WO2012147701A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2012147701A1
WO2012147701A1 PCT/JP2012/060889 JP2012060889W WO2012147701A1 WO 2012147701 A1 WO2012147701 A1 WO 2012147701A1 JP 2012060889 W JP2012060889 W JP 2012060889W WO 2012147701 A1 WO2012147701 A1 WO 2012147701A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplifier circuit
data signal
signal line
negative
circuit
Prior art date
Application number
PCT/JP2012/060889
Other languages
English (en)
French (fr)
Inventor
齊藤 浩二
正樹 植畑
正実 尾崎
柳 俊洋
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/113,403 priority Critical patent/US9423637B2/en
Publication of WO2012147701A1 publication Critical patent/WO2012147701A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0291Details of output amplifiers or buffers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers

Definitions

  • the present invention relates to a display device realizing low power consumption.
  • 0 V (GND) is supplied to the data signal line driving circuit of the liquid crystal display device as the low-side power supply as shown in FIG. 7A, and Vdd is supplied as the high-side power supply.
  • the amplifier circuit 100 having an input range and an output range of 0 V to Vdd is provided for each data signal line S (m).
  • the amplifier circuit 100 provided in the data signal line driving circuit has positive polarity. Since the data signal up to the negative polarity is input, the withstand voltage of the amplifier circuit 100 needs to be large, and the power consumption of the amplifier circuit 100 becomes a problem.
  • a positive amplifier circuit 15 and a negative amplifier circuit 16 are provided for each data signal line S (m). It is conceivable to provide it.
  • the positive amplifier circuit 15 is supplied with Vdd1, which is a positive value as the high-side power supply, and is supplied with 0 V (GND) as the low-side power supply.
  • Vdd1 which is a positive value as the high-side power supply
  • 0 V (GND) the low-side power supply.
  • the output range of the positive amplifier circuit 15 is 0 V (GND) to Vdd1.
  • the negative amplifier circuit 16 is supplied with 0 V (GND) as a high-side power supply, and is supplied with a negative value Vdd2 as a low-side power supply. Vdd2 to 0V (GND).
  • the absolute value of the difference between Vdd1 and Vdd2 is made equal to the absolute value of the difference between Vdd and GND.
  • each withstand voltage of the positive amplifier circuit 15 and the negative amplifier circuit 16 is significantly smaller than the withstand voltage of the amplifier circuit 100 shown in FIG.
  • the positive amplifier circuit 15 has a breakdown voltage range of 0V to Vdd1
  • the negative amplifier circuit 16 has a breakdown voltage range of Vdd2 to 0V. Therefore, the positive amplifier circuit 15 and the negative amplifier circuit 16 have a breakdown voltage range. Is completely different.
  • the data signal line S (m) is electrically connected to the negative amplifier circuit 16, and the output range is output from the negative amplifier circuit 16.
  • the data signal of Vdd2 to 0V is supplied to the data signal line S (m)
  • the data signal line S (m) is electrically connected to the positive amplifier circuit 15 according to the polarity inversion signal
  • the data signal line S The data signal in the output range Vdd2 to 0V supplied to (m) is supplied to the positive amplifier circuit 15 whose breakdown voltage range is 0V to Vdd1, and the positive amplifier circuit 15 may be damaged.
  • the data signal in the output range 0V to Vdd1 supplied to the data signal line S (m) has a withstand voltage range. There is a possibility that the negative amplifier circuit 16 is supplied to the negative amplifier circuit 16 of Vdd2 to 0V and is damaged.
  • the amplifier circuit configuration shown in FIG. 7B when the amplifier circuit configuration shown in FIG. 7B is used, the power consumption of the liquid crystal display device can be reduced, but the amplifier circuit may be damaged. There is a problem in terms of securing.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a display device that can realize low power consumption and ensure reliability.
  • a display device of the present invention is a display device including a plurality of data signal lines connected to a data signal line driving circuit, and the data signal line driving circuit includes For each data signal line, a positive amplifier circuit, a negative amplifier circuit, and a data signal output to the data signal line via any one of the positive amplifier circuit and the negative amplifier circuit Is switched to be output via the other amplifier circuit, the data signal line is electrically separated from the positive amplifier circuit and the negative amplifier circuit, and the data signal line is connected to the other amplifier circuit. And a switching circuit connected to a node within a power supply voltage range of the circuit for a predetermined period.
  • the data signal output to the data signal line via one of the positive amplifier circuit and the negative amplifier circuit is output via the other amplifier circuit.
  • the switching circuit electrically isolates the data signal line from the positive amplifier circuit and the negative amplifier circuit, and the data signal line is within a power supply voltage range of the other amplifier circuit. Since the data signal line and the other amplifier circuit can be electrically connected after approaching the potential, the positive amplifier circuit and the negative amplifier circuit can be prevented from being damaged.
  • the switching circuit In the switching circuit, the data signal output to the data signal line through one of the positive amplifier circuit and the negative amplifier circuit is output via the other amplifier circuit. Since the switching circuit does not operate when there is no such output switching at the transition between the horizontal period and the vertical period, the switching circuit does not operate. An increase in power consumption can be prevented.
  • the display device of the present invention includes a positive amplifier circuit, a negative amplifier circuit, a positive amplifier circuit, and a negative electrode for each data signal line in the data signal line driving circuit.
  • the amplifier circuit when the data signal output to the data signal line through one of the amplifier circuits is switched to be output through the other amplifier circuit, the data signal line is connected to the positive amplifier.
  • a switching circuit that is electrically separated from the circuit and the negative amplifier circuit and connects the data signal line to a node within the power supply voltage range of the other amplifier circuit for a predetermined period. It is the composition which is.
  • FIG. 3 is a diagram showing a drive timing chart of the source AMP output circuit shown in FIG. 2.
  • A is a figure which shows the structure of the conventional amplifier circuit
  • b is a figure which shows the structure of the amplifier circuit used in the liquid crystal display device of one embodiment of this invention.
  • FIG. 6 is a diagram showing a drive timing chart of the source AMP output circuit shown in FIG. 5.
  • A is a figure which shows the structure of the conventional amplifier circuit
  • (b) is a figure which shows the structure of the amplifier circuit used in the source AMP output circuit shown in FIG. It is a figure for demonstrating drawing of the drain potential by Cgd.
  • (A) is a figure which shows the amplifier power supply voltage range and amplifier output range which are used in the conventional liquid crystal display device
  • (b) is the amplifier power supply voltage which can be applied when a positive / negative power supply is used. It is a figure which shows a range and amplifier output range.
  • a liquid crystal display device will be described as an example of a display device.
  • the type is not particularly limited as long as the display device performs display using polarity inversion driving.
  • FIG. 1 is a diagram showing a schematic configuration of the liquid crystal display device 1.
  • the liquid crystal display device 1 includes a liquid crystal display panel 2 and scanning for supplying scanning signals to a plurality of scanning signal lines G (0), G (1)... G (N).
  • the power generation circuit 7 is provided on the liquid crystal display device 1 side.
  • the present invention is not limited to this, and the power generation circuit 7 includes the system-side control unit 5. It may be provided on the side.
  • a video signal and a video synchronization signal Hsync / Vsync are supplied from the system control unit 5 to the timing control unit 6, and input power is supplied from the system control unit 5 to the power generation circuit 7. .
  • the power generation circuit 7 includes a positive power supply (Vdd1 ⁇ Vdd3), a negative power supply (Vdd2 ⁇ Vdd4), a COM power supply, a Vcc (not shown), which are necessary for each circuit in the liquid crystal display device 1 to operate.
  • Vgh (not shown) and Vgl (not shown) are generated, and Vcc (not shown), Vgh (not shown), and Vgl (not shown) are output to the scanning line driving circuit 3, and the positive power supply (Vdd1 ⁇ Vdd3), negative power supply (Vdd2 ⁇ Vdd4) and Vcc (not shown) are output to the data signal line drive circuit 4, Vcc (not shown) is output to the timing control unit 6, and COM power is supplied to the common electrode drive circuit 8 To output.
  • the timing control unit 6 generates a gate clock GCK and a gate as a video synchronization signal serving as a reference for each circuit to operate synchronously based on the clock signal Clock and the video synchronization signal Hsync / Vsync input from the system side.
  • a start pulse GSP is generated and output to the scanning signal line drive circuit 3 (arrow A in FIG. 1).
  • the source clock SCK, the source start pulse SSP and the video signal input from the system side are converted into the video synchronization signal Hsync. Based on Vsync, video data is generated and output to the data signal line drive circuit 4 (arrow B in FIG. 1).
  • the video data is sent to the data signal lines S (0), S (1),... Via the DAC circuit (digital / analog converter) 9 and the source AMP output circuit 10 provided in the data signal line drive circuit 4. -Output to S (M).
  • the timing control unit 6 outputs a polarity signal to the data signal line driving circuit 4 (arrow B in FIG. 1) and also outputs a polarity signal to the common electrode driving circuit 8 (arrow C in FIG. 1). It is like that.
  • the liquid crystal display panel 2 having a plurality of pixels arranged in a matrix form has a plurality of data signal lines S (0), S (1)... S (M) and a plurality of scanning signal lines G (0).
  • G (1) Transistor element 11 (active element) electrically connected to the data signal line, the scanning signal line, and the pixel electrode 12 in the vicinity of each point where G (N) intersects ,
  • a counter substrate 14 having a common electrode, and a liquid crystal layer (not shown) sandwiched between the TFT substrate 13 and the counter substrate 14.
  • the common electrode potential VCOM is supplied from the common electrode driving circuit 8 to the common electrode provided on the counter substrate 14.
  • FIG. 2 is a diagram illustrating a circuit structure of the source AMP output circuit 10 including the switching circuit 17 included in the liquid crystal display device 1.
  • the data signal line S (M) is connected to the source AMP output circuit 10 between the positive amplifier circuit 15 and the negative amplifier circuit 16 provided in the source AMP output circuit 10 at the time of polarity inversion. After disconnecting from the output, the data signal line S (M) is connected to the power supply voltage within the power supply voltage range (Vdd1 to Vdd3) of the positive amplifier circuit 15 or within the power supply voltage range (Vdd2 to Vdd4) of the negative amplifier circuit 16.
  • a switching circuit 17 is provided for connection to the.
  • the data signal output to the data signal line S (M) via one of the positive amplifier circuit 15 and the negative amplifier circuit 16 passes through the other amplifier circuit.
  • switches S1, S2, S3, and S4 are provided.
  • the input gradation data input to the DAC circuit 9 is The positive amplifier circuit 15 and the negative amplifier circuit 16 are output via one of the amplifier circuits, and are output via the other amplifier circuit after 1H period. That is, the input gradation data is alternately output via the positive amplifier circuit 15 and the negative amplifier circuit 16 every 1H period.
  • switches S5 and S6 provided in the switching circuit 17 are not connected to the connection (short) state and the (open) state by one control signal (switch S5 and S6 control signal) supplied from the timing control unit 6. And switch.
  • switches S5 and S6 are switches for disconnecting or connecting the data signal line S (M) from the outputs of the positive amplifier circuit 15 and the negative amplifier circuit 16.
  • the present invention after the data signal line S (M) is disconnected from the outputs of the positive amplifier circuit 15 and the negative amplifier circuit 16, the potential level to which the data signal line S (M) is connected is set.
  • Vdd3 within the power supply voltage range of the positive amplifier circuit 15 or Vdd4 within the power supply voltage range of the negative amplifier circuit 16 is used, the present invention is not limited to this.
  • the switching circuit 17 further includes switches S7 and S8.
  • the switch S7 is a switch for connecting the data signal line S (M) to the power supply voltage Vdd4.
  • the switch S8 is a data switch. This is a switch for connecting the signal line S (M) to the power supply voltage Vdd3.
  • the switch S7 and the switch S8 are supplied with a switch S7 control signal and a switch S8 control signal, which are independent control signals from the timing control unit 6, respectively.
  • FIG. 3 is a diagram showing a drive timing chart of the source AMP output circuit 10 provided in the liquid crystal display device 1.
  • the switches S1 and S3 and the switches S2 and S4 are alternately connected (Short) every 1H period, and the polarity signals of the switches S5 and S6 are inverted. That is, a state in which the switch S1, S2, S3, S4 is not connected (Open) before a predetermined period of time from when the state change of the switches S1, S2, S3, S4 occurs. A connection (short) state is established.
  • the switches S5 and S6 are not connected (Open), the data signal line S (M) can be disconnected from the outputs of the positive amplifier circuit 15 and the negative amplifier circuit 16, and the switches S5 and S6 are connected.
  • the switch S7 and the switch S8 are alternately in a connected (Short) state for a predetermined period.
  • the timing at which the switches S7 and S8 are in the connected (short) state is set a predetermined period before the timing at which the switches S5 and S6 are in the connected (short) state.
  • Vdd4 within the power supply voltage range of the positive amplifier circuit 15 before the data signal line S (M) is electrically connected to the positive amplifier circuit 15. Vdd3 can be obtained.
  • the potential level at the point A is high. Since it can be connected to an impedance state, a power supply voltage, etc., it becomes an uncertain waveform and is indicated by a dotted line.
  • the switching circuit 17 is configured to display data when the polarity of the data signal output from the data signal line driving circuit 4 is inverted from positive polarity to negative polarity according to the polarity signal.
  • the data signal line S (M) After electrically separating the signal line S (M) from the positive amplifier circuit 15 and the negative amplifier circuit 16, the data signal line S (M) is connected to the power supply Vdd4 within the power supply voltage range of the negative amplifier circuit 16 and a predetermined value.
  • the data signal line S (M) is connected to the positive amplifier circuit 15.
  • the data signal line S (M) is connected to the power supply Vdd3 within the power supply voltage range of the positive amplifier circuit 15 for a predetermined period.
  • the liquid crystal display device 1 that can realize low power consumption and can ensure reliability.
  • FIG. 4A is a diagram showing a configuration of an amplifier circuit 100 provided in a conventional liquid crystal display device.
  • the amplifier circuit 100 is grounded to GND and is supplied with a power supply voltage Vdd.
  • the input / output range of the voltage of the amplifier circuit 100 is as high as 0 V to 12 V, and the amplifier circuit 100 is required to have high withstand voltage.
  • the amplifier circuit 100 has a problem that its size is relatively large and its power consumption is large.
  • FIG. 4B is a diagram showing a configuration of an amplifier circuit used in the liquid crystal display device 1.
  • the positive side power sources Vdd1 and Vdd3 generated by the power source generation circuit 7 are input to the positive amplifier circuit 15 as Vdd1 as the High side power source and Vdd3 as the Low side power source.
  • the negative power supply voltages Vdd2 and Vdd4 generated by the power supply generation circuit 7 are input to the negative amplifier circuit 7 as Vdd4 as a high power supply and Vdd2 as a low power supply.
  • the positive amplifier circuit 15 has an input / output range (positive output range) of Vdd3 to Vdd1
  • the negative amplifier circuit 16 has an input / output range (negative output range) of Vdd2 to Vdd4.
  • Vdd1 supplied to the positive amplifier circuit 15 and Vdd2 supplied to the negative amplifier circuit 16 are respectively the power supply voltage Vdd (12V) supplied to the conventional amplifier circuit 100. It was set to have an absolute value of about half the voltage level (6V).
  • the positive and negative power supply voltages Vdd1 and Vdd2 are set to the same potential level.
  • the present invention is limited to this.
  • the magnitude relationship between the absolute values of the voltage values of Vdd1 and Vdd2 is not particularly problematic.
  • the effect of simplifying the circuit configuration of the power booster circuit can be obtained if the difference between the absolute values of Vdd1 and Vdd2 is 0.5 V or less, even if Vdd1 and Vdd2 are not set to the same potential level. it can.
  • the absolute difference between Vdd1 and Vdd3 is required.
  • the sum of the absolute values of the values and the differences between Vdd2 and Vdd4 may be designed to be substantially equal to the withstand voltage value (Vdd-GND) of the conventional amplifier circuit 100 shown in FIG.
  • the data signal line S (M) is connected to the negative amplifier circuit 16.
  • the data signal line S (M) is connected to the positive amplifier circuit 15
  • the present invention is not limited to this, and the data signal line S (M) is electrically connected from the positive amplifier circuit 15 and the negative amplifier circuit 16 to each other.
  • the positive amplifier circuit 15 or the negative amplifier circuit 16 may be connected to a node (Node) within the power supply voltage range.
  • the data signal line S (M) is electrically separated from the positive amplifier circuit 15 and the negative amplifier circuit 16
  • the data signal line S (M) is connected via the switches S7 and S8.
  • the ground can be grounded to GND.
  • FIG. 5 is a diagram showing a circuit structure of a source AMP output circuit 10a including another switching circuit 17a that can be used in the liquid crystal display device 1.
  • the source AMP output circuit 10a includes a data signal line after disconnecting the data signal line S (m) from the outputs of the positive amplifier circuit 15 and the negative amplifier circuit 16 at the time of polarity reversal.
  • a switching circuit 17a including switches S5, S6, S7, and S8 for connecting S (m) to GND is provided.
  • FIG. 6 is a diagram showing a drive timing chart of the source AMP output circuit 10a shown in FIG.
  • the switches S1 and S3 and the switches S2 and S4 are alternately connected (Short) every 1H period, and the polarity signals of the switches S5 and S6 are inverted. That is, a state where the switch S1, S2, S3, S4 is not connected (Open) before a predetermined period of time from when the state change of the switches S1, S2, S3, S4 occurs, and again after a predetermined period after the state change of the switches S1, S2, S3, S4 A connection (short) state is established.
  • the data signal line S (m) can be disconnected from the outputs of the positive amplifier circuit 15 and the negative amplifier circuit 16, and the switches S5 and S6 are connected.
  • the switches S7 and S8 are in the connected (short) state for a predetermined period in the unconnected (open) state, the data signal line S (m) is connected to GND for the predetermined period, so that the polarity signal is inverted. In doing so, the data signal line S (m) can be brought close to GND.
  • the potential level at the point A is in a high impedance state. Since it can be connected to the power supply voltage or the like, the waveform is not determined and is indicated by a dotted line.
  • the data signal line S (m) can be set to the GND level that is a substantially intermediate value between the power supply voltage ranges Vdd1 to Vdd2 of the positive amplifier circuit 15 and the negative amplifier circuit 16, and thus the positive amplifier circuit 15 Damage to the negative amplifier circuit 16 can be prevented.
  • the data signal line S (m) since it is connected to GND, there is no useless movement of charge, so that an increase in power for driving the data signal line S (m) does not occur.
  • FIG. 7 is a diagram showing a configuration of a conventional amplifier circuit and a configuration of an amplifier circuit provided in the source AMP output circuit 10a shown in FIG.
  • FIG. 7A is the same as FIG. 4A, the description thereof is omitted, and FIG. 7B is a diagram showing a configuration of an amplifier circuit provided in the source AMP output circuit 10a. is there.
  • the positive amplifier circuit 15 is supplied with Vdd1 as a high-side power supply and is supplied with GND (0 V) as a low-side power supply, while the negative amplifier circuit 15 16 is supplied with GND (0 V) as a high-side power supply and supplied with Vdd2 as a low-side power supply.
  • the low-side power source of the positive amplifier circuit 15 and the high-side power source of the negative amplifier circuit 16 are shared, so the number of power sources generated for the positive amplifier circuit 15 and the negative amplifier circuit 16 Therefore, low power consumption can be realized with a simple circuit configuration.
  • the outputs of the positive amplifier circuit 15 and the negative amplifier circuit 16 are the maximum output value of the positive amplifier circuit 15. Since the absolute value of the minimum output value of the negative amplifier circuit 16 is set to be different, in the case of a liquid crystal display device having a common electrode, the common electrode potential level can be adjusted relatively easily.
  • the second embodiment is different from the first embodiment, and other configurations are the same as described in the first embodiment.
  • FIG. 8 is a diagram for explaining the pull-in of the drain potential by Cgd, and shows a schematic circuit configuration of one pixel in the display area of the liquid crystal display device 1.
  • the potential level of the drain electrode of the transistor element 11 provided for each pixel of the liquid crystal display device 1 is first set to the signal voltage Vs supplied from the data signal line Si through the transistor element 11. After that, the voltage is changed by the voltage change (from Vgh to Vgl) of the scanning signal line Gj through the Cgd parasitic capacitance.
  • the fluctuation amount (drawing amount) that the drain electrode receives by Cgd shown in bold in FIG. 8 is expressed by the following formula (1).
  • ⁇ Vgd (Cgd / ⁇ C) ⁇ ⁇ Vg Formula (1)
  • ⁇ C is substantially equal to Cls + Ccs + Cgd + Csd1 + Csd2
  • ⁇ Vg is an absolute value of Vgh ⁇ Vgl.
  • Clc is a liquid crystal capacitance between the drain electrode and the common electrode
  • Ccs is a holding capacitance between the drain electrode and the CS electrode
  • Csd1 is a parasitic capacitance between the drain electrode and the data signal line Si
  • Csd2 is a capacitance between the drain electrode and the common electrode.
  • the parasitic capacitance between the data signal line Si + 1 and Cgd is the parasitic capacitance between the drain electrode and the scanning signal line Gj.
  • the drain potential after the change in the maximum value of the signal voltage Vs (voltage after pulling) is Vsh ⁇ Vgd.
  • the drain potential after fluctuation at the lowest value of the signal voltage Vs (voltage after pulling) is Vsl ⁇ Vgd.
  • the voltage after the fluctuation of the center value of the drain electrode is the voltage after the fluctuation at the highest value of the signal voltage Vs (the voltage after the pull-in) and the voltage after the fluctuation at the lowest value of the signal voltage Vs ( The average value ⁇ (Vsh ⁇ Vgd) + (Vsl ⁇ Vgd) ⁇ / 2 with respect to the voltage after pulling in, and (Vsh + Vsl) / 2 ⁇ Vgd.
  • FIG. 9 is a diagram showing an amplifier power supply voltage range and an amplifier output range used in a conventional liquid crystal display device, and an amplifier power supply voltage range and an amplifier output range that can be applied when a positive and negative power supply is used. It is.
  • 9A shows an amplifier power supply voltage range and an amplifier output range when the amplifier circuit 100 shown in FIG. 4A and FIG. 7A is used.
  • the amplifier power supply voltage range is set to Vdd (12 V) to GND (0 V), and the amplifier output range is set to source high output (maximum output value: 11 V) to source low output (minimum output value: 1 V).
  • the center value (source center) becomes 6 V, and VCOM is set in consideration of the pull-in of the center value (source center) by Cgd.
  • VCOM is adjusted within the adjustment range of each module shown in the figure.
  • the solid line indicates the output value from the amplifier, and the dotted line indicates the potential level after being drawn by Cgd.
  • FIG. 9B shows an amplifier power supply that can be applied when the positive amplifier circuit 15 and the negative amplifier circuit 16 shown in FIG. 4B and FIG. 7B are used. It is a figure which shows a voltage range and amplifier output range.
  • the amplifier power supply voltage range of the positive amplifier circuit 15 is Vdd1 (6V) to GND (0 V)
  • the amplifier power supply voltage range of the negative amplifier circuit 16 is Vdd2 ( ⁇ 6 V) to GND (0 V).
  • the output range of the positive amplifier circuit 15 is source high output (maximum output value: 5 V) to GND (0 V)
  • the output range of the negative amplifier circuit 16 is GND (0 V) to source low output (minimum output value: When set to ⁇ 5 V), the center value (source center) becomes 0 V
  • VCOM is set in consideration of the pull-in of the center value (source center) by Cgd.
  • the outputs of the positive amplifier circuit 15 and the negative amplifier circuit 16 are the source high output (maximum output value) of the positive amplifier circuit 15 and the negative amplifier circuit.
  • the absolute value of 16 source low outputs (minimum output value) was set to be different.
  • the source High output (maximum output value) of the positive amplifier circuit 15 is set to 5V
  • the source Low output (minimum output value) of the negative amplifier circuit 16 is set to ⁇ 5.5V
  • the absolute value of the source high output (maximum output value) of the positive amplifier circuit 15 and the source low output (minimum output value) of the negative amplifier circuit 16 were set to be different.
  • the center value (source center) is ⁇ 0.25 V, and considering the pull-in of the center value (source center) by Cgd, it becomes possible to set VCOM at a position relatively away from 0 V. Therefore, the problem that it is difficult to stably output the potential level of VCOM can be solved.
  • the source output values such as the source high output (maximum output value) and the source low output (minimum output value) are changed by changing the resistance ratio in the DAC circuit 9 shown in FIG. Realized but not limited to this.
  • FIG. 11 is a diagram showing another example of the amplifier power supply voltage range and the amplifier output range that can be used in the liquid crystal display device 1.
  • the source high output (maximum output value) of the positive amplifier circuit 15 is set to 5.8V
  • the source low output (minimum output value) of the negative amplifier circuit 16 is set to ⁇ 4.8V
  • the absolute value of the source high output (maximum output value) of the positive amplifier circuit 15 and the source low output (minimum output value) of the negative amplifier circuit 16 were set to be different.
  • the center value (source center) is 0.5 V
  • the center value (source center) drawn by Cgd is 0.5 V
  • VCOM is set to GND (0 V).
  • the pull-in of the center value (source center) by Cgd is slightly different for each liquid crystal panel and each gradation, but in the above case, the pull-in of the center value (source center) by Cgd at the Max gradation is used as a reference. .
  • the center value (source center) is drawn by Cgd in the Max gradation, but the present invention is not limited to this, and the center value by Cgd in gradations other than the Max gradation is used. It may be based on the pull-in of (source center).
  • FIG. 12 is a diagram showing still another example of the amplifier power supply voltage range and the amplifier output range that can be used in the liquid crystal display device 1.
  • the source High output (maximum output value) of the positive amplifier circuit 15 is set to 5.8 V
  • the source Low output (minimum output value) of the negative amplifier circuit 16 is set to ⁇ 4. .8V
  • the absolute value of the source high output (maximum output value) of the positive amplifier circuit 15 and the source low output (minimum output value) of the negative amplifier circuit 16 were set differently.
  • the amplifier power supply voltage range of the positive amplifier circuit 15 is Vdd1 (6V) to GND (0V), and the amplifier power supply voltage range of the negative amplifier circuit 16 is GND (0V).
  • Vdd2 To Vdd2 ( ⁇ 6V), the amplifier power supply voltage range of the positive amplifier circuit 15 is set to Vdd1 (6V) to GND (0V), and the amplifier power supply of the negative amplifier circuit 16 is set in FIG.
  • the voltage range is set to GND (0 V) to Vdd2 ( ⁇ 5 V).
  • the power supply on the side where the potential level of the amplifier is low is GND, but the present invention is not limited to this.
  • FIG. 1 in addition to the source high output (maximum output value) of the positive amplifier circuit 15 corresponding to the Max gradation and the source low output (minimum output value) of the negative amplifier circuit 16, FIG.
  • the signal supplied to the scanning signal line changes from High to Low in the entire output range of the positive amplifier circuit 15 and the entire output range of the negative amplifier circuit 16, as shown in FIG.
  • the output value of the positive amplifier circuit 15 and the negative amplifier circuit 16 for each gradation in accordance with a change amount ( ⁇ characteristic) different for each gradation of the data signal supplied through the transistor element.
  • the average value is set different from the output value.
  • the source center line is slightly inclined in the upper right direction.
  • the liquid crystal display device 1 that can realize high display image quality can be realized.
  • a normally black mode liquid crystal display device is used, so that a low voltage is applied in a low gradation (dark gradation) and a high voltage in a high gradation (bright gradation).
  • a low voltage is applied in a low gradation (dark gradation) and a high voltage in a high gradation (bright gradation).
  • the absolute value of the amplifier output increases linearly in both positive and negative as the gray level increases, but the present invention is not limited to this. The opposite is true when using a liquid crystal display device of the mary white mode.
  • the switching circuit connects the data signal line to the positive amplifier circuit and After being electrically separated from the negative amplifier circuit, the data signal line is connected to a node within the power supply voltage range of the negative amplifier circuit for a predetermined period, and the data signal output from the data signal line driving circuit is connected.
  • the polarity is reversed from the negative polarity to the positive polarity
  • the data signal line is electrically separated from the positive amplifier circuit and the negative amplifier circuit, and then the data signal line is connected to the power source of the positive amplifier circuit. It is preferable to connect to a node within the voltage range for a predetermined period.
  • the data signal line is electrically connected from the positive amplifier circuit and the negative amplifier circuit.
  • the data signal line and the amplifier circuit are electrically connected to each other after approaching the potential within the power supply voltage range of the polarity side amplifier circuit in which the polarity of the data signal supplied to the data signal line is inverted. Therefore, the positive amplifier circuit and the negative amplifier circuit can be prevented from being damaged.
  • the potential level of the node is a ground potential.
  • the switching circuit electrically isolates the data signal line from the positive amplifier circuit and the negative amplifier circuit. Later, after the data signal line is brought close to the ground potential, the data signal line and the amplifier circuit can be electrically connected, so there is no useless movement of charge and an increase in power for driving the data signal line. Therefore, low power consumption can be realized.
  • the output of the positive amplifier circuit and the negative amplifier circuit is such that the maximum output value of the positive amplifier circuit and the absolute value of the minimum output value of the negative amplifier circuit are different. It is preferable that it is set.
  • the outputs of the positive amplifier circuit and the negative amplifier circuit are set so that the maximum output value of the positive amplifier circuit is different from the absolute value of the minimum output value of the negative amplifier circuit. Therefore, in the case of a display device having a common electrode, the common electrode potential level can be adjusted relatively easily.
  • the outputs of the positive amplifier circuit and the negative amplifier circuit are such that the absolute value of the minimum output value of the negative amplifier circuit is greater than the maximum output value of the positive amplifier circuit. It is preferable that it is set.
  • the common electrode potential level can be set within a range where the common electrode voltage can be stably output.
  • a plurality of scanning signal lines connected to a scanning signal line driving circuit are provided in the display region of the display device so as to intersect the plurality of data signal lines.
  • An active element electrically connected to the data signal line and the scanning signal line is provided in the vicinity of each portion where the data signal line and the plurality of scanning signal lines intersect, and the positive amplifier circuit
  • the output of the negative amplifier circuit is such that the maximum output value of the positive amplifier circuit changes from the absolute value of the minimum output value of the negative amplifier circuit so that the signal supplied to the scanning signal line changes from High to Low.
  • the setting is made so as to increase by the amount of change of the data signal supplied via the data signal line and the active element.
  • the common electrode potential level is set to the GND level.
  • the high-side power supply voltage value of the positive amplifier circuit and the negative amplifier circuit according to the maximum output value of the positive amplifier circuit and the minimum output value of the negative amplifier circuit. It is preferable that the absolute value of the low-side power supply voltage value is set to be different.
  • the high-side power supply voltage value of the positive amplifier circuit and the Low of the negative amplifier circuit according to the maximum output value of the positive amplifier circuit and the minimum output value of the negative amplifier circuit. Since the power supply voltage value on the side can be set to an optimum power supply level individually, it is possible to reduce power consumption.
  • a plurality of scanning signal lines connected to a scanning signal line driving circuit are provided in the display area of the display device so as to intersect the plurality of data signal lines.
  • An active element electrically connected to the data signal line and the scanning signal line is provided in the vicinity of each portion where the data signal line and the plurality of scanning signal lines intersect, and the positive amplifier circuit
  • the signal supplied to the scanning signal line changes from High to Low in the entire output range and the entire output range of the negative amplifier circuit
  • the signal is supplied via the data signal line and the active element.
  • the average value of the output value of the positive polarity amplifier circuit and the output value of the negative polarity amplifier circuit is set to be different for each gradation according to the amount of change different for each gradation of the data signal. It is preferable.
  • each level of the data signal supplied via the data signal line and the active element is set. Adjustment that takes into account the ⁇ characteristic, which is a different amount of change for each key, is possible, and flicker can be reduced. Therefore, a display device that can realize high display image quality can be realized.
  • the display device of the present invention it is preferable to share the low-side power source of the positive amplifier circuit and the high-side power source of the negative amplifier circuit.
  • the potential level of the shared power supply is the ground potential.
  • the difference between the high-side power supply voltage value of the positive amplifier circuit and the absolute value of the low-side power supply voltage value of the negative amplifier circuit is preferably 0.5 V or less.
  • the polarity of the data signal output to the data signal line via any one of the positive amplifier circuit and the negative amplifier circuit is inverted every predetermined period.
  • the polarity signal may be switched so that it is output via the other amplifier circuit when the polarity signal is inverted.
  • the data signal output to the data signal line through one of the positive amplifier circuit and the negative amplifier circuit is The output is switched through the amplifier circuit.
  • the switching circuit of the display device electrically separates the data signal line from the positive amplifier circuit and the negative amplifier circuit before the polarity inversion timing of the polarity signal, and then the data signal A line is connected to a node in the power supply voltage range of the other amplifier circuit for a predetermined period, and the data signal line is connected to a node in the power supply voltage range of the other amplifier circuit for a predetermined period, and The data signal line may be electrically connected again to the positive amplifier circuit and the negative amplifier circuit after polarity inversion of the polarity signal.
  • the positive amplifier circuit and the negative amplifier circuit can be prevented from being damaged. Therefore, it is possible to realize a display device that can reduce power consumption and ensure reliability.
  • the display device may include a display panel, and the display panel may be a liquid crystal display panel.
  • polarity inversion driving is generally used to avoid polarization of liquid crystal molecules in the liquid crystal layer. Therefore, according to the above configuration, low power consumption can be achieved and reliability can be ensured.
  • a liquid crystal display device can be realized.
  • the present invention can be suitably used for a display device such as a liquid crystal display device.
  • Liquid crystal display device (display device) DESCRIPTION OF SYMBOLS 2 Liquid crystal display panel 3 Scanning signal line drive circuit 4 Data signal line drive circuit 5 System side control part 6 Timing control part 7 Power supply generation circuit 8 Common electrode drive circuit 9 DAC circuit 10, 10a Source AMP output circuit 11 Transistor element (active element) ) 12 pixel electrode 13 TFT substrate 14 counter substrate 15 positive amplifier circuit 16 negative amplifier circuit 17, 17a switching circuit 18 inverter S (M) data signal line G (N) scanning signal line

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

 低消費電力化を実現できるとともに、正極用アンプ回路(15)および負極用アンプ回路(16)の破損を防止することができ、信頼性も確保できる表示装置を提供することを目的とする。 ソースAMP出力回路(10)には、極性反転時に、データ信号線(S(m))を、ソースAMP出力回路(10)に備えられた正極用アンプ回路(15)と負極用アンプ回路(16)との出力から切り離した後に、データ信号線(S(m))を、正極用アンプ回路(15)の電源電圧範囲内(Vdd1~Vdd3)または、負極用アンプ回路(16)の電源電圧範囲内(Vdd2~Vdd4)にある電源に接続するための切替回路(17)が備えられている。

Description

表示装置
 本発明は、低消費電力化を実現した表示装置に関するものである。
 近年、電池などの限られた電源を用いるスマートフォン、携帯電話および携帯型テレビなどの表示装置を備えた携帯機器の発達や、TVやモニターなど主に屋内で使用される表示装置の大型化に伴い、これらの表示装置の低消費電力化への試みが多数なされている。
 例えば、従来においては、液晶表示装置のデータ信号線駆動回路には、図7の(a)に図示されているようなLow側電源として0V(GND)が供給され、High側電源としてVddが供給され、その入力範囲および出力範囲が0V~Vddであるアンプ回路100が、各データ信号線S(m)毎に設けられていた。
 上記液晶表示装置が、例えば、ドット反転駆動やライン反転駆動やフレーム反転駆動などのように、極性反転駆動される場合、上記データ信号線駆動回路に備えられたアンプ回路100には、正極性から負極性までのデータ信号が入力されるため、アンプ回路100の耐圧が大きい必要があり、アンプ回路100の消費電力が問題となっている。
 そこで、図7の(b)に図示されているように、上記データ信号線駆動回路にアンプ回路として、正極用アンプ回路15と負極用アンプ回路16とを各データ信号線S(m)毎に設けることが考えられる。
 図7の(b)の場合においては、正極用アンプ回路15には、High側電源として正の値であるVdd1が供給され、Low側電源として0V(GND)が供給されるようになっており、正極用アンプ回路15の出力範囲は0V(GND)~Vdd1となる。
 一方、負極用アンプ回路16には、High側電源として0V(GND)が供給され、Low側電源として負の値であるVdd2が供給されるようになっており、負極用アンプ回路16の出力範囲はVdd2~0V(GND)となる。
 そして、図7の(a)に示すアンプ回路100の出力範囲と同じ幅を有する出力範囲とするため、Vdd1とVdd2との差の絶対値がVddとGNDとの差の絶対値と等しくなるように設定すると、正極用アンプ回路15および負極用アンプ回路16のそれぞれの耐圧は、図7の(a)に示すアンプ回路100の耐圧より大幅に小さくなる。
 したがって、このような図7の(b)に図示されているようなアンプ回路構成を用いることにより、液晶表示装置の低消費電力化を実現することができる。
日本国公開特許公報「特開2001-312253号公報(2001年11月9日公開)」
 しかしながら、液晶表示装置などの表示装置が、例えば、ドット反転駆動やライン反転駆動やフレーム反転駆動などのように、極性反転駆動される場合、図7の(b)に図示されているようなアンプ回路構成においては、極性反転信号に応じて、正極用アンプ回路15および負極用アンプ回路16中、何れか一方のアンプ回路を介してデータ信号線S(m)に出力されるデータ信号が、他方のアンプ回路を介して出力されるように切り替わるようになっている。
 正極用アンプ回路15はその耐圧範囲が0V~Vdd1であり、負極用アンプ回路16はその耐圧範囲がVdd2~0Vであるため、正極用アンプ回路15と負極用アンプ回路16とでは、その耐圧範囲が全く異なる。
 このような構成であるため、図7の(b)に図示されているように、データ信号線S(m)を負極用アンプ回路16に電気的に接続し、負極用アンプ回路16から出力範囲Vdd2~0Vのデータ信号をデータ信号線S(m)に供給した後、極性反転信号に応じて、データ信号線S(m)を正極用アンプ回路15に電気的に接続すると、データ信号線S(m)に供給した出力範囲Vdd2~0Vのデータ信号が、耐圧範囲が0V~Vdd1である正極用アンプ回路15に供給され、正極用アンプ回路15が破損する恐れがある。
 同様に、データ信号線S(m)を正極用アンプ回路15に電気的に接続し、正極用アンプ回路15から出力範囲0V~Vdd1のデータ信号をデータ信号線S(m)に供給した後、極性反転信号に応じて、データ信号線S(m)を負極用アンプ回路16に電気的に接続すると、データ信号線S(m)に供給した出力範囲0V~Vdd1のデータ信号が、耐圧範囲がVdd2~0Vである負極用アンプ回路16に供給され、負極用アンプ回路16が破損する恐れがある。
 以上のように、図7の(b)に示すアンプ回路構成を用いた場合、液晶表示装置の低消費電力化を実現することはできるが、アンプ回路が破損する恐れがあるため、信頼性の確保という面で問題がある。
 本発明は、上記の問題点に鑑みてなされたものであり、低消費電力化を実現できるとともに、信頼性も確保できる表示装置を提供することを目的とする。
 本発明の表示装置は、上記の課題を解決するために、データ信号線駆動回路に接続された複数のデータ信号線を備えた表示装置であって、上記データ信号線駆動回路には、各々のデータ信号線毎に、正極用アンプ回路と、負極用アンプ回路と、該正極用アンプ回路および該負極用アンプ回路中、何れか一方のアンプ回路を介して該データ信号線に出力されるデータ信号が、他方のアンプ回路を介して出力されるように切り替わる際に、該データ信号線を該正極用アンプ回路および該負極用アンプ回路から電気的に分離し、該データ信号線を上記他方のアンプ回路の電源電圧範囲内にあるノードと所定期間接続する切替回路と、が備えられていることを特徴としている。
 上記構成によれば、上記正極用アンプ回路および上記負極用アンプ回路中、何れか一方のアンプ回路を介して上記データ信号線に出力されるデータ信号が、他方のアンプ回路を介して出力されるように切り替わる際に、上記切替回路によって、上記データ信号線を上記正極用アンプ回路と上記負極用アンプ回路から電気的に分離し、上記データ信号線を上記他方のアンプ回路の電源電圧範囲内の電位に近づけた後に、上記データ信号線と上記他方のアンプ回路とを電気的に接続できるので、上記正極用アンプ回路および上記負極用アンプ回路の破損を防止することができる。
 また、上記切替回路は、上記正極用アンプ回路および上記負極用アンプ回路中、何れか一方のアンプ回路を介して上記データ信号線に出力されるデータ信号が、他方のアンプ回路を介して出力されるように切り替わる際にのみ、動作するようになっており、水平期間や垂直期間の変わり目においてこのような出力の切り替えがない場合には、上記切替回路は動作しないため、余分な電荷の移動による消費電力増加を防止することができる。
 したがって、上記構成によれば、低消費電力化を実現できるとともに、信頼性も確保できる表示装置を実現できる。
 本発明の表示装置は、以上のように、上記データ信号線駆動回路には、各々のデータ信号線毎に、正極用アンプ回路と、負極用アンプ回路と、該正極用アンプ回路および該負極用アンプ回路中、何れか一方のアンプ回路を介して該データ信号線に出力されるデータ信号が、他方のアンプ回路を介して出力されるように切り替わる際に、該データ信号線を該正極用アンプ回路および該負極用アンプ回路から電気的に分離し、該データ信号線を上記他方のアンプ回路の電源電圧範囲内にあるノードと所定期間接続する切替回路と、が備えられていることを特徴としている構成である。
 それゆえ、低消費電力化を実現できるとともに、信頼性も確保できる表示装置を提供できる。
本発明の一実施の形態の液晶表示装置の概略構成を示す図である。 本発明の一実施の形態の液晶表示装置に備えられた切替回路を備えたソースAMP出力回路の回路構造を示す図である。 図2に示すソースAMP出力回路の駆動タイミングチャートを示す図である。 (a)は、従来のアンプ回路の構成を示す図であり、(b)は、本発明の一実施の形態の液晶表示装置において用いられているアンプ回路の構成を示す図である。 本発明の一実施の形態の液晶表示装置に用いることができる他の切替回路を備えたソースAMP出力回路の回路構造を示す図である。 図5に示すソースAMP出力回路の駆動タイミングチャートを示す図である。 (a)は、従来のアンプ回路の構成を示す図であり、(b)は、図5に示すソースAMP出力回路において用いられているアンプ回路の構成を示す図である。 Cgdによるドレイン電位の引き込みを説明するための図である。 (a)は、従来の液晶表示装置において、用いられるアンプ電源電圧範囲およびアンプ出力範囲を示す図であり、(b)は、正負電源を用いた場合において、適用することが考えられるアンプ電源電圧範囲およびアンプ出力範囲を示す図である。 正負電源を用いた本発明の他の実施の形態の液晶表示装置において用いることができるアンプ電源電圧範囲およびアンプ出力範囲の一例を示す図である。 正負電源を用いた本発明の他の実施の形態の液晶表示装置において用いることができるアンプ電源電圧範囲およびアンプ出力範囲の他の一例を示す図である。 正負電源を用いた本発明の他の実施の形態の液晶表示装置において用いることができるアンプ電源電圧範囲およびアンプ出力範囲のさらに他の一例を示す図である。 正負電源を用いた本発明の他の実施の形態の液晶表示装置において、Ω特性を考慮して、全階調にわたって正極用アンプ回路の出力値と負極用アンプ回路の出力値とを設定した一例を示す図である。
 以下、図面に基づいて本発明の実施の形態について詳しく説明する。ただし、この実施の形態に記載されている構成部品の寸法、材質、形状、その相対配置などはあくまで一実施形態に過ぎず、これらによってこの発明の範囲が限定解釈されるべきではない。
 なお、以下の各実施の形態においては、表示装置として液晶表示装置を例に挙げて説明をするが、極性反転駆動を用いて表示を行う表示装置であれば、その種類は特に限定されない。
 〔実施の形態1〕
 以下、図1から図7に基づいて、本発明の第1の実施形態について説明する。
 図1は、液晶表示装置1の概略構成を示す図である。
 図示されているように、液晶表示装置1には、液晶表示パネル2と、複数の走査信号線G(0)・G(1)・・・G(N)に走査信号を供給するための走査信号線駆動回路(ゲートドライバ)3と、複数のデータ信号線S(0)・S(1)・・・S(M)にデータ信号を供給するためのデータ信号線駆動回路(ソースドライバ)4と、タイミングコントロール部6と、電源生成回路7と、共通電極駆動回路8と、が備えられている。
 なお、本実施の形態においては、液晶表示装置1側に電源生成回路7が備えられている場合について説明するが、これに限定されることはなく、電源生成回路7は、システム側コントロール部5側に備えられていてもよい。
 システム側コントロール部5からタイミングコントロール部6には、映像信号および映像同期信号Hsync・Vsyncが供給され、システム側コントロール部5から電源生成回路7には、入力電源が供給されるようになっている。
 そして、電源生成回路7は、液晶表示装置1内の各回路が動作するために必要な正側電源(Vdd1・Vdd3)、負側電源(Vdd2・Vdd4)、COM電源、Vcc(未図示)、Vgh(未図示)、およびVgl(未図示)を生成し、Vcc(未図示)、Vgh(未図示)、およびVgl(未図示)を走査線駆動回路3に出力し、正側電源(Vdd1・Vdd3)、負側電源(Vdd2・Vdd4)およびVcc(未図示)をデータ信号線駆動回路4に出力し、Vcc(未図示)をタイミングコントロール部6に出力し、COM電源を共通電極駆動回路8に出力するようになっている。
 それから、タイミングコントロール部6は、システム側から入力されたクロック信号Clock及び映像同期信号Hsync・Vsyncに基づき、各回路が同期して動作するための基準となる映像同期信号として、ゲートクロックGCKおよびゲートスタートパルスGSPを生成し、走査信号線駆動回路3に出力する(図1中の矢印A)一方、ソースクロックSCKおよびソーススタートパルスSSPおよびシステム側から入力された映像信号を上記映像同期信号Hsync・Vsyncに基づき、映像データを生成し、データ信号線駆動回路4に出力する(図1中の矢印B)ようになっている。
 そして、上記映像データは、データ信号線駆動回路4に備えられたDAC回路(デジタルアナログコンバーター)9とソースAMP出力回路10とを介して、データ信号線S(0)・S(1)・・・S(M)に出力されるようになっている。
 また、タイミングコントロール部6は、データ信号線駆動回路4に極性信号を出力する(図1中の矢印B)とともに、共通電極駆動回路8にも極性信号を出力する(図1中の矢印C)ようになっている。
 また、マトリクス状に配置された複数の画素を有する液晶表示パネル2は、複数のデータ信号線S(0)・S(1)・・・S(M)と複数の走査信号線G(0)・G(1)・・・G(N)とが交差する各々の箇所の近傍に、該データ信号線と該走査信号線と画素電極12と電気的に接続されたトランジスタ素子11(能動素子)が設けられたTFT基板13と、共通電極を備えた対向基板14と、TFT基板13と対向基板14との間に挟持された液晶層(未図示)と、を備えている。
 そして、共通電極駆動回路8から対向基板14に備えられた共通電極には、共通電極電位VCOMが供給されるようになっている。
 図2は、液晶表示装置1に備えられた切替回路17を備えたソースAMP出力回路10の回路構造を示す図である。
 図示されているように、ソースAMP出力回路10には、極性反転時に、データ信号線S(M)を、ソースAMP出力回路10に備えられた正極用アンプ回路15と負極用アンプ回路16との出力から切り離した後に、データ信号線S(M)を、正極用アンプ回路15の電源電圧範囲内(Vdd1~Vdd3)または、負極用アンプ回路16の電源電圧範囲内(Vdd2~Vdd4)にある電源に接続するための切替回路17が備えられている。
 なお、上記極性反転時に、正極用アンプ回路15および負極用アンプ回路16中、何れか一方のアンプ回路を介してデータ信号線S(M)に出力されるデータ信号が、他方のアンプ回路を介して出力されるように切り替えるため、図示されているように、スイッチS1・S2・S3・S4が設けられている。
 そして、スイッチS2・S4に供給される極性信号は、インバーター18を介して供給されるため、スイッチS1・S3に供給される極性信号とは、常に逆極性の極性信号が供給されるようになっている。
 本実施の形態においては、ドット反転駆動を用いているため、上記極性信号は1H期間(1水平期間)毎に反転されることとなるので、DAC回路9に入力された入力階調データは、正極用アンプ回路15および負極用アンプ回路16中、何れか一方のアンプ回路を介して出力され、1H期間後には、他方のアンプ回路を介して出力されるようになっている。すなわち、上記入力階調データは、1H期間毎に正極用アンプ回路15および負極用アンプ回路16を介して交互に出力されるようになっている。
 そして、切替回路17内に備えられたスイッチS5・S6は、タイミングコントロール部6から供給される一つの制御信号(スイッチS5・S6制御信号)によって、接続(Short)状態と接続されない(Open)状態とが切り替る。
 すなわち、スイッチS5・S6は、データ信号線S(M)を、正極用アンプ回路15と負極用アンプ回路16との出力から切り離したり、接続するためのスイッチである。
 なお、本実施の形態においては、データ信号線S(M)を、正極用アンプ回路15と負極用アンプ回路16との出力から切り離した後に、データ信号線S(M)を接続する電位レベルとして、正極用アンプ回路15の電源電圧範囲内であるVdd3または、負極用アンプ回路16の電源電圧範囲内であるVdd4を用いているが、これに限定されることはない。
 そして、切替回路17内には、さらに、スイッチS7・S8が備えられており、スイッチS7は、データ信号線S(M)を電源電圧Vdd4と接続するためのスイッチであり、スイッチS8は、データ信号線S(M)を電源電圧Vdd3と接続するためのスイッチである。
 スイッチS7およびスイッチS8のそれぞれには、タイミングコントロール部6から互いに独立した制御信号であるスイッチS7制御信号とスイッチS8制御信号とが供給されるようになっている。
 図3は、液晶表示装置1に備えられたソースAMP出力回路10の駆動タイミングチャートを示す図である。
 図示されているように、スイッチS1・S3とスイッチS2・S4とは、1H期間毎に、交互に接続(Short)状態となるようになっており、スイッチS5・S6は、極性信号が反転されるタイミング、すなわち、スイッチS1・S2・S3・S4の状態変化が生じるタイミングより所定期間前に、接続されない(Open)状態となり、スイッチSW・S2・S3・S4の状態変化後、所定期間後に再び接続(Short)状態となるようになっている。
 スイッチS5・S6が接続されない(Open)状態となることにより、データ信号線S(M)を、正極用アンプ回路15と負極用アンプ回路16との出力から切り離すことができ、スイッチS5・S6が接続されない(Open)状態において、スイッチS7とスイッチS8とが、交互に所定期間接続(Short)状態となるようになっている。
 そして、スイッチS7やスイッチS8が接続(Short)状態となるタイミングは、スイッチS5・S6が接続(Short)状態となるタイミングより所定期間前に設定されている。
 このように設定することにより、図示されているように、A点の電位レベルをデータ信号線S(M)が負極用アンプ回路16と電気的に接続される前には、負極用アンプ回路16の電源電圧範囲内であるVdd4とすることができ、一方、データ信号線S(M)が正極用アンプ回路15と電気的に接続される前には、正極用アンプ回路15の電源電圧範囲内であるVdd3とすることができる。
 なお、図示されているように、スイッチS5・S6が接続されない(Open)状態からスイッチS7または、スイッチS8が接続(Short)状態となるまでの期間においては、A点での電位レベルは、ハイインピダンス状態や電源電圧などに接続可能であるため、確定しない波形となり、点線で示している。
 以上のように、上記構成によれば、切替回路17は、極性信号に応じて、データ信号線駆動回路4から出力されるデータ信号の極性が正極性から負極性に反転する際には、データ信号線S(M)を正極用アンプ回路15および負極用アンプ回路16から電気的に分離した後に、データ信号線S(M)を負極用アンプ回路16の電源電圧範囲内にある電源Vdd4と所定期間接続し、極性信号に応じて、データ信号線駆動回路4から出力されるデータ信号の極性が負極性から正極性に反転する際には、データ信号線S(M)を正極用アンプ回路15および負極用アンプ回路16から電気的に分離した後に、データ信号線S(M)を正極用アンプ回路15の電源電圧範囲内にある電源Vdd3と所定期間接続するようになっている。
 したがって、正極用アンプ回路15および負極用アンプ回路16の破損を防止することができる。
 よって、上記構成によれば、低消費電力化を実現できるとともに、信頼性も確保できる液晶表示装置1を実現できる。
 図4の(a)は、従来の液晶表示装置に備えられたアンプ回路100の構成を示す図である。
 図示されているように、アンプ回路100は、GNDに接地されているとともに、電源電圧Vddが入力されるようになっている。
 従来においては、電源電圧Vddとして12Vが用いられていたため、アンプ回路100の電圧の入出力範囲は、0V~12Vと高く、アンプ回路100には高耐圧性が要求されていた。
 したがって、アンプ回路100は、そのサイズが比較的大きくなってしまうとともに、その消費電力も大きいという問題を有していた。
 一方、図4の(b)は、液晶表示装置1において用いられているアンプ回路の構成を示す図である。
 図示されているように、電源生成回路7で生成された正側電源Vdd1・Vdd3は、正極用アンプ回路15に、High側電源としてVdd1が、Low側電源としてVdd3が入力されるようになっており、電源生成回路7で生成された負側電源電圧Vdd2・Vdd4は、負極用アンプ回路7に、High側電源としてVdd4が、Low側電源としてVdd2が入力されるようになっている。
 したがって、正極用アンプ回路15はVdd3~Vdd1の入出力範囲(正の出力範囲)を有し、負極用アンプ回路16は、Vdd2~Vdd4の入出力範囲(負の出力範囲)を有する。
 なお、本実施の形態においては、正極用アンプ回路15に供給されるVdd1および負極用アンプ回路16に供給されるVdd2は、それぞれ、従来のアンプ回路100に供給される電源電圧Vdd(12V)の半分程度の電圧レベル(6V)の絶対値を有するように設定した。
 なお、本実施の形態においては、電源生成回路7において、電源昇圧回路の回路構成を簡易にするため、正負電源電圧であるVdd1とVdd2とを同じ電位レベルとしているが、これに限定されることはなく、Vdd1とVdd2の電圧値の絶対値の大小関係は特に問題にならない。
 また、電源昇圧回路の回路構成を簡易にできる効果は、Vdd1とVdd2とを同じ電位レベルとしなくても、Vdd1とVdd2の絶対値との差が、0.5V以下であれば、得ることができる。
 但し、図4の(b)に示す構成を用いる場合、従来のアンプ回路100と比較して、そのサイズ面や消費電力面で有利な効果を得るためには、Vdd1とVdd3との差の絶対値およびVdd2とVdd4との差の絶対値の和が、図4の(a)に示す従来のアンプ回路100の耐圧値(Vdd-GND)とほぼ同等になるように設計すると良い。
 なお、本実施の形態においては、データ信号線S(M)を正極用アンプ回路15および負極用アンプ回路16から電気的に分離した後に、データ信号線S(M)を負極用アンプ回路16の電源電圧範囲内にある電源Vdd4または、データ信号線S(M)を正極用アンプ回路15および負極用アンプ回路16から電気的に分離した後に、データ信号線S(M)を正極用アンプ回路15の電源電圧範囲内にある電源Vdd3と所定期間接続するようにしているが、これに限定されることはなく、データ信号線S(M)を正極用アンプ回路15および負極用アンプ回路16から電気的に分離した後に、正極用アンプ回路15または、負極用アンプ回路16の電源電圧範囲内のノード(Node)に接続させてもよい。
 また、図5に示すように、データ信号線S(M)を正極用アンプ回路15および負極用アンプ回路16から電気的に分離した後に、データ信号線S(M)をスイッチS7・S8を介して、GNDに接地させるようにすることもできる。
 図5は、液晶表示装置1に用いることができる他の切替回路17aを備えたソースAMP出力回路10aの回路構造を示す図である。
 図示されているように、ソースAMP出力回路10aには、極性反転時に、データ信号線S(m)を、正極用アンプ回路15と負極用アンプ回路16との出力から切り離した後に、データ信号線S(m)を、GNDに接続させるためのスイッチS5・S6・S7・S8を備えた切替回路17aが設けられている。
 図6は、図5に示すソースAMP出力回路10aの駆動タイミングチャートを示す図である。
 図示されているように、スイッチS1・S3とスイッチS2・S4とは、1H期間毎に、交互に接続(Short)状態となるようになっており、スイッチS5・S6は、極性信号が反転されるタイミング、すなわち、スイッチS1・S2・S3・S4の状態変化が生じるタイミングより所定期間前に、接続されない(Open)状態となり、スイッチS1・S2・S3・S4の状態変化後、所定期間後に再び接続(Short)状態となるようになっている。
 スイッチS5・S6が接続されない(Open)状態となることにより、データ信号線S(m)を、正極用アンプ回路15と負極用アンプ回路16との出力から切り離すことができ、スイッチS5・S6が接続されない(Open)状態において、スイッチS7・S8が所定期間接続(Short)状態となることにより、データ信号線S(m)は、所定期間GNDに接続されることとなるので、極性信号が反転する際に、データ信号線S(m)をGNDに近づけることができる。
 なお、図示されているように、スイッチS5・S6が接続されない(Open)状態からスイッチS7・S8が接続(Short)状態となるまでの期間においては、A点での電位レベルは、ハイインピダンス状態や電源電圧などに接続可能であるため、確定しない波形となり、点線で示している。
 上記構成によれば、データ信号線S(m)を正極用アンプ回路15および負極用アンプ回路16の電源電圧範囲Vdd1~Vdd2の略中間値であるGNDレベルにできるので、正極用アンプ回路15と負極用アンプ回路16との破損を防止できる。また、GNDに接続しているので、無駄な電荷の移動がないため、データ信号線S(m)を駆動する電力の増加が生じない。
 図7は、従来のアンプ回路の構成と、図5に示すソースAMP出力回路10aに備えられたアンプ回路の構成と、を示す図である。
 図7の(a)は図4の(a)と同様であるため、その説明を省略し、図7の(b)は、ソースAMP出力回路10aに備えられたアンプ回路の構成を示す図である。
 図示されているように、正極用アンプ回路15には、High側電源として、Vdd1が供給され、Low側電源として、GND(0V)が供給されるようになっており、一方、負極用アンプ回路16には、High側電源として、GND(0V)が供給され、Low側電源として、Vdd2が供給されるようになっている。
 上記構成においては、正極用アンプ回路15のLow側電源と負極用アンプ回路16のHigh側電源とが共用化されているので、正極用アンプ回路15および負極用アンプ回路16用に生成する電源数を更に減らせられるので、簡易な回路構成にて低消費電力化を実現することができる。
 なお、図7の(b)に示す構成を用いる場合においても、図7の(a)に示す従来のアンプ回路100と比較して、そのサイズ面や消費電力面で有利な効果を得るためには、Vdd1とGNDとの差の絶対値およびVdd2とGNDとの差の絶対値の和が、図7の(a)に示す従来のアンプ回路100の耐圧値(Vdd-GND)とほぼ同等になるように設計すると良い。
 〔実施の形態2〕
 次に、図8から図13に基づいて、本発明の第2の実施形態について説明する。本実施の形態の液晶表示装置においては、上述した実施の形態1において備えられた構成に加え、正極用アンプ回路15および負極用アンプ回路16の出力が、正極用アンプ回路15の最高出力値と負極用アンプ回路16の最低出力値の絶対値とが、異なるように設定されているので、共通電極を有する液晶表示装置の場合、共通電極電位レベルを比較的容易に調整することができるようになっている点において、実施の形態1とは異なっており、その他の構成については実施の形態1において説明したとおりである。
 図8は、Cgdによるドレイン電位の引き込みを説明するための図であり、液晶表示装置1の表示領域内の1画素の概略的な回路構成を示す。
 図示されているように、液晶表示装置1の各画素毎に設けられたトランジスタ素子11のドレイン電極の電位レベルは、先ずは、トランジスタ素子11を介してデータ信号線Siから供給される信号電圧Vsで充電されるが、その後、Cgd寄生容量を介して、走査信号線Gjの電圧変化(VghからVglへ)により、変化する。
 上記変化は、正極性および負極性の何れにおいても、Vgl側に引き込まれるため、正負極性のセンター値(ソースセンター)がずれることとなる。したがって、共通電極電位レベルVCOMの調整が必要となる。
 ドレイン電極が、図8において、太字で示しているCgdによって受ける変動量(引き込み量)は、下記式(1)となる。
 ΔVgd=(Cgd/ΣC)×ΔVg  式(1)
 ここで、ΣCは、Cls+Ccs+Cgd+Csd1+Csd2と略等しく、ΔVgはVgh-Vglの絶対値である。
 Clcはドレイン電極と共通電極間の液晶容量であり、Ccsは、ドレイン電極とCS電極間の保持容量であり、Csd1はドレイン電極とデータ信号線Si間の寄生容量であり、Csd2はドレイン電極とデータ信号線Si+1間の寄生容量であり、Cgdはドレイン電極と走査信号線Gj間の寄生容量である。
 そして、データ信号線Siから供給された信号電圧Vsの最高値をVshとし、最低値をVslとすると、信号電圧Vsの最高値における変動後のドレイン電位(引き込み後の電圧)は、Vsh-ΔVgdとなり、信号電圧Vsの最低値における変動後のドレイン電位(引き込み後の電圧)は、Vsl-ΔVgdとなる。
 そして、ドレイン電極のセンター値の変動後の電圧(引き込み後の電圧)は、信号電圧Vsの最高値における変動後の電圧(引き込み後の電圧)と信号電圧Vsの最低値における変動後の電圧(引き込み後の電圧)との平均値{(Vsh-ΔVgd)+(Vsl-ΔVgd)}/2であり、(Vsh+Vsl)/2-ΔVgdとなる。
 図9は、従来の液晶表示装置において、用いられるアンプ電源電圧範囲およびアンプ出力範囲と、正負電源を用いた場合において、適用することが考えられるアンプ電源電圧範囲およびアンプ出力範囲と、を示す図である。
 図9の(a)は、図4の(a)および図7の(a)に示すアンプ回路100を用いた場合のアンプ電源電圧範囲およびアンプ出力範囲を示す。
 図示されているように、アンプ電源電圧範囲をVdd(12V)~GND(0V)とし、アンプ出力範囲をソースHigh出力(最高出力値:11V)~ソースLow出力(最低出力値:1V)に設定すると、センター値(ソースセンター)は6Vとなり、Cgdによるセンター値(ソースセンター)の引き込みを考慮し、VCOMが設定される。
 Cgdによる引き込み量はモジュール毎に異なるため、VCOMは図示されているモジュール個別の調整範囲内で調整されることとなる。
 なお、アンプ出力範囲において、実線はアンプからの出力値で、点線はCgdによって引き込まれた後の電位レベルを示す。
 図9の(b)は、図4の(b)および図7の(b)に示すような正極用アンプ回路15および負極用アンプ回路16を用いた場合において、適用することが考えられるアンプ電源電圧範囲およびアンプ出力範囲と、を示す図である。
 図示されているように、正極用アンプ回路15のアンプ電源電圧範囲をVdd1(6V)~GND(0V)とし、負極用アンプ回路16のアンプ電源電圧範囲をVdd2(-6V)~GND(0V)とし、正極用アンプ回路15の出力範囲をソースHigh出力(最高出力値:5V)~GND(0V)とし、負極用アンプ回路16の出力範囲をGND(0V)~ソースLow出力(最低出力値:-5V)に設定すると、センター値(ソースセンター)は0Vとなり、Cgdによるセンター値(ソースセンター)の引き込みを考慮し、VCOMが設定される。
 しかし、以上のように設定した場合においては、VCOMの調整範囲は0Vの近くになるため、VCOMの電位レベルを安定的に出力しにくいという問題がある。
 そこで、本実施の形態においては、図10に示すように、正極用アンプ回路15および負極用アンプ回路16の出力を、正極用アンプ回路15のソースHigh出力(最高出力値)と負極用アンプ回路16のソースLow出力(最低出力値)の絶対値とが、異なるように設定した。
 すなわち、図10においては、正極用アンプ回路15のソースHigh出力(最高出力値)を5Vに設定し、負極用アンプ回路16のソースLow出力(最低出力値)を-5.5Vに設定し、正極用アンプ回路15のソースHigh出力(最高出力値)と負極用アンプ回路16のソースLow出力(最低出力値)の絶対値とが、異なるように設定した。
 上記設定においては、センター値(ソースセンター)は-0.25Vとなり、Cgdによるセンター値(ソースセンター)の引き込みを考慮すると、VCOMを0Vから比較的に離れた位置に設定することが可能となるので、VCOMの電位レベルを安定的に出力しにくいという問題を解決することができる。
 なお、本実施の形態においては、ソースHigh出力(最高出力値)やソースLow出力(最低出力値)などのソース出力値の変更は、図1に示すDAC回路9内の抵抗比を変えることによって実現しているが、これに限定されることはない。
 図11は、液晶表示装置1において用いることができるアンプ電源電圧範囲およびアンプ出力範囲の他の一例を示す図である。
 図11においては、正極用アンプ回路15のソースHigh出力(最高出力値)を5.8Vに設定し、負極用アンプ回路16のソースLow出力(最低出力値)を-4.8Vに設定し、正極用アンプ回路15のソースHigh出力(最高出力値)と負極用アンプ回路16のソースLow出力(最低出力値)の絶対値とが、異なるように設定した。
 上記設定においては、センター値(ソースセンター)は0.5Vとなり、Cgdによるセンター値(ソースセンター)の引き込みが0.5Vであり、VCOMをGND(0V)
に設定することができる。
 上記構成によれば、別途、共通電極に供給するための電源を生成しなくてもよいので、簡易な回路構成にて低消費電力化を実現することができる。
 なお、Cgdによるセンター値(ソースセンター)の引き込みは、液晶パネルや各階調毎に微細に異なるが、上記場合においては、Max階調においてのCgdによるセンター値(ソースセンター)の引き込みを基準としている。
 また、上記場合においては、Max階調においてのCgdによるセンター値(ソースセンター)の引き込みを基準としているが、これに限定されることはなく、Max階調以外の階調においてのCgdによるセンター値(ソースセンター)の引き込みを基準としてもよい。
 また、図12は、液晶表示装置1において用いることができるアンプ電源電圧範囲およびアンプ出力範囲のさらに他の一例を示す図である。
 図12においては、図11と同様に、正極用アンプ回路15のソースHigh出力(最高出力値)を5.8Vに設定し、負極用アンプ回路16のソースLow出力(最低出力値)を-4.8Vに設定し、正極用アンプ回路15のソースHigh出力(最高出力値)と負極用アンプ回路16のソースLow出力(最低出力値)の絶対値とが、異なるように設定した。
 図11と異なる点は、図11の構成においては、正極用アンプ回路15のアンプ電源電圧範囲をVdd1(6V)~GND(0V)に、負極用アンプ回路16のアンプ電源電圧範囲をGND(0V)~Vdd2(-6V)にそれぞれ設定したが、図12の構成においては、正極用アンプ回路15のアンプ電源電圧範囲をVdd1(6V)~GND(0V)に、負極用アンプ回路16のアンプ電源電圧範囲をGND(0V)~Vdd2(-5V)にそれぞれ設定した点である。
 このように、負極用アンプ回路16の出力範囲に応じて、負極用アンプ回路16のアンプ電源電圧範囲を以上のように変えることにより、以下に示すように約8%の低電力化を実現することができる。
 図11および図12に示す設定の場合の消費電力は、下記式(2)で求めることができる。
 P=c×f×Vsh×Vdd1+c×f×Vsl×Vdd2  式(2)
 図11の設定の場合は、c×f×{(5.8×6)+(-4.8×-6)}で63.6cfとなる。ここで、cは容量を示し、fは周波数を示す。
 一方、図12の設定の場合は、c×f×{(5.8×6)+(-4.8×-5)}で58.8cfとなる。
 なお、本実施の形態においては、アンプの電位レベルの低い側の電源をGNDとしているが、これに限定されない。
 なお、本実施の形態においては、Max階調に相当する正極用アンプ回路15のソースHigh出力(最高出力値)および負極用アンプ回路16のソースLow出力(最低出力値)以外にも、図13に示すように、正極用アンプ回路15の全出力範囲と負極用アンプ回路16の全出力範囲とにおいて、上記走査信号線に供給される信号がHighからLowに変化する際に、上記データ信号線と上記トランジスタ素子とを介して供給されたデータ信号の各階調毎に異なる変化量(Ω特性)に応じて、各々の階調毎に正極用アンプ回路15の出力値と負極用アンプ回路16の出力値との平均値が異なるように設定している。
 図示されているように、ソースセンター線は右上方向に少し傾いている。
 上記構成によれば、上記走査信号線に供給される信号がHighからLowに変化する際に、上記データ信号線と上記トランジスタ素子とを介して供給されたデータ信号の各階調毎に異なる変化量であるΩ特性を考慮した調整が可能となり、フリッカの低減を実現できるので、高い表示画質を具現できる液晶表示装置1を実現できる。
 なお、本実施の形態においては、ノーマリーブラックモードの液晶表示装置を用いているため、低い階調(暗い階調)においては低電圧が印加され、高い階調(明るい階調)においては高電圧が印加されるように、図13に示すように、階調が上がるに連れてアンプ出力は、正負ともに、線形的に絶対値が増えているが、これに限定されることはなく、ノーマリーホワイトモードの液晶表示装置を用いた場合には、逆となる。
 本発明の表示装置において、上記切替回路は、上記データ信号線駆動回路から出力されるデータ信号の極性が正極性から負極性に反転する際には、該データ信号線を該正極用アンプ回路および該負極用アンプ回路から電気的に分離した後に、該データ信号線を該負極用アンプ回路の電源電圧範囲内にあるノードと所定期間接続し、上記データ信号線駆動回路から出力されるデータ信号の極性が負極性から正極性に反転する際には、該データ信号線を該正極用アンプ回路および該負極用アンプ回路から電気的に分離した後に、該データ信号線を該正極用アンプ回路の電源電圧範囲内にあるノードと所定期間接続することが好ましい。
 上記構成によれば、上記切替回路によって、上記データ信号線駆動回路から出力されるデータ信号の極性が反転する際には、上記データ信号線を上記正極用アンプ回路と上記負極用アンプ回路から電気的に分離した後に、上記データ信号線に供給されるデータ信号の極性を反転させた極性側のアンプ回路の電源電圧範囲内の電位に近づけた後に、上記データ信号線と該アンプ回路とを電気的に接続できるので、上記正極用アンプ回路および上記負極用アンプ回路の破損を防止することができる。
 本発明の表示装置において、上記ノードの電位レベルを接地時の電位とすることが好ましい。
 上記構成によれば、上記ノードの電位レベルが接地時の電位レベルになっているため、上記切替回路は、上記データ信号線を上記正極用アンプ回路と上記負極用アンプ回路から電気的に分離した後に、上記データ信号線を接地時の電位に近づけた後に、上記データ信号線と該アンプ回路とを電気的に接続できるので、無駄な電荷の移動がなく、データ信号線を駆動する電力の増加を招かないので、低消費電力化を実現することができる。
 本発明の表示装置において、上記正極用アンプ回路および上記負極用アンプ回路の出力は、上記正極用アンプ回路の最高出力値と上記負極用アンプ回路の最低出力値の絶対値とが、異なるように設定されていることが好ましい。
 上記構成によれば、上記正極用アンプ回路および上記負極用アンプ回路の出力は、上記正極用アンプ回路の最高出力値と上記負極用アンプ回路の最低出力値の絶対値とが、異なるように設定されているので、共通電極を有する表示装置の場合、共通電極電位レベルを比較的容易に調整することができる。
 本発明の表示装置において、上記正極用アンプ回路および上記負極用アンプ回路の出力は、上記負極用アンプ回路の最低出力値の絶対値が、上記正極用アンプ回路の最高出力値より大きくなるように設定されていることが好ましい。
 上記構成によれば、共通電極を有する表示装置の場合、共通電極電位レベルを共通電極電圧が安定的に出力できる範囲にすることができる。
 本発明の表示装置において、上記表示装置の表示領域中には、上記複数のデータ信号線と交差するように走査信号線駆動回路に接続された複数の走査信号線が設けられており、上記複数のデータ信号線と上記複数の走査信号線とが交差する各々の箇所の近傍には、該データ信号線と該走査信号線と電気的に接続された能動素子が設けられ、上記正極用アンプ回路および上記負極用アンプ回路の出力は、上記正極用アンプ回路の最高出力値が、上記負極用アンプ回路の最低出力値の絶対値より、上記走査信号線に供給される信号がHighからLowに変化する際に、上記データ信号線と上記能動素子とを介して供給されたデータ信号の変化量分だけ大きくなるように設定されていることが好ましい。
 上記構成によれば、上記正極用アンプ回路の最高出力値が、上記負極用アンプ回路の最低出力値の絶対値より、上記走査信号線に供給される信号がHighからLowに変化する際に、上記データ信号線と上記能動素子とを介して供給されたデータ信号の変化量分だけ大きくなるように設定されているため、共通電極を有する表示装置の場合、共通電極電位レベルをGNDレベルとすることができる。
 したがって、別途、共通電極に供給するための電源を生成しなくてもよいので、簡易な回路構成にて低消費電力化を実現することができる。
 本発明の表示装置においては、上記正極用アンプ回路の最高出力値と上記負極用アンプ回路の最低出力値とに応じて、上記正極用アンプ回路のHigh側の電源電圧値と上記負極用アンプ回路のLow側の電源電圧値の絶対値とが異なるように設定されていることが好ましい。
 上記構成によれば、上記正極用アンプ回路の最高出力値と上記負極用アンプ回路の最低出力値とに応じて、上記正極用アンプ回路のHigh側の電源電圧値と上記負極用アンプ回路のLow側の電源電圧値とは、個別に最適の電源レベルに設定できるので、低消費電力化が可能となる。
 本発明の表示装置は、上記表示装置の表示領域中には、上記複数のデータ信号線と交差するように走査信号線駆動回路に接続された複数の走査信号線が設けられており、上記複数のデータ信号線と上記複数の走査信号線とが交差する各々の箇所の近傍には、該データ信号線と該走査信号線と電気的に接続された能動素子が設けられ、上記正極用アンプ回路の全出力範囲と上記負極用アンプ回路の全出力範囲とにおいて、上記走査信号線に供給される信号がHighからLowに変化する際に、上記データ信号線と上記能動素子とを介して供給されたデータ信号の各階調毎に異なる変化量に応じて、各々の階調毎に上記正極用アンプ回路の出力値と上記負極用アンプ回路の出力値との平均値が異なるように設定されていることが好ましい。
 上記構成によれば、上記各階調毎に異なる上記走査信号線に供給される信号がHighからLowに変化する際に、上記データ信号線と上記能動素子とを介して供給されたデータ信号の各階調毎に異なる変化量であるΩ特性を考慮した調整が可能となり、フリッカの低減を実現できるので、高い表示画質を具現できる表示装置を実現できる。
 本発明の表示装置においては、上記正極用アンプ回路のLow側電源と上記負極用アンプ回路のHigh側電源とを共用することが好ましい。
 上記構成によれば、上記正極用アンプ回路および上記負極用アンプ回路用に生成する電源数を減らせられるので、簡易な回路構成にて低消費電力化を実現することができる。
 本発明の表示装置においては、上記共用した電源の電位レベルを接地時の電位とすることが好ましい。
 上記の構成によれば、上記正極用アンプ回路および上記負極用アンプ回路用に生成する電源数を更に減らせられるので、簡易な回路構成にて低消費電力化を実現することができる。
 本発明の表示装置において、上記正極用アンプ回路のHigh側の電源電圧値と上記負極用アンプ回路のLow側の電源電圧値の絶対値との差は、0.5V以下であることが好ましい。
 上記構成によれば、上記正極用アンプ回路および上記負極用アンプ回路に供給される正負電源電圧が同程度の電位レベルであるため、電源昇圧回路の回路構成が容易となる。
 本発明の表示装置おいては、上記正極用アンプ回路および上記負極用アンプ回路中、何れか一方のアンプ回路を介して上記データ信号線に出力されるデータ信号は、所定期間毎に極性が反転する極性信号の極性反転時に、他方のアンプ回路を介して出力されるように切り替わる構成であってもよい。
 上記構成によれば、極性信号の極性反転に基づいて、上記正極用アンプ回路および上記負極用アンプ回路中、何れか一方のアンプ回路を介して上記データ信号線に出力されるデータ信号は、他方のアンプ回路を介して出力されるように切り替わる。
 本発明の表示装置の上記切替回路は、上記極性信号の極性反転のタイミングより前に、上記データ信号線を上記正極用アンプ回路および上記負極用アンプ回路から電気的に分離した後、上記データ信号線を上記他方のアンプ回路の電源電圧範囲内にあるノードと所定期間接続し、上記データ信号線を上記他方のアンプ回路の電源電圧範囲内にあるノードと所定期間接続した後であって、かつ、上記極性信号の極性反転後に、上記データ信号線を上記正極用アンプ回路および上記負極用アンプ回路と再び電気的に接続する構成であってもよい。
 上記構成によれば、上記正極用アンプ回路および上記負極用アンプ回路の破損を防止することができる。したがって、低消費電力化を実現できるとともに、信頼性も確保できる表示装置を実現できる。
 本発明の表示装置において、上記表示装置には表示パネルが備えられており、上記表示パネルは液晶表示パネルであってもよい。
 液晶表示装置においては、液晶層における液晶分子の分極などを避けるため、極性反転駆動が一般的に用いられているので、上記構成によれば、低消費電力化を実現できるとともに、信頼性も確保できる液晶表示装置を実現できる。
 本発明は上記した各実施の形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施の形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施の形態についても本発明の技術的範囲に含まれる。
 本発明は、液晶表示装置などの表示装置に好適に用いることができる。
 1           液晶表示装置(表示装置)
 2           液晶表示パネル
 3           走査信号線駆動回路
 4           データ信号線駆動回路
 5           システム側コントロール部
 6           タイミングコントロール部
 7           電源生成回路
 8           共通電極駆動回路
 9           DAC回路
 10、10a      ソースAMP出力回路
 11          トランジスタ素子(能動素子)
 12          画素電極
 13          TFT基板
 14          対向基板
 15          正極用アンプ回路
 16          負極用アンプ回路
 17、17a      切替回路
 18          インバーター
 S(M)        データ信号線
 G(N)        走査信号線

Claims (14)

  1.  データ信号線駆動回路に接続された複数のデータ信号線を備えた表示装置であって、
     上記データ信号線駆動回路には、各々のデータ信号線毎に、正極用アンプ回路と、負極用アンプ回路と、該正極用アンプ回路および該負極用アンプ回路中、何れか一方のアンプ回路を介して該データ信号線に出力されるデータ信号が、他方のアンプ回路を介して出力されるように切り替わる際に、該データ信号線を該正極用アンプ回路および該負極用アンプ回路から電気的に分離し、該データ信号線を上記他方のアンプ回路の電源電圧範囲内にあるノードと所定期間接続する切替回路と、が備えられていることを特徴とする表示装置。
  2.  上記切替回路は、上記データ信号線駆動回路から出力されるデータ信号の極性が正極性から負極性に反転する際には、該データ信号線を該正極用アンプ回路および該負極用アンプ回路から電気的に分離した後に、該データ信号線を該負極用アンプ回路の電源電圧範囲内にあるノードと所定期間接続し、上記データ信号線駆動回路から出力されるデータ信号の極性が負極性から正極性に反転する際には、該データ信号線を該正極用アンプ回路および該負極用アンプ回路から電気的に分離した後に、該データ信号線を該正極用アンプ回路の電源電圧範囲内にあるノードと所定期間接続することを特徴とする請求項1に記載の表示装置。
  3.  上記ノードの電位レベルを接地時の電位とすることを特徴とする請求項1または2に記載の表示装置。
  4.  上記正極用アンプ回路および上記負極用アンプ回路の出力は、上記正極用アンプ回路の最高出力値と上記負極用アンプ回路の最低出力値の絶対値とが、異なるように設定されていることを特徴とする請求項1から3の何れか1項に記載の表示装置。
  5.  上記正極用アンプ回路および上記負極用アンプ回路の出力は、上記負極用アンプ回路の最低出力値の絶対値が、上記正極用アンプ回路の最高出力値より大きくなるように設定されていることを特徴とする請求項4に記載の表示装置。
  6.  上記表示装置の表示領域中には、上記複数のデータ信号線と交差するように走査信号線駆動回路に接続された複数の走査信号線が設けられており、
     上記複数のデータ信号線と上記複数の走査信号線とが交差する各々の箇所の近傍には、該データ信号線と該走査信号線と電気的に接続された能動素子が設けられ、
     上記正極用アンプ回路および上記負極用アンプ回路の出力は、上記正極用アンプ回路の最高出力値が、上記負極用アンプ回路の最低出力値の絶対値より、上記走査信号線に供給される信号がHighからLowに変化する際に、上記データ信号線と上記能動素子とを介して供給されたデータ信号の変化量分だけ大きくなるように設定されていることを特徴とする請求項4に記載の表示装置。
  7.  上記正極用アンプ回路の最高出力値と上記負極用アンプ回路の最低出力値とに応じて、
     上記正極用アンプ回路のHigh側の電源電圧値と上記負極用アンプ回路のLow側の電源電圧値の絶対値とが異なるように設定されていることを特徴とする請求項4から6の何れか1項に記載の表示装置。
  8.  上記表示装置の表示領域中には、上記複数のデータ信号線と交差するように走査信号線駆動回路に接続された複数の走査信号線が設けられており、
     上記複数のデータ信号線と上記複数の走査信号線とが交差する各々の箇所の近傍には、該データ信号線と該走査信号線と電気的に接続された能動素子が設けられ、
     上記正極用アンプ回路の全出力範囲と上記負極用アンプ回路の全出力範囲とにおいて、
     上記走査信号線に供給される信号がHighからLowに変化する際に、上記データ信号線と上記能動素子とを介して供給されたデータ信号の各階調毎に異なる変化量に応じて、各々の階調毎に上記正極用アンプ回路の出力値と上記負極用アンプ回路の出力値との平均値が異なるように設定されていることを特徴とする請求項4に記載の表示装置。
  9.  上記正極用アンプ回路のLow側電源と上記負極用アンプ回路のHigh側電源とを共用することを特徴とする請求項1から8の何れか1項に記載の表示装置。
  10.  上記共用した電源の電位レベルを接地時の電位とすることを特徴とする請求項9に記載の表示装置。
  11.  上記正極用アンプ回路のHigh側の電源電圧値と上記負極用アンプ回路のLow側の電源電圧値の絶対値との差は、0.5V以下であることを特徴とする請求項1から10の何れか1項に記載の表示装置。
  12.  上記正極用アンプ回路および上記負極用アンプ回路中、何れか一方のアンプ回路を介して上記データ信号線に出力されるデータ信号は、所定期間毎に極性が反転する極性信号の極性反転時に、他方のアンプ回路を介して出力されるように切り替わることを特徴とする請求項1から11の何れか1項に記載の表示装置。
  13.  上記切替回路は、上記極性信号の極性反転のタイミングより前に、上記データ信号線を上記正極用アンプ回路および上記負極用アンプ回路から電気的に分離した後、上記データ信号線を上記他方のアンプ回路の電源電圧範囲内にあるノードと所定期間接続し、上記データ信号線を上記他方のアンプ回路の電源電圧範囲内にあるノードと所定期間接続した後であって、かつ、上記極性信号の極性反転後に、上記データ信号線を上記正極用アンプ回路および上記負極用アンプ回路と再び電気的に接続することを特徴とする請求項12に記載の表示装置。
  14.  請求項1から13の何れか1項に記載の表示装置には表示パネルが備えられており、
     上記表示パネルは液晶表示パネルであることを特徴とする液晶表示装置。
PCT/JP2012/060889 2011-04-28 2012-04-23 表示装置 WO2012147701A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/113,403 US9423637B2 (en) 2011-04-28 2012-04-23 Display device including data signal line drive circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011102378 2011-04-28
JP2011-102378 2011-04-28

Publications (1)

Publication Number Publication Date
WO2012147701A1 true WO2012147701A1 (ja) 2012-11-01

Family

ID=47072220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060889 WO2012147701A1 (ja) 2011-04-28 2012-04-23 表示装置

Country Status (2)

Country Link
US (1) US9423637B2 (ja)
WO (1) WO2012147701A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150287367A1 (en) * 2014-04-04 2015-10-08 Qualcomm Mems Technologies, Inc. Charge recycling driver output stage
KR20150133941A (ko) * 2014-05-20 2015-12-01 삼성디스플레이 주식회사 전원 공급 장치 및 전원 공급 장치 구동방법
CN107331368A (zh) 2017-09-01 2017-11-07 惠科股份有限公司 显示装置的驱动方法、数据驱动集成电路及显示面板
CN114639363B (zh) * 2022-05-20 2022-08-26 惠科股份有限公司 数据驱动电路、显示模组与显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10153986A (ja) * 1996-09-25 1998-06-09 Toshiba Corp 表示装置
JP2003315768A (ja) * 2003-03-28 2003-11-06 Seiko Epson Corp 液晶装置の駆動方法及び表示システム
JP2008116654A (ja) * 2006-11-02 2008-05-22 Nec Electronics Corp データドライバ及び表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3766926B2 (ja) 2000-04-28 2006-04-19 シャープ株式会社 表示装置の駆動方法およびそれを用いた表示装置ならびに携帯機器
CN1220098C (zh) 2000-04-28 2005-09-21 夏普株式会社 显示器件、显示器件驱动方法和装有显示器件的电子设备
US7292217B2 (en) * 2004-03-18 2007-11-06 Novatek Microelectronics Corp. Source driver and liquid crystal display using the same
US20070290979A1 (en) * 2006-06-15 2007-12-20 Solomon Systech Limited Source drive amplifier for flat panel display

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10153986A (ja) * 1996-09-25 1998-06-09 Toshiba Corp 表示装置
JP2003315768A (ja) * 2003-03-28 2003-11-06 Seiko Epson Corp 液晶装置の駆動方法及び表示システム
JP2008116654A (ja) * 2006-11-02 2008-05-22 Nec Electronics Corp データドライバ及び表示装置

Also Published As

Publication number Publication date
US20140055697A1 (en) 2014-02-27
US9423637B2 (en) 2016-08-23

Similar Documents

Publication Publication Date Title
KR101245944B1 (ko) 액정패널, 이를 구비한 액정표시장치 및 그 구동 방법
US8314764B2 (en) Voltage amplifier and driving device of display device using the voltage amplifier
US9548031B2 (en) Display device capable of driving at low speed
US8232946B2 (en) Liquid crystal display and driving method thereof
EP1863010A1 (en) Liquid crystal display and driving method thereof
US8581895B2 (en) Data driver, display apparatus and driving method thereof
KR101285054B1 (ko) 액정표시장치
US8890801B2 (en) Electrophoresis display device and driving method
KR101818247B1 (ko) 액정표시장치 및 그 구동방법
US10565947B2 (en) Detecting apparatus and display apparatus
EP2720219A1 (en) LCD with common voltage driving circuits
US10096291B2 (en) Drive structure of a liquid crystal display panel to achieve voltage charging and voltage sharing under a 2D and 3D display mode
US20070229429A1 (en) Liquid crystal display device and driving method thereof
US20110102400A1 (en) Liquid crystal display
WO2012147701A1 (ja) 表示装置
KR101589752B1 (ko) 액정표시장치
US20150049274A1 (en) Display apparatus and method of driving thereof
GB2486562A (en) Driving circuit for LCD that prevents errors generated in initial driving stage
KR101846544B1 (ko) 액정표시장치와 그 구동방법
JP2010113274A (ja) ビデオ電圧供給回路、電気光学装置および電子機器
US20110084948A1 (en) Lcd driver circuit and driving method thereof
JP5687487B2 (ja) 駆動回路
KR20130065328A (ko) 전기영동 디스플레이 장치와 이의 구동방법
KR20120050113A (ko) 액정 표시 장치 및 그 구동 방법
CN108154854B (zh) 面板显示装置及其数据反向补偿方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12776045

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14113403

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12776045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP