透析液を血液浄化手段120の透析液側流路に導入する。
The dialysate introduction line 132a connects the dialysate chamber 1331 and the dialysate inlet 123a of the blood purification means 120, and dialyses the dialysate stored in the liquid supply storage part 1331a of the dialysate chamber 1331 by the dialysis of the blood purification means 120. Introduce into the liquid side flow path.
透析液導出ライン132bは、血液浄化手段120の透析液導出口123bと透析液チャンバ1331とを接続し、血液浄化手段120から排出された透析液を透析液チャンバ1331の排液収容部1331bに導出する。
The dialysate outlet line 132b connects the dialysate outlet 123b of the blood purification unit 120 and the dialysate chamber 1331 and leads the dialysate discharged from the blood purification unit 120 to the drainage storage unit 1331b of the dialysate chamber 1331. I do.
透析液排液ライン131bは、基端側が透析液チャンバ1331に接続され、排液収容部1331bに収容された透析液の排液を排出する。
The dialysate drain line 131b has a proximal end connected to the dialysate chamber 1331 and discharges the dialysate drain contained in the drain reservoir 1331b.
以上の透析液回路130によれば、透析液チャンバ1331を構成する硬質の容器の内部を軟質の隔膜(ダイアフラム)により区画することで、透析液チャンバ1331からの透析液の導出量(送液収容部1331aへの透析液の供給量)と、透析液チャンバ1331(排液収容部1331b)に回収される排液の量と、を同量にできる。
これにより、除水/逆濾過ポンプ1333を停止させた状態では、血液浄化手段120に導入される透析液の流量と血液浄化手段120から導出される透析液(排液)の量とを同量にできる。 According to thedialysate circuit 130 described above, the inside of the hard container constituting the dialysate chamber 1331 is partitioned by the soft diaphragm (diaphragm), so that the amount of dialysate drawn out from the dialysate chamber 1331 (liquid sending accommodation) The amount of dialysate supplied to the portion 1331a) and the amount of drainage collected in the dialysate chamber 1331 (drainage storage portion 1331b) can be made equal.
Accordingly, in a state where the water removal / back-filtration pump 1333 is stopped, the flow rate of the dialysate introduced into the blood purification means 120 and the amount of the dialysate (effluent) derived from the blood purification means 120 are equalized. Can be.
これにより、除水/逆濾過ポンプ1333を停止させた状態では、血液浄化手段120に導入される透析液の流量と血液浄化手段120から導出される透析液(排液)の量とを同量にできる。 According to the
Accordingly, in a state where the water removal / back-
また、除水/逆濾過ポンプ1333を逆濾過方向に送液するように駆動させた場合には、透析液チャンバ1331から排出された排液の一部がバイパスライン1332及び透析液導出ライン132bを通って再び透析液チャンバ1331に回収される。そのため、血液浄化手段120から導出される透析液の量は、透析液チャンバ1331に回収される量(即ち、透析液導入ライン132aを流通する透析液の量)から、バイパスライン1332を流通する透析液の量を減じた量となる。これにより、血液浄化手段120から導出される透析液の量は、バイパスライン1332を通って再び透析液チャンバ1331に回収される透析液(排液)の量分だけ、透析液導入ライン132aを流通する透析液の流量よりも少なくなる。即ち、除水/逆濾過ポンプ1333を逆濾過方向に送液するように駆動させた場合は、血液浄化手段120において、血液回路110に所定量の透析液が注入(逆濾過)される(図3参照)。
When the water removal / back-filtration pump 1333 is driven so as to feed in the back-filtration direction, a part of the drainage discharged from the dialysate chamber 1331 passes through the bypass line 1332 and the dialysate outlet line 132b. And is collected again in the dialysate chamber 1331. Therefore, the amount of dialysate discharged from the blood purification means 120 is changed from the amount recovered in the dialysate chamber 1331 (that is, the amount of dialysate flowing through the dialysate introduction line 132a) to the amount of dialysate flowing through the bypass line 1332. It becomes the amount which reduced the amount of liquid. As a result, the amount of dialysate discharged from the blood purification means 120 flows through the dialysate introduction line 132a by the amount of the dialysate (drained liquid) collected again in the dialysate chamber 1331 through the bypass line 1332. The flow rate of the dialysate to be used is smaller. That is, when the water removal / back-filtration pump 1333 is driven to feed in the back-filtration direction, a predetermined amount of dialysate is injected (back-filtered) into the blood circuit 110 in the blood purification means 120 (FIG. 3).
このように、本実施形態では、血液浄化手段120及び透析液回路130(除水/逆濾過ポンプ1333)は補充液注入手段として用いられ、逆濾過された透析液が補充液として用いられる。言い換えれば、補充液としての透析液は、除水/逆濾過ポンプ1333を逆濾過方向に駆動させることにより、透析液回路130から血液浄化手段120を介して血液回路110に注入される。なお、血液回路110に補充液ラインを接続して補充液注入手段とし、生理食塩水等を補充液として用いる構成としてもよい。また、透析液導入ライン132aから動脈側ライン111または静脈側ライン112に補充液ポンプが設けられた補充液ラインを接続して補充液注入手段とし、透析液を補充液として用いる構成としてもよい。
As described above, in this embodiment, the blood purification means 120 and the dialysate circuit 130 (water removal / back-filtration pump 1333) are used as replenisher injection means, and the back-filtered dialysate is used as the replenisher. In other words, the dialysate as a replenisher is injected from the dialysate circuit 130 into the blood circuit 110 via the blood purification means 120 by driving the dewatering / reverse filtration pump 1333 in the reverse filtration direction. It should be noted that a replenisher line may be connected to the blood circuit 110 to serve as a replenisher injecting means, and a physiological saline solution or the like may be used as the replenisher. Alternatively, a replenisher line provided with a replenisher pump may be connected from the dialysate introduction line 132a to the arterial line 111 or the venous line 112 to serve as a replenisher injecting means, and the dialysate may be used as a replenisher.
一方、除水/逆濾過ポンプ1333を除水方向に送液するように駆動させた場合には、透析液導出ライン132bを流通する透析液の量は、透析液チャンバ1331に回収される透析液の量(即ち、透析液導入ライン132aを流通する透析液の量)に、バイパスライン1332を流通する透析液の量を加えた量となる。これにより、透析液導出ライン132bを流通する透析液の量は、バイパスライン1332を通って透析液排液ライン131bに排出される透析液(排液)の量分だけ、透析液導入ライン132aを流通する透析液の量よりも多くなる。即ち、除水/逆濾過ポンプ1333を除水方向に送液するように駆動させた場合は、血液浄化手段120において、血液から所定量の除水が行われる(図2参照)。
On the other hand, when the water removal / back-filtration pump 1333 is driven so as to feed the water in the water removal direction, the amount of the dialysate flowing through the dialysate outlet line 132 b is equal to the amount of the dialysate collected in the dialysate chamber 1331. (Ie, the amount of dialysate flowing through the dialysate introduction line 132a) and the amount of dialysate flowing through the bypass line 1332. As a result, the amount of dialysate flowing through the dialysate outlet line 132b is equal to the amount of dialysate (drained liquid) discharged to the dialysate drain line 131b through the bypass line 1332, and the dialysate inlet line 132a is thus reduced. It is larger than the volume of dialysate flowing. That is, when the water removal / back-filtration pump 1333 is driven to feed in the water removal direction, a predetermined amount of water is removed from the blood in the blood purification means 120 (see FIG. 2).
循環血液量測定手段140は、血液回路110内を流れる血液のヘマトクリット値を測定するセンサである。例えば、近赤外線を血液に照射して得られる血液の光透過度に基づいてヘマトクリット値を測定することができる。循環血液量測定手段140により経時的に測定されたヘマトクリット値に基づいて、患者の体内の循環血液量の変化率を算出することができる。図1に示すように、循環血液量測定手段140は、血液浄化手段120による除水や補液の影響を受けにくいように、動脈側ライン111における血液ポンプ111cよりも下流側かつ血液浄化手段120の上流側に配置される。
The circulating blood volume measuring means 140 is a sensor for measuring a hematocrit value of blood flowing in the blood circuit 110. For example, a hematocrit value can be measured based on the light transmittance of blood obtained by irradiating blood with near infrared rays. Based on the hematocrit value measured over time by the circulating blood volume measuring means 140, the rate of change of the circulating blood volume in the patient's body can be calculated. As shown in FIG. 1, the circulating blood volume measurement unit 140 is located downstream of the blood pump 111 c in the arterial line 111 and is located on the blood purification unit 120 so that the blood purification unit 120 is not easily affected by water removal or replacement fluid. It is located upstream.
制御部150は、情報処理装置(コンピュータ)により構成され、制御プログラムを実行することにより、透析装置100の動作を制御する。また、制御部150は、循環血液量測定手段140で測定されたヘマトクリット値に基づいて、循環血液量の変化率を算出する。
具体的には、制御部150は、血液回路110及び透析液回路130に配置された各種のポンプやクランプ等の動作を制御して、透析装置100により行われる各種工程、例えば、プライミング工程、脱血工程、透析工程、補液工程、返血工程等を実行する。 Thecontrol unit 150 is configured by an information processing device (computer), and controls the operation of the dialysis device 100 by executing a control program. Further, the control unit 150 calculates a change rate of the circulating blood volume based on the hematocrit value measured by the circulating blood volume measuring means 140.
Specifically, thecontrol unit 150 controls operations of various pumps and clamps arranged in the blood circuit 110 and the dialysate circuit 130, and controls various processes performed by the dialysis device 100, for example, a priming process, A blood step, a dialysis step, a replacement fluid step, a blood return step, and the like are performed.
具体的には、制御部150は、血液回路110及び透析液回路130に配置された各種のポンプやクランプ等の動作を制御して、透析装置100により行われる各種工程、例えば、プライミング工程、脱血工程、透析工程、補液工程、返血工程等を実行する。 The
Specifically, the
各種工程について図2及び図3を参照して簡単に説明する。
プライミング工程では、プライミング液として逆濾過透析液を用いて血液回路110及び血液浄化手段120を洗浄して清浄化する。
脱血工程では、患者の血液を吸引して動脈側ライン111及び静脈側ライン112に血液を充填させる。脱血工程の後、血液を浄化すると伴に水分を除去する透析工程が行われる(図2参照)。透析工程では、患者の余剰水分の除水が行われ、また、補液回収分の除水も合わせて行われる。
透析工程の途中で間歇的に補液工程が行われる(図3参照)。透析工程終了後、患者に血液を戻す返血工程が行われる。 Various steps will be briefly described with reference to FIGS.
In the priming step, theblood circuit 110 and the blood purification means 120 are washed and cleaned using a back-filtration dialysate as a priming solution.
In the blood removal step, the blood of the patient is suctioned to fill thearterial line 111 and the venous line 112 with blood. After the blood removal step, a dialysis step for purifying the blood and removing water is performed (see FIG. 2). In the dialysis step, excess water of the patient is removed, and the replacement fluid is also removed.
The fluid replacement step is performed intermittently during the dialysis step (see FIG. 3). After the dialysis step, a blood return step of returning blood to the patient is performed.
プライミング工程では、プライミング液として逆濾過透析液を用いて血液回路110及び血液浄化手段120を洗浄して清浄化する。
脱血工程では、患者の血液を吸引して動脈側ライン111及び静脈側ライン112に血液を充填させる。脱血工程の後、血液を浄化すると伴に水分を除去する透析工程が行われる(図2参照)。透析工程では、患者の余剰水分の除水が行われ、また、補液回収分の除水も合わせて行われる。
透析工程の途中で間歇的に補液工程が行われる(図3参照)。透析工程終了後、患者に血液を戻す返血工程が行われる。 Various steps will be briefly described with reference to FIGS.
In the priming step, the
In the blood removal step, the blood of the patient is suctioned to fill the
The fluid replacement step is performed intermittently during the dialysis step (see FIG. 3). After the dialysis step, a blood return step of returning blood to the patient is performed.
以下に、透析装置100により行われる各種工程のうち、循環血液量の変化に関わる透析工程及び補液工程について、詳しく説明する。
透析 Among the various processes performed by the dialysis device 100, the dialysis process and the replacement fluid process related to the change in the circulating blood volume will be described in detail below.
図2を参照して透析工程について説明する。
透析工程において、動脈側接続部111aから導入される患者の血液は、動脈側ライン111を通って血液浄化手段120で浄化され、静脈側ライン112を通って静脈側接続部112aから患者に戻される。 The dialysis step will be described with reference to FIG.
In the dialysis step, the blood of the patient introduced from thearterial connection 111a is purified by the blood purification means 120 through the arterial line 111, and returned to the patient from the venous connection 112a through the venous line 112. .
透析工程において、動脈側接続部111aから導入される患者の血液は、動脈側ライン111を通って血液浄化手段120で浄化され、静脈側ライン112を通って静脈側接続部112aから患者に戻される。 The dialysis step will be described with reference to FIG.
In the dialysis step, the blood of the patient introduced from the
透析工程では、図2に示すように、動脈側接続部111a及び静脈側接続部112aは、それぞれ患者の血管に穿刺される針に接続された状態であり、プライミング液排出ライン用クランプ114aは閉状態、静脈側クランプ112dは開状態である。
In the dialysis step, as shown in FIG. 2, the arterial-side connecting portion 111a and the venous-side connecting portion 112a are each connected to a needle punctured in a patient's blood vessel, and the priming fluid discharge line clamp 114a is closed. In the state, the vein side clamp 112d is open.
不図示の透析液供給装置は、透析液チャンバ1331に対して平均500ml/minの送液量で透析液を供給及び排出し、除水/逆濾過ポンプ1333を、除水方向に送液するように作動させる。除水/逆濾過ポンプ1333の送給量を一例として10ml/minとすることで、血液浄化手段120において、10ml/minの除水が行われる。
血液ポンプ111cは、透析工程開始時の40~50ml/minから例えば200ml/min程度まで流量を徐々に増加させ、動脈側接続部111a側から血液浄化手段120側に血液を送出する。
血液浄化手段120内には、血液導入口122aから200ml/minの流量で血液が流入し、10ml/minの流量で除水されて、血液導出口122bから190ml/minの流量で導出される。また、透析排液は、透析液導出口123bから導出される。
このようにして、透析工程において血液中から徐々に水分が除去され、それに伴い循環血液量も徐々に減少して行く。 The dialysate supply device (not shown) supplies and discharges the dialysate to and from thedialysate chamber 1331 at an average flow rate of 500 ml / min, and sends the water removal / reverse filtration pump 1333 in the water removal direction. To operate. By setting the feed rate of the water removal / back-filtration pump 1333 to 10 ml / min as an example, the blood purification means 120 performs water removal at 10 ml / min.
Theblood pump 111c gradually increases the flow rate from 40 to 50 ml / min at the start of the dialysis step to, for example, about 200 ml / min, and sends the blood from the arterial side connection part 111a to the blood purification means 120 side.
Blood flows into blood purification means 120 fromblood inlet 122a at a flow rate of 200 ml / min, is removed at a flow rate of 10 ml / min, and is drawn out from blood outlet port 122b at a flow rate of 190 ml / min. Further, the dialysate drainage is drawn out from the dialysate outlet 123b.
In this way, water is gradually removed from the blood in the dialysis step, and the amount of circulating blood gradually decreases accordingly.
血液ポンプ111cは、透析工程開始時の40~50ml/minから例えば200ml/min程度まで流量を徐々に増加させ、動脈側接続部111a側から血液浄化手段120側に血液を送出する。
血液浄化手段120内には、血液導入口122aから200ml/minの流量で血液が流入し、10ml/minの流量で除水されて、血液導出口122bから190ml/minの流量で導出される。また、透析排液は、透析液導出口123bから導出される。
このようにして、透析工程において血液中から徐々に水分が除去され、それに伴い循環血液量も徐々に減少して行く。 The dialysate supply device (not shown) supplies and discharges the dialysate to and from the
The
Blood flows into blood purification means 120 from
In this way, water is gradually removed from the blood in the dialysis step, and the amount of circulating blood gradually decreases accordingly.
次に図3を参照して補液工程について説明する。
補液工程は、血液回路110に逆濾過透析液を注入する工程であり、本実施形態では、除水による循環血液量の減少に起因する血圧低下を予防する等のため、所定の間隔で間歇的に行われる。 Next, the fluid replacement step will be described with reference to FIG.
The fluid replacement step is a step of injecting the back-filtration dialysate into theblood circuit 110. In the present embodiment, in order to prevent a decrease in blood pressure due to a decrease in circulating blood volume due to water removal, the fluid replacement step is intermittent at predetermined intervals. Done in
補液工程は、血液回路110に逆濾過透析液を注入する工程であり、本実施形態では、除水による循環血液量の減少に起因する血圧低下を予防する等のため、所定の間隔で間歇的に行われる。 Next, the fluid replacement step will be described with reference to FIG.
The fluid replacement step is a step of injecting the back-filtration dialysate into the
補液工程では、図3に示すように、透析工程と同様に動脈側接続部111a及び静脈側接続部112aは、それぞれ患者の血管に穿刺される針に接続された状態であり、プライミング液排出ライン用クランプ114aは閉状態、静脈側クランプ112dは開状態である。
In the rehydration step, as shown in FIG. 3, the artery-side connection part 111a and the vein-side connection part 112a are each connected to a needle punctured in a blood vessel of the patient, as in the dialysis step, and are provided with a priming liquid discharge line. The clamp 114a is closed, and the venous clamp 112d is open.
不図示の透析液供給装置は、透析液チャンバ1331に対して平均500ml/minの送液量で透析液を供給及び排出し、除水/逆濾過ポンプ1333を、逆濾過方向に送液するように作動させる。例えば、200mlの補液を行う場合には、除水/逆濾過ポンプ1333の送給量を一例として150ml/minとすることで、血液浄化手段120において、150ml/minの補液が約80秒で行われる。
血液ポンプ111cは、透析工程中の200ml/minから50ml/min程度まで流量を徐々に減少させ、動脈側接続部111a側から血液浄化手段120側に血液を送出する。
血液浄化手段120内には、血液導入口122aから50ml/minの流量で血液が流入し、逆濾過透析液が150ml/minの流量で補液されて、血液導出口122bから希釈された血液が200ml/minの流量で導出される。このようにして、補液工程において約80秒で血液中に急速に透析液が補充される。 The dialysate supply device (not shown) supplies and discharges the dialysate to and from thedialysate chamber 1331 at an average flow rate of 500 ml / min, and sends the water removal / back-filtration pump 1333 in the reverse filtration direction. To operate. For example, when a 200 ml replacement fluid is to be supplied, the supply rate of the water removal / back-filtration pump 1333 is set to 150 ml / min as an example, so that the blood purification means 120 performs a 150 ml / min replacement fluid in about 80 seconds. Is
Theblood pump 111c gradually reduces the flow rate from 200 ml / min to about 50 ml / min during the dialysis step, and sends out the blood from the artery-side connection portion 111a to the blood purification means 120.
Blood flows into the blood purification means 120 at a flow rate of 50 ml / min from theblood inlet 122 a, the back-filtration dialysate is supplemented at a flow rate of 150 ml / min, and 200 ml of blood diluted from the blood outlet 122 b is supplied. / Min. Thus, the dialysate is rapidly replenished into the blood in about 80 seconds in the rehydration step.
血液ポンプ111cは、透析工程中の200ml/minから50ml/min程度まで流量を徐々に減少させ、動脈側接続部111a側から血液浄化手段120側に血液を送出する。
血液浄化手段120内には、血液導入口122aから50ml/minの流量で血液が流入し、逆濾過透析液が150ml/minの流量で補液されて、血液導出口122bから希釈された血液が200ml/minの流量で導出される。このようにして、補液工程において約80秒で血液中に急速に透析液が補充される。 The dialysate supply device (not shown) supplies and discharges the dialysate to and from the
The
Blood flows into the blood purification means 120 at a flow rate of 50 ml / min from the
次に、本実施形態における具体的な補液制御方法について図4~図8を参照して説明する。
Next, a specific rehydration control method in the present embodiment will be described with reference to FIGS.
まず、間歇的に補液を実施することによる効果について簡単に説明する。
透析治療中は、除水の進行に伴い血液中の水分(血漿)が取り除かれていき、循環血液量が減少していく。循環血液量が減少して血液中の蛋白濃度が上がると、血管内と血管外(間質)との浸透圧の差により、間質から血管内に水分(血漿)が徐々に移動して(血漿再充填)、循環血液量が回復して血圧が維持される。しかしながら、血漿再充填の速度が除水速度に追いつかずに、循環血液量が減少して血圧が低下してくると、自律神経の働きにより末梢血管を収縮させて血圧を維持しようとする生体反応が起こる。これが正常に働かないと、血漿再充填の速度が除水速度を大きく下回ることとなり、循環血液量の減少率が大きくなり、急激な血圧の低下を招く。 First, the effect of intermittent replacement fluid will be briefly described.
During dialysis treatment, water (plasma) in the blood is removed as the water removal proceeds, and the circulating blood volume decreases. When the circulating blood volume decreases and the protein concentration in the blood rises, water (plasma) gradually moves from the stroma to the blood vessel due to the difference in osmotic pressure between the blood vessel and the blood vessel (the stroma) ( Plasma refill), blood volume is restored and blood pressure is maintained. However, when the rate of plasma refill does not catch up with the rate of water removal, the amount of circulating blood decreases and blood pressure decreases, and the autonomic nervous system contracts peripheral blood vessels to maintain blood pressure. Happens. If this does not work properly, the rate of plasma refilling will be much lower than the rate of water removal, the rate of decrease in circulating blood volume will increase, and a rapid drop in blood pressure will occur.
透析治療中は、除水の進行に伴い血液中の水分(血漿)が取り除かれていき、循環血液量が減少していく。循環血液量が減少して血液中の蛋白濃度が上がると、血管内と血管外(間質)との浸透圧の差により、間質から血管内に水分(血漿)が徐々に移動して(血漿再充填)、循環血液量が回復して血圧が維持される。しかしながら、血漿再充填の速度が除水速度に追いつかずに、循環血液量が減少して血圧が低下してくると、自律神経の働きにより末梢血管を収縮させて血圧を維持しようとする生体反応が起こる。これが正常に働かないと、血漿再充填の速度が除水速度を大きく下回ることとなり、循環血液量の減少率が大きくなり、急激な血圧の低下を招く。 First, the effect of intermittent replacement fluid will be briefly described.
During dialysis treatment, water (plasma) in the blood is removed as the water removal proceeds, and the circulating blood volume decreases. When the circulating blood volume decreases and the protein concentration in the blood rises, water (plasma) gradually moves from the stroma to the blood vessel due to the difference in osmotic pressure between the blood vessel and the blood vessel (the stroma) ( Plasma refill), blood volume is restored and blood pressure is maintained. However, when the rate of plasma refill does not catch up with the rate of water removal, the amount of circulating blood decreases and blood pressure decreases, and the autonomic nervous system contracts peripheral blood vessels to maintain blood pressure. Happens. If this does not work properly, the rate of plasma refilling will be much lower than the rate of water removal, the rate of decrease in circulating blood volume will increase, and a rapid drop in blood pressure will occur.
このような急激な血圧低下を予防するため、間歇的に補液が実施される。補液を実施して血液循環量を回復させながら透析を行うことにより、血圧の低下を予防すると共に、末梢循環も改善され、血漿再充填の速度も維持される。その結果、補液を実施しない場合に比べて、同じ除水速度(補液回収分は除外)であっても、透析終了後の循環血液量の減少率を小さくすることができる。なお、補液の実施による循環血液量の増加分は、透析開始から終了までの間に、血液浄化手段120により除水される。よって、総除水量は、患者の余剰水分(体重除水分)と補液回収分とを合わせたものとなる。
本発明は、補液の実施による上述の効果を十分に得るため、適正な注入量及び注入間隔で補液を実施可能とするものである。 In order to prevent such a rapid decrease in blood pressure, fluid replacement is performed intermittently. By performing dialysis while recovering blood circulation by performing fluid replacement, blood pressure is prevented from lowering, peripheral circulation is improved, and the speed of plasma refilling is maintained. As a result, the rate of decrease in the amount of circulating blood after dialysis can be reduced even at the same water removal rate (excluding the replacement fluid collection) as compared to the case where no replacement fluid is performed. The increase in the amount of circulating blood due to the replacement fluid is removed by the blood purification means 120 from the start to the end of the dialysis. Therefore, the total water removal amount is the sum of the patient's excess water (weight removal water) and the replacement fluid collection.
The present invention makes it possible to carry out rehydration at an appropriate injection amount and injection interval in order to sufficiently obtain the above-mentioned effects by performing rehydration.
本発明は、補液の実施による上述の効果を十分に得るため、適正な注入量及び注入間隔で補液を実施可能とするものである。 In order to prevent such a rapid decrease in blood pressure, fluid replacement is performed intermittently. By performing dialysis while recovering blood circulation by performing fluid replacement, blood pressure is prevented from lowering, peripheral circulation is improved, and the speed of plasma refilling is maintained. As a result, the rate of decrease in the amount of circulating blood after dialysis can be reduced even at the same water removal rate (excluding the replacement fluid collection) as compared to the case where no replacement fluid is performed. The increase in the amount of circulating blood due to the replacement fluid is removed by the blood purification means 120 from the start to the end of the dialysis. Therefore, the total water removal amount is the sum of the patient's excess water (weight removal water) and the replacement fluid collection.
The present invention makes it possible to carry out rehydration at an appropriate injection amount and injection interval in order to sufficiently obtain the above-mentioned effects by performing rehydration.
次に、一般的な条件で補液を実施した場合における、循環血液量の変化について説明する。
図4は、一般的に実施されている注入量200ml、注入間隔30分の条件で、補液を実施した場合の循環血液量の変化率を示す図である。図4で示されるように、30分毎の補液の実施により循環血液量が上昇していることが分かる。
この補液による循環血液量の上昇率は、体外からの補液分と、体内における血漿再充填による血漿の血管内への移動量に依存すると考えられる。この血漿再充填の速度は患者によって異なり、また透析中にも変化するので、適正な補充液の注入量は補液の実施毎に異なる。なお、本実施形態の場合、補充液を注入中は、血液浄化手段120による除水は行われていないので、除水による減少分は考えなくてよい。 Next, a description will be given of a change in the amount of circulating blood when fluid replacement is performed under general conditions.
FIG. 4 is a diagram showing the rate of change in the amount of circulating blood when a replacement fluid is performed under the conditions of a commonly performed injection volume of 200 ml and an injection interval of 30 minutes. As shown in FIG. 4, it can be seen that the amount of circulating blood is increased by performing the replacement fluid every 30 minutes.
It is considered that the rate of increase in the amount of circulating blood due to the replacement fluid depends on the replacement fluid from outside the body and the amount of plasma that moves into the blood vessel due to refilling of the plasma in the body. Since the rate of plasma refilling varies from patient to patient and also during dialysis, the proper replenishment rate will vary from one rehydration to another. In addition, in the case of this embodiment, since the water removal by the blood purification means 120 is not performed during the infusion of the replenisher, it is not necessary to consider the decrease due to the water removal.
図4は、一般的に実施されている注入量200ml、注入間隔30分の条件で、補液を実施した場合の循環血液量の変化率を示す図である。図4で示されるように、30分毎の補液の実施により循環血液量が上昇していることが分かる。
この補液による循環血液量の上昇率は、体外からの補液分と、体内における血漿再充填による血漿の血管内への移動量に依存すると考えられる。この血漿再充填の速度は患者によって異なり、また透析中にも変化するので、適正な補充液の注入量は補液の実施毎に異なる。なお、本実施形態の場合、補充液を注入中は、血液浄化手段120による除水は行われていないので、除水による減少分は考えなくてよい。 Next, a description will be given of a change in the amount of circulating blood when fluid replacement is performed under general conditions.
FIG. 4 is a diagram showing the rate of change in the amount of circulating blood when a replacement fluid is performed under the conditions of a commonly performed injection volume of 200 ml and an injection interval of 30 minutes. As shown in FIG. 4, it can be seen that the amount of circulating blood is increased by performing the replacement fluid every 30 minutes.
It is considered that the rate of increase in the amount of circulating blood due to the replacement fluid depends on the replacement fluid from outside the body and the amount of plasma that moves into the blood vessel due to refilling of the plasma in the body. Since the rate of plasma refilling varies from patient to patient and also during dialysis, the proper replenishment rate will vary from one rehydration to another. In addition, in the case of this embodiment, since the water removal by the blood purification means 120 is not performed during the infusion of the replenisher, it is not necessary to consider the decrease due to the water removal.
適正な補液の注入量について本発明者らが検討した結果、1回の補液の実施による循環血液量の変化率(上昇率)が5~10%の範囲内となることが望ましいと考えられる。この変化率が10%を超えると、循環血液量の上昇が急激となり、急激な血圧の上昇を招くおそれがある。また、心疾患を有する患者の場合には、血圧の上昇による負担が大きくなるので、変化率の上限を10%よりも低い値に設定し、補充液の1回当たりの注入量を少なくして注入回数を多くするように調整してもよい。また、補液の注入量が過剰であると、補液回収分の除水量が多くなり、患者の余剰水分と合わせて総除水量が多くなる。その結果、除水速度が大きくなってしまい、血圧低下のリスクが増大する。また、変化率が5%より小さくなると、前述した補液による効果を十分に得られないこととなる。
結果 As a result of the present inventors' investigation on the appropriate amount of replacement fluid, it is considered that it is desirable that the rate of change (increase rate) of the circulating blood volume after one replacement fluid is within the range of 5 to 10%. If the rate of change exceeds 10%, the circulating blood volume rises rapidly, which may lead to a rapid rise in blood pressure. In addition, in the case of a patient having a heart disease, the burden due to an increase in blood pressure increases, so the upper limit of the rate of change is set to a value lower than 10%, and the amount of infusion per replenisher is reduced. Adjustment may be made to increase the number of injections. In addition, if the infusion amount of the replacement fluid is excessive, the water removal amount for the replacement fluid recovery increases, and the total water removal amount increases together with the excess water of the patient. As a result, the water removal rate increases, and the risk of lowering blood pressure increases. On the other hand, if the rate of change is less than 5%, the above-described effect of the replacement fluid cannot be sufficiently obtained.
そこで、補液による循環血液量の変化率が5~10%の範囲内となるように、補充液の注入量を制御する方法について説明する。
Therefore, a method of controlling the amount of the replenisher to be injected so that the rate of change of the circulating blood volume by the replenisher is in the range of 5 to 10% will be described.
(第1の補充液制御方法)
本実施形態では、一例として補充液の注入間隔を30分で一定とし、4時間の治療のうち、合計7回の補液を実施する場合について図5及び図6を参照して説明する。 (First replenisher control method)
In the present embodiment, as an example, a case will be described with reference to FIG. 5 and FIG. 6 in which the infusion interval of the replenisher is fixed at 30 minutes and the replenisher is performed a total of seven times during the treatment for 4 hours.
本実施形態では、一例として補充液の注入間隔を30分で一定とし、4時間の治療のうち、合計7回の補液を実施する場合について図5及び図6を参照して説明する。 (First replenisher control method)
In the present embodiment, as an example, a case will be described with reference to FIG. 5 and FIG. 6 in which the infusion interval of the replenisher is fixed at 30 minutes and the replenisher is performed a total of seven times during the treatment for 4 hours.
制御部150は、循環血液量測定手段140によりヘマトクリット値を測定し、この測定されたヘマトクリット値に基づいて、経時的に循環血液量の変化率を算出する。
例えば、1回目の補充液は、患者の基礎体重に応じて決めることができる。例えば、基礎体重が50kg以上の患者は、1回の補液量を200mlとし、50kg未満の患者は150mlとする等して、補充液の注入量を決めることができる。 Thecontrol unit 150 measures the hematocrit value by the circulating blood volume measuring means 140, and calculates the change rate of the circulating blood volume over time based on the measured hematocrit value.
For example, the first replenishment solution can be determined according to the patient's basal weight. For example, the infusion amount of the replenisher can be determined by setting the amount of replenisher to 200 ml for a patient weighing 50 kg or more and 150 ml for a patient less than 50 kg at a time.
例えば、1回目の補充液は、患者の基礎体重に応じて決めることができる。例えば、基礎体重が50kg以上の患者は、1回の補液量を200mlとし、50kg未満の患者は150mlとする等して、補充液の注入量を決めることができる。 The
For example, the first replenishment solution can be determined according to the patient's basal weight. For example, the infusion amount of the replenisher can be determined by setting the amount of replenisher to 200 ml for a patient weighing 50 kg or more and 150 ml for a patient less than 50 kg at a time.
図5を参照して、透析治療の流れについて説明する。
透析装置100は、透析開始後、所定の速度で除水を行う(S100)。所定の時間が経過した後(S110)、所定の注入量で補液を実施する(S120)。
直近の補液が最後の補液か否かを判定し(S130)、最後の補液でない場合は、直近の循環血液量の変化率(上昇率)に基づいて次回補液条件を設定する(S140)。最後の補液である場合は、所定の除水速度で除水し(S150)、所定の透析時間が経過した後(S160)、透析治療を終了する。ここで、S150における所定の除水速度とは、透析治療により患者から取り除くべく水分量(除水量)に基づいて設定された透析治療開始時の除水速度を示す。また、S160における所定の透析時間とは、同様に、透析治療開始時の除水時間を示す。 The flow of the dialysis treatment will be described with reference to FIG.
After the start of dialysis, thedialysis device 100 performs water removal at a predetermined speed (S100). After a predetermined time has elapsed (S110), replacement fluid is performed at a predetermined injection amount (S120).
It is determined whether or not the latest replacement fluid is the last replacement fluid (S130). If it is not the last replacement fluid, the next replacement fluid condition is set based on the latest change rate (increase rate) of the circulating blood volume (S140). If it is the last replacement fluid, water is removed at a predetermined water removal rate (S150), and after a predetermined dialysis time has elapsed (S160), the dialysis treatment is terminated. Here, the predetermined water removal rate in S150 indicates a water removal rate at the start of dialysis treatment set based on the amount of water (water removal amount) to be removed from the patient by dialysis treatment. Similarly, the predetermined dialysis time in S160 indicates the water removal time at the start of the dialysis treatment.
透析装置100は、透析開始後、所定の速度で除水を行う(S100)。所定の時間が経過した後(S110)、所定の注入量で補液を実施する(S120)。
直近の補液が最後の補液か否かを判定し(S130)、最後の補液でない場合は、直近の循環血液量の変化率(上昇率)に基づいて次回補液条件を設定する(S140)。最後の補液である場合は、所定の除水速度で除水し(S150)、所定の透析時間が経過した後(S160)、透析治療を終了する。ここで、S150における所定の除水速度とは、透析治療により患者から取り除くべく水分量(除水量)に基づいて設定された透析治療開始時の除水速度を示す。また、S160における所定の透析時間とは、同様に、透析治療開始時の除水時間を示す。 The flow of the dialysis treatment will be described with reference to FIG.
After the start of dialysis, the
It is determined whether or not the latest replacement fluid is the last replacement fluid (S130). If it is not the last replacement fluid, the next replacement fluid condition is set based on the latest change rate (increase rate) of the circulating blood volume (S140). If it is the last replacement fluid, water is removed at a predetermined water removal rate (S150), and after a predetermined dialysis time has elapsed (S160), the dialysis treatment is terminated. Here, the predetermined water removal rate in S150 indicates a water removal rate at the start of dialysis treatment set based on the amount of water (water removal amount) to be removed from the patient by dialysis treatment. Similarly, the predetermined dialysis time in S160 indicates the water removal time at the start of the dialysis treatment.
図6を参照して、補液条件の設定方法について説明する。
直近の補液の実施による補充液の注入開始前と注入終了後の循環血液量の変化率を算出し(S141)、補液による変化率が所定の範囲内にあるか否かを判定する(S142)。この補液による変化率が5~10%の範囲内にある場合は、補充液の注入量が適正な量であると判定して、次回30分後の補液を1回目と同じ注入量として実施する(S143)。また、補液による変化率が10%を超える場合には、注入量が過剰であると判定して、次回30分後の補液の注入量を減じた量とする(S144)。具体的には、循環血液量の変化率が大きい程、注入する補液量を少なくしてもよく、また循環血液量の変化率にかかわらず、一定の割合補液の注入量を減じてもよい。例えば、循環血液量の変化率が上限の10%に対する、実際の変化率との比率を算出し、初期の補液量200mlに算出した比率を掛けることで減じる補液量を算出する。上記例では、補液による循環血液量の変化率が所定範囲を超えた場合に、補液の注入量と注入間隔の両者を変更するように制御したが、一方を変更せず、もう一方のみを変更するように制御してもよい。
また、補液による変化率が5%より小さい場合には、注入量が過少であると判定して、次回30分後の補液の注入量を増加させた量とする(S145)。具体的には、循環血液量の変化率が小さい程、注入する補液量を多くしてもよく、また循環血液量の変化率にかかわらず一定の割合補液の注入量を増加させてもよい。例えば、循環血液量の変化率が上限の10%に対する、実際の変化率との比率を算出し、初期の補液量200mlに算出した比率を掛けることで増加させる補液量を算出する。
このようにして、制御部150は直近の補液による循環血液量の変化率に基づいて、次回の補液による循環血液量の変化率が5~10%の範囲となるように、次回の補充液の注入量を調整する。 With reference to FIG. 6, a method for setting the replacement fluid conditions will be described.
The rate of change in circulating blood volume before the start of infusion of the replenisher and after the end of infusion due to the most recent rehydration is calculated (S141), and it is determined whether the rate of change by the rehydration is within a predetermined range (S142). . If the rate of change due to the replacement fluid is within the range of 5 to 10%, it is determined that the injection amount of the replenisher is an appropriate amount, and thereplacement fluid 30 minutes after the next time is used as the same injection amount as the first injection. (S143). When the rate of change due to the replacement fluid exceeds 10%, it is determined that the injection amount is excessive, and the injection amount of the replacement fluid 30 minutes after the next time is reduced (S144). Specifically, the larger the rate of change of the circulating blood volume, the smaller the amount of replacement fluid to be infused, and the lower the rate of change of the circulating blood volume, the lower the rate of infusion of the replacement fluid at a fixed rate. For example, the ratio of the change rate of the circulating blood volume to the actual change rate with respect to the upper limit of 10% is calculated, and the replacement fluid amount to be reduced by multiplying the initial replacement fluid amount by 200 ml is calculated. In the above example, when the change rate of the circulating blood volume due to replacement fluid exceeds a predetermined range, control is performed so as to change both the injection amount and the injection interval of replacement fluid, but one is not changed and only the other is changed. Control may be performed.
If the change rate due to the replacement fluid is less than 5%, it is determined that the injection amount is too small, and the injection amount of thereplacement fluid 30 minutes after the next time is increased (S145). Specifically, the smaller the rate of change in circulating blood volume, the greater the amount of replacement fluid to be infused, or the greater the rate of infusion of replacement fluid at a constant rate regardless of the rate of change in circulating blood volume. For example, the ratio of the change rate of the circulating blood volume to the actual change rate with respect to the upper limit of 10% is calculated, and the initial replacement fluid amount is multiplied by the calculated ratio to 200 ml to calculate the replacement fluid amount to be increased.
In this way, thecontrol unit 150 sets the change rate of the circulating blood volume by the next replacement fluid on the basis of the change rate of the circulating blood volume by the latest replacement fluid in the range of 5 to 10%. Adjust the injection volume.
直近の補液の実施による補充液の注入開始前と注入終了後の循環血液量の変化率を算出し(S141)、補液による変化率が所定の範囲内にあるか否かを判定する(S142)。この補液による変化率が5~10%の範囲内にある場合は、補充液の注入量が適正な量であると判定して、次回30分後の補液を1回目と同じ注入量として実施する(S143)。また、補液による変化率が10%を超える場合には、注入量が過剰であると判定して、次回30分後の補液の注入量を減じた量とする(S144)。具体的には、循環血液量の変化率が大きい程、注入する補液量を少なくしてもよく、また循環血液量の変化率にかかわらず、一定の割合補液の注入量を減じてもよい。例えば、循環血液量の変化率が上限の10%に対する、実際の変化率との比率を算出し、初期の補液量200mlに算出した比率を掛けることで減じる補液量を算出する。上記例では、補液による循環血液量の変化率が所定範囲を超えた場合に、補液の注入量と注入間隔の両者を変更するように制御したが、一方を変更せず、もう一方のみを変更するように制御してもよい。
また、補液による変化率が5%より小さい場合には、注入量が過少であると判定して、次回30分後の補液の注入量を増加させた量とする(S145)。具体的には、循環血液量の変化率が小さい程、注入する補液量を多くしてもよく、また循環血液量の変化率にかかわらず一定の割合補液の注入量を増加させてもよい。例えば、循環血液量の変化率が上限の10%に対する、実際の変化率との比率を算出し、初期の補液量200mlに算出した比率を掛けることで増加させる補液量を算出する。
このようにして、制御部150は直近の補液による循環血液量の変化率に基づいて、次回の補液による循環血液量の変化率が5~10%の範囲となるように、次回の補充液の注入量を調整する。 With reference to FIG. 6, a method for setting the replacement fluid conditions will be described.
The rate of change in circulating blood volume before the start of infusion of the replenisher and after the end of infusion due to the most recent rehydration is calculated (S141), and it is determined whether the rate of change by the rehydration is within a predetermined range (S142). . If the rate of change due to the replacement fluid is within the range of 5 to 10%, it is determined that the injection amount of the replenisher is an appropriate amount, and the
If the change rate due to the replacement fluid is less than 5%, it is determined that the injection amount is too small, and the injection amount of the
In this way, the
循環血液量の補充液増加分は、透析開始から終了までの間に除水速度を調整して回収すればよく、本実施形態では、図7に示すように直近の補液で注入した分を、次回の補液までに患者の余剰水分(体重除水分)に加えて回収するものとした。
また、補充液増加分の回収方法について、図8に示すように、最後の補液を実施後に補液の回収を行わずに、最後の補液の実施までに前倒しで最終補液分の回収を行ってもよい。この場合は、直近の補液による循環血液量の変化率によらず、最後の補液の注入量は所定の量に設定し、前倒しで除水を行えばよい。なお、説明を簡単にするため、補液の注入量が一定の場合を示したが、実際には、最終補液の注入量以外、補液の注入量は、直近の補液による循環血液量の変化率に基づいて変動する。 The increased amount of the replenisher in the circulating blood volume may be collected by adjusting the water removal rate from the start to the end of the dialysis, and in the present embodiment, the amount injected with the latest replenisher as shown in FIG. By the next rehydration, it was to be collected in addition to the patient's excess water (dehydrated water).
In addition, as shown in FIG. 8, regarding the method of recovering the increased replenishment solution, as shown in FIG. Good. In this case, regardless of the rate of change of the circulating blood volume due to the latest replacement fluid, the last replacement fluid injection amount may be set to a predetermined amount, and water removal may be performed ahead of time. In addition, for the sake of simplicity, the case where the infusion amount of the replacement fluid is constant is shown, but in actuality, the injection amount of the replacement fluid other than the final replacement fluid injection amount depends on the rate of change of the circulating blood volume due to the latest replacement fluid. Fluctuate based on
また、補充液増加分の回収方法について、図8に示すように、最後の補液を実施後に補液の回収を行わずに、最後の補液の実施までに前倒しで最終補液分の回収を行ってもよい。この場合は、直近の補液による循環血液量の変化率によらず、最後の補液の注入量は所定の量に設定し、前倒しで除水を行えばよい。なお、説明を簡単にするため、補液の注入量が一定の場合を示したが、実際には、最終補液の注入量以外、補液の注入量は、直近の補液による循環血液量の変化率に基づいて変動する。 The increased amount of the replenisher in the circulating blood volume may be collected by adjusting the water removal rate from the start to the end of the dialysis, and in the present embodiment, the amount injected with the latest replenisher as shown in FIG. By the next rehydration, it was to be collected in addition to the patient's excess water (dehydrated water).
In addition, as shown in FIG. 8, regarding the method of recovering the increased replenishment solution, as shown in FIG. Good. In this case, regardless of the rate of change of the circulating blood volume due to the latest replacement fluid, the last replacement fluid injection amount may be set to a predetermined amount, and water removal may be performed ahead of time. In addition, for the sake of simplicity, the case where the infusion amount of the replacement fluid is constant is shown, but in actuality, the injection amount of the replacement fluid other than the final replacement fluid injection amount depends on the rate of change of the circulating blood volume due to the latest replacement fluid. Fluctuate based on
以上説明した第1実施形態の透析装置100及び第1の補液制御方法によれば、以下の効果を奏する。
According to the dialysis device 100 and the first replacement fluid control method of the first embodiment described above, the following effects are obtained.
(1)透析装置100を、血液回路110と、血液浄化手段120と、透析液回路130と、循環血液量測定手段140と、補充液を血液回路110に注入するための補充液注入手段と、血液回路110に所定の間隔で間歇的に所定の量の補充液を注入するように補充液注入手段を制御する制御部150と、を含んで構成し、制御部150は、循環血液量測定手段140により測定される直近の補充液の注入による循環血液量の変化率に基づいて、次回の補充液の注入による循環血液量の変化率が所定の範囲内となるように、次回の補充液の注入量及び注入間隔を調整し、透析開始から終了までの間に、少なくとも血液回路110に注入される補充液の全量に相当する水分を回収するように血液浄化手段120の除水速度を制御するものとした。
これにより、患者の血液の循環動態に合わせた適正な補液を実現することができるので、補液による急激な血圧の上昇を抑制し、また、除水による血圧の低下を抑制できる。よって、透析中の血圧変動を小さくすることができ、患者の負担を軽減した透析治療と行うことができる。また、補液の注入量が過剰にならないように調整することで、補液回収分の除水速度を低減し、除水速度が大きすぎることに起因する血圧低下の発生を抑制することができる。 (1) Thedialysis apparatus 100 includes a blood circuit 110, a blood purification means 120, a dialysate circuit 130, a circulating blood volume measuring means 140, a replenisher injecting means for injecting a replenisher into the blood circuit 110, A control unit 150 for controlling the replenisher injecting means so as to intermittently inject a predetermined amount of replenisher into the blood circuit 110 at predetermined intervals. Based on the rate of change of the circulating blood volume due to the most recent replenishment infusion measured by 140, the rate of change of the circulating blood volume due to the next infusion of the replenishment is within a predetermined range. The injection amount and the injection interval are adjusted, and during the period from the start to the end of the dialysis, the water removal rate of the blood purification means 120 is controlled so as to collect at least the water equivalent to the total amount of the replenisher to be injected into the blood circuit 110. Suppose .
This makes it possible to realize an appropriate replacement fluid that matches the circulatory dynamics of the patient's blood, so that a rapid increase in blood pressure due to replacement fluid can be suppressed, and a decrease in blood pressure due to removal of water can be suppressed. Therefore, the change in blood pressure during dialysis can be reduced, and dialysis treatment with a reduced burden on the patient can be performed. In addition, by adjusting the injection amount of the replacement fluid so as not to be excessive, it is possible to reduce the water removal rate for the replacement fluid collection and to suppress the decrease in blood pressure caused by the water removal rate being too high.
これにより、患者の血液の循環動態に合わせた適正な補液を実現することができるので、補液による急激な血圧の上昇を抑制し、また、除水による血圧の低下を抑制できる。よって、透析中の血圧変動を小さくすることができ、患者の負担を軽減した透析治療と行うことができる。また、補液の注入量が過剰にならないように調整することで、補液回収分の除水速度を低減し、除水速度が大きすぎることに起因する血圧低下の発生を抑制することができる。 (1) The
This makes it possible to realize an appropriate replacement fluid that matches the circulatory dynamics of the patient's blood, so that a rapid increase in blood pressure due to replacement fluid can be suppressed, and a decrease in blood pressure due to removal of water can be suppressed. Therefore, the change in blood pressure during dialysis can be reduced, and dialysis treatment with a reduced burden on the patient can be performed. In addition, by adjusting the injection amount of the replacement fluid so as not to be excessive, it is possible to reduce the water removal rate for the replacement fluid collection and to suppress the decrease in blood pressure caused by the water removal rate being too high.
(2)透析装置100を用いた補液制御方法を、循環血液量測定手段140で測定される変化率を用いて直近の補充液の注入による循環血液量の変化率を算出し、直近の補充液の注入による循環血液量の変化率が所定の範囲内であれば、次回の補充液の注入量を直近の注入量と同量とし、前記変化率が所定の範囲よりも大きければ、該変化率に応じて次回の補充液の注入量を直近の注入量よりも少ない量とし、前記変化率が前記所定の範囲よりも小さければ、該変化率に応じて次回の補充液の注入量を直近の注入量よりも多い量とするものとした。
これにより、直近の補液の注入量が適性であった場合は、次回も同様に補液を行い、直近の注入量が多すぎたと場合は、次回の注入量を少なくし、直近の注入量が少なすぎた場合は、次回の補液量を多くして、患者の血液の循環動態に合わせた適正な補液を実現することができる。 (2) In the replacement fluid control method using thedialysis device 100, the change rate of the circulating blood volume due to the injection of the latest replenisher is calculated using the change rate measured by the circulating blood volume measuring means 140, and the latest replenisher solution is calculated. If the change rate of the circulating blood volume due to the injection is within a predetermined range, the next injection amount of the replenisher is the same as the latest injection amount, and if the change rate is larger than the predetermined range, the change rate The next injection amount of the replenisher is set to a smaller amount than the latest injection amount according to the above, and if the change rate is smaller than the predetermined range, the next injection amount of the replenisher is changed according to the change rate. The amount was set to be larger than the injection amount.
In this way, if the latest replenishment volume was appropriate, replenishment was performed in the same manner the next time, and if the last replenishment volume was too large, the next replenishment volume was reduced and the most recent replenishment volume was small. If it is too long, it is possible to increase the amount of fluid replacement at the next time and realize a fluid replacement appropriate for the blood circulation of the patient.
これにより、直近の補液の注入量が適性であった場合は、次回も同様に補液を行い、直近の注入量が多すぎたと場合は、次回の注入量を少なくし、直近の注入量が少なすぎた場合は、次回の補液量を多くして、患者の血液の循環動態に合わせた適正な補液を実現することができる。 (2) In the replacement fluid control method using the
In this way, if the latest replenishment volume was appropriate, replenishment was performed in the same manner the next time, and if the last replenishment volume was too large, the next replenishment volume was reduced and the most recent replenishment volume was small. If it is too long, it is possible to increase the amount of fluid replacement at the next time and realize a fluid replacement appropriate for the blood circulation of the patient.
<第2実施形態>
次に、第1実施形態で説明した透析装置100を用いた第2の補液制御方法について図9及び図10を参照して説明する。本実施形態では、補液の注入間隔が一定ではない点で、第1の補液制御方法とは異なる。 <Second embodiment>
Next, a second replacement fluid control method using thedialysis device 100 described in the first embodiment will be described with reference to FIGS. 9 and 10. The present embodiment differs from the first replacement fluid control method in that the replacement interval of the replacement fluid is not constant.
次に、第1実施形態で説明した透析装置100を用いた第2の補液制御方法について図9及び図10を参照して説明する。本実施形態では、補液の注入間隔が一定ではない点で、第1の補液制御方法とは異なる。 <Second embodiment>
Next, a second replacement fluid control method using the
(第2の補液制御方法)
本実施形態では、一例として、基準となる補充液の注入間隔を30分とし、2回目以降の注入間隔は、直近の補液による循環血液量の変化率に基づいて調整する。 (Second rehydration control method)
In the present embodiment, as an example, the infusion interval of the reference replenisher is set to 30 minutes, and the second and subsequent infusion intervals are adjusted based on the rate of change in circulating blood volume due to the most recent replenishment.
本実施形態では、一例として、基準となる補充液の注入間隔を30分とし、2回目以降の注入間隔は、直近の補液による循環血液量の変化率に基づいて調整する。 (Second rehydration control method)
In the present embodiment, as an example, the infusion interval of the reference replenisher is set to 30 minutes, and the second and subsequent infusion intervals are adjusted based on the rate of change in circulating blood volume due to the most recent replenishment.
透析治療の流れについては、第1実施形態で説明したものと同様であるので、説明を省略し、補液条件の設定方法について図9を参照して説明する。
図9に示すように、直近の補液の実施による補充液の注入開始前と注入終了後の循環血液量の変化率を算出し(S141)、補液による変化率が所定の範囲内にあるか否かを判定する(S142)。この補液による変化率が5~10%の範囲内にある場合は、補充液の注入量が適正な量であると判定して、次回の補液を1回目と同じ注入量とし、次回補液までの注入間隔を基準の注入間隔(30分)として実施する。(S146)。また、補液による変化率が10%を超える場合には、注入量が過剰であると判定して、次回の補液の注入量を減じた量とすると共に、次回補液までの注入間隔を基準の注入間隔(30分)よりも長くして実施する(S147)。具体的には、循環血液量の変化率が大きい程、注入間隔をより長くしてもよく、また循環血液量の変化率にかかわらず一定の割合注入間隔を長くしてもよい。例えば、循環血液量の変化率が上限の10%に対する、実際の変化率との比率を算出し、基準の注入間隔30分に算出した比率を掛けることで注入間隔の増加時間を算出する。
また、補液による変化率が5%より小さい場合には、注入量が過少であると判定して、次回の補液の注入量を増加させた量とすると共に、次回補液までの注入間隔を基準の注入間隔(30分)よりも短くして実施する(S148)。具体的には、循環血液量の変化率が小さい程、注入間隔を短くしてもよく、また循環血液量の変化率にかかわらず一定の割合注入間隔を短くしてもよい。例えば、循環血液量の変化率が上限の10%に対する、実際の変化率との比率を算出し、基準の注入間隔30分に算出した比率を掛けることで注入間隔の減少時間を算出する。 Since the flow of the dialysis treatment is the same as that described in the first embodiment, a description thereof will be omitted, and a method of setting the replacement fluid condition will be described with reference to FIG.
As shown in FIG. 9, the rate of change of the circulating blood volume before the start of infusion of the replenisher and after the end of infusion by the most recent rehydration is calculated (S141), and whether or not the rate of change by the rehydration is within a predetermined range. Is determined (S142). If the rate of change due to the replacement fluid is in the range of 5 to 10%, it is determined that the injection amount of the replenisher is an appropriate amount, and the next replacement fluid is set to the same injection amount as the first time, and the time until the next replacement fluid is changed. The injection interval is set as a reference injection interval (30 minutes). (S146). If the rate of change due to rehydration exceeds 10%, it is determined that the injection amount is excessive, and the injection amount of the next replacement fluid is reduced and the injection interval based on the injection interval until the next replacement fluid is set as a reference. The interval is longer than the interval (30 minutes) (S147). Specifically, the greater the rate of change in circulating blood volume, the longer the infusion interval may be, or the longer the infusion interval may be a constant rate regardless of the rate of change in circulating blood volume. For example, the ratio of the change rate of the circulating blood volume to the upper limit of 10% and the actual change rate is calculated, and thereference injection interval 30 minutes is multiplied by the calculated ratio to calculate the increase time of the injection interval.
When the rate of change due to rehydration is less than 5%, it is determined that the injection amount is too small, and the injection amount of the next replacement fluid is increased and the injection interval until the next replacement fluid is set as a reference. The injection is performed at a time shorter than the injection interval (30 minutes) (S148). Specifically, the smaller the rate of change in circulating blood volume, the shorter the injection interval may be, or the shorter the rate of infusion interval may be, regardless of the rate of change in circulating blood volume. For example, the ratio of the change rate of the circulating blood volume to the upper limit of 10% of the actual change rate is calculated, and the reference injection interval of 30 minutes is multiplied by the calculated ratio to calculate the decrease time of the injection interval.
図9に示すように、直近の補液の実施による補充液の注入開始前と注入終了後の循環血液量の変化率を算出し(S141)、補液による変化率が所定の範囲内にあるか否かを判定する(S142)。この補液による変化率が5~10%の範囲内にある場合は、補充液の注入量が適正な量であると判定して、次回の補液を1回目と同じ注入量とし、次回補液までの注入間隔を基準の注入間隔(30分)として実施する。(S146)。また、補液による変化率が10%を超える場合には、注入量が過剰であると判定して、次回の補液の注入量を減じた量とすると共に、次回補液までの注入間隔を基準の注入間隔(30分)よりも長くして実施する(S147)。具体的には、循環血液量の変化率が大きい程、注入間隔をより長くしてもよく、また循環血液量の変化率にかかわらず一定の割合注入間隔を長くしてもよい。例えば、循環血液量の変化率が上限の10%に対する、実際の変化率との比率を算出し、基準の注入間隔30分に算出した比率を掛けることで注入間隔の増加時間を算出する。
また、補液による変化率が5%より小さい場合には、注入量が過少であると判定して、次回の補液の注入量を増加させた量とすると共に、次回補液までの注入間隔を基準の注入間隔(30分)よりも短くして実施する(S148)。具体的には、循環血液量の変化率が小さい程、注入間隔を短くしてもよく、また循環血液量の変化率にかかわらず一定の割合注入間隔を短くしてもよい。例えば、循環血液量の変化率が上限の10%に対する、実際の変化率との比率を算出し、基準の注入間隔30分に算出した比率を掛けることで注入間隔の減少時間を算出する。 Since the flow of the dialysis treatment is the same as that described in the first embodiment, a description thereof will be omitted, and a method of setting the replacement fluid condition will be described with reference to FIG.
As shown in FIG. 9, the rate of change of the circulating blood volume before the start of infusion of the replenisher and after the end of infusion by the most recent rehydration is calculated (S141), and whether or not the rate of change by the rehydration is within a predetermined range. Is determined (S142). If the rate of change due to the replacement fluid is in the range of 5 to 10%, it is determined that the injection amount of the replenisher is an appropriate amount, and the next replacement fluid is set to the same injection amount as the first time, and the time until the next replacement fluid is changed. The injection interval is set as a reference injection interval (30 minutes). (S146). If the rate of change due to rehydration exceeds 10%, it is determined that the injection amount is excessive, and the injection amount of the next replacement fluid is reduced and the injection interval based on the injection interval until the next replacement fluid is set as a reference. The interval is longer than the interval (30 minutes) (S147). Specifically, the greater the rate of change in circulating blood volume, the longer the infusion interval may be, or the longer the infusion interval may be a constant rate regardless of the rate of change in circulating blood volume. For example, the ratio of the change rate of the circulating blood volume to the upper limit of 10% and the actual change rate is calculated, and the
When the rate of change due to rehydration is less than 5%, it is determined that the injection amount is too small, and the injection amount of the next replacement fluid is increased and the injection interval until the next replacement fluid is set as a reference. The injection is performed at a time shorter than the injection interval (30 minutes) (S148). Specifically, the smaller the rate of change in circulating blood volume, the shorter the injection interval may be, or the shorter the rate of infusion interval may be, regardless of the rate of change in circulating blood volume. For example, the ratio of the change rate of the circulating blood volume to the upper limit of 10% of the actual change rate is calculated, and the reference injection interval of 30 minutes is multiplied by the calculated ratio to calculate the decrease time of the injection interval.
このようにして、制御部150は直近の補液による循環血液量の変化率に基づいて、次回の補液による循環血液量の変化率が5~10%の範囲となるように次回の補充液の注入量を調整し、次回の補液までの注入間隔を調整する。
また、図10に示すように、最後の補液後の透析の残り時間に応じて、適宜、最終補液の注入量を増減して調整してもよい。 In this manner, thecontrol unit 150 injects the next replenisher so that the change rate of the circulating blood volume by the next replacement fluid is in the range of 5 to 10% based on the change rate of the circulating blood volume by the latest replacement fluid. Adjust the volume and adjust the interval between injections until the next fluid replacement.
Further, as shown in FIG. 10, the injection amount of the final replacement fluid may be appropriately increased or decreased according to the remaining time of the dialysis after the last replacement fluid.
また、図10に示すように、最後の補液後の透析の残り時間に応じて、適宜、最終補液の注入量を増減して調整してもよい。 In this manner, the
Further, as shown in FIG. 10, the injection amount of the final replacement fluid may be appropriately increased or decreased according to the remaining time of the dialysis after the last replacement fluid.
循環血液量の補充液増加分は、透析開始から終了までの間に除水速度を調整して回収すればよく、本実施形態では、第1実施形態において説明した場合と同様に、直近の補液で注入した分を、次回の補液までに回収するものとした(図10参照)。
The increased amount of the replenisher in the circulating blood volume may be collected by adjusting the water removal rate between the start and the end of the dialysis. In the present embodiment, as in the case described in the first embodiment, the latest replenisher is used. The amount injected in (1) was collected by the next replacement fluid (see FIG. 10).
以上説明した第2実施形態の第2の補液制御方法によれば、上記効果(1)及び(2)に加えて、以下の効果を奏する。
According to the second replacement fluid control method of the second embodiment described above, the following effects are obtained in addition to the effects (1) and (2).
(3)透析装置100を用いた補液制御方法を、直近の補充液の注入による循環血液量の変化率が前記所定の範囲内であれば、次回の補充液を注入するまでの間隔を所定の注入間隔とし、前記変化率が所定の範囲より大きければ、該変化率に応じて次回の補充液を注入するまでの間隔を所定の注入間隔よりも長くし、前記変化率が所定の範囲より小さければ、該変化率に応じて次回の補充液を注入するまでの間隔を所定の注入間隔よりも短くし、直近の補充液の注入から次回の補充液の注入までの間に、直近に注入された補充液の注入量に相当する水分を回収するように、血液浄化手段120の除水速度を制御するものとした。
これにより、直近の補液による注入量が過剰である場合に、次回の補液までの注入間隔を長くすることで、補液回収分の除水速度を小さくすることができ、除水速度が大きすぎることに起因する血圧低下の発生を抑制することができ、また、直近の注入量が過少である場合に、次回の補液までの注入間隔を短くすることで、循環血液量の十分な回復を早めて、血圧低下の発生を抑制することができる。 (3) The replacement fluid control method using thedialysis device 100 may be configured such that, if the rate of change of the circulating blood volume due to the most recent replenisher injection is within the above-mentioned predetermined range, the interval until the next replenisher is injected is set to a predetermined value. If the change rate is larger than a predetermined range, the interval between injections of the next replenisher is set longer according to the change rate than the predetermined injection interval, and the change rate is smaller than the predetermined range. For example, the interval between the injections of the next replenisher is set shorter than the predetermined injection interval in accordance with the change rate, and the interval between the injection of the most recent replenisher and the injection of the next replenisher is made. The water removal rate of the blood purification means 120 is controlled so as to collect water corresponding to the amount of the replenisher added.
In this way, when the injection amount by the latest replacement fluid is excessive, by increasing the injection interval until the next replacement fluid, the removal rate of the replacement fluid can be reduced, and the removal rate is too high. Can reduce the occurrence of blood pressure drop due to, and, if the latest infusion volume is too small, shorten the interval between infusions until the next rehydration to speed up the sufficient recovery of circulating blood volume In addition, the occurrence of a decrease in blood pressure can be suppressed.
これにより、直近の補液による注入量が過剰である場合に、次回の補液までの注入間隔を長くすることで、補液回収分の除水速度を小さくすることができ、除水速度が大きすぎることに起因する血圧低下の発生を抑制することができ、また、直近の注入量が過少である場合に、次回の補液までの注入間隔を短くすることで、循環血液量の十分な回復を早めて、血圧低下の発生を抑制することができる。 (3) The replacement fluid control method using the
In this way, when the injection amount by the latest replacement fluid is excessive, by increasing the injection interval until the next replacement fluid, the removal rate of the replacement fluid can be reduced, and the removal rate is too high. Can reduce the occurrence of blood pressure drop due to, and, if the latest infusion volume is too small, shorten the interval between infusions until the next rehydration to speed up the sufficient recovery of circulating blood volume In addition, the occurrence of a decrease in blood pressure can be suppressed.
以上、本発明の透析装置及び補液制御方法の好ましい各実施形態について説明したが、本発明は、上述した実施形態に制限されるものではなく、適宜変更が可能である。
例えば、上述の実施形態では、補充液として逆濾過された透析液を利用する場合について説明したが、補充液として生理食塩水を用いてもよいし、血液浄化手段を介さずに血液回路に直接接続された透析液ラインから透析液を補充する構成としてもよい。 As described above, the preferred embodiments of the dialysis device and the replacement fluid control method of the present invention have been described. However, the present invention is not limited to the above-described embodiments, and can be appropriately changed.
For example, in the above-described embodiment, a case has been described in which a back-filtered dialysate is used as a replenisher. However, physiological saline may be used as a replenisher, or directly into a blood circuit without passing through a blood purification unit. It may be configured to replenish the dialysate from the connected dialysate line.
例えば、上述の実施形態では、補充液として逆濾過された透析液を利用する場合について説明したが、補充液として生理食塩水を用いてもよいし、血液浄化手段を介さずに血液回路に直接接続された透析液ラインから透析液を補充する構成としてもよい。 As described above, the preferred embodiments of the dialysis device and the replacement fluid control method of the present invention have been described. However, the present invention is not limited to the above-described embodiments, and can be appropriately changed.
For example, in the above-described embodiment, a case has been described in which a back-filtered dialysate is used as a replenisher. However, physiological saline may be used as a replenisher, or directly into a blood circuit without passing through a blood purification unit. It may be configured to replenish the dialysate from the connected dialysate line.
100 透析装置
110 血液回路
111 動脈側ライン
111c 血液ポンプ
112 静脈側ライン
120 血液浄化手段
130 透析液回路
140 循環血液量測定手段
150 制御部Reference Signs List 100 dialyzer 110 blood circuit 111 arterial line 111c blood pump 112 venous line 120 blood purification means 130 dialysate circuit 140 circulating blood volume measuring means 150 control unit
110 血液回路
111 動脈側ライン
111c 血液ポンプ
112 静脈側ライン
120 血液浄化手段
130 透析液回路
140 循環血液量測定手段
150 制御部
Claims (6)
- 血液回路と、
前記血液回路に配置され、血液中の水分を除去可能な血液浄化手段と、
前記血液浄化手段に接続され、該血液浄化手段に透析液を導入及び導出する透析液回路と、
循環血液量の変化率を測定する測定手段と、
除水により減少する循環血液量を回復させるための補充液を前記血液回路に注入する補充液注入手段と、
前記血液回路に所定の間隔で間歇的に所定の量の補充液を注入するように前記補充液注入手段を制御する制御部と、を備える透析装置であって、
前記制御部は、前記測定手段により測定される直近の補充液の注入による循環血液量の変化率に基づいて、次回の補充液の注入による循環血液量の変化率が所定の範囲内となるように、次回の補充液の注入量及び/又は注入間隔を調整し、透析開始から終了までの間に、少なくとも前記血液回路に注入される補充液の全量に相当する水分を回収するように前記血液浄化手段の除水速度を制御する透析装置。 Blood circuit,
A blood purification means arranged in the blood circuit and capable of removing water in blood,
A dialysate circuit connected to the blood purification means, for introducing and leading a dialysate to the blood purification means,
Measuring means for measuring the rate of change in circulating blood volume,
Replenisher injection means for injecting a replenisher for recovering the circulating blood volume reduced by water removal into the blood circuit,
A control unit that controls the replenisher injection means so as to inject a predetermined amount of replenisher intermittently at predetermined intervals in the blood circuit, and a dialysis device comprising:
The control unit is configured such that the rate of change in the amount of circulating blood due to the next injection of the replenisher falls within a predetermined range based on the rate of change in the amount of circulating blood due to the most recent infusion of the replenisher measured by the measurement unit. Adjusting the next infusion amount and / or infusion interval of the replenisher so as to collect at least the water equivalent to the entire amount of the replenisher to be injected into the blood circuit from the start to the end of the dialysis. A dialysis device that controls the water removal speed of the purification means. - 前記補充液注入手段として前記血液浄化手段及び前記透析液回路が用いられ、前記補充液として前記血液浄化手段で逆濾過される透析液が用いられる請求項1に記載の透析装置。 The dialysis apparatus according to claim 1, wherein the blood purification means and the dialysate circuit are used as the replenisher injection means, and a dialysate back-filtered by the blood purification means is used as the replenisher.
- 血液回路と、
前記血液回路に配置され、血液中の水分を除去可能な血液浄化手段と、
前記血液浄化手段が接続され、透析液を導入及び導出するための透析液回路と、
循環血液量の変化率を測定するための測定手段と、
除水により減少する循環血液量を回復させるための補充液を前記血液回路に注入するための補充液注入手段と、
前記血液回路に所定の間隔で間歇的に所定の量の補充液を注入するように前記補充液注入手段を制御する制御部と、を備える透析装置を用いた補液制御方法であって、
前記測定手段で測定される前記変化率を用いて直近の補充液の注入による循環血液量の変化率を算出し、
前記変化率に基づいて、次回の補充液の注入による循環血液量の変化率が所定の範囲内となるように、次回の補充液の注入量及び/又は注入間隔を調整し、
透析開始から終了までの間に、少なくとも前記血液回路に注入される補充液の全量に相当する水分を回収するように前記血液浄化手段の除水速度を制御する補液制御方法。 Blood circuit,
A blood purification means arranged in the blood circuit and capable of removing water in blood,
The blood purification means is connected, and a dialysate circuit for introducing and extracting a dialysate,
Measuring means for measuring the rate of change of circulating blood volume,
A replenisher injecting means for injecting a replenisher for restoring a circulating blood volume reduced by water removal into the blood circuit,
A control unit that controls the replenisher injection means so as to inject a predetermined amount of replenisher intermittently at predetermined intervals in the blood circuit, and a replenisher control method using a dialysis device,
Using the rate of change measured by the measuring means to calculate the rate of change in circulating blood volume due to the injection of the latest replenisher,
Based on the change rate, adjust the next injection amount and / or injection interval of the replenisher so that the change rate of the circulating blood volume due to the next injection of the replenisher is within a predetermined range,
A replacement fluid control method for controlling a water removal rate of the blood purification means so as to collect at least water corresponding to a total amount of a replenisher to be injected into the blood circuit from the start to the end of dialysis. - 直近の補充液の注入による循環血液量の変化率が前記所定の範囲内であれば、次回の補充液の注入量を直近の注入量と同量とし、
前記変化率が前記所定の範囲よりも大きければ、該変化率に応じて次回の補充液の注入量を直近の注入量よりも少ない量とし、
前記変化率が前記所定の範囲よりも小さければ、該変化率に応じて次回の補充液の注入量を直近の注入量よりも多い量とする請求項3に記載の補液制御方法。 If the rate of change of the circulating blood volume due to the injection of the latest replenisher is within the predetermined range, the next injection amount of the replenisher is the same as the latest injection amount,
If the change rate is larger than the predetermined range, the next injection amount of the replenisher is set to an amount smaller than the latest injection amount according to the change rate,
4. The replacement fluid control method according to claim 3, wherein if the rate of change is smaller than the predetermined range, the next injection amount of the replenisher is set to be larger than the latest injection amount in accordance with the change rate. 5. - 直近の補充液の注入による循環血液量の変化率が前記所定の範囲内であれば、次回の補充液を注入するまでの間隔を所定の注入間隔とし、
前記変化率が前記所定の範囲より大きければ、該変化率に応じて次回の補充液を注入するまでの間隔を前記所定の注入間隔よりも長くし、
前記変化率が前記所定の値より小さければ、該変化率に応じて次回の補充液を注入するまでの間隔を前記所定の注入間隔よりも短くし、
直近の補充液の注入から次回の補充液の注入までの間に、直近に注入された補充液の注入量に相当する水分を回収するように、前記血液浄化手段の除水速度を制御する請求項3に記載の補液制御方法。 If the rate of change of the circulating blood volume due to the injection of the latest replenishment solution is within the predetermined range, the interval until the next replenishment solution is injected is a predetermined infusion interval,
If the change rate is larger than the predetermined range, the interval until the next replenisher is injected according to the change rate is longer than the predetermined injection interval,
If the change rate is smaller than the predetermined value, the interval until the next replenishment solution is injected according to the change rate is shorter than the predetermined injection interval,
Controlling the water removal rate of the blood purification means so as to collect water corresponding to the injection amount of the recently injected replenisher between the injection of the latest replenisher and the next injection of the replenisher. Item 6. A replacement fluid control method according to Item 3. - 前記所定の範囲は、5~10%である請求項3~5に記載の補液制御方法。 補 The fluid replacement control method according to any one of claims 3 to 5, wherein the predetermined range is 5 to 10%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980042057.9A CN112312941B (en) | 2018-06-27 | 2019-06-27 | Dialysis device and fluid replacement control method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018121783A JP7183584B2 (en) | 2018-06-27 | 2018-06-27 | dialysis machine |
JP2018-121783 | 2018-06-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020004602A1 true WO2020004602A1 (en) | 2020-01-02 |
Family
ID=68986748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/025756 WO2020004602A1 (en) | 2018-06-27 | 2019-06-27 | Dialysis device, and fluid replacement control method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7183584B2 (en) |
CN (1) | CN112312941B (en) |
WO (1) | WO2020004602A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021210563A1 (en) * | 2020-04-15 | 2021-10-21 | 株式会社ジェイ・エム・エス | Dialysis machine and control method |
CN115461100A (en) * | 2020-08-19 | 2022-12-09 | 上海心光生物医药有限责任公司 | Fluid treatment method and circulation treatment equipment and system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007268257A (en) * | 2006-03-10 | 2007-10-18 | Asahi Kasei Medical Co Ltd | Hemodialysis unit |
JP2011239860A (en) * | 2010-05-17 | 2011-12-01 | Nipro Corp | Intermittent infusion method for preventing lowering of blood, and blood purifying apparatus |
JP2011239866A (en) * | 2010-05-17 | 2011-12-01 | Nipro Corp | Blood purifying apparatus |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100441243C (en) * | 2002-11-14 | 2008-12-10 | 日机装株式会社 | Blood purification device |
JP4311242B2 (en) * | 2004-03-12 | 2009-08-12 | ニプロ株式会社 | Dialysis machine |
JP5158830B2 (en) * | 2005-06-22 | 2013-03-06 | 日機装株式会社 | Dialysis treatment device |
JP5548001B2 (en) * | 2010-03-25 | 2014-07-16 | 日機装株式会社 | Blood purification equipment |
-
2018
- 2018-06-27 JP JP2018121783A patent/JP7183584B2/en active Active
-
2019
- 2019-06-27 CN CN201980042057.9A patent/CN112312941B/en active Active
- 2019-06-27 WO PCT/JP2019/025756 patent/WO2020004602A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007268257A (en) * | 2006-03-10 | 2007-10-18 | Asahi Kasei Medical Co Ltd | Hemodialysis unit |
JP2011239860A (en) * | 2010-05-17 | 2011-12-01 | Nipro Corp | Intermittent infusion method for preventing lowering of blood, and blood purifying apparatus |
JP2011239866A (en) * | 2010-05-17 | 2011-12-01 | Nipro Corp | Blood purifying apparatus |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021210563A1 (en) * | 2020-04-15 | 2021-10-21 | 株式会社ジェイ・エム・エス | Dialysis machine and control method |
JP2021168786A (en) * | 2020-04-15 | 2021-10-28 | 株式会社ジェイ・エム・エス | Dialyzer and control method |
CN115461100A (en) * | 2020-08-19 | 2022-12-09 | 上海心光生物医药有限责任公司 | Fluid treatment method and circulation treatment equipment and system |
CN115461100B (en) * | 2020-08-19 | 2023-07-04 | 上海心光生物医药有限责任公司 | Fluid treatment method, circulation treatment equipment and system |
US12011691B2 (en) | 2020-08-19 | 2024-06-18 | Shanghai Xinguang Bio-Pharmaceutical Ltd. | Fluid treatment method, cycle treatment device and system |
Also Published As
Publication number | Publication date |
---|---|
CN112312941B (en) | 2023-09-08 |
CN112312941A (en) | 2021-02-02 |
JP2020000415A (en) | 2020-01-09 |
JP7183584B2 (en) | 2022-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110494174B (en) | Method and device for determining connection state between replenishment liquid line and blood circuit in hemodialysis device | |
CN110944692B (en) | Method for operating a blood treatment device, control unit for carrying out the method and treatment device | |
TW201223569A (en) | An ambulatory ultrafiltration device, related methods and a computer program product | |
JP2000107284A (en) | Dialysis apparatus and washing priming method | |
US11116883B2 (en) | Method for removing blood from an extracorporeal blood circuit after completing a blood treatment session, control and regulating unit and treatment apparatus for executing the method | |
WO2020004602A1 (en) | Dialysis device, and fluid replacement control method | |
US20190201609A1 (en) | Blood purification apparatus | |
WO2021059818A1 (en) | Blood purification device | |
JP6642695B2 (en) | Hemodialysis machine and control program | |
WO2021059817A1 (en) | Blood purification device | |
JP7396180B2 (en) | Dialysis device and control method | |
CN112334171B (en) | Dialysis apparatus and control method | |
Salvatori et al. | First clinical trial for a new CRRT machine: the Prismaflex | |
KR20160008202A (en) | Control unit and method for determining a pressure in a blood vessel, especially in an arteriovenous fistula | |
JP2019187789A (en) | Replenishment control method, control device and dialyzer | |
JP7293761B2 (en) | Determining method for dialysis machine and circuit set | |
JP2023517466A (en) | Method and device for determining when to collect pressure measurements | |
JP2022137868A (en) | Blood purification device | |
JP2023005175A (en) | Blood purification device | |
JP2022185796A (en) | Blood purification device | |
CN116096440A (en) | Method and device for priming an extracorporeal blood circuit | |
JP2024075976A (en) | Blood Purification Device | |
JP2024085570A (en) | Blood Purification Device | |
JP2021073030A (en) | Blood purification device | |
IT202100028082A1 (en) | Apparatus for extracorporeal blood treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19825001 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19825001 Country of ref document: EP Kind code of ref document: A1 |