JPS59115051A - Blood purifying apparatus - Google Patents

Blood purifying apparatus

Info

Publication number
JPS59115051A
JPS59115051A JP57224743A JP22474382A JPS59115051A JP S59115051 A JPS59115051 A JP S59115051A JP 57224743 A JP57224743 A JP 57224743A JP 22474382 A JP22474382 A JP 22474382A JP S59115051 A JPS59115051 A JP S59115051A
Authority
JP
Japan
Prior art keywords
blood
circulating
plasma
volume
blood volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57224743A
Other languages
Japanese (ja)
Other versions
JPH0422587B2 (en
Inventor
利員 石原
北野 知之
憲志 前田
徹 新里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP57224743A priority Critical patent/JPS59115051A/en
Priority to DE8383102324T priority patent/DE3374660D1/en
Priority to EP83102324A priority patent/EP0089003B1/en
Priority to US06/473,574 priority patent/US4469593A/en
Publication of JPS59115051A publication Critical patent/JPS59115051A/en
Publication of JPH0422587B2 publication Critical patent/JPH0422587B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 発明の属する技術分野 本発明は血液浄化装置、特に血液浄化操作において度々
認められる血圧の低下、不均衡症候群などの発生を防止
しつつ、かつ効果的に血液浄化作用を行なうため、血液
浄化時における患者の体内における体液の分布、および
総体液量を適正に自動制御する血液浄化装置の改良に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical field to which the invention pertains The present invention is directed to a blood purification device, particularly to a blood purification device that effectively achieves blood purification while preventing the occurrence of a drop in blood pressure, an imbalance syndrome, etc. that are often observed in blood purification operations. The present invention relates to an improvement in a blood purification device that appropriately automatically controls the distribution of body fluid within a patient's body and the total amount of body fluid during blood purification.

従来技術 近年、腎不全などによって体液中の老廃物あるいは過剰
水分を除去する機能が損われた患者の治療には体外に取
出さr′した血液を牛透膜を介した透析あるいは沢過に
より浄化し、再びこれを体内に戻す血液浄化装置が用い
られている。
Prior Art In recent years, in the treatment of patients whose ability to remove waste products or excess water from body fluids is impaired due to renal failure, etc., the blood removed from the body is purified by dialysis or filtration through a bovine permeable membrane. A blood purification device is used that returns the blood to the body.

この種の装置において、安全かつ、効果的な血液浄化を
行なうためには、患者の体内循環血液量を適正に保ちつ
つ、体内に蓄積した老廃物あるいは過剰水公金効率良く
除去することが重要である。
In order to perform safe and effective blood purification with this type of device, it is important to efficiently remove waste products or excess water accumulated in the body while maintaining the appropriate amount of blood circulating in the patient's body. be.

すなわち、急激あるいは過度の水分除去は患者の体内循
環血液量を過度に減少させ、それによっテ血圧低下、シ
ョックあるいは末梢循環不全などの合併症を引き起す場
合があり、一方これが緩慢な除去では血液浄化に長時間
を要し、充分な除去ができない場合には高血圧、心不全
などの原因となる事が知られている。
That is, rapid or excessive water removal can excessively reduce the patient's circulating blood volume, which can lead to complications such as hypotension, shock, or peripheral circulatory insufficiency, whereas slow water removal can reduce blood volume. It is known that purification takes a long time and if sufficient removal is not possible, it can cause high blood pressure, heart failure, etc.

このため、血液浄化中前記体内循環血液量を適正に保つ
べく、患者からの除水速度を自動市1]御する装置が既
に本発明者等によって特願昭57−37457号として
提案されている1、シカ1L ’lx dEら、前記除
水速度の制御のみでは、患者の体内に蓄積された水分お
よび、尿素、尿酸、クレアチニン、電解質等の溶質を効
率良(、かつ安全に除去する事に対して効果が少いこと
が近年明らか&iCなってきた。
For this reason, the present inventors have already proposed a device for automatically controlling the rate of water removal from a patient in order to maintain the appropriate amount of circulating blood in the body during blood purification in Japanese Patent Application No. 57-37457. 1. Deer 1L 'lx dE et al., it is not possible to efficiently (and safely) remove water accumulated in the patient's body and solutes such as urea, uric acid, creatinine, and electrolytes by controlling the water removal rate alone. In recent years, it has become clear that it is less effective.

すなわち、血液浄化に伴なう体内循環血液量の変化(減
少)は、体内における有効浸透圧差と力学的圧力差によ
る調整作用に基ずく体液分布の変化分、すなわち、細胞
内および組織間lJ・ら糸(胸膜、毛細血管壁を通過し
て血管内へ移行する水分量(逆方向に移行する場合もあ
るので、組織@ll力・ら血管内への移行を正の値とす
る)と、体外に於ける血液浄化によって血液から除去し
た水分量との差によシ生じる。
In other words, the change (reduction) in the volume of blood circulating in the body due to blood purification is due to the change in body fluid distribution based on the adjustment effect of the effective osmotic pressure difference and the mechanical pressure difference in the body, that is, the change in intracellular and intertissue lJ. The amount of water that passes through the pleura and capillary walls and migrates into the blood vessels (as it may migrate in the opposite direction, the tissue @ll force/transfer into the blood vessels is taken as a positive value), This occurs due to the difference in the amount of water removed from the blood during blood purification outside the body.

そして、この時前記体内に蓄積された溶質全急、   
□速に除去するため、該溶質の鎖成分を全く含まない、
あるいは低濃度の透析液あるいは補充液を用いると、細
胞外液の浸透圧が低下し、細胞内から組織液側へさらに
血管内への水分移動が瀘1少するため循環血液量を適正
に保つためには除水速度を低下させねばならない。また
、一方上記事態を避けるため、透析液や補充液に高い浸
透圧の溶液を用いると、該高浸透圧を得るために高濃度
とした溶質の体内への蓄積を引き起こす問題があった。
At this time, all the solutes accumulated in the body,
□Contains no chain components of the solute for rapid removal;
Alternatively, if a low-concentration dialysate or replacement solution is used, the osmotic pressure of the extracellular fluid decreases, and the movement of water from the inside of the cells to the interstitial fluid and further into the blood vessels is reduced by 1, thereby maintaining the circulating blood volume at an appropriate level. Therefore, the water removal rate must be reduced. On the other hand, if a solution with a high osmotic pressure is used as a dialysate or a replenisher in order to avoid the above-mentioned situation, there is a problem in that solutes that have been made highly concentrated to obtain the high osmotic pressure accumulate in the body.

従って、患者の体内循環血液量を過度に減少させる事な
く、水分および各種溶質の除去をバランス良く行なうた
めには除水速度を適正に保つとともに患者の体内におけ
る血液、組織間液、細胞内液等の体液分布を適正に維持
しなければならず、このためには血液浄化中の患者の血
液(血漿)の浸透圧、すなわち血液中の各種溶質の濃度
を適正に保つことが必要である。そして、この血液中の
各種溶質の濃度は、血液浄化に用いる透析液あるいは補
充液等に含まれる各種溶質の濃度によって変化するため
、前記体液分布を適正に維持するためには、透析液、補
充液等の溶質濃度を適正に制御する必要がある。
Therefore, in order to remove water and various solutes in a well-balanced manner without excessively reducing the amount of blood circulating in the patient's body, it is necessary to maintain an appropriate water removal rate and reduce the amount of blood, interstitial fluid, and intracellular fluid in the patient's body. The distribution of body fluids must be maintained appropriately, and for this purpose, it is necessary to maintain an appropriate osmotic pressure of the patient's blood (plasma) during blood purification, that is, the concentration of various solutes in the blood. The concentration of various solutes in this blood changes depending on the concentration of various solutes contained in the dialysate or replacement fluid used for blood purification. It is necessary to appropriately control the concentration of solutes in liquids, etc.

しかしながら、上記透析液、補充液等の溶質濃度の適正
値は、希望する体液の浸透圧、各患者の治療上あるいは
生理的条件によって異1よるため、従来装置においては
この適正値を定めること勉(できす、この結果、各患者
に最適1工血液浄イヒx <T 1gう事が事実上困難
であった。
However, the appropriate value of the solute concentration in the dialysate, replacement fluid, etc. varies depending on the osmotic pressure of the desired body fluid and the therapeutic or physiological conditions of each patient. As a result, it was virtually difficult to perform an optimal blood purification procedure for each patient.

発明の目的 本発明は上記従来の課題に鑑みなされたものであシ、そ
の目的は、患者の体外に血液を導1.1.3シ半透膜を
介した透析あるい&i濾過によりイテう血液浄化におい
て、患者の体内循環血液ff、に適正イd【に保持しな
がら、)(ランスの良い老y石物除去會安定して行なう
ことのできる血液浄イし装置を提供する事にある。
Purpose of the Invention The present invention has been made in view of the above-mentioned conventional problems. An object of the present invention is to provide a blood purification device that can stably perform a good old stone removal process while maintaining a patient's body circulating blood at an appropriate level in blood purification. .

発明の構成 上記目的を達成するために、本発明をま、け者の血液を
体外に循環させる血液循環系と、血液循環系に設けられ
た血液浄化器と、血漿浸透正金調整して体内循環血液量
を所望の値に調整する体内循環血液量調整系と、体内循
環血液量の変化を測定する循環血液量測定器と、患者の
状態に応じた血液浄化中の体内循環血液量変化プログラ
ムを記憶する体内循環血液量メモリヲ有し血液浄化中に
測定される体内循環血液量と所定プログラムとから体内
循環血液量調整系を制御する制御系と、を含み、体内循
環血液量を所望値に保持しながら最適な浄化作用を行な
うことを特徴とする。
Structure of the Invention In order to achieve the above object, the present invention has been provided with a blood circulation system that circulates the blood of an outcast outside the body, a blood purifier installed in the blood circulation system, and a blood purification device that adjusts specie permeation in the blood plasma to circulate the blood of an outcast outside the body. A circulating blood volume adjustment system that adjusts the circulating blood volume to a desired value, a circulating blood volume measuring device that measures changes in the circulating blood volume, and a program for changing the circulating blood volume during blood purification according to the patient's condition. and a control system that controls a circulating blood volume adjustment system based on the circulating blood volume measured during blood purification and a predetermined program, to adjust the circulating blood volume to a desired value. It is characterized by its optimal purification effect while maintaining its properties.

また、本発明は患者の血液を体外に循環させる血液循環
系と、血液循環系に設けられた血液浄化器と、血漿浸透
圧を調整して体内循環血液量を所望の値に調整する体内
循環血液量調整系と、体内循環血液量の変化を測定する
循環血液量測定器と、実質的に血漿の浸透圧を測定する
血漿浸透圧測定と、患者の状態に応じた血液浄化中の体
内循環血液量変化プログラムを記憶する体内循環血液量
メモリ及び血漿浸透圧設定値を記憶する血漿浸透圧メモ
IJ k有し血液浄化中に測定される体内循環血液量及
び血漿浸透圧と前記プログラム及び設定値とを比較して
体内循環血液量調整系を制御する制御系と、を含却、体
内循環血液量全所望値に保持しながら最適な浄化作用を
行なうことを特徴とする。   ゛ 更に本発明は患者の血液を体外に循環させる血液循環系
と、血液循環系に設けられた血液浄化器と、血漿浸透圧
および除水速度全制御して体内循環血液量を所望の値に
調整する体内循環血液量調整系と、体内循環血液量の変
化を測定する循環血液量測定器と、除水量を測定する除
水量測定器と、患者の状態に応じて血液浄化中の体内循
環血液量変化プログラムを記憶する体内循環血液量メモ
リ及び除水量プログラムを記憶する除水量メモリを有し
血液浄化中に測定される体内循環血液量及び除水量と所
定プログラムとを比較して体内循環血液量調整系を制御
する制御系と、を含み、体内循環血液量を所望値に保持
しながら最適な浄化作用   (全行なうことを特徴と
する。
The present invention also provides a blood circulation system that circulates a patient's blood outside the body, a blood purifier installed in the blood circulation system, and an internal circulation system that adjusts plasma osmotic pressure to adjust the amount of blood circulating in the body to a desired value. A blood volume adjustment system, a circulating blood volume meter that measures changes in blood volume circulating in the body, a plasma osmolarity measurement that essentially measures the osmotic pressure of plasma, and internal circulation during blood purification according to the patient's condition. Internal circulating blood volume memory for storing blood volume change programs and plasma osmolarity memo IJk for storing plasma osmolarity set values; internal circulating blood volume and plasma osmolarity measured during blood purification and the programs and set values and a control system that controls the blood volume adjustment system in the body by comparing the total blood volume in the body to maintain the total blood volume in the body at a desired value while performing an optimal purification effect. Furthermore, the present invention controls the blood circulation system that circulates the patient's blood outside the body, the blood purifier installed in the blood circulation system, and the plasma osmotic pressure and water removal rate to maintain the blood volume circulating in the body at a desired value. A circulating blood volume adjustment system that adjusts the amount of blood circulating in the body, a circulating blood volume measuring device that measures changes in the amount of blood circulating in the body, a water removal amount measuring device that measures the amount of water removed, and blood circulating in the body that is being purified depending on the patient's condition. It has an internal circulating blood volume memory that stores a volume change program and a water removal amount memory that stores a water removal amount program, and compares the internal circulating blood volume and water removal amount measured during blood purification with a predetermined program to determine the internal circulating blood volume. and a control system that controls the adjustment system, and is characterized in that it performs optimal purification while maintaining the amount of blood circulating in the body at a desired value.

更に本発明は患者の血液を体外に循環させる血液循環系
と、血液循環系に設けられた血液浄化器と、血漿浸透圧
および除水速度全制御して体内循環血液量を所望の値に
調整する体内循環血液量調整系と、体内循環血液量変化
を測定する循環血液量測定器と、実質的に血漿の浸透圧
を測定する血漿浸透圧測定器と、除水量を測定する除水
量測定器と、患者の状態に応じて血液浄化中の体内循環
血液量変化プログラムを記憶する体内循環血液量メモリ
、血漿浸透圧を記憶する血漿浸透圧メモリ、及び、除水
量プログラムを記憶する除水量メモリを有し、血液浄化
中に測定される体内循環血液量、血漿浸透圧及び除水量
と所定プログラム及び設定値とを比較して体内循環血液
量調整系を制御する制御系と、を含み、体内循環血液量
を所望値に保持しながら最適な浄化作用を行なうこと全
特徴とする。
Furthermore, the present invention fully controls the blood circulation system that circulates the patient's blood outside the body, the blood purifier installed in the blood circulation system, the plasma osmotic pressure and the water removal rate, and adjusts the blood volume circulating in the body to a desired value. A circulating blood volume adjustment system that measures changes in circulating blood volume in the body, a circulating blood volume measuring device that measures changes in circulating blood volume, a plasma osmolarity measuring device that essentially measures the osmotic pressure of plasma, and a water removal amount measuring device that measures the amount of water removed. and a body circulating blood volume memory that stores a program for changing body circulating blood volume during blood purification according to the patient's condition, a plasma osmolarity memory that stores plasma osmolarity, and a water removal amount memory that stores a water removal amount program. and a control system that controls the internal circulating blood volume adjustment system by comparing the internal circulating blood volume, plasma osmotic pressure, and water removal amount measured during blood purification with a predetermined program and set value. The entire feature is to perform optimal purification while maintaining blood volume at a desired value.

以下、図面に基づいて本発明の好適な実施例を説明する
Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

第1実施例 第1図は本発明を血液透析に用いた第1実施例の基本的
な構成を示し、患者体内から血液を体外へ導出循環させ
る血液循環系10と該血液循環系10の血液浄化器へ透
析液を供給する澤析液系12そして血液循環系10にて
検出された体内循環血液量変化、実施例においてはへマ
ドクリット値に応じて体内循環血液量調整を制御するだ
めの制御系14とを含む。
First Embodiment FIG. 1 shows the basic configuration of a first embodiment in which the present invention is used for hemodialysis. Control for adjusting the volume of circulating blood in the body according to changes in blood volume circulating in the body detected in the dialysis liquid system 12 that supplies dialysate to the purifier and the blood circulation system 10, and in accordance with the hematocrit value in the embodiment. system 14.

血液循環系10は患者の血液を導入管16がら透析器1
8へ取込み、透析液系12と協働して血液の透析及び限
外濾過によって浄化を行った後、浄化された血液を返還
管2oから患者体内に戻し、この時の血液循環は循環ポ
ンプ22にょシ行われている。
A blood circulation system 10 introduces the patient's blood through a dialyzer 1 through an introduction tube 16.
After the blood is purified by dialysis and ultrafiltration in cooperation with the dialysate system 12, the purified blood is returned to the patient's body from the return tube 2o, and the blood circulation at this time is carried out by the circulation pump 22. It's been done a lot.

本発明では、以上の透析装置に、安全かつ効率の良い老
廃物除去作用を行わせるために、血液循環系10内にヘ
マトクリット測定器24を設け、これによって血液の電
気抵抗率を連続的に測定してヘマトクリットを求め、こ
のヘマトクリットと反比例の関係にある体内循環血液量
を予め設定した患者の状態に応じた血液浄化中の体内循
環血液量変化プログラムに一致させる様、血漿浸透圧を
調整して体内循環血液量を所望値に保持しながら最適な
浄化作用を行なうことを特徴とする。前記血漿浸透圧の
調整は、第1図の実施例においては、透析液の電解質濃
度例えば塩化ナトリウムの濃度の制御により行なわれる
In the present invention, a hematocrit measuring device 24 is provided in the blood circulation system 10 in order to perform a safe and efficient waste removal function in the above-described dialysis device, and this continuously measures the electrical resistivity of the blood. The hematocrit is determined, and the plasma osmolarity is adjusted so that the blood volume circulating in the body, which is inversely proportional to the hematocrit, matches the preset program for changing the volume of blood circulating in the body during blood purification according to the patient's condition. It is characterized by performing optimal purification while maintaining the amount of circulating blood in the body at a desired value. In the embodiment of FIG. 1, the plasma osmotic pressure is adjusted by controlling the electrolyte concentration of the dialysate, such as the concentration of sodium chloride.

前記透析液系12には周知の透析液供給装置26が設け
られており、透析液が透析器18に供給されるとともに
透析器18の排出側には減圧ポンプ28が接続されてい
る。従って、透析器18の半透膜には主として減圧ポン
プ28の減圧作用による負圧力が印加されており、血液
中の水分および分子量約10.000以下の溶質は半透
膜を通して透析液側に限外沢過される。
The dialysate system 12 is provided with a well-known dialysate supply device 26, which supplies dialysate to a dialyzer 18, and a vacuum pump 28 is connected to the discharge side of the dialyzer 18. Therefore, negative pressure is applied to the semipermeable membrane of the dialyzer 18 mainly due to the depressurizing action of the vacuum pump 28, and water in the blood and solutes with a molecular weight of about 10,000 or less are limited to the dialysate side through the semipermeable membrane. Tozawa passed away.

また、前記透析液供給装置26から透析器18に透析液
を供給する供給路上には体内循環血液量調整系を形成す
る混合器30と食塩水注入器32が設けられている。該
食塩水注入器32は制御された量の濃縮塩化ナトリウム
溶液を混合器30に供給し、混合器30は供給された透
析液と濃縮塩化ナトリウム溶液を混合して透析器18に
供給する。本実施例においては、制御系14により前述
したヘマトクリット値に応じて食塩水注入器32の注入
速度を変化せしめ、透析液中の塩化ナトリウム濃度を個
々の患者の状態に応じて適正に制御することにより、患
者の体内循環血液量を所望の値に維持し、血液浄化時の
合併症などを生起することのない最適な浄化作用を可能
とする。
Further, a mixer 30 and a saline injector 32 are provided on the supply path for supplying dialysate from the dialysate supply device 26 to the dialyzer 18, which form a circulating blood volume adjustment system in the body. The saline syringe 32 supplies a controlled amount of concentrated sodium chloride solution to a mixer 30 which mixes the supplied dialysate and concentrated sodium chloride solution and supplies it to the dialyzer 18. In this embodiment, the control system 14 changes the injection speed of the saline injector 32 according to the hematocrit value described above, and the sodium chloride concentration in the dialysate is appropriately controlled according to the condition of each individual patient. As a result, the amount of blood circulating in the patient's body can be maintained at a desired value, and an optimal purification effect can be achieved without causing complications during blood purification.

制御系14はへマドクリット測定器24の測定値と所定
のプログラムとに基づいて前記食塩水注入器32を制御
するための制御装置34と、透析を受ける患者の過去の
記録に基づいて透析中の好ましいヘマトクリット変化を
プログラム記憶する設定器36とから成シ、該設定器3
6は患者の状態に応じた血液浄化中の体内循環血液量変
化プログラムを記憶する体内循環血液量メモリヲ含む。
The control system 14 includes a control device 34 for controlling the saline injector 32 based on the measured value of the hematocrit measuring device 24 and a predetermined program, and a control device 34 for controlling the saline injector 32 based on the measured value of the hematocrit measuring device 24 and a predetermined program, and a control device 34 for controlling the saline injector 32 based on the measured value of the hematocrit measuring device 24 and a predetermined program. a setting device 36 for storing a program of desired hematocrit changes;
Reference numeral 6 includes a body circulating blood volume memory that stores a body circulating blood volume change program during blood purification according to the patient's condition.

第2図には前述したヘマクリット測定器24の具体的な
構成が示されておシ、血液導入管16内   キに導か
れる血液の電気抵抗率全測定する抵抗測定部37そして
測定値の温度補正を行う温度補正部38更に演算部40
を含む。
FIG. 2 shows the specific configuration of the hemaclit measuring device 24 described above, which includes a resistance measuring section 37 for measuring the total electrical resistivity of the blood introduced into the blood introduction tube 16, and temperature correction of the measured value. Temperature correction unit 38 and calculation unit 40
including.

+iiJ記抵抗副抵抗測定部37管16に連通接続され
た測定セル42を有し、4電極法によって電気抵抗率が
測定される。本実施例においては、血液の流れによる抵
抗率の異方性の影響を除去するために、血液が静止して
いる時と同等の抵抗率を示す方向の抵抗率を測定する。
+iiJ resistance sub-resistance measurement section 37 has a measurement cell 42 connected in communication with the tube 16, and electrical resistivity is measured by a four-electrode method. In this example, in order to eliminate the influence of anisotropy in resistivity due to the flow of blood, the resistivity is measured in a direction in which the resistivity is equivalent to that when the blood is at rest.

すなわち、絶縁管44には一対の電流電極46.48及
び一対の電圧電極50.52が配置されているが、この
電流電極46.48は絶縁管44の中心軸に対して対称
側でかつ中心軸方向に所定距離能れた位置に設置されて
おシ、また電圧電極50.52は前記電流電極46.4
8の内側に並行してそれぞれ設けられ、この結果、血液
の流れ方向に対して斜め方向の血液の抵抗率が測定され
る。電流電極46.48には交流定電流源54から測定
電流が供給され、この時の血液の電気抵抗率を電圧電極
50.52間の電圧値として検出するために電圧電極5
0.52には電圧計56が接続され、その出力が温度補
正部38に供給されている。
That is, a pair of current electrodes 46.48 and a pair of voltage electrodes 50.52 are arranged in the insulating tube 44, but the current electrodes 46.48 are symmetrical with respect to the central axis of the insulating tube 44 and are centered. The voltage electrodes 50.52 are installed at a predetermined distance apart from each other in the axial direction, and the voltage electrodes 50.52 are connected to the current electrodes 46.4.
As a result, the resistivity of blood in a diagonal direction with respect to the blood flow direction is measured. A measurement current is supplied from an AC constant current source 54 to the current electrodes 46, 48, and the voltage electrodes 5
A voltmeter 56 is connected to 0.52, and its output is supplied to the temperature correction section 38.

また、血液の温度による補正を行うため、絶縁管44に
は温度測定用のサーミスタ58が設けられており、その
出力端は温度補正部38に接続されている。
Further, in order to perform correction based on the temperature of the blood, the insulating tube 44 is provided with a thermistor 58 for temperature measurement, the output end of which is connected to the temperature correction section 38.

なお、本実施例においては、交流定電流源54からは人
体に対する安全を保ちまた分極の影響を避けるために2
5 K Hz 、30 p A r、m、s、なる電流
を供給し、また電圧計56は交流電圧を直流電圧に変換
して温度補正部38に供給している。
In this embodiment, in order to maintain safety for the human body and to avoid the influence of polarization, two sources are connected to the AC constant current source 54.
A current of 5 KHz, 30 pA r, m, s is supplied, and a voltmeter 56 converts the AC voltage into a DC voltage and supplies it to the temperature correction section 38 .

以上のようにして抵抗測定部36かも得られた電気抵抗
率は前記サーミスタ58の抵抗値に基づいて温度補正部
38によシ所望の温度補正が施される。一般に体温付近
では温度が1℃上昇すると電気抵抗率が約2−程度減少
することを考慮して37℃における電気抵抗率に換算す
る温度補正が行われている。
The electrical resistivity obtained by the resistance measuring section 36 as described above is subjected to desired temperature correction by the temperature correcting section 38 based on the resistance value of the thermistor 58. Generally, temperature correction is performed to convert the electrical resistivity to the electrical resistivity at 37° C., taking into account that when the temperature rises by 1° C., the electrical resistivity decreases by about 2° near the body temperature.

更に、この温度補正された抵抗率は演算部40によって
ヘマトクリットに演算される。すなわち、血液の25K
Hz近辺における電気抵抗率b〔Ω・α〕と遠心分離法
によるヘマトクリツhHt[%]とは但し、Kl中″4
7、K2中 54であシ、このことから、ヘマトクリッ
トH1は にて求められ、演算部4oは(2)式を得るための減衰
器60及び対数増幅器62を含む。
Furthermore, this temperature-corrected resistivity is calculated into hematocrit by the calculating section 40. That is, 25K of blood
However, the electrical resistivity b [Ω・α] near Hz and the hematocrit hHt [%] measured by centrifugation are ``4'' in Kl.
7. In K2 54 From this, the hematocrit H1 is determined by , and the calculation section 4o includes an attenuator 60 and a logarithmic amplifier 62 for obtaining equation (2).

以上のようにして血液の電気抵抗率から求められたヘマ
トクリットヲ用いて本発明においては制御系14が体内
循環血液量制御を行うことを特徴とし、第3図には制御
系の好適な実施例が示されている。
The present invention is characterized in that the control system 14 controls the amount of blood circulating in the body by using the hematocrit determined from the electrical resistivity of the blood as described above, and FIG. 3 shows a preferred embodiment of the control system. It is shown.

患者の過去の記録から求められた透析中の好ましい体内
循環血液量変化実施例においてはへマドクリット変化を
記憶する設定器36はプログラム全入力するキーボード
64とこれ全記憶する体内循環血液量メモリ、実施例に
おいてはへマドクリットメモリ66とを含む。
In this embodiment, the setting device 36 for storing the change in blood volume in the body during dialysis determined from the past records of the patient has a keyboard 64 for inputting all the programs, and a memory for the blood volume in the body for storing all the programs. In the example, a hemadcrit memory 66 is included.

制御装置34は前記へマドクリットメモリ66のプログ
ラムと、ヘマトクリット測定器24の測定値に基づいて
透析液系12の食塩水注入器32を駆動制御する構成を
有し、このために、ヘマトクリットメモリ66のプログ
ラムとへマドクリット測定器24から検出された透析中
のへマトクリツ)Hl  との差を求める引算器68と
、核艦を積分する積分器70と、核艦を微分する破分器
72と、引算器68、積分器70、微分器72のそれぞ
れの出力に重みづけをして加算し、制御信号金得る加算
器74とを含む。
The control device 34 has a configuration for driving and controlling the saline injector 32 of the dialysate system 12 based on the program in the hematocrit memory 66 and the measured value of the hematocrit measuring device 24. a subtractor 68 that calculates the difference between the program and the hematocrit during dialysis (Hl) detected by the hematocrit measuring device 24, an integrator 70 that integrates the nuclear ship, and a disintegrator 72 that differentiates the nuclear ship. , an adder 74 that weights and adds the outputs of the subtracter 68, the integrator 70, and the differentiator 72 to obtain a control signal.

そして、本発明においては、ヘマトクリッ3Htがプロ
グラム設定値よシ小さい場合には注入器32の注入速度
を漸次減少させ、逆にヘマトクリットHtがプログラム
設定値より大きい場合には注入器32の注入速度を漸次
増加制御して、血漿浸透圧の調整に基づく体内循環血液
量の保持が行なわれている。
In the present invention, when the hematocrit 3Ht is smaller than the programmed setting value, the injection speed of the syringe 32 is gradually decreased, and conversely, when the hematocrit Ht is larger than the programmed setting value, the injection speed of the syringe 32 is decreased. The amount of blood circulating in the body is maintained based on the adjustment of plasma osmotic pressure by controlling the gradual increase.

本発明の第1実施例は以上の構成から成シ、以   1
下にその作用を説明する。
The first embodiment of the present invention consists of the above configuration.
Its action will be explained below.

血液透析開始前に患者の過去の透析記録、前回の透析終
了から今回の透析開始までの体重増加、血圧その他の患
者の記録に基づいて、患者に最適なヘマトクリットに関
するプログラムが設定器34に都録され、この後に、周
知の血液透析が開始される。
Before starting hemodialysis, a program regarding the optimal hematocrit for the patient is recorded in the setting device 34 based on the patient's past dialysis records, weight gain from the end of the previous dialysis to the start of the current dialysis, blood pressure, and other patient records. After this, well-known hemodialysis is started.

本発明においては、血液透析中、連続的にヘマトクリッ
ト測定が行われ、これによシ、制御系12が前記設定さ
れたプログラムに従った浄化作用を制御する。
In the present invention, hematocrit measurement is performed continuously during hemodialysis, and the control system 12 thereby controls the purification action according to the set program.

一般に、血液透析において、透析器18の半透膜には血
液循環回路側の力学的圧力、減圧ポンプ28による力学
的圧力そして血液及び透析液の浸透圧が加わっておシ、
これによって所望の限外f過が行われている。すなわち
、透析液側の圧力全血液側の圧力よシ低(保つことによ
り、血液中の水分は半透膜を通して透析液側に限外f過
される。
Generally, in hemodialysis, mechanical pressure from the blood circulation circuit side, mechanical pressure from the vacuum pump 28, and osmotic pressure of blood and dialysate are applied to the semipermeable membrane of the dialyzer 18.
This provides the desired extreme f-pass. That is, by keeping the pressure on the dialysate side lower than the pressure on the whole blood side, water in the blood is allowed to pass through to the dialysate side through the semipermeable membrane.

この際、単位時間に限外f過される水分量は体内組織か
ら血管内に移動する水分量とは等しくなく、この結果、
血液透析中に患者の体内循環血液量には変動が生じるこ
ととなる。通常、1回の血液透析(4〜6時間程度)で
、1〜31程度の除水が行われ、この除水に伴って前記
体内循環血液量は減少する。本発明においては前記体内
循環血液量を血液透析中常時所定のプログラムされた値
に保つ様制御することを特徴とし、透析中の血球成分の
体積を一定とした場合(血球は半透膜を通過できない)
、前記体内循環血液量がヘマトクリットと反比例の関係
にあることに着目し、ヘマトクリットヲ測定し、これ全
所定のプログラムと比較して食塩水注入器32の制御が
行われる。
At this time, the amount of water that passes through the ultraf per unit time is not equal to the amount of water that moves from the body tissues into the blood vessels, and as a result,
During hemodialysis, there will be fluctuations in the amount of blood circulating in the patient's body. Normally, one hemodialysis session (approximately 4 to 6 hours) removes about 1 to 31 parts of water, and the amount of blood circulating in the body decreases with this water removal. The present invention is characterized in that the blood volume circulating in the body is controlled to be constantly maintained at a predetermined programmed value during hemodialysis. Can not)
Noting that the blood volume circulating in the body is inversely proportional to hematocrit, the hematocrit is measured, and the saline injector 32 is controlled by comparing it with a predetermined program.

従って、第1実施例では、細胞内組織間から血管内への
水分の移動が減少し、除水洗よって体内循環血液量が急
激に減少すると、この時のへマドクリットが設定値よシ
太き(なることから、食塩水注入器32の注入量を増加
させ血漿浸透圧全上昇して組織側から血管内への水分の
移動を促進して体内循環血液量の減少を防止し、逆の場
合にも同様に循環血液量の制御が適正に行われる。従っ
て、このような所定プログラムに沿った制御を行うこと
によシ、老廃物除去を患者の状態に合せて適正に行うこ
とが可能となる。
Therefore, in the first embodiment, when the movement of water from intracellular tissues into blood vessels decreases and the amount of circulating blood in the body decreases rapidly due to water removal, the hematocrit at this time becomes larger than the set value ( Therefore, the injection volume of the saline injector 32 is increased to increase the total plasma osmotic pressure and promote the movement of water from the tissue side into the blood vessels to prevent a decrease in the blood volume circulating in the body, and vice versa. Similarly, the amount of circulating blood is appropriately controlled. Therefore, by performing control according to such a predetermined program, waste products can be removed appropriately according to the patient's condition. .

第2実施例 第4図には本発明を血液を過装置に用いた第2実施例が
示されており、第1実施例と同一部材には同一符号を付
して説明全省略する。
Second Embodiment FIG. 4 shows a second embodiment in which the present invention is applied to a blood extraction device, and the same members as those in the first embodiment are given the same reference numerals, and a complete explanation thereof will be omitted.

第2実施例においては第1実施例と同様に血液浄化中の
体内循環血液量を患者のプログラムと比較するとともに
、浄化中の血漿浸透圧をも所定の設定値と比較して最適
な浄化作用を行なうことを特徴とする。
In the second embodiment, as in the first embodiment, the amount of blood circulating in the body during blood purification is compared with the patient's program, and the plasma osmotic pressure during purification is also compared with a predetermined set value to optimize the purification effect. It is characterized by carrying out the following.

本実施例の血液f過装置においては第1実施例と異なシ
血液濾過(ヘモ・フィルトレージョン)による浄化作用
が行なわれ、血液循環系10に設けられているヘモフィ
ルタ74及び該ヘモフィルタ74の濾過排液側に連通接
続されている排液系82の減圧ポンプ84によシ、老廃
物を含む血漿成分の一部が限外濾過され、それと同時に
前記血液循環系10には補充液系76からの補充液が供
給され、浄化された血液は患者体内に戻される。
In the blood filtration device of the present embodiment, a purifying action is performed by hemofiltration, which is different from that of the first embodiment, and the hemofiltration is carried out by the hemofilter 74 provided in the blood circulation system 10 and the filtration of the hemofilter 74. A part of plasma components containing waste products is ultrafiltered by a pressure reducing pump 84 of a drainage system 82 connected to the drainage side, and at the same time, a part of plasma components containing waste products is supplied to the blood circulation system 10 from a replenishing fluid system 76. Replacement fluid is supplied and the purified blood is returned to the patient's body.

本実施例においては補充液系76に、血液濾過療法で通
常用いられている濃度か、あるいはそれよシもやや低濃
度のナトリウム濃度(たとえば135 mEq/A! 
〜140 mEq/A )の補充液、源77と、この補
充液を血液循環系10に供給する第1の供給ポンプ79
と、濃縮塩化ナトリウム(以下NaC/ )溶液を蓄え
る第2の補充液源78と、この補充液(濃縮NaC7溶
液)を血液循環系10に供給する第2の供給ポンプ80
とを含み、この補充液系76の第1の供給ポンプ79が
除水量調整部を形成し、第2の供給ポンプ80が血漿浸
透圧調整部を形成し、上記除水量調整部と血漿浸透圧調
整部とから体内循環血液量調整系が形成されている。そ
してこれら両供給ポンプ79,80の回転数を制御系1
4からの制御信号によって変化させることによυ、血液
循環系10内への補充液の供給量およびNaC/濃度を
調整して、体内循環血液量および循環血液中のN a 
CA!濃度を所定量に制御することができる。
In this embodiment, the replacement fluid system 76 has a sodium concentration that is normally used in hemofiltration therapy, or even slightly lower (eg, 135 mEq/A!).
~140 mEq/A) of replenishment fluid, source 77 and a first supply pump 79 for supplying this replenishment fluid to the blood circulation system 10
, a second replenisher source 78 that stores concentrated sodium chloride (hereinafter referred to as NaC) solution, and a second supply pump 80 that supplies this replenisher (concentrated NaC7 solution) to the blood circulation system 10.
The first supply pump 79 of this replenisher system 76 forms a water removal amount adjustment section, the second supply pump 80 forms a plasma osmotic pressure adjustment section, and the water removal amount adjustment section and plasma osmotic pressure The regulating section forms an internal circulating blood volume regulating system. The control system 1 controls the rotational speed of both supply pumps 79 and 80.
By changing the amount of replenisher supplied into the blood circulation system 10 and the NaC/concentration by changing it according to the control signal from 4, the amount of blood circulating in the body and NaC in the circulating blood are
CA! The concentration can be controlled to a predetermined amount.

本実施例においても、血液循環系10の血液中ヘマトク
リットを測定してこれにより前記体内循環血液量を調整
する補充液系76の制御が行われるが、本実施例のよう
に、補充液系76によって体液とは異なる電解質濃度の
補充液を大量に体内に注入する等して、血漿の電解質譲
度及び電気抵抗率が変化する場合血液の電気抵抗率のみ
から(2)式によりヘマトクリットH1’(i−求める
と誤差が生する。このため、本実施例では、血液の電気
抵抗率ρb(ΩcIrL)とともに血漿の一部である濾
過排液の電気抵抗率ps(Ωcm)?求め、両電気抵抗
率から以下の(3)式および(4)式を用いてヘマトク
リットHt(チ)を求める。
In this embodiment as well, the replenishment fluid system 76 is controlled by measuring the hematocrit in the blood of the blood circulation system 10 and adjusting the amount of circulating blood in the body. When the electrolyte yield and electrical resistivity of plasma change due to, for example, injecting a large amount of replenisher with an electrolyte concentration different from that of body fluids into the body, the hematocrit H1' ( Therefore, in this example, the electrical resistivity ps (Ωcm) of the filtration liquid, which is a part of the plasma, is determined together with the electrical resistivity ρb (ΩcIrL) of the blood, and both electrical resistances are calculated. The hematocrit Ht (ch) is determined from the ratio using the following equations (3) and (4).

ρ −に2・ρ5     ・・・・・・・・・・・・
(3)ただし、(3)式は、r過排液の電気抵抗率ρ5
 から血漿の電気抵抗率ρp1−求める式で、K2  
は血漿中のタンパク質濃度によシ若干違いがあるかに、
〜1.05、K1 = 47  とすると好適である。
ρ − to 2・ρ5 ・・・・・・・・・・・・
(3) However, Equation (3) is the electrical resistivity ρ5 of r excess liquid.
The electrical resistivity of plasma ρp1- is determined by the formula K2
There may be slight differences depending on the protein concentration in plasma.
~1.05, K1 = 47 is suitable.

第5図には第2実施例のへマドクリット測定器24の構
成が示されており、血液循環系10ではヘモフィルタ7
4の排液がへマドクリット測定器24に供給されている
FIG. 5 shows the configuration of a hemocrit measuring device 24 according to a second embodiment, in which a hemofilter 7 is used in the blood circulation system 10.
The effluent of No. 4 is supplied to the hematocrit measuring device 24.

第5図から明らかなように、ヘモフィルタ74の血液入
側及び濾過排液出側にはそれぞれ抵抗測定部37a、3
7bが設けられ、これら両測定部は第2図の構造と同一
である。そして両抵抗測定部37から得られた電気抵抗
率は温度補正部38の温度補正器86a、86bにより
それぞれ37℃を基準とした温度補正が施こされた後、
血液の電気抵抗率ρb そしてt過液の電気抵抗率ρ5
 として演算部40に供給されて所望のへマトクリソト
演算が行われる。
As is clear from FIG. 5, resistance measuring portions 37a and 3 are provided on the blood inlet side and the filtered waste liquid outlet side of the hemofilter 74, respectively.
7b is provided, both measuring parts having the same structure as in FIG. The electrical resistivities obtained from both resistance measuring units 37 are subjected to temperature correction using temperature correctors 86a and 86b of the temperature correcting unit 38, respectively, with 37°C as a reference.
The electrical resistivity of blood ρb and the electrical resistivity of superfluid ρ5
The signal is supplied to the calculation unit 40 as a hematocrit calculation, and a desired hematochrysothorithmetic operation is performed.

演算部40は(3)式および(4)式の関係を用いてρ
b及びρ3 からヘマトクリツ)Ht’z計算し出力す
るものである。すなわち、まず増幅率に2  の増幅器
87によりρ5からρpを求め、次に演算回路88によ
シ(4)式に基づいてヘマトクリット出 を求める。
The calculation unit 40 calculates ρ using the relationship of equations (3) and (4).
It calculates the hematocrit (Ht'z) from b and ρ3 and outputs it. That is, first, an amplifier 87 with an amplification factor of 2 calculates ρp from ρ5, and then an arithmetic circuit 88 calculates the hematocrit output based on equation (4).

更に本実施例に於いては、上述し、たよりに補充液中の
NaC7濃度を変化させて血漿中のNaC7濃度(すな
わち血漿浸透圧)を制御し、細胞内に蓄積された水分の
細胞外への移動を調節することにより体液分布を適正に
保っているが血漿中のNa(4!濃度の過度なあるいは
不要な上昇を防止するために、血漿中のNaCla度の
監視と、それに基づいだ補充液中のNaC)濃度の制御
を行なう。血漿中のNaC1の多(はNa イオンおよ
びC7イオンに分かれており、かつこれらが、血漿中の
電解質の大部分を占めているので、血漿の電気抵抗率ρ
Furthermore, in this example, as mentioned above, the NaC7 concentration in the replenisher is changed to control the NaC7 concentration in the plasma (that is, the plasma osmotic pressure), and the water accumulated in the cells is transferred to the outside of the cells. In order to prevent an excessive or unnecessary rise in the concentration of Na (4! The concentration of NaC in the liquid is controlled. The amount of NaCl in plasma is divided into Na ions and C7 ions, and these account for most of the electrolytes in plasma, so the electrical resistivity of plasma is
.

から血漿中のNaC1濃度を知ることができ、本実施例
ではへマドクリット測定器24中のf過液抵抗測定部3
7、温度補正器86b及び増幅器87が血漿浸透圧測定
部を形成する。
The concentration of NaC1 in plasma can be determined from
7. The temperature compensator 86b and the amplifier 87 form a plasma osmolarity measuring section.

以上のようにして、血液f過匠伴なう血漿の電気抵抗の
変化およびその影響を考慮したヘマトクリットHt  
が求められると、この血漿電気抵抗率ρ およびヘマト
クリットHt に基づいて制御系14が本実施例におけ
る体内循環血液量調整系を形成する補充液系76の制御
を行なう。
As described above, the hematocrit Ht considering the change in electrical resistance of plasma accompanying blood overload and its influence.
Once obtained, the control system 14 controls the replenisher system 76, which forms the body circulating blood volume adjustment system in this embodiment, based on the plasma electrical resistivity ρ and hematocrit Ht.

第6図には第2実施例の制御系が示されている。FIG. 6 shows the control system of the second embodiment.

設定器36には、ヘマトクリットメモリ66とは別個に
血漿中のN a Cl濃度の上限を血漿の電気抵抗率p
p  (N a Cl濃度が上昇するとp、は減少する
のでρ の下限を与える事になる)として記憶する血漿
浸透圧メモリ、本実施例では血漿抵抗メモリ90が設げ
られておp、ヘマトクリットプログラム及び、設定され
た血漿抵抗値が個別に制御装置34へ供給される。
Separately from the hematocrit memory 66, the setting device 36 is configured to set the upper limit of the NaCl concentration in the plasma to the electrical resistivity p of the plasma.
A plasma osmotic pressure memory (in this embodiment, a plasma resistance memory 90) is provided to store p (p decreases as the NaCl concentration increases, thus providing a lower limit for ρ), and a hematocrit program. The set plasma resistance value is then individually supplied to the control device 34.

制御装置34は、第1実施例と同様に、メモリ66のプ
ログラムと血液浄化中に連続測定されたヘマトクリン)
Ht から補充液系76の供給ポンプ79及び80の制
御信号を発生する引算器68a、積分器70、微分器7
2、加算器74a、および加算器74bに加えて、血漿
抵抗メモリ90の設定値と測定された血漿の電気抵抗率
ρ、との差全1求める引算器68bと誤差がOまたは負
に近づ(と、加算器74bの出力信号全制限あるいは減
少させて供給ポンプ80に出力する制限器92が設けら
れている。第2実施例では、循環面′ti、量調整系は
、前述のように、通常用いられるものと同等ないし、や
や低い浸透圧の補充液を血液循環系]0に供給する供給
ポンプ79よ構成る除水量調整部と、高浸透圧補充液を
供給する供給ポンプ80より成る血漿浸透圧調整部によ
り構成されているので、制御装置34においては、両調
整部のそれぞれ知対して制御信号全発生する加算器74
a、加算器74bが独立に設けられておシ、それらは引
算器68aの出力する偏差信号と、その微分信号および
積分信号にそれぞれ適切な重みづけをして加算演算を行
なう。
As in the first embodiment, the control device 34 controls the program in the memory 66 and the hematocrine continuously measured during blood purification.
A subtracter 68a, an integrator 70, and a differentiator 7 generate control signals for the supply pumps 79 and 80 of the replenisher system 76 from Ht.
2. In addition to the adder 74a and the adder 74b, a subtracter 68b is used to calculate the total difference of 1 between the set value of the plasma resistance memory 90 and the measured plasma electrical resistivity ρ, and the error is O or close to negative. A limiter 92 is provided which completely limits or reduces the output signal of the adder 74b and outputs it to the supply pump 80. , a water removal amount adjustment section comprising a supply pump 79 that supplies a replenisher with an osmotic pressure equal to or slightly lower than that normally used to the blood circulation system; and a supply pump 80 that supplies a high osmotic replenisher with a high osmotic pressure. The control device 34 includes an adder 74 that generates all control signals for each of the two adjustment sections.
(a) An adder 74b is provided independently and performs an addition operation by appropriately weighting the deviation signal outputted from the subtracter 68a, its differential signal, and its integral signal.

本発明の第2実施例は以上の構成から成p、以下にその
作用を説明する。
The second embodiment of the present invention has the above configuration, and its operation will be explained below.

第2実施例において、血液を過の開始前に患者の状態に
合せた血液浄化中の体内循環血液量変化プログラム及び
血漿浸透圧設定値がへマドクリットメモリ66および血
漿抵抗メモリ90にそれぞれ記録され、血液f過開始と
ともに患者の血液及び限外沢過液から測定され体内循環
血液量及び血漿浸透圧と対応するヘマトクリットH1と
血漿電気抵抗率ρ、が前記プログラム及び設定値とそれ
ぞれ比較され、補充液の供給が適正に制御され、浄化中
における体内循環血液量が所定値に保持される。
In the second embodiment, before the start of blood purification, the internal circulating blood volume change program and plasma osmolarity set value during blood purification, which are tailored to the patient's condition, are recorded in the hematocrit memory 66 and plasma resistance memory 90, respectively. , hematocrit H1 and plasma electrical resistivity ρ, which are measured from the patient's blood and ultrafluid fluid at the onset of blood overflow and correspond to the circulating blood volume and plasma osmolality, are compared with the program and set values, respectively, and replenishment is performed. The supply of liquid is appropriately controlled, and the amount of blood circulating in the body during purification is maintained at a predetermined value.

すなわち、患者からの除水が充分に行なわれないとヘマ
トクリットH1が所定プログラムより小さくなるので、
これによって加算器74aの出力が注入ポンプ79の注
入速度全減少させて除水量を増加制御するとともに加算
器74bの出力により注入ポンプ80の注入速度全減少
させて補充液中のN a C71濃度を低下させ、患者
の体内に蓄積された過剰水分の除去を効果的に行なうと
ともに患者の血漿浸透圧の上昇全防止する。一方、体内
循環血液量がプログラムされた値よシ小さい場合には、
前記両注入ポンプ79.80の注入速度を増大して除水
量全減少させるとともに補充液中のNaCl濃度金上昇
させることによシ細胞内から細胞外への水分の移動を促
進して体内循環血液量を補f升することができる。
In other words, if water is not sufficiently removed from the patient, the hematocrit H1 will become smaller than the predetermined program.
As a result, the output of the adder 74a completely decreases the injection speed of the injection pump 79 to increase the amount of water removed, and the output of the adder 74b completely decreases the injection speed of the injection pump 80 to reduce the N a C71 concentration in the replenisher. It effectively removes excess water accumulated in the patient's body and completely prevents the patient's plasma osmolarity from increasing. On the other hand, if the circulating blood volume in the body is smaller than the programmed value,
By increasing the injection speed of both the injection pumps 79 and 80 to completely reduce the amount of water removed and increasing the NaCl concentration in the replenisher, the movement of water from inside the cells to the outside of the cells is promoted and blood circulating in the body is improved. The amount can be supplemented.

更に本実施例においては、上記の制御を行なった場合に
、注入器8oの注入量が増大して患者の血漿浸透圧が上
昇し、血漿電気抵抗率りが設定値よシ小さくなると、前
記注入器8oの注入速度全制限して血漿浸透圧の過度な
上昇を防止する事が可能である。
Furthermore, in this embodiment, when the above-mentioned control is performed, when the injection volume of the injector 8o increases and the patient's plasma osmotic pressure rises, and the plasma electrical resistivity becomes smaller than the set value, the injection volume is increased. It is possible to completely limit the injection rate of the device 8o to prevent an excessive increase in plasma osmotic pressure.

以上のようにして、第2実施例によれば、患者の体内循
環血液量の過度な減少や、血漿浸透圧の過度な上昇を防
止することによシ合併症を発生させることなく、バラン
スのよい老廃物除去作用全行なうことができる。
As described above, according to the second embodiment, by preventing an excessive decrease in the blood volume circulating in the patient's body and an excessive increase in plasma osmolarity, the balance can be maintained without causing any complications. It can perform a good waste removal effect.

第3実施例 第7図には、本発明の第3実施例が示されておシ、第2
実施例と同一部材には同一符号を付して説明を省略する
Third Embodiment FIG. 7 shows a third embodiment of the present invention.
The same members as those in the embodiment are given the same reference numerals, and the description thereof will be omitted.

第3実施例は、第2実施例と同様に、ヘマトクリットお
よび血漿浸透圧による制御を行なうとともに除水量を連
続測定し、これら三者によって適正な血液浄化制御を行
なうことを特徴とする。
Similar to the second embodiment, the third embodiment is characterized in that control is performed using hematocrit and plasma osmotic pressure, and the amount of water removed is continuously measured, so that appropriate blood purification control is performed by these three factors.

第3実施例では、除水量を測定するために排液系82か
ら排出される限外濾過液を蓄える排液タンク94が設す
られており、該排液タンク94は補充液系76の補充液
供給装置77および78とともに保持台96にて一体に
保持されている。そして保持台96上の全体の重量また
は重量変化が秤量装置98によって測定される。従って
、患者の血液中から限外沢過される排液量と、血流中に
補充される補充液量の差が測定され、これが除水量信号
として秤量装置98から制御系14の制御装置34へ供
給される。
In the third embodiment, a drain tank 94 is provided to store the ultrafiltrate discharged from the drain system 82 in order to measure the amount of water removed. It is held together with the liquid supply devices 77 and 78 by a holding stand 96. The total weight or weight change on the holding table 96 is then measured by the weighing device 98. Therefore, the difference between the amount of fluid drained from the patient's blood and the amount of replenisher refilled into the bloodstream is measured, and this is sent as a water removal amount signal from the weighing device 98 to the controller 3 of the control system 14. supplied to

第8図には、第3実施例における制御系14の構成が示
されている。設定器34には、ヘマトクリットメモリ6
6及び血漿抵抗メモリ90とは別個に患者の諸記録に基
づいて浄化中の好ましい除水量プログラムを記憶する除
水量メモリ100が設けられており、ヘマトクリットプ
ログラム、血漿抵抗および除水量プログラムが別個に制
御装置34へ供給される。
FIG. 8 shows the configuration of the control system 14 in the third embodiment. The setting device 34 includes a hematocrit memory 6.
6 and plasma resistance memory 90, there is provided a water removal amount memory 100 that stores a preferred water removal amount program during purification based on patient records, and the hematocrit program, plasma resistance, and water removal amount program are controlled separately. is supplied to device 34.

第3実施例の制御装置34は、第2実施例の構成要素に
加えてさらに、浄化中に前記秤量装置98にて連続測定
さハた除水蓋から除水量メモ!/100の出力を1鏝−
する引算器68cと該引算器68cの出力を積分する積
分器102、および該積分器102の出力と加算器74
aの出力に患者に適合した重みづけをして加算し、除水
量調整部の供給ポンプ79に制御信号を出力する加算器
104が設けられている。
In addition to the components of the second embodiment, the control device 34 of the third embodiment continuously measures the amount of water removed using the weighing device 98 during purification and records the amount of water removed from the water removal lid. /100 output per trowel
an integrator 102 that integrates the output of the subtracter 68c, and an adder 74 that integrates the output of the integrator 102.
An adder 104 is provided which adds weights to the outputs of a and outputs a control signal to the supply pump 79 of the water removal amount adjustment section.

第3実施例の制御系14は以上の構成から成り、浄化中
に測定されたヘマトクリット及び除水量が大きい場合に
は、注入ポンプ79の注入速度を増加し、逆に各測定値
が設定値より小さい場合には注入速度全低下させる。ま
た、測定された除水量が設定値よシ小さいにも拘らずヘ
マトクリット測定値が設定値よシ大きい場合またはその
反対の場合には、各測定値と所定の設定値との差に基づ
いて補充液注入速度全増加あるいは減少するかの制御が
任意に行なわれ、この時のへマトクリントと除水量の両
者をどれだけ重視するかは加算器104の加算演算にお
いて、加算器74aおよび積分器102の出力に各患者
に適合した重みづけ全行うことによシ決定される。
The control system 14 of the third embodiment has the above configuration, and when the hematocrit and water removal amount measured during purification are large, the injection speed of the injection pump 79 is increased, and conversely, each measured value is lower than the set value. If it is small, the injection rate is completely reduced. In addition, if the measured water removal amount is smaller than the set value but the hematocrit measurement value is larger than the set value, or vice versa, replenishment is performed based on the difference between each measured value and the predetermined set value. Control of whether the total liquid injection rate is increased or decreased is arbitrarily performed, and how much importance is given to both hematoclin and water removal amount is determined by the adder 74a and the integrator 102 in the addition operation of the adder 104. This is determined by applying weighting to the output that is appropriate for each patient.

更にヘマトクリットと血漿の電気抵抗(基づ(血漿浸透
圧調整部の制御は@2実施例と同様に行なわれる。
Furthermore, control of the plasma osmotic pressure adjusting section is performed in the same manner as in Example 2, based on the hematocrit and electrical resistance of plasma.

従って、第3実施例によれば、血液浄化中の体内循環血
液量の適正な維持と必要な除水が行なわれ、また、患者
体内に多量の老廃物が蓄積されていて上記2つの要求が
両立し得ない場合には予め設定された重み付けに従って
、両者の適正なバランスを保った老廃物除去を行なうこ
とが可能である。
Therefore, according to the third embodiment, the amount of circulating blood in the body can be properly maintained during blood purification and the necessary water removal can be carried out, and the above two requirements can be met because a large amount of waste products have accumulated in the patient's body. If they are not compatible, it is possible to remove waste while maintaining an appropriate balance between the two, according to preset weighting.

発明の他の変形例 前述した各実施例において、血液抵抗率の測定は血液体
外循環管に連通接続された測定セルを用いて行なってい
るが、これに限るものではな(、たとえに本明細書では
説明を省略した、血液体外循環回路上に気泡除去のため
に通常設けられている公知のエアチャンバー内の底部等
に前述した血流の影響を受けない電極配置を行なって測
定する事もできる。
Other Modifications of the Invention In each of the embodiments described above, blood resistivity is measured using a measurement cell connected to an extracorporeal blood circulation tube, but this is not limiting (for example, in the present specification). Although the explanation is omitted in this book, measurements can also be made by placing electrodes that are not affected by blood flow as described above at the bottom of a well-known air chamber that is usually installed on the extracorporeal blood circulation circuit to remove air bubbles. can.

更に前述した各実施例において、ヘマトクリットはその
まま制御系に入力されるが、本発明においてへマドクリ
ットの逆数その他の演算結果を制御系に入力することも
可能である。
Further, in each of the embodiments described above, hematocrit is directly input to the control system, but in the present invention, it is also possible to input the reciprocal of hematocrit and other calculation results to the control system.

また、前記各実施例においては、体内循環血液量の高信
頼度の制御を行うため、循環血液量の安定した測定手段
として、ヘマトクリット測定が行われているが、本発明
では、この他に、血液中のたんぽ(質濃度を半透膜を使
用した 質浸透圧測定によシ求め、このたんばく質濃度
変化から循環血液量変化を演算することも可能である。
Furthermore, in each of the above embodiments, hematocrit measurement is performed as a stable means of measuring the circulating blood volume in order to control the circulating blood volume in the body with high reliability, but in the present invention, in addition to this, It is also possible to determine the concentration of protein in the blood by measuring osmotic pressure using a semipermeable membrane, and calculate changes in circulating blood volume from changes in protein concentration.

尚、この浸透圧を用いた循環血液量の測定では、半透膜
を介して微小な圧力差(30〜35mmHg)の測定を
行わなければならず、半透膜の特性管理を厳格に行う必
要がある。
In addition, in measuring circulating blood volume using this osmotic pressure, it is necessary to measure a minute pressure difference (30 to 35 mmHg) through a semipermeable membrane, and the characteristics of the semipermeable membrane must be strictly controlled. There is.

更に、前記各実施例に於いては調整部として補充液のN
aC1濃度を制御するため濃縮Na(J’浴溶液注入量
を調整しているが本発明はこれに限るものではな(、た
とえば、補充液中の上限および下限のナトリウム濃度(
たとえば180mE e q/A’  と 135mE
eq/])を有する2種類の補充液の注入量の比を制御
してもよく、さらには、血漿浸透圧を変化させる物質と
してナトリウム以外の、たとエバマンニトール、グリセ
ロール、アルブミン等を用いる事もできる。ただし、血
漿浸透圧の制御にこれらの物質を用いた場合、血漿浸透
圧の測定手段としては、それらの濃度変化を的確に測定
することができる手段を用いるとともに、循環血液量測
定にはこれらの影響を受けない手段を用いる必要がある
。たとえば血漿浸透圧の制御にアルブミンを用いた場合
、循環血液量測定手段としてはへマドクリット測定器等
金用いる必要がある。
Furthermore, in each of the above embodiments, the adjustment unit is the N of the replenisher.
Although the amount of concentrated Na (J' bath solution injected is adjusted to control the aC1 concentration, the present invention is not limited to this) (for example, the upper and lower limits of the sodium concentration (
For example, 180mE e q/A' and 135mE
eq/]) may be controlled, and further, substances other than sodium such as evamannitol, glycerol, albumin, etc. may be used as substances that change plasma osmotic pressure. can. However, when these substances are used to control plasma osmolality, a means that can accurately measure changes in their concentration should be used to measure plasma osmolarity, and these substances should be used to measure circulating blood volume. It is necessary to use means that are not affected. For example, when albumin is used to control plasma osmotic pressure, it is necessary to use a hematocrit meter or the like as a means for measuring circulating blood volume.

更に、前記第1実施例に於いて、体内循環血液量調整系
の除水量調整部は、血液浄化器(透析器)の限外濾過速
度を変化させるため、該血液浄化器の透析液側の圧力(
除圧)を調節しているが、本   1発明はこれに限る
ものではな(、たとえば、該血液浄化器の血液側に印加
する圧力(陽圧)を調節して行なうこともできる。
Furthermore, in the first embodiment, in order to change the ultrafiltration rate of the blood purifier (dialyzer), the water removal amount adjusting section of the body circulating blood volume adjusting system changes the ultrafiltration rate of the blood purifier (dialyzer). pressure(
However, the present invention is not limited to this; for example, the pressure (positive pressure) applied to the blood side of the blood purifier can also be adjusted.

発明の詳細 な説明したように本発明によれば、血液浄化中の患者の
体内循環血液量、血漿浸透圧除水量を測定し、これによ
って患者に適した所定のプログラムまたは設定値に従っ
た血漿浸透圧あるいは除水速度制御を自動的に行なうこ
とができ、体内循環血液量を適正値に保ちながらバラン
スの良い老廃物除去作用を行なうことを可能とする。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, the circulating blood volume and plasma osmotic water removal rate of a patient during blood purification are measured, and thereby plasma is purified according to a predetermined program or set value suitable for the patient. Osmotic pressure or water removal rate can be controlled automatically, making it possible to perform a well-balanced waste removal action while maintaining the amount of circulating blood in the body at an appropriate value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る血液浄化装置の好適な第1実施例
を示すブロック回路図、 第2図は第1実施例のへマドクリット測定器を示す説明
図、 第3図は第1実施例における制御系のブロック回路図、 第4図は本発明の第2実施例のブロック回路図、第5図
は第2実施例のへマドクリット測定器を示す説明図、 第6図は第2実施例の制御系を示すブロック回路図、 第7図は本発明の第3実施例のブロック回路図、第8図
は第3実施例における制御系を示すブロック回路図であ
る。 10・・・血液循環系、 12・・・透析液系、14・
・・制御系、   18・・・透析器、24・・・ヘマ
トクリット測定器、 28・・・減圧ポンプ  30・・・混合気、32・・
・食塩水注入器、34・・・制御装置、36・・・設定
器、    37・・・抵抗測定部、42・−・測定セ
ル、  44・・・絶=V、46.48・・・電流電極
、 50.52・−・電圧電極、 54・・・交流定電流源、56・・・電圧計、66・・
・ヘマトクリットメモリ、 74・・・ヘモフィルタ、76・・・補充液系、79.
80・・・供給ポンプ −90・・・血漿抵抗メモリ、 98・・・秤量装置、 100・・・除水量メモリ。 第1図 第2図 ?4 第4図 第5図 第6図 第7図
FIG. 1 is a block circuit diagram showing a preferred first embodiment of the blood purification device according to the present invention, FIG. 2 is an explanatory diagram showing a hematocrit measuring device of the first embodiment, and FIG. 3 is a first embodiment. 4 is a block circuit diagram of the second embodiment of the present invention, FIG. 5 is an explanatory diagram showing the hematocrit measuring device of the second embodiment, and FIG. 6 is the second embodiment. FIG. 7 is a block circuit diagram of a third embodiment of the present invention, and FIG. 8 is a block circuit diagram of a control system of the third embodiment. 10... Blood circulation system, 12... Dialysate system, 14.
... Control system, 18... Dialyzer, 24... Hematocrit measuring device, 28... Decompression pump 30... Air mixture, 32...
- Saline solution injector, 34... Control device, 36... Setting device, 37... Resistance measurement unit, 42... Measurement cell, 44... Absolute = V, 46.48... Current Electrode, 50.52... Voltage electrode, 54... AC constant current source, 56... Voltmeter, 66...
- Hematocrit memory, 74... Hemofilter, 76... Replenishment fluid system, 79.
80... Supply pump - 90... Plasma resistance memory, 98... Weighing device, 100... Water removal amount memory. Figure 1 Figure 2? 4 Figure 4 Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】 (1)患者の血液を体外に循環させる血液循環系と、血
液循環系に設けられた血液浄化器と、血漿浸透圧を調整
して体内循環血液量を所望の値に調整する体内循環血液
量調整系と、体内循環血液量の変化を測定する循環血液
量測定器と、患者の状−態に応じた血液浄化中の体内循
環血液量変化プログラムを記憶する体内循環血液量メモ
リヲ有し血液浄化中に測定される体内循環血液量と所定
プログラムとから体内循環血液量調整系を制御する制御
系と、を含み、体内循環血液量を所望値に保持しながら
最適な浄化作用を行なうことを特徴とする血液浄化装置
。 (2、特許請求の範囲(1)記載の装置において、体内
循環血液量調整系には除水量調整部が設けられているこ
とを特徴とする血液浄化装置。 (3)患者の血液を体外に循環させる血液循環系と、血
液循環系に設げられた血液浄化器と、血漿浸透圧および
除水速度を調整して体内循環血液量を所望の値に調整す
る体内循環血液量調整系と、体内循環血液量の変化を測
定する循環血液量測定器と、実質的に血漿の浸透圧を測
定する血漿浸透車 圧測定と、患者の状態に応じた血液浄化中の体内循環血
液量変化プログラムを記憶する体内循環血液量メモリ笈
び血漿浸透圧設定値を記憶する血漿浸透圧メモリを有し
血液浄化中に測定される体内循環血液量及び血漿浸透圧
と前記プログラム及び設定値とを比較して体内循環血液
量調整系を制御する制御系と、を含み、体内循環血液量
を所望値に保持しながら最適な浄化作用を行なうこと全
特徴とする血液浄化装置。 (4)患者の血液を体外に循環させる血液循環系と、血
液循環系に設けられた血液浄化器と、血漿浸透圧および
除水速度を制御して体内循環血液量を所望の値に調整す
る体内循環血液量調整系と、体内循環血液量の変化を測
定する循環血液量測定器と、除水量を測定する除水量測
定器と、患者の状態に応じて血液浄化中の体内循環血液
量変化プログラムを記憶する体内循環血液量メモリ及び
除水量プログラムを記憶する除水量メモリを有し血液浄
化中に測定される体内循環血液量及び除水量と所定プロ
グラムとを比較して体内循環血液量調整系を制御する制
御系と、全含み、体内循環血液量を所望値に保持しなが
ら最適な浄化作用を行なうこと全特徴とする血液浄化装
置。 (5)患者の血液を体外に循環させる血液循環系と、血
液循環系に設けられた血液浄化器と、血漿浸透圧および
除水速度を制御して体内循環血液量を所望の値に調整す
る体内循環血液量調整系と、体内循環血液量変化全測定
する循環血液量測定器と、実質的に血漿の浸透圧を測定
する血漿浸透圧測定器と、除水量を測定する除水量測定
器と、患者の状態に応じて血液浄化中の体内循環血液量
変化プログラムを記憶する体内循環血液量メモリ、血漿
浸透圧を記憶する血漿浸透圧メモリ、及び、除水量プロ
グラムを記憶する除水量メモリを有し、血液浄化中に測
定される体内循環血液量、血漿浸透圧及び除水量と所定
プログラム及び設定値とを比較して体内循環血液量調整
系を制御する制御系と、を含み、体内循環血液量全所望
値(保長しながら最適な浄化作用を行なうことを特徴と
する血液浄化装置。 (6)%許請求の範囲(1)〜(5)のいずれかに記載
の装置において、体内循環血液量調整系の血漿浸透圧調
整部は透析液あるいは補充液中の電解質濃度を変化させ
ること全特徴とする血液浄化装置。 (7)特許請求の範囲(3)、(5)のいずれかに記載
の装置において、血漿浸透圧測定器は、血漿の電解質濃
度を測定するとともに、体内循環血液が、調整系の血漿
浸透圧調整部は、透析液あるいは補充液中の電解質濃度
を変化させることを特徴とする血液浄化装置。 (8)%許請求の範囲(7)記載の装置において、血漿
浸透圧測定器は、イオン電極を用いて血漿中の特定のイ
オン濃度全測定すること全特徴とする血  (液浄化装
置。 (9)特許請求の範囲(力記載の装置において、血漿浸
透圧測定器は、血漿の電気抵抗率から電解質濃度を測定
することを特徴とする血液浄化装置。 OI  特許請求の範囲(6)〜(9)いずれかに記載
の装置において、濃度変化される電解質は塩化ナトリウ
ムから成ることを特徴とする血液浄化装置。 aυ 特許請求の範囲(1)〜α〔のいずれかに記載の
装置において、循環血液量測定器は体内循環血液量の変
化をヘマトクリット変化にて検出するヘマトクリット測
定器からなることを特徴とする血液浄化装置。 aり  特許請求の範囲(11)記載の装置において、
ヘマトクリット測定器は、血液循環系の血液電気抵抗率
を測定する抵抗測定部と、測定された電気抵抗率を温度
補償する温度補正部と、この電気抵抗率からヘマトクリ
ットを求める演算部と、を含むことを特徴とする血液浄
化装置。 a3  特許請求の範囲a2記載の装置において、血液
電気抵抗率を測定する抵抗測定部は、血液循環系に連通
された絶縁管にその中心軸に対して対称側でかつ中心軸
方向に所定量離れた位置に設けられた少な(とも一対の
電極を有する測定セルを有することを特徴とする血液浄
化装置。 α滲 特許請求の範囲a2、Q3)のいずれかに記載の
装置において、抵抗測定部には、血液中の血漿成分の電
気抵抗率を測定する測定セルが設けられ、血液の電気抵
抗率及び血漿成分の電気抵抗率の両者からヘマトクリッ
トを演算することを特徴とする血液浄化装置。 a最 特許請求の範囲I記載の装置において、血液循環
系の血漿の一部を限外P遇するフィルタを設け、該フィ
ルタの濾過廃液経路に血漿成分の電気抵抗率を測定する
測定セルが設けられていること′fr:%徴とする血液
浄化装置。
[Scope of Claims] (1) A blood circulation system that circulates the patient's blood outside the body, a blood purifier installed in the blood circulation system, and a plasma osmotic pressure that is adjusted to adjust the blood volume circulating in the body to a desired value. A circulating blood volume adjustment system that adjusts the volume of circulating blood in the body, a circulating blood volume measuring device that measures changes in the volume of blood circulating in the body, and a circulating blood system that stores a program for changing the volume of circulating blood in the body during blood purification according to the patient's condition. A control system that has a volume memory and controls the body circulating blood volume adjustment system based on the body circulating blood volume measured during blood purification and a predetermined program, and performs optimal purification while maintaining the body circulating blood volume at a desired value. A blood purification device characterized by performing an action. (2. The blood purification device according to claim (1), characterized in that the body circulating blood volume regulating system is provided with a water removal amount regulating section. (3) Blood purification of the patient is carried out outside the body. A blood circulation system that circulates the blood, a blood purifier installed in the blood circulation system, and a body circulating blood volume adjustment system that adjusts the blood volume circulating in the body to a desired value by adjusting plasma osmotic pressure and water removal rate. A circulating blood volume measuring device that measures changes in the amount of circulating blood in the body, a plasma osmotic pressure measurement device that essentially measures the osmotic pressure of plasma, and a program for changing the amount of circulating blood in the body during blood purification according to the patient's condition. It has a body circulating blood volume memory for storing therein and a plasma osmolality memory for storing plasma osmolarity set values, and compares the body circulating blood volume and plasma osmolality measured during blood purification with the program and set values. A blood purification device that includes a control system that controls a blood volume adjustment system that circulates in the body, and performs an optimal purification effect while maintaining the blood volume that circulates in the body at a desired value. a blood circulation system that circulates blood to the blood circulation system, a blood purifier installed in the blood circulation system, and a body circulating blood volume adjustment system that controls plasma osmotic pressure and water removal rate to adjust the volume of blood circulating in the body to a desired value; A circulating blood volume measuring device that measures changes in the amount of blood circulating in the body, a water removal amount measuring device that measures the amount of water removed, and a circulating blood volume that stores a program for changing the amount of circulating blood in the body during blood purification according to the patient's condition. a control system that has a memory and a water removal amount memory that stores a water removal amount program, and controls the internal circulating blood volume adjustment system by comparing the internal circulating blood volume and water removed amount measured during blood purification with a predetermined program; (5) A blood circulation system that circulates the patient's blood outside the body; a blood purifier, an internal blood volume adjustment system that controls plasma osmotic pressure and water removal rate to adjust the internal circulating blood volume to a desired value, and a circulating blood volume measuring device that measures all changes in internal circulating blood volume. , a plasma osmolarity measuring device that essentially measures the osmotic pressure of plasma, a water removal amount measuring device that measures the amount of water removed, and an internal circulation device that stores the internal circulating blood volume change program during blood purification according to the patient's condition. It has a blood volume memory, a plasma osmolarity memory that stores plasma osmolarity, and a water removal amount memory that stores a water removal amount program, and has a predetermined internal circulating blood volume, plasma osmolarity, and water removal amount measured during blood purification. A control system that controls the body circulating blood volume adjustment system by comparing the program and the set value, Device. (6) Percentage Permissible In the device according to any one of claims (1) to (5), the plasma osmotic pressure adjustment section of the body circulating blood volume adjustment system changes the electrolyte concentration in the dialysate or the replenishment fluid. Blood purification device with all features. (7) In the device according to any one of claims (3) and (5), the plasma osmolarity measuring device measures the electrolyte concentration of plasma, and the plasma osmolarity of the blood circulating in the body is adjusted. A blood purification device characterized in that the adjustment section changes the electrolyte concentration in the dialysate or the replenisher. (8) % In the device described in claim (7), the plasma osmolarity measuring device is a blood purification device that is characterized in that it measures the total concentration of specific ions in plasma using an ion electrode. 9) Claims (A blood purification device characterized in that the plasma osmolarity measuring device measures electrolyte concentration from the electrical resistivity of plasma. 9) A blood purification device characterized in that the electrolyte whose concentration is changed consists of sodium chloride in the device according to any one of claims (1) to α. A blood purification device characterized in that the blood volume measuring device is a hematocrit measuring device that detects changes in blood volume circulating in the body by changes in hematocrit.
The hematocrit measuring device includes a resistance measuring section for measuring blood electrical resistivity in the blood circulation system, a temperature correcting section for temperature compensating the measured electrical resistivity, and a calculating section for calculating hematocrit from this electrical resistivity. A blood purification device characterized by: a3 In the device set forth in claim a2, the resistance measuring section for measuring blood electrical resistivity is arranged in an insulating tube connected to the blood circulation system on a symmetrical side with respect to its central axis and at a predetermined distance in the direction of the central axis. A blood purification device characterized by having a measurement cell having a pair of electrodes, which is provided in a resistance measuring section. A blood purification device is provided with a measurement cell for measuring the electrical resistivity of a plasma component in blood, and calculates hematocrit from both the electrical resistivity of the blood and the electrical resistivity of the plasma component. a) The device according to claim I, which is provided with a filter that treats a part of the plasma in the blood circulation system to ultraviolet rays, and a measurement cell that measures the electrical resistivity of plasma components in the filtration waste liquid path of the filter. Blood purification device with % characteristics.
JP57224743A 1982-03-10 1982-12-21 Blood purifying apparatus Granted JPS59115051A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57224743A JPS59115051A (en) 1982-12-21 1982-12-21 Blood purifying apparatus
DE8383102324T DE3374660D1 (en) 1982-03-10 1983-03-09 Blood purification apparatus
EP83102324A EP0089003B1 (en) 1982-03-10 1983-03-09 Blood purification apparatus
US06/473,574 US4469593A (en) 1982-03-10 1983-03-09 Blood purification apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57224743A JPS59115051A (en) 1982-12-21 1982-12-21 Blood purifying apparatus

Publications (2)

Publication Number Publication Date
JPS59115051A true JPS59115051A (en) 1984-07-03
JPH0422587B2 JPH0422587B2 (en) 1992-04-17

Family

ID=16818537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57224743A Granted JPS59115051A (en) 1982-03-10 1982-12-21 Blood purifying apparatus

Country Status (1)

Country Link
JP (1) JPS59115051A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294866A (en) * 1987-05-28 1988-12-01 Iryo Kogaku Kenkyusho:Kk Dialytic efficiency control apparatus
JP2001000540A (en) * 1999-06-23 2001-01-09 Jms Co Ltd Blood dialysis apparatus, blood treatment using blood dialysis apparatus and recording medium for controlling blood dialysis apparatus
WO2003011367A1 (en) * 2001-08-01 2003-02-13 Jms Co., Ltd. Blood purification apparatus for elevating purification efficiency
JPWO2003004076A1 (en) * 2001-07-03 2004-10-21 株式会社ジェイ・エム・エス Hemodialysis machine with simple control means
JPWO2003009888A1 (en) * 2001-07-27 2004-11-11 株式会社ジェイ・エム・エス Hemodialysis machine
JP2006507024A (en) * 2002-04-10 2006-03-02 バクスター インターナショナル インコーポレイテッド Access disconnection system and method
JP2006512101A (en) * 2002-04-10 2006-04-13 バクスター インターナショナル インコーポレイテッド System and method for detecting disconnection of patient access
JP2008508078A (en) * 2004-08-02 2008-03-21 カーディアック・ペースメーカーズ・インコーポレーテッド Device for estimating hematocrit
JP2016093242A (en) * 2014-11-12 2016-05-26 日機装株式会社 Antistatic tool
JP2017522090A (en) * 2014-06-16 2017-08-10 フレゼニウス ムディカル カーレ ドイチェランド ゲーエムベーハーFresenius Medical Care Deutschland GmbH Method and apparatus for supplying a solution for blood treatment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6615077B1 (en) * 2000-08-14 2003-09-02 Renal Research Institute, Llc Device and method for monitoring and controlling physiologic parameters of a dialysis patient using segmental bioimpedence
US8287724B2 (en) * 2007-07-05 2012-10-16 Baxter International Inc. Dialysis fluid measurement systems using conductive contacts

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737457A (en) * 1980-08-19 1982-03-01 Kazuo Ootsu Vertical descent type shelter device
JPS5784063A (en) * 1980-11-14 1982-05-26 Nissho Kk Controller for concentration of solute

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737457A (en) * 1980-08-19 1982-03-01 Kazuo Ootsu Vertical descent type shelter device
JPS5784063A (en) * 1980-11-14 1982-05-26 Nissho Kk Controller for concentration of solute

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294866A (en) * 1987-05-28 1988-12-01 Iryo Kogaku Kenkyusho:Kk Dialytic efficiency control apparatus
JP2001000540A (en) * 1999-06-23 2001-01-09 Jms Co Ltd Blood dialysis apparatus, blood treatment using blood dialysis apparatus and recording medium for controlling blood dialysis apparatus
JPWO2003004076A1 (en) * 2001-07-03 2004-10-21 株式会社ジェイ・エム・エス Hemodialysis machine with simple control means
JPWO2003009888A1 (en) * 2001-07-27 2004-11-11 株式会社ジェイ・エム・エス Hemodialysis machine
AU2002313902B2 (en) * 2001-08-01 2007-10-25 Jms Co., Ltd. Blood purification apparatus for elevating purification efficiency
WO2003011367A1 (en) * 2001-08-01 2003-02-13 Jms Co., Ltd. Blood purification apparatus for elevating purification efficiency
JPWO2003011367A1 (en) * 2001-08-01 2004-11-18 株式会社ジェイ・エム・エス Blood purification device that can improve purification efficiency
US7402249B2 (en) 2001-08-01 2008-07-22 Jms Co., Ltd. Blood purification apparatus for elevating purification efficiency
JP2009183739A (en) * 2002-04-10 2009-08-20 Baxter Internatl Inc Access disconnection system and method
JP2006512101A (en) * 2002-04-10 2006-04-13 バクスター インターナショナル インコーポレイテッド System and method for detecting disconnection of patient access
JP2006507024A (en) * 2002-04-10 2006-03-02 バクスター インターナショナル インコーポレイテッド Access disconnection system and method
JP2010012286A (en) * 2002-04-10 2010-01-21 Baxter Internatl Inc System and method for detecting patient access disconnection
JP2008508078A (en) * 2004-08-02 2008-03-21 カーディアック・ペースメーカーズ・インコーポレーテッド Device for estimating hematocrit
US8103326B2 (en) 2004-08-02 2012-01-24 Cardiac Pacemakers, Inc. Device for monitoring fluid status
JP2017522090A (en) * 2014-06-16 2017-08-10 フレゼニウス ムディカル カーレ ドイチェランド ゲーエムベーハーFresenius Medical Care Deutschland GmbH Method and apparatus for supplying a solution for blood treatment
US20180333528A1 (en) * 2014-06-16 2018-11-22 Fresenius Medical Care Deutschland Gmbh Method and Devices for Providing a Solution for the Treatment of Blood
JP2021045559A (en) * 2014-06-16 2021-03-25 フレセニウス・メディカル・ケア・ドイチュラント・ゲーエムベーハー Method and apparatus for supplying solution for blood processing
JP2016093242A (en) * 2014-11-12 2016-05-26 日機装株式会社 Antistatic tool

Also Published As

Publication number Publication date
JPH0422587B2 (en) 1992-04-17

Similar Documents

Publication Publication Date Title
US4469593A (en) Blood purification apparatus
US8764987B2 (en) Device and method for determining and controlling the concentration of at least one solute in a fluid circuit
JP4159250B2 (en) Method and apparatus for calculating dialysis efficiency
JP4509387B2 (en) Method for calculating the distribution of blood components during extracorporeal blood treatment and apparatus for carrying out this method
JP4254913B2 (en) Safety device for blood processing apparatus and method for enhancing safety of blood processing apparatus
JP6388166B2 (en) Apparatus and method for adjusting a therapeutic instrument
US8070707B2 (en) Controller for ultrafiltration blood circuit which prevent hypotension by monitoring osmotic pressure in blood
JP4446279B2 (en) Blood treatment equipment
JP4059926B2 (en) Blood treatment system to prevent symptoms during dialysis
JPH0214853B2 (en)
JPS59115051A (en) Blood purifying apparatus
ATE326245T1 (en) METHOD FOR CONTROLLING THE SODIUM CONCENTRATION OF A DIALYSATE ACCORDING TO PRESCRIPTION
JP4219094B2 (en) Method for determining dialysance and apparatus for the method
US10322220B2 (en) Method and device for extracorporeal blood treatment
JPH0422586B2 (en)
AU2002313902B2 (en) Blood purification apparatus for elevating purification efficiency
David et al. Predilution hemofiltration. Clinical experience and removal of small molecular weight solutes
EP4098291A1 (en) An apparatus for extracorporeal blood treatment
JPS63294866A (en) Dialytic efficiency control apparatus
US20230302213A1 (en) Method for Priming an Extracorporeal Blood Circuit and Devices
JPH06233813A (en) Hemocatharsis system
Ota et al. Clinical Evaluation of a Pre‐Set Ultrafiltration Rate Controller Available for Single Pass and Hemodiafiltration Systems
US20240238492A1 (en) An apparatus for extracorporeal blood treatment
CA1198054A (en) Dialysis method and apparatus
CN113260391A (en) Device for extracorporeal blood treatment