WO2012147570A1 - 光学ガラス、プリフォーム及び光学素子 - Google Patents

光学ガラス、プリフォーム及び光学素子 Download PDF

Info

Publication number
WO2012147570A1
WO2012147570A1 PCT/JP2012/060376 JP2012060376W WO2012147570A1 WO 2012147570 A1 WO2012147570 A1 WO 2012147570A1 JP 2012060376 W JP2012060376 W JP 2012060376W WO 2012147570 A1 WO2012147570 A1 WO 2012147570A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
glass
optical
less
optical glass
Prior art date
Application number
PCT/JP2012/060376
Other languages
English (en)
French (fr)
Inventor
敦 永岡
Original Assignee
株式会社オハラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012029517A external-priority patent/JP2012236756A/ja
Priority claimed from JP2012080551A external-priority patent/JP2013189364A/ja
Priority claimed from JP2012092933A external-priority patent/JP2013189366A/ja
Application filed by 株式会社オハラ filed Critical 株式会社オハラ
Publication of WO2012147570A1 publication Critical patent/WO2012147570A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/145Silica-free oxide glass compositions containing boron containing aluminium or beryllium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/15Silica-free oxide glass compositions containing boron containing rare earths

Definitions

  • the present invention relates to an optical glass, a preform, and an optical element.
  • Optical systems such as digital cameras and video cameras, although large and small, contain blurs called aberrations. This aberration is classified into monochromatic aberration and chromatic aberration. In particular, the chromatic aberration is strongly dependent on the material characteristics of the lens used in the optical system.
  • chromatic aberration is corrected by combining a low-dispersion convex lens and a high-dispersion concave lens.
  • this combination can only correct aberrations in the red region and the green region, and remains in the blue region.
  • This blue region aberration that cannot be removed is called a secondary spectrum.
  • it is necessary to perform an optical design in consideration of the trend of the g-line (435.835 nm) in the blue region.
  • the partial dispersion ratio ( ⁇ g ⁇ F) is used as an index of the optical characteristics to be noticed in the optical design.
  • optical glasses having a specific partial dispersion ratio have a remarkable effect in correcting aberrations, and various glasses have been developed in order to increase the degree of freedom in optical design.
  • chromatic aberration can be corrected in a wide wavelength range from ultraviolet to infrared.
  • Partial dispersion ratio ( ⁇ g ⁇ F) (n g ⁇ n F ) / (n F ⁇ n C ) (1)
  • Optical glass has an approximately linear relationship between a partial dispersion ratio ( ⁇ g ⁇ F) representing partial dispersion in a short wavelength region and an Abbe number ( ⁇ d ).
  • Straight line representing this relationship, the partial dispersion ratio ( ⁇ g ⁇ F) on the vertical axis, an Abbe number ([nu d) the Cartesian coordinates of adopting the horizontal axis, the partial dispersion ratio of NSL7 and PBM2 ( ⁇ g ⁇ F ) And the Abbe number ( ⁇ d ) are represented by a straight line connecting two points, which is called a normal line.
  • Normal glass which is the standard for normal lines, varies depending on the optical glass manufacturer, but each company defines it with almost the same slope and intercept.
  • NSL7 and PBM2 are optical glass manufactured by OHARA INC.
  • the partial dispersion ratio ( ⁇ g ⁇ F) of NSL7 is 0.5436
  • the Abbe number ( ⁇ d ) is 60.5
  • the partial dispersion of PBM2 The ratio ( ⁇ g ⁇ F) is 0.5828
  • the Abbe number ( ⁇ d ) is 36.3.
  • an optical glass mainly containing Bi 2 O 3 component as an optical glass that focuses the glass partial dispersion ratio ( ⁇ g ⁇ F), an optical glass is known as shown for example in Patent Documents 1 and 2.
  • optical glasses in particular, there is a great demand for glass having a high refractive index (n d ) and Abbe number ( ⁇ d ) capable of reducing the weight and size of optical elements.
  • n d refractive index
  • ⁇ d Abbe number
  • an optical glass having a refractive index (n d ) of 1.91 or more and an Abbe number ( ⁇ d ) of 17.2 or more and 33.1 or less has been used. .
  • a method of grinding and polishing molded glass obtained by heat softening a glass material and press molding (reheat press molding), or a preform obtained by cutting and grinding and polishing a gob or glass block
  • reheat press molding heat softening a glass material and press molding
  • precision press molding a method of grinding and polishing molded glass obtained by heat softening a glass material and press molding (reheat press molding), or a preform obtained by cutting and grinding and polishing a gob or glass block
  • precision press molding is used in which a material or a foam material molded by known flotation molding is heated and softened and press molded with a mold having a highly accurate molding surface.
  • Patent Document 3 describes an optical glass having a desired refractive index and spectral transmittance.
  • a preform material obtained by cutting and polishing a gob or glass block is heated and softened. Is pressed with a mold with a high-precision surface, grinding and polishing processes are omitted, and low-cost and mass production is realized.
  • the mold used for the mold press can be used repeatedly.
  • the upper limit temperature of the mold press and the transition temperature and the glass yield point are correlated, and the lower the temperature, the more the progress of the surface oxidation of the mold is suppressed, which is preferable from the viewpoint of the mold life.
  • a method for producing a preform there is a method in which a glass melt is dropped and cooled. This method has a high mass productivity of the preform material itself, and the manufacturing cost is currently the lowest. Furthermore, since the preform obtained by this method is close to a spherical or biconvex lens shape, the shape change amount at the time of mold pressing can be reduced, and the mass productivity of the glass itself can be improved.
  • the conditions at the time of production and the characteristics of the glass itself must be mutually optimized.
  • the higher the refractive index and the higher the dispersion the smaller the amount of glass forming oxide, and the glass tends to have a lower viscosity.
  • the liquidus temperature (devitrification temperature) must be lower than the temperature at the time of glass forming, for example, preform production, that is, glass that does not devitrify when dropped. Therefore, if the viscosity of the glass melt is low, the temperature of the glass melt must be lowered in order to increase the viscosity of the glass melt. Then, it will be lower than the liquidus temperature, and devitrification will occur in the preform material. Furthermore, the tendency becomes remarkable in the high refractive index and high dispersion glass. On the other hand, since the liquidus temperature is high, the problem of devitrification is solved by increasing the temperature during the manufacture of the preform. However, the glass becomes low-viscosity, and not only preform molding cannot be performed, but also problems such as premature wear due to seizure of the glass to the mold and surface oxidation of the mold occur.
  • Patent Document 4 discloses an optical glass containing a Bi 2 O 3 component so that the refractive index (n d ) is in the range of 2.15 or more and 2.3 or less.
  • the optical glasses described in Patent Documents 1 and 2 have insufficient refractive index (n d ). Therefore, in order to reduce the number of optical elements used in the optical system and reduce the thickness of the optical elements, and to meet the demands for high precision, light weight, and miniaturization of the optical system, the refractive index ( nd ) is increased. There is a need to increase it further.
  • a glass containing a Bi 2 O 3 component as a main component is required to be an optical glass having both a high refractive index (n d ) and a high partial dispersion ratio ( ⁇ g ⁇ F).
  • the logarithm log ⁇ of the refractive index (n d ) and the viscosity ⁇ (dPa ⁇ s) at the liquidus temperature is not sufficient. Therefore, in order to meet the demands for high accuracy, light weight, and miniaturization of the optical system in order to reduce devitrification resistance, reduce the number of optical elements used in the optical system and reduce the thickness of the optical element, the refractive index ( It is necessary to further increase n d ) to obtain the logarithm log ⁇ of the viscosity ⁇ (dPa ⁇ s) at a sufficient liquidus temperature.
  • an optical glass having a high refractive index (n d ) and a logarithm log ⁇ of viscosity ⁇ (dPa ⁇ s) at a sufficient liquidus temperature is required for a glass containing a Bi 2 O 3 component as a main component.
  • the present invention has been made in view of the above problems, in terms of% by mass on the oxide basis Bi 2 O 3 component 75.0% or more, an alkaline earth metal (RO component (wherein R is, Mg, Ca , Any one of Sr and Ba), and the content of rare earth metal component (Ln 2 O 3 component (wherein Ln is any one of Y, La, Gd and Yb))
  • RO component alkaline earth metal
  • Ln 2 O 3 component rare earth metal component
  • the present invention has been made in view of the above problems, Bi 2 O 3 component, alkaline earth metals (Mg, Ca, any one or more of Sr and Ba), the content of ZnO component and TeO 2 component
  • Bi 2 O 3 component alkaline earth metals (Mg, Ca, any one or more of Sr and Ba)
  • the content of ZnO component and TeO 2 component By setting the value within a predetermined range, it has a high refractive index (n d ) and a long spectral transmittance (5%), but is highly transparent to visible light, and is devitrified during the production and processing of glass.
  • An object of the present invention is to provide an optical glass that does not easily cause fogging and is easy to produce a preform material or an optical element by polishing, and a preform using the optical glass.
  • the present invention has been made in view of the above problems, and by containing Bi 2 O 3 , Nb 2 O 5 and ZnO, respectively, a high refractive index (n d ) and a viscosity ⁇ (at a sufficient liquidus temperature) It is an object of the present invention to provide an optical glass having a logarithm log ⁇ of dPa ⁇ s) that is easy to produce a preform material and an optical element by good devitrification resistance and polishing, and a preform using the same.
  • the Bi 2 O 3 component is at least 75.0% by mass% based on the oxide
  • an alkaline earth metal (RO component (in the formula) R is, Mg, Ca, or any one of Sr and Ba) content of the rare earth metal component (Ln 2 O 3 component (wherein Ln is, Y, La, any one or more of Gd and Yb)
  • the refractive index (n d) of the optical glass is obtained by bringing any one or more of the contents of the glass into less than 10.0% and less than 10.0% of the ZnO component by mass% based on the oxide.
  • the partial dispersion ratio ( ⁇ g ⁇ F) were found to be increased, and the present invention was completed.
  • the present inventor has at least a content of Bi 2 O 3 component and an alkaline earth metal (any one or more of Mg, Ca, Sr and Ba).
  • an alkaline earth metal any one or more of Mg, Ca, Sr and Ba.
  • the present inventor has adjusted the refractive index (n) by setting the contents of at least Bi 2 O 3 , Nb 2 O 5 and ZnO within predetermined ranges, respectively. It was found that the logarithm log ⁇ of the viscosity ⁇ (dPa ⁇ s) at d ) and the liquidus temperature can be increased, and the present invention has been completed.
  • the optical glass according to the embodiment of the present invention is characterized by containing a Bi 2 O 3 component of 75.0% or more and a ZnO component of less than 10.0% by mass% based on an oxide.
  • the optical glass may contain 98.0% or less of a Bi 2 O 3 component.
  • the optical glass may contain 90% or more of the Bi 2 O 3 component and the B 2 O 3 component in total.
  • the ZnO component may contain more than 0%.
  • any one of MgO component, CaO component, SrO component, BaO component, Y 2 O 3 component, La 2 O 3 component, Gd 2 O 3 component and Yb 2 O 3 component in mass% based on oxide. 1 type or more may contain more than 0% and less than 10.0%.
  • any one or more of MgO component, CaO component, SrO component and BaO component is more than 0 and less than 10.0% and TeO 2 component is more than 0 and more than 10.0 by mass% based on oxide. You may contain less than% component, respectively.
  • the Nb 2 O 5 component may be contained more than 0 and less than 10.0% by mass% based on the oxide.
  • the MgO component exceeds 0% and less than 10.0%, and / or the CaO component exceeds 0% and less than 10.0%, and / or the SrO component exceeds 0% and 10%. It may further contain less than 0.0% and / or each component with a BaO component of more than 0% and less than 10.0%.
  • the partial dispersion ratio ( ⁇ g, F) may be 0.67 or more.
  • a wavelength ( ⁇ 5 ) showing a spectral transmittance (5%) in a sample having a thickness of 10 mm may be 450 nm or less.
  • the logarithm log ⁇ of the viscosity ⁇ (dPa ⁇ s) at the liquidus temperature may be 0.3 or more.
  • the refractive index (n d ) may be 2.15 or more, and the Abbe number ( ⁇ d ) may be 13.0 or more and 25.0 or less.
  • a precision press-molding preform according to an embodiment of the present invention is characterized by comprising any one of the optical glasses described above.
  • An optical element according to an embodiment of the present invention includes any one of the optical glasses described above.
  • the preform may be molded by precision pressing.
  • the Bi 2 O 3 component is 75.0% or more by mass% based on the oxide, the alkaline earth metal (RO component (wherein R is any one of Mg, Ca, Sr and Ba).
  • the content of the rare earth metal component (Ln 2 O 3 component (wherein Ln is any one or more of Y, La, Gd and Yb)) is 10.0%. Less than or less than 10.0% of the ZnO component by weight based on the oxide, respectively, while having a high refractive index (n d ) and a large partial dispersion ratio ( ⁇ g ⁇ F),
  • An optical glass capable of reducing the size of the optical system, and a preform and an optical element using the optical glass can be provided.
  • the content of Bi 2 O 3 component, the content of alkaline earth metal (any one or more of Mg, Ca, Sr and Ba), the content of ZnO component and the content of TeO 2 component By setting the value within a predetermined range, it has a high refractive index (n d ) and a long spectral transmittance (5%), but is highly transparent to visible light, and is devitrified during the production and processing of glass. It is possible to provide an optical glass that does not easily cause fogging and is easy to produce a preform material or an optical element by polishing, and a preform using the optical glass.
  • the present invention by containing Bi 2 O 3 , Nb 2 O 5 and ZnO, it has a high refractive index (n d ) and a logarithm log ⁇ of viscosity ⁇ (dPa ⁇ s) at a liquid phase temperature in a predetermined range.
  • n d refractive index
  • dPa ⁇ s logarithm log ⁇ of viscosity ⁇
  • FIG. 6 is a diagram showing the relationship between the refractive index (n d ) and the partial dispersion ratio ( ⁇ g ⁇ F) in the optical glasses according to Examples 1 to 69 and Comparative Examples 1 and 2 of the present invention.
  • FIG. 6 is a graph showing the relationship between partial dispersion ratio ( ⁇ g ⁇ F) and Abbe number ( ⁇ d ) in the optical glasses according to Examples 1 to 69 and Comparative Examples 1 and 2 of the present invention.
  • FIG. 5 is a graph showing the relationship between refractive index (n d ) and spectral transmittance (5%) in optical glasses according to Examples 3 to 8, 10 to 70 and Comparative Examples 2 and 3 of the present invention.
  • FIG. 5 is a graph showing the relationship between the refractive index (n d ) and the Abbe number ( ⁇ d ) in the optical glasses according to Examples 3 to 8, 10 to 70 and Comparative Examples 2 and 3 of the present invention.
  • FIG. It is a figure which shows the relationship between refractive index (n d ) and Abbe number ( ⁇ d ) in the optical glasses according to Examples 18, 20 to 22, 25 to 69 and Comparative Examples 2 and 4 of the present invention.
  • the Bi 2 O 3 component is 75.0% or more by mass% based on oxide
  • the MgO component, CaO component, SrO component, BaO component, Y is mass% based on oxide.
  • Any one or more of 2 O 3 component, La 2 O 3 component, Gd 2 O 3 component and Yb 2 O 3 component is less than 10.0%
  • ZnO component is 10.0% by mass% based on oxide.
  • the refractive index (n d ) can be 2.15 or more and the partial dispersion ratio ( ⁇ g ⁇ F) can be 0.67 or more.
  • the refractive index (n d ) and the partial dispersion ratio ( ⁇ g ⁇ F) of the optical glass are increased. Therefore, an optical glass having a high refractive index (n d ) and a large partial dispersion ratio ( ⁇ g ⁇ F) and capable of reducing the size of an optical element and an optical system, and a plug using the same. renovation can be obtained.
  • the Bi 2 O 3 component is 75.0% or more by mass% based on the oxide, and the alkaline earth metal (Mg, Ca, Sr and Ba is mass% based on the oxide). any less than 1 or more) 10.0%, by each containing less than 10.0% of TeO 2 component of ZnO component in weight percent of 10.0% and less than the oxide basis of% by mass on the oxide basis
  • the refractive index (n d ) can be 2.15 or more and the spectral transmittance (5%) can be 450 nm or less.
  • the optical glass according to the embodiment of the present invention includes 75.0% or more of Bi 2 O 3 component by mass% based on oxide, and less than 10.0% of Nb 2 O 5 component by mass% based on oxide.
  • the refractive index (n d ) is 2.15 or more
  • the logarithmic log ⁇ of the viscosity ⁇ (dPa ⁇ s) at the liquidus temperature is 0.3 or more.
  • the logarithmic log ⁇ of the refractive index (n d ) of the optical glass and the viscosity ⁇ (dPa ⁇ s) at the liquidus temperature can be increased. . Therefore, while having a high refractive index (n d ) and a logarithm log ⁇ of the viscosity ⁇ (dPa ⁇ s) at the liquidus temperature, a preform material and an optical element can be produced by good devitrification resistance and polishing. An easy-to-use optical glass and a preform using the same can be obtained.
  • each component constituting the optical glass according to the embodiment of the present invention is expressed in terms of mass% based on the oxide.
  • the “oxide standard” means that when the oxide, nitrate, etc. used as the raw material of the glass component according to the embodiment of the present invention are all decomposed and changed into oxides when melted, the generated oxidation It is the composition which described each component contained in glass by making the sum total of the mass of a thing into 100 mass%.
  • the SiO 2 component is a component that improves the stability of the glass and reduces devitrification, and has the effect of reducing the dispersion of the glass, the transmittance, the scientific durability, the improvement of the abrasion degree, and the viscosity with respect to the liquidus temperature.
  • the content of the SiO 2 component is too large, the refractive index (n d ) and the partial dispersion ratio ( ⁇ g ⁇ F) of the glass are likely to be lowered, and the meltability of the glass is likely to be deteriorated.
  • the content of the SiO 2 component is, by mass% based on oxide, preferably 10.0%, more preferably 7.0%, and most preferably 3.0%.
  • the SiO 2 component can be contained in the glass using, for example, SiO 2 as a raw material.
  • the B 2 O 3 component is effective in improving the scientific durability by improving the stability of the glass to reduce devitrification and maintaining a high partial dispersion ratio ( ⁇ g ⁇ F) of the glass. It is. However, if the content of the B 2 O 3 component is too large, the stability of the glass tends to decrease, devitrification tends to occur, and the glass tends to have a low refractive index and low dispersion. Therefore, the content of the B 2 O 3 component is in mass% based on the oxide, preferably 15.0%, more preferably 12.0%, and most preferably 9.0%. On the other hand, the content of the B 2 O 3 component is mass% based on the oxide, preferably 1.0%, more preferably 2.0%, and most preferably 4.0%.
  • the B 2 O 3 component can be contained in the glass using, for example, H 3 BO 3 , Na 2 B 4 O 7 , Na 2 B 4 O 7 .10H 2 O, BPO 4 or the like as a raw material.
  • the SiO 2 component and the B 2 O 3 component do not necessarily need to be contained, but these are glass forming components and are very effective in reducing the devitrification of the glass and increasing the viscosity with respect to the liquidus temperature. Therefore, it is preferable that at least one of both components contains more than 0%. However, if these contents are too large, it is difficult to obtain a desired partial dispersion ratio ( ⁇ g ⁇ F) and Abbe number ( ⁇ d ). Therefore, the mass sum of the SiO 2 component and the B 2 O 3 component is mass% based on the oxide, preferably more than 0%, more preferably 2.5%, and most preferably 5.0%. .
  • the mass sum of the SiO 2 component and the B 2 O 3 component is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%.
  • the Al 2 O 3 component is an optional component useful for improving the chemical durability and mechanical strength of glass, improving the degree of wear, and increasing the viscosity with respect to the liquidus temperature.
  • the content of the Al 2 O 3 component is mass% based on oxide, preferably 10.0%, more preferably 5.0%, and most preferably 1.0%.
  • the Al 2 O 3 component can be contained in the glass using, for example, Al 2 O 3 , Al (OH) 3 or the like as a raw material.
  • the Y 2 O 3 component is an optional component useful for lowering the glass and increasing the refractive index. However, if the content is too large, the glass stability tends to be lowered. Accordingly, the content of the Y 2 O 3 component is preferably less than 10.0%, more preferably 5.0%, and most preferably 1.0%.
  • the La 2 O 3 component is an optional component useful for lowering the glass and increasing the refractive index. However, if the content is too large, the glass stability tends to be lowered. Therefore, the content of La 2 O 3 component is preferably less than 10.0%, more preferably 5.0%, and most preferably 1.0%.
  • the Gd 2 O 3 component is an optional component useful for reducing the glass dispersion and increasing the refractive index. However, if the content is too large, the glass stability tends to be lowered. Accordingly, the content of the Gd 2 O 3 component is preferably less than 10.0%, more preferably 5.0%, and most preferably 1.0%.
  • Yb 2 O 3 component and lowering dispersion glass is an optional component useful for increasing the refractive index.
  • the content of the Yb 2 O 3 component is preferably less than 10.0%, more preferably 5.0%, and most preferably 1.0%.
  • Y 2 O 3 component, La 2 O 3 component, Gd 2 O 3 component and Yb 2 O 3 component are effective in improving the chemical durability of the glass and are components that can be optionally added.
  • distribution to become low dispersion
  • stability of glass will fall and the transmittance
  • the mass sum of the Ln 2 O 3 component (wherein Ln is one or more selected from the group consisting of Y, La, Gd and Yb) is mass% based on the oxide, preferably 10 Less than 0.0%, more preferably 5.0%, and still more preferably 2.0%.
  • the mass sum of the Ln 2 O 3 component is less than 1.0% because the coloring of the glass can be further reduced.
  • Y 2 O 3 component, La 2 O 3 component, Gd 2 O 3 component and Yb 2 O 3 component of glass are, for example, La 2 O 3 , La (NO 3 ) 3 .XH 2 O (X is an arbitrary material) Integer), Gd 2 O 3 , Y 2 O 3 , Yb 2 O 3 and the like.
  • the TiO 2 component is an optional component effective for increasing the refractive index (n d ) and partial dispersion ratio ( ⁇ g ⁇ F) of the glass and lowering the liquidus temperature.
  • the content of the TiO 2 component is mass% based on the oxide, preferably 10.0%, more preferably 5.0%, and most preferably 1.0%.
  • TiO 2 component may be contained in the glass by using as the starting material for example TiO 2 or the like.
  • the ZrO 2 component is an optional component useful for improving the chemical durability and mechanical strength of glass. However, if the content of the ZrO 2 component is too large, the transmittance tends to decrease the stability of the glass is lowered. Therefore, the content of the ZrO 2 component is mass% based on the oxide, preferably 10.0%, more preferably 5.0%, and most preferably 1.0%.
  • the ZrO 2 component can be contained in the glass using, for example, ZrO 2 as a raw material.
  • the Nb 2 O 5 component is an essential component useful for improving the refractive index (n d ) of the glass, the partial dispersion ratio ( ⁇ g ⁇ F), and improving the devitrification property of the glass. Accordingly, the content of the Nb 2 O 5 component is, in terms of mass% based on the oxide, preferably more than 0%, more preferably 0.05%, and most preferably 0.1%. On the other hand, when the content of Nb 2 O 5 component is too large, the transmittance tends to decrease the stability of the glass is lowered. Therefore, the content of the Nb 2 O 5 component is mass% based on the oxide, preferably 10.0%, more preferably 5.0%, and most preferably 1.0%.
  • the Nb 2 O 5 component can be contained in the glass using, for example, Nb 2 O 5 as a raw material.
  • the TiO 2 component does not necessarily have to be contained, but it is preferable that the Nb 2 O 5 component is necessarily included, and a predetermined amount of Bi 2 O 3 component (described later), a TiO 2 component or an Nb 2 O 5 component, By using together, the partial dispersion ratio ( ⁇ g ⁇ F) of the glass can be further increased while maintaining high transmittance. Therefore, the total content of the TiO 2 component and the Nb 2 O 5 component is in mass% based on the oxide, and preferably exceeds 0%, more preferably 0.2%, and most preferably 0.5%. To do.
  • the total content of the TiO 2 component and the Nb 2 O 5 component is mass% based on the oxide, preferably 10.0%, more preferably 5.0%, and most preferably 3.0%. To do.
  • Nb 2 O 5 component and B 2 O 3 component it contains as Nb 2 O 5 component / B 2 O 3 component, can contribute to stabilization of glass. Therefore, the content ratio of Nb 2 O 5 component / B 2 O 3 component is preferably 0.001, more preferably 0.01, and most preferably 0.03. On the other hand, when the Nb 2 O 5 component / B 2 O 3 content of the component is too large, the transmittance for light having a wavelength in the visible region tends to decrease the stability of the glass is lowered. Therefore, the content ratio of Nb 2 O 5 component / B 2 O 3 component is preferably 0.5, more preferably 0.25, and most preferably 0.20.
  • the Ta 2 O 5 component is an optional component useful for increasing the refractive index (n d ) of the glass and improving the stability of the glass.
  • the content of the Ta 2 O 5 component is mass% based on the oxide, preferably 10.0%, more preferably 5.0%, and most preferably 3.0%.
  • the Ta 2 O 5 component can be contained in the glass using, for example, Ta 2 O 5 as a raw material.
  • the total content of the Nb 2 O 5 component and the Ta 2 O 5 component is preferably 10.0%, more preferably 5.0%, and most preferably 1.0% by mass% based on the oxide. The upper limit.
  • the WO 3 component is an optional component useful for increasing the refractive index (n d ) of glass, improving the partial dispersion ratio ( ⁇ g ⁇ F) of the glass, and reducing the Tg (glass transition point). .
  • the upper limit of the content of the WO 3 component is 10.0% by mass, preferably 10.0%, more preferably 5.0%, and most preferably 3.0%.
  • the WO 3 component can be contained in the glass using, for example, WO 3 as a raw material.
  • the ZnO component is a component useful for improving the chemical durability and devitrification resistance of glass.
  • the desired partial dispersion ratio and the content thereof is too large ( ⁇ g ⁇ F) and Abbe number ([nu d) it is difficult to obtain. Therefore, the content of the ZnO component is preferably less than 10.0%, more preferably 5.0%, and most preferably 3.0%.
  • the partial dispersion ratio ( ⁇ g ⁇ F) and the Abbe number ( ⁇ d ) In order to facilitate the adjustment, the ZnO component is preferably contained with the lower limit being preferably over 0%, more preferably 0.1%, and most preferably 0.2%.
  • the MgO component is an optional component useful for increasing the dispersion of glass and improving devitrification resistance.
  • the content of the MgO component is, in mass% based on the oxide, preferably less than 10.0%, more preferably 5.0%, and most preferably 3.0%.
  • the content of the MgO component is in mass% based on the oxide, and preferably exceeds 0%, more preferably 0.1%, and most preferably 0.2%.
  • the MgO component can be contained in the glass using, for example, MgO, MgCO 3 or the like as a raw material.
  • the CaO component is an optional component useful for improving transmittance, glass low dispersion, devitrification resistance, and chemical durability.
  • the content of the CaO component and the mass% based on the oxide are preferably less than 10.0%, more preferably 5.0%, and most preferably 3.0%.
  • the content of the CaO component is mass% based on the oxide, and preferably exceeds 0%, more preferably 0.1%, and most preferably 0.2%.
  • CaO component may be contained in the glass by using as the starting material for example CaCO 3 or the like.
  • the SrO component is a component useful for improving the devitrification resistance of the glass.
  • the content of the SrO component is, in terms of mass% based on the oxide, preferably less than 10.0%, more preferably 5.0%, and most preferably 3.0%.
  • the content of the SrO component is in mass% based on the oxide, and preferably exceeds 0%, more preferably 0.1%, and most preferably 0.2%.
  • the SrO component can be contained in the glass using, for example, Sr (NO 3 ) 2 as a raw material.
  • the BaO component is an optional component useful for improving the devitrification resistance of glass.
  • the content of the BaO component is too large, it becomes difficult to obtain the refractive index (n d ) of the glass, and it is difficult to obtain the desired partial dispersion ratio ( ⁇ g ⁇ F) and Abbe number ( ⁇ d ).
  • the upper limit of the content of the BaO component is preferably less than 10.0%, more preferably 5.0%, and most preferably 3.0% in terms of mass% based on oxide.
  • the content of the BaO component is in mass% based on the oxide, and preferably exceeds 0%, more preferably 0.1%, and most preferably 0.2%.
  • the BaO component can be contained in the glass using, for example, BaCO 3 , Ba (NO 3 ) 2 or the like as a raw material.
  • the RO component (R is one or more selected from Mg, Ca, Sr and Ba) is devitrification resistance, dispersion, mechanical strength, liquid phase of the glass. It is a useful component for adjusting all physical properties such as viscosity with respect to temperature. However, if the total content of RO components is too large, it becomes difficult to obtain a desired partial dispersion ratio ( ⁇ g ⁇ F) and Abbe number ( ⁇ d ). Therefore, the total content of the RO component is, in terms of mass% based on oxide, preferably less than 10.0%, more preferably 5.0%, and most preferably 3.0%.
  • an optical glass having the desired characteristics in the embodiment of the present invention can be produced without containing the RO component, but it contains at least one of the RO components while increasing the devitrification resistance of the glass. Further, it is possible to easily adjust the partial dispersion ratio ( ⁇ g ⁇ F) and Abbe number ( ⁇ d ) of the glass and to lower the logarithmic log ⁇ of the viscosity ⁇ (dPa ⁇ s) with respect to the liquidus temperature. Accordingly, the total content of the RO component is, in mass% based on the oxide, preferably exceeding 0%, more preferably 0.1%, and most preferably 0.2%.
  • the ratio of the content of RO component / (SiO 2 component + B 2 O 3 component) is preferably 0.5, more preferably 0.4, and most preferably 0.3.
  • the ratio of the content of RO component / (SiO 2 component + B 2 O 3 component) is preferably more than 0, more preferably 0.05, and most preferably 0.1.
  • Li 2 O component is a component that reduces to improve the stability of the glass devitrification or coloring, which is an optional component and is effective in the low Tg of the glass.
  • the content of the Li 2 O component is too large, the stability of the glass tends to be lowered, it becomes difficult to obtain a high refractive index (n d ), the partial dispersion ratio ( ⁇ g ⁇ F) is low, and the machine The mechanical strength tends to decrease. Therefore, the upper limit of the content of the Li 2 O component is 10.0% by mass based on the oxide, preferably 10.0%, more preferably 5.0%, and most preferably 3.0%.
  • the Li 2 O component can be contained in the glass using, for example, Li 2 CO 3 , LiNO 3 or the like as a raw material.
  • the Na 2 O component is an optional component that improves the devitrification of the glass and adjusts the partial dispersion ratio ( ⁇ g ⁇ F) and the Abbe number ( ⁇ d ) of the glass to reduce the glass Tg. is there.
  • the content of the Na 2 O component is mass% based on the oxide, preferably 10.0%, more preferably 5.0%, and most preferably 3.0%.
  • the Na 2 O component can be contained in the glass using, for example, Na 2 CO 3 or NaNO 3 as a raw material.
  • the K 2 O component is an optional component that improves the devitrification property of the glass and adjusts the partial dispersion ratio ( ⁇ g ⁇ F) and the Abbe number ( ⁇ d ) of the glass, and is effective in reducing the Tg of the glass. is there.
  • the content of K 2 O component is mass% based on the oxide, preferably 10.0%, more preferably 5.0%, and most preferably 3.0%.
  • the K 2 O component can be contained in the glass using, for example, K 2 CO 3 , KNO 3 or the like as a raw material.
  • the mass sum of the contents of the Rn 2 O component (Rn is one or more selected from Li, Na and K) may be 5.0% or less. preferable.
  • the stability of the glass can be further increased and the decrease in transmittance can be suppressed while adjusting the Abbe number ( ⁇ d ) of the glass to a desired range.
  • the content of the Rn 2 O component (Rn is one or more selected from Li, Na and K) is preferably 5.0%, more preferably 3.0%, most preferably 1.0. % Is the upper limit.
  • the RO component and the Rn 2 O component are effective in improving the meltability and stability of the glass and lowering the Tg, and further play a large role in improving the glass transparency in the visible range. Is indispensable. If the content of one or two of these components is too small, the effect is not observed, and if it is too large, the liquidus temperature rises and the glass stability deteriorates. Therefore, the total content of the RO and Rn 2 O components is preferably more than 0%, more preferably 0.1%, and most preferably 0.2%. On the other hand, the total content of the RO and Rn 2 O components is preferably 10.0%, more preferably 5.0%, and most preferably 3.0%.
  • the Sb 2 O 3 component is an optional component that has an effect of promoting clarification of glass.
  • the content of the Sb 2 O 3 component is expressed by mass% based on the oxide, preferably 3.0%, more preferably 2.0%, and most preferably 1.0%.
  • the Sb 2 O 3 component can be contained in the glass using, for example, Sb 2 O 3 , Sb 2 O 5 , Na 2 H 2 Sb 2 O 7 ⁇ 5H 2 O, or the like as a raw material.
  • components of the fining defoaming of glass is not limited to the above Sb 2 O 3 ingredients may be used known refining agents and defoamers in the field of glass production, or a combination thereof .
  • the P 2 O 5 component is effective for improving the coloring of the glass and is an optional component useful for improving the transmittance of the glass.
  • the upper limit of the content of the P 2 O 5 component is an oxide-based mass%, preferably 10.0%, more preferably 5.0%, and most preferably 3.0%.
  • the P 2 O 5 component contains, for example, Al (PO 3 ) 3 , Ca (PO 3 ) 2 , Ba (PO 3 ) 2 , Na (PO 3 ), BPO 4 , H 3 PO 4, and the like as raw materials. It can contain.
  • the Bi 2 O 3 component is a component that increases the refractive index (n d ) of the glass, increases the partial dispersion ratio ( ⁇ g , F) of the glass, and is effective for reducing the dispersion of the glass. In addition, it is a component that is also effective for lowering Tg and improving water resistance, and is an indispensable component for the optical glass according to the embodiment of the present invention.
  • the content of the Bi 2 O 3 component 75.0% or more, an optical glass having a desired high refractive index (n d ) can be easily obtained. Therefore, the content of the Bi 2 O 3 component is preferably 75.0%, more preferably 77.0%, and most preferably 79.0% in terms of mass% based on oxide.
  • the content of the Bi 2 O 3 component is expressed by mass% based on the oxide, preferably 98.0%, more preferably 96.0%, and most preferably 94.0%. Since the stability of the glass is improved, the coloring of the glass can be reduced.
  • the Bi 2 O 3 component can be contained in the glass using, for example, Bi 2 O 3 as a raw material.
  • the Bi 2 O 3 component and Nb 2 O 5 component are used in combination to contribute to glass stabilization while maintaining high transmittance, and further increase the partial dispersion ratio ( ⁇ g ⁇ F). Can do. Therefore, the total content of the Bi 2 O 3 component and the Nb 2 O 5 component is preferably 90.0%, more preferably 94.0%, and most preferably 98.0% by mass% based on the oxide. The lower limit.
  • the Bi 2 O 3 component and the B 2 O 3 component are preferably used in combination, but the B 2 O 3 component may not necessarily be included.
  • Bi 2 O 3 component and B 2 O 3 component contribute to higher refractive index and glass stabilization, and can further increase the partial dispersion ratio ( ⁇ g ⁇ F). Accordingly, the total content of Bi 2 O 3 component and B 2 O 3 component is% by mass on the oxide basis, preferably 90.0%, more preferably 94.0%, most preferably 98.0% The lower limit.
  • the GeO 2 component is a component that increases the devitrification resistance of the glass, increases the refractive index (n d ) of the glass, and improves the high partial dispersion ratio ( ⁇ g ⁇ F), but is optional because it is expensive. It is a component that can be added. However, if the content of GeO 2 component is too large, the melting property of the glass tends to decrease. Therefore, the content of the GeO 2 component is mass% based on oxide, preferably 10.0%, more preferably 5.0%, and most preferably 3.0%.
  • the GeO 2 component can be contained in the glass using, for example, GeO 2 as a raw material.
  • the TeO 2 component is an optional component that promotes clarification of the glass and has an effect of maintaining a high refractive index and reducing the dispersion of the glass. However, when there is too much the content, the devitrification resistance of glass will fall easily. Accordingly, the content of the TeO 2 component is mass% based on the oxide, preferably 10.0%, more preferably 5.0%, and most preferably 1.5%. On the other hand, the content of the TeO 2 component is mass% based on oxide, and preferably exceeds 0%, more preferably 0.1%, and most preferably 0.2%.
  • the TeO 2 component can be contained in the glass using, for example, TeO 2 as a raw material.
  • the Th component can be contained for the purpose of increasing the refractive index or improving the stability as glass, and the Cd and Tl components can be contained for the purpose of lowering the Tg.
  • each component of Th, Cd, and Os has tended to be refrained from being used as a harmful chemical substance component in recent years. Therefore, not only in the glass manufacturing process but also in the processing process and disposal after commercialization, Measures are required. Therefore, it is preferable not to include substantially when the influence on the environment is emphasized.
  • the lead component needs to take measures for environmental measures when manufacturing, processing, and disposing of the glass, the cost becomes high and the optical glass according to the embodiment of the present invention should not contain the lead component. .
  • As 2 O 3 component is a component that is used to improve the blowout of foam (destructive property) when melting glass, but measures for environmental measures when manufacturing, processing, and disposing of glass. Therefore, it is not preferable to include As 2 O 3 in the optical glass according to the embodiment of the present invention.
  • the optical glass according to the embodiment of the present invention is produced, for example, as follows. That is, the above raw materials are uniformly mixed so that each component is within a predetermined content range, and the prepared mixture is put in a quartz crucible or a gold crucible and melted in a temperature range of 750 ° C. to 950 ° C. for 2 to 3 hours. Then, the mixture is stirred and homogenized, and after about 1 hour has passed since the temperature is lowered to about 800 ° C. to 650 ° C., it is cast into a mold and gradually cooled.
  • the optical glass according to the embodiment of the present invention has a high refractive index (n d ) and a large partial dispersion ratio ( ⁇ g ⁇ F). More specifically, the refractive index ( nd ) of the optical glass according to the embodiment of the present invention is preferably 2.4, more preferably 2.35, and most preferably 2.3. On the other hand, the refractive index (n d ) of the optical glass according to the embodiment of the present invention is preferably 2.15, more preferably 2.17, and most preferably 2.2. As a result, the degree of freedom in optical design is widened, and a large amount of light refraction can be obtained even if the optical element is made thinner.
  • the partial dispersion ratio ( ⁇ g ⁇ F) of the optical glass according to the embodiment of the present invention is preferably 0.72, more preferably 0.715, and most preferably 0.71.
  • the partial dispersion ratio ( ⁇ g ⁇ F) of the optical glass according to the embodiment of the present invention is preferably 0.67, more preferably 0.675, and most preferably 0.68.
  • the optical glass which concerns on embodiment of this invention has high dispersion (low Abbe number). More specifically, the upper limit of the Abbe number ( ⁇ d ) of the optical glass according to the embodiment of the present invention is preferably 25, more preferably 20, and most preferably 16. On the other hand, the lower limit of the Abbe number ( ⁇ d ) of the optical glass according to the embodiment of the present invention is not particularly limited, but is preferably 13 or more, more preferably 13.5 or more, and most preferably 14 or more. As a result, a remarkable effect can be achieved in correcting chromatic aberration of the optical element, and the degree of freedom in optical design can be expanded.
  • the optical glass according to the embodiment of the present invention has a high refractive index (n d ) and a small wavelength at the spectral transmittance (5%), which leads to reduction of the optical system and various degrees of freedom in optical design. Can be spread. More specifically, since the upper limit value and the lower limit value of the refractive index (n d ) of the optical glass according to the embodiment of the present invention have been described above, the description thereof will be omitted.
  • the upper limit of the wavelength in the spectral transmittance (70%) of the optical glass according to the embodiment of the present invention is preferably 520 nm, more preferably 515 nm, and most preferably 510 nm.
  • the spectral transmittance (70%) of the optical glass according to the embodiment of the present invention is preferably 445 nm, more preferably 455 nm, and most preferably 465 nm. Thereby, transparency with respect to visible light is high, and devitrification and fogging can hardly occur during glass production and processing.
  • the spectral transmittance (5%) of the optical glass according to the embodiment of the present invention is preferably 450 nm, more preferably 449 nm, and most preferably 448 nm.
  • the spectral transmittance (5%) of the optical glass according to the embodiment of the present invention is preferably 415 nm, more preferably 420 nm, and most preferably 425 nm. Thereby, since transparency with respect to visible light is high, it can be used for various optical uses.
  • the optical glass according to the embodiment of the present invention has a high refractive index (n d ) and a high logarithm log ⁇ of the viscosity ⁇ (dPa ⁇ s) at the liquidus temperature. More specifically, since the upper limit value and the lower limit value of the refractive index (n d ) of the optical glass according to the embodiment of the present invention have been described above, the description thereof will be omitted.
  • the logarithm log ⁇ of the viscosity ⁇ (dPa ⁇ s) at the liquidus temperature of the optical glass according to the embodiment of the present invention is preferably 2.0, more preferably 1.5, and most preferably 1.2.
  • the logarithm log ⁇ of the viscosity ⁇ (dPa ⁇ s) at the liquidus temperature of the optical glass according to the embodiment of the present invention is preferably 0.30, more preferably 0.35, and most preferably 0.40. To do. Thereby, the glass preform of a precision press can be obtained.
  • the optical glass according to the embodiment of the present invention preferably has high devitrification resistance, more specifically, a low liquidus temperature. That is, the liquidus temperature of the optical glass of the present invention is preferably 900 ° C., more preferably 880 ° C., and further preferably 850 ° C. As a result, even if the molten glass flows out at a lower temperature, crystallization of the produced glass is reduced, and thus devitrification when the glass is formed from a molten state can be reduced, and an optical element using glass The influence on the optical characteristics can be reduced.
  • the lower limit of the liquidus temperature of the optical glass of the present invention is not particularly limited, but the liquidus temperature of the glass obtained by the present invention is preferably 550 ° C, more preferably 530 ° C, and further preferably 500 ° C. Also good.
  • a glass molded body can be produced from the produced optical glass using means such as reheat press molding or precision press molding. That is, a preform for mold press molding is prepared from optical glass, and after performing reheat press molding on the preform, polishing is performed to prepare a glass molded body, or for example, polishing is performed.
  • the preform can be precision press-molded to produce a glass molded body.
  • the glass molded body made of the optical glass according to the embodiment of the present invention can be used for applications of optical elements such as lenses, prisms, and mirrors, and can be typically used for digital cameras and projectors.
  • the means for producing the glass molded body is not limited to these means.
  • compositions of Examples 1 to 69 of the present invention, the compositions of Comparative Examples 1 and 2, the refractive index (n d ), the Abbe number ( ⁇ d ), and the partial dispersion ratio ( ⁇ g ⁇ F) are shown. From the refractive index (n d ), Abbe number ( ⁇ d ) and partial dispersion ratio ( ⁇ g ⁇ F) shown in Tables 1 to 8, FIG. 1 shows Examples 1 to 69 of the present invention, Comparative Example 1 and 2 is a diagram illustrating a relationship between a refractive index (n d ) and a partial dispersion ratio ( ⁇ g , F) of the optical glass according to No. 2; As shown in FIG.
  • FIG. 2 is a graph showing the relationship between the partial dispersion ratio ( ⁇ g , F) and the Abbe number ( ⁇ d ) of optical glasses according to Examples 1 to 69 and Comparative Examples 1 and 2 of the present invention.
  • the vertical axis indicates the partial dispersion ratio ( ⁇ g , F)
  • the horizontal axis indicates the Abbe number ( ⁇ d )
  • ⁇ d Abbe number
  • is an example
  • is a comparative example.
  • the following examples are merely for illustrative purposes, and are not limited to these examples.
  • FIG. 10 is a graph showing the relationship between the refractive index (n d ) and the spectral transmittance (5%) of optical glasses according to 10 to 70 and Comparative Examples 2 and 3.
  • FIG. 3 the vertical axis indicates the refractive index (n d )
  • the horizontal axis indicates the spectral transmittance (5%)
  • “ ⁇ ” is an example
  • “ ⁇ ” is a comparative example
  • FIG. 4 is a graph showing the relationship between the refractive index (n d ) and the Abbe number ( ⁇ d ) of the optical glasses according to Examples 3 to 8, 10 to 70 and Comparative Examples 2 and 3 of the present invention.
  • the vertical axis represents the refractive index (n d )
  • the horizontal axis represents the Abbe number ( ⁇ d )
  • “ ⁇ ” is an example
  • “ ⁇ ” is a comparative example.
  • compositions of Examples 18, 20 to 22, and 25 to 69 of the present invention, and compositions of Comparative Examples 2 and 4, and refractive index (n d ), liquid phase temperature (° C.), and viscosity ⁇ (dPa ⁇ d at liquid phase temperature) The results of logarithm log ⁇ of s) are shown in Tables 1 to 8. From the refractive index (n d ), the liquidus temperature (° C.) and the logarithm log ⁇ of the viscosity ⁇ (dPa ⁇ s) at the liquidus temperature shown in Tables 1 to 8, FIG. 5 shows Examples 18 and 20 of the present invention.
  • FIG. 5 shows Examples 18 and 20 of the present invention.
  • FIG. 22 is a graph showing the relationship between the refractive index (n d ) of the optical glass according to ⁇ 22, 25 to 69 and Comparative Examples 2 and 4 and the logarithm log ⁇ of the viscosity ⁇ (dPa ⁇ s) at the liquidus temperature.
  • the vertical axis indicates the refractive index (n d )
  • the horizontal axis indicates the logarithm log ⁇ of the viscosity ⁇ (dPa ⁇ s) at the liquidus temperature
  • “ ⁇ ” is an example
  • “ ⁇ ” is compared.
  • FIG. 6 is a graph showing the relationship between the refractive index (n d ) and the Abbe number ( ⁇ d ) of optical glasses according to Examples 18, 20 to 22, 25 to 69 and Comparative Examples 2 and 4 of the present invention. . As shown in FIG. 6, the vertical axis indicates the refractive index (n d ), the horizontal axis indicates the Abbe number ( ⁇ d ), “ ⁇ ” is an example, and “ ⁇ ” is a comparative example.
  • optical glasses according to Examples and Comparative Examples of the present invention shown in Tables 1 to 8 are all oxides, hydroxides, carbonates, nitrates, fluorides, hydroxides corresponding to the raw materials of the respective components.
  • a high-purity raw material used for ordinary optical glass such as a metaphosphoric acid compound was selected.
  • composition of each example shown in Tables 1 to 8 and the composition of each comparative example were weighed so as to have a glass weight of 400 g, mixed uniformly, and then put into a quartz crucible or a gold crucible, and the glass composition After melting for about 2 hours to 3 hours in an electric furnace depending on the difficulty of melting for 2 to 3 hours, stirring and homogenizing, and after about 1 hour has passed since the temperature was lowered to about 800 to 650 ° C It was produced by casting into a mold and gradually cooling. Comparative Example 2 was not vitrified.
  • the refractive index (n d ), partial dispersion ratio ( ⁇ g ⁇ F), and Abbe number ( ⁇ d ) of the optical glasses according to Examples and Comparative Examples are based on Japan Optical Glass Industry Association Standard JOGIS01-2003. It was measured. The optical glass used for this measurement was one that was processed in a slow cooling furnace at a slow cooling rate of ⁇ 25 ° C./hr.
  • the light transmittance at wavelengths in the visible region of the optical glasses according to Examples and Comparative Examples of the present invention shown in Tables 1 to 8 were measured according to Japan Optical Glass Industry Association Standard JOGIS02-2003. Specifically, a face parallel polished product having a thickness of 10 ⁇ 0.1 mm was measured for a spectral transmittance of 200 nm to 800 nm according to JISZ8722, and a spectral transmittance including reflection loss ( ⁇ 5 ) (spectral transmittance of 5%). Hour wavelength) and spectral transmittance ( ⁇ 70 ) (wavelength when the spectral transmittance is 70%).
  • the “liquid phase temperature” according to the examples and comparative examples of the present invention shown in Tables 1 to 8 is held in a devitrification test furnace with a temperature gradient of 400 ° C. to 1100 ° C. for 30 minutes, and the magnification is 80 times. The presence or absence of crystals was observed with a microscope, and the temperature without crystals was defined as the liquidus temperature.
  • the viscosity at the liquidus temperature of the optical glass according to Examples and Comparative Examples of the present invention is determined by using a ball pulling viscometer (Model No. BVM-13LH, manufactured by Opt Enterprise Co., Ltd.), the viscosity ⁇ (dPa ⁇ s). Asked.
  • the optical glasses according to Examples 1 to 69 of the present invention have a refractive index (n d ) of 2.2 or more and 2.4 or less, and a partial dispersion ratio ( ⁇ g ⁇ F) was 0.68 or more and 0.72 or less.
  • the refractive index (n d ) of the glass was 1.92, and the partial dispersion ratio ( ⁇ g , F) was 0.63. Therefore, it became clear that the optical glass according to the example of the present invention has a desired refractive index (n d ) and a desired partial dispersion ratio ( ⁇ g ⁇ F).
  • the optical glass according to Examples 1 to 69 of the present invention includes at least the content of Bi 2 O 3 component, the content of alkaline earth metals (Mg, Ca, Sr and Ba), the content of ZnO component and B 2 O It has been clarified that the content of the three components is within a predetermined range so that it has a high refractive index (n d ) and a large partial dispersion ratio ( ⁇ g ⁇ F).
  • the refractive index (n d ) of the glass is 2.2 or more and 2.4 or less.
  • the transmittance (5%) was 425 nm or more and 450 nm or less.
  • the optical glass according to Comparative Example 3 had a refractive index (n d ) of 1.85 and a spectral transmittance (5%) of 430 nm. Accordingly, the optical glass according to Examples 3 to 8 and 10 to 70 of the present invention has a desired refractive index (n d), and was found to have a spectral transmittance (5%).
  • the optical glasses according to Examples 3 to 8 and 10 to 70 of the present invention include at least the content of Bi 2 O 3 component and the content of alkaline earth metal (any one or more of Mg, Ca, Sr and Ba). It was revealed that by setting the content of the ZnO component and the content of the TeO 2 component within the predetermined ranges, a high refractive index (n d ) and a long spectral transmittance (5%) were obtained.
  • the optical glasses according to Examples 18, 20 to 22, and 25 to 69 of the present invention have a refractive index (n d ) of 2.2 or more and 2.4 or less.
  • the logarithm log ⁇ of the viscosity ⁇ (dPa ⁇ s) at the phase temperature was 0.30 or more and 0.60 or less.
  • the refractive index (n d ) of the glass was 1.87 or less, and the logarithmic log ⁇ of the viscosity ⁇ (dPa ⁇ s) at the liquidus temperature was 0.2.
  • the optical glasses according to Examples 18, 20 to 22, and 25 to 69 of the present invention have a desired refractive index (n d ) and a viscosity ⁇ (dPa ⁇ s) at a desired liquidus temperature. It was found to have logarithm log ⁇ .
  • At least the content of Bi 2 O 3 , the content of Nb 2 O 5 , and the content of ZnO are within predetermined ranges, respectively.
  • n d refractive index
  • dPa ⁇ s logarithm log ⁇ of the viscosity ⁇

Abstract

酸化物基準の質量%でBi成分を75.0%以上98.0%以下、ZnO成分を0%を超えて10.0%未満、Bi成分とB成分とを合計で90%以上、酸化物基準の質量%でMgO成分、CaO成分、SrO成分、BaO成分、Y成分、La成分、Gd成分及びYb成分のうちいずれか1種以上が0を超え10.0%未満、酸化物基準の質量%でMgO成分、CaO成分、SrO成分及びBaO成分のうちいずれか1種以上が0を超え10.0%未満、TeO成分が0を超え10.0%未満の成分をそれぞれ含有することを特徴とする。

Description

光学ガラス、プリフォーム及び光学素子
 本発明は、光学ガラス、プリフォーム及び光学素子に関する。
 デジタルカメラやビデオカメラ等の光学系は、その大小はあるが、収差と呼ばれるにじみを含んでいる。この収差は単色収差と色収差に分類されるが、特に色収差は、光学系に使用されるレンズの材料特性に強く依存している。
 一般に色収差は、低分散の凸レンズと高分散の凹レンズとを組み合わせて補正されるが、この組み合わせでは赤色領域と緑色領域の収差の補正しかできず、青色領域の収差が残る。この除去しきれない青色領域の収差を二次スペクトルと呼ぶ。二次スペクトルを補正するには、青色領域のg線(435.835nm)の動向を加味した光学設計を行う必要がある。このとき、光学設計で着目される光学特性の指標として、部分分散比(θ・F)が用いられている。特に、特異な部分分散比(θ・F)を有する光学ガラスは、収差の補正に顕著な効果を奏し、光学設計の自由度を広げる為、種々のガラスが開発されている。これらの異常分散ガラスからなるレンズを他のレンズと組み合わせて用いた場合、紫外から赤外への幅広い波長範囲において色収差を補正することが可能となる。
 部分分散比(θ・F)は、下式(1)により示される。
部分分散比(θ・F)=(n-n)/(n-n)・・・・・(1)
 光学ガラスには、短波長域の部分分散性を表す部分分散比(θ・F)とアッベ数(ν)との間に、およそ直線的な関係がある。この関係を表す直線は、部分分散比(θ・F)を縦軸に、アッベ数(ν)を横軸に採用した直交座標上で、NSL7とPBM2の部分分散比(θ・F)及びアッベ数(ν)をプロットした2点を結ぶ直線で表され、ノーマルラインと呼ばれている。ノーマルラインの基準となるノーマルガラスは光学ガラスメーカ毎によっても異なるが、各社ともほぼ同等の傾きと切片で定義している。なお、上述のNSL7とPBM2は株式会社オハラ社製の光学ガラスであり、NSL7の部分分散比(θ・F)は0.5436、アッベ数(ν)は60.5、PBM2の部分分散比(θ・F)は0.5828、アッベ数(ν)は36.3である。
 ここで、Bi成分を主成分として含有し、ガラスの部分分散比(θ・F)について着目した光学ガラスとして、例えば特許文献1及び2に示される光学ガラスが知られている。
 また、近年、光学系を使用する機器のデジタル化や高精細化が急速に進んでおり、デジタルカメラやビデオカメラ等の撮影機器をはじめ、各種光学機器に用いられるレンズ等の光学素子に対する高精度化、軽量、及び小型化への要求は、ますます強まっている。
 光学ガラスの中でも特に、光学素子の軽量化及び小型化を図ることが可能な高い屈折率(n)及びアッベ数(ν)を有するガラスの需要が非常に高まっている。従来、高屈折率高分散ガラスとしては、例えば屈折率(n)が1.91以上であり、アッベ数(ν)が17.2以上33.1以下を有する光学ガラスが用いられていた。
 こうした光学素子の製造には、ガラス材料を加熱軟化してプレス成形(リヒートプレス成形)して得られた成形ガラスを研削及び研磨する方法や、ゴブ又はガラスブロックを切断し研削及び研磨したプリフォーム材、若しくは公知の浮上成形等により成形されたフォーム材を加熱軟化して、高精度な成形面を持つ金型でプレス成形する方法(精密プレス成形)が用いられている。
 一方、特許文献3には、所望の屈折率及び分光透過率を有する光学ガラスが記載されている。
 また、光学レンズにおいて、特に、研削や研磨法で作製することは高コスト、低能率であるために、製造方法としては、ゴブあるいはガラスブロックを切断・研磨したプリフォーム材を加熱軟化させ、これを高精度な面を持つ金型で加圧成形させることによって、研削・研磨工程を省略し、低コスト・大量生産が実現している。
 この光学レンズの低コスト・大量生産という目的を達成するためには、まずモールドプレスに用いられる金型が繰り返し使用できなければならない。そのためには金型の表面酸化を極力抑えるべく、モールドプレス時の温度をできるだけ低く設定する必要がある。また、モールドプレスの上限温度と転移温度やガラス屈伏点は相関性があり、これらの温度は低ければ低いほど金型の表面酸化の進行が抑えられ、金型の寿命の観点からも好ましい。更に、モールド成形の前段階であるプリフォーム材の製造についても十分なコスト検討を行う必要がある。
 プリフォームの製造方法としては、ガラス融液を滴下し冷却する方法がある。この方法はプリフォーム材自体の量産性が高く、製造コストについても現在最も安価である。さらに、この方法にて得られたプリフォームは球形あるいは両凸のレンズ形状に近いため、モールドプレス時の形状変化量を小さくすることができ、ガラス自体の量産性も向上させることができる。
 ガラス融液を滴下してプリフォーム材を生産する場合、その製造時の条件とガラス自体の特性について相互的に最適化されなければならない。特に高屈折率高分散になるほどガラス成形酸化物の量が相対的に少なくなり、ガラスが低粘性化する傾向にある。つまり、高屈折率高分散ガラスにおいて、この成形法にてプリフォーム材を成形する際、粘性が低いと表面の曲面が滑らかで均一な、球形あるいは両凸のレンズに近い形状を得られ難い。したがって、プリフォーム成形時のガラス融液の粘性は十分検討されなければならない。
 また、液相温度(失透温度)はガラス成形時、例えばプリフォーム製造時の温度より低い温度でなければならない、つまり滴下時に失透しないガラスでなければならない。したがって、ガラス融液の粘性が低いと、ガラス融液の粘性を上げるべく、ガラス融液の温度を下げなければならない。すると液相温度を下回ってしまい、プリフォーム材に失透を生じてしまう。更に、高屈折率高分散ガラスでは、その傾向が顕著となる。その反面、液相温度が高いため、プリフォーム製造時の温度を高温にすると、失透の問題は解消する。しかし、ガラスが低粘性化してしまい、プリフォーム成形できないばかりか、ガラスの金型への焼き付きや金型の表面酸化による早期消耗等の問題が発生する。
 一方、近年の光学ガラスにおいては、特に、高い屈折率(n)、且つ、低い液相温度を有し、滴下にてプリフォームを成形可能とする必要がある。高い屈折率(n)を有する光学ガラスが特許文献4に開示されている。特許文献4には、屈折率(n)が2.15以上2.3以下の範囲になるように、Bi成分を含有した光学ガラスが開示されている。
特開2009-203135号公報 特開2009-234805号公報 特開2010-260739号公報 特開2009-203140号公報
 しかし、特許文献1及び2に記載される光学ガラスは、屈折率(n)の大きさが十分ではなかった。そのため、光学系に用いられる光学素子の点数の削減や光学素子の薄型化を図り、光学系への高精度化、軽量化、小型化の要求に応えるには、屈折率(n)をより一層高める必要がある。
 また、Bi成分を主成分として含有するガラスは、高い屈折率(n)及び高い部分分散比(θ・F)を兼ね備えた光学ガラスが求められている。
 特許文献3に記載されるガラスは、アッベ数(ν)が低いほど可視光に対する透明性が低く(λ70の値が大きく)、アッベ数(ν)の低いガラスは黄色や橙色に着色している。そのため、特許文献3で開示されたガラスは、所望の屈折率及び高分散を有していても、可視領域の光を透過させる用途には適さない。また、特許文献3に開示された光学ガラスは、ガラスを作製する際に失透が発生し易い問題点があった。さらに、ガラスを作製した際の失透を免れたガラスは、リヒートプレスによりプレス成形されたガラスを研磨加工する際や、ガラスを研磨加工してプリフォーム材を作製する際に、曇りが生じ易い問題点があった。ひとたび失透や曇りが生じたガラスからは、特に可視領域の光を制御するような光学素子を作製することが困難であった。また、着色したガラスは、可視域の波長における光線透過率が低下しているため、光学素子の材料として適切なものではなかった。
 特許文献4に記載される光学ガラスでは、屈折率(n)及び液相温度における粘度η(dPa・s)の対数logηが十分ではなかった。そのため、耐失透性及び光学系に用いられる光学素子の点数の削減や光学素子の薄型化を図り、光学系への高精度化、軽量化、小型化の要求に応えるには、屈折率(n)をより一層高め、十分な液相温度における粘度η(dPa・s)の対数logηを得る必要がある。
 また、Bi成分を主成分として含有するガラスは、高い屈折率(n)と十分な液相温度における粘度η(dPa・s)の対数logηとを兼ね備えた光学ガラスが求められている。
 本発明は、上記課題に鑑みてなされたものであり、酸化物基準の質量%でBi成分を75.0%以上、アルカリ土類金属(RO成分(式中Rは、Mg、Ca、Sr及びBaのいずれか1種以上)の含有量、希土類金属成分(Ln成分(式中Lnは、Y、La、Gd及びYbのいずれか1種以上)の含有量のうちいずれか1種以上を10.0%未満及び酸化物基準の質量%でZnO成分を10.0%未満それぞれ含有することによって、高い屈折率(n)及び大きい部分分散比(θ・F)を有しながらも、光学素子や光学系の小型化を図ることが可能な光学ガラスと、これを用いたプリフォーム及び光学素子を提供することにある。
 本発明は、上記課題に鑑みてなされたものであり、Bi成分、アルカリ土類金属(Mg、Ca、Sr及びBaのいずれか1種以上)、ZnO成分及びTeO成分の含有量を所定の範囲内にすることによって、高い屈折率(n)及び長い分光透過率(5%)を有しながらも、可視光に対する透明性が高く、且つガラスの作製時及び加工時に失透や曇りが生じ難く、研磨加工によるプリフォーム材や光学素子の作製を行い易い光学ガラスと、これを用いたプリフォームを提供することにある。
 本発明は、上記課題に鑑みてなされたものであり、Bi、Nb及びZnOをそれぞれ含有することによって、高い屈折率(n)と十分な液相温度における粘度η(dPa・s)の対数logηとを兼ね備えた、良好な耐失透性及び研磨加工によるプリフォーム材や光学素子の作製を行い易い光学ガラスと、これを用いたプリフォームを提供することにある。
 本発明者は、上記課題を解決するために鋭意試験研究を重ねた結果、少なくとも酸化物基準の質量%でBi成分を75.0%以上、アルカリ土類金属(RO成分(式中Rは、Mg、Ca、Sr及びBaのいずれか1種以上)の含有量、希土類金属成分(Ln成分(式中Lnは、Y、La、Gd及びYbのいずれか1種以上)の含有量のうちいずれか1種以上を10.0%未満及び酸化物基準の質量%でZnO成分を10.0%未満それぞれ所定の範囲内にすることによって、光学ガラスの屈折率(n)及び部分分散比(θ・F)が高められることを見出し、本発明を完成するに至った。
 本発明者は、上記課題を解決するために鋭意試験研究を重ねた結果、少なくともBi成分の含有量及びアルカリ土類金属(Mg、Ca、Sr及びBaのいずれか1種以上)の含有量、ZnO成分の含有量及びTeO成分の含有量を所定の範囲内にすることによって、光学ガラスの屈折率(n)を高くし、分光透過率(5%)を示す波長、すなわち分光透過率(λ)を長くすることを見出し、本発明を完成するに至った。
 本発明者は、上記課題を解決するために鋭意試験研究を重ねた結果、少なくともBi、Nb及びZnOの含有量をそれぞれ所定の範囲内にすることによって、屈折率(n)及び液相温度における粘度η(dPa・s)の対数logηが高められることを見出し、本発明を完成するに至った。
 本発明の実施形態に係る光学ガラスは、酸化物基準の質量%でBi成分を75.0%以上、ZnO成分を10.0%未満の成分をそれぞれ含有することを特徴とする。
 前記光学ガラスにおいて、Bi成分を98.0%以下含有してもよい。
 前記光学ガラスにおいて、Bi成分とB成分とを合計で90%以上含有してもよい。
 前記光学ガラスにおいて、ZnO成分が0%を超えて含有してもよい。
 前記光学ガラスにおいて、酸化物基準の質量%でMgO成分、CaO成分、SrO成分、BaO成分、Y成分、La成分、Gd成分及びYb成分のうちいずれか1種以上が0%を超え10.0%未満含有してもよい。
 前記光学ガラスにおいて、酸化物基準の質量%でMgO成分、CaO成分、SrO成分及びBaO成分のうちいずれか1種以上が0を超え10.0%未満、TeO成分が0を超え10.0%未満の成分をそれぞれ含有してもよい。
 前記光学ガラスにおいて、酸化物基準の質量%でNb成分が0を超え10.0%未満含有してもよい。
 前記光学ガラスにおいて、MgO成分が0%を超えて10.0%未満、及び/又は、CaO成分が0%を超えて10.0%未満、及び/又は、SrO成分が0%を超えて10.0%未満、及び/又は、BaO成分が0%を超えて10.0%未満の各成分をさらに含有してもよい。
 前記光学ガラスにおいて、部分分散比(θg,F)が0.67以上であってもよい。
 前記光学ガラスにおいて、厚み10mmのサンプルで分光透過率(5%)を示す波長(λ)が450nm以下であってもよい。
 前記光学ガラスにおいて、液相温度における粘度η(dPa・s)の対数logηが0.3以上であってもよい。
 前記光学ガラスにおいて、屈折率(n)が2.15以上であり、アッベ数(ν)が13.0以上25.0以下であってもよい。
 本発明の実施形態に係る精密プレス成形用のプリフォームは、前記何れか一に記載の光学ガラスからなることを特徴とする。
 本発明の実施形態に係る光学素子は、前記何れか一に記載の光学ガラスを含んでなることを特徴とする。
 前記光学素子において、前記プリフォームを精密プレスすることにより成形されてもよい。
 本発明によれば、酸化物基準の質量%でBi成分を75.0%以上、アルカリ土類金属(RO成分(式中Rは、Mg、Ca、Sr及びBaのいずれか1種以上)の含有量、希土類金属成分(Ln成分(式中Lnは、Y、La、Gd及びYbのいずれか1種以上)の含有量のうちいずれか1種以上を10.0%未満及び酸化物基準の質量%でZnO成分を10.0%未満それぞれ含有することによって、高い屈折率(n)及び大きい部分分散比(θ・F)を有しながらも、光学素子や光学系の小型化を図ることが可能な光学ガラスと、これを用いたプリフォーム及び光学素子を提供することができる。
 本発明によれば、Bi成分の含有量、アルカリ土類金属(Mg、Ca、Sr及びBaのいずれか1種以上)の含有量、ZnO成分の含有量及びTeO成分の含有量を所定の範囲内にすることによって、高い屈折率(n)及び長い分光透過率(5%)を有しながらも、可視光に対する透明性が高く、且つガラスの作製時及び加工時に失透や曇りが生じ難く、研磨加工によるプリフォーム材や光学素子の作製を行い易い光学ガラスと、これを用いたプリフォームを提供することができる。
 本発明によれば、Bi、Nb及びZnOを含有することによって、高い屈折率(n)及び所定範囲の液相温度における粘度η(dPa・s)の対数logηを有しながらも、良好な耐失透性及び研磨加工によるプリフォーム材や光学素子の作製を行い易い光学ガラスと、これを用いたプリフォームを提供することができる。
本発明の実施例1~69及び比較例1及び2に係る光学ガラスにおいて、屈折率(n)と部分分散比(θg・F)との関係を示す図である。 本発明の実施例1~69及び比較例1及び2に係る光学ガラスにおいて、部分分散比(θg・F)とアッベ数(ν)との関係を示す図である。 本発明の実施例3~8、10~70及び比較例2及び3に係る光学ガラスにおいて、屈折率(n)と分光透過率(5%)との関係を示す図である。 本発明の実施例3~8、10~70及び比較例2及び3に係る光学ガラスにおいて、屈折率(n)とアッベ数(ν)との関係を示す図である。 本発明の実施例18、20~22、25~69及び比較例2及び4に係る光学ガラスにおいて、屈折率(n)と液相温度における粘度η(dPa・s)の対数logηとの関係を示す図である。 本発明の実施例18、20~22、25~69及び比較例2及び4に係る光学ガラスにおいて、屈折率(n)とアッベ数(ν)との関係を示す図である。
 本発明の実施形態に係る光学ガラスは、酸化物基準の質量%でBi成分を75.0%以上、酸化物基準の質量%でMgO成分、CaO成分、SrO成分、BaO成分、Y成分、La成分、Gd成分及びYb成分のうちいずれか1種以上を10.0%未満及び酸化物基準の質量%でZnO成分を10.0%未満それぞれ含有することによって、屈折率(n)が2.15以上、部分分散比(θ・F)が0.67以上にすることができる。上述した成分を所定の範囲内に含有することによって、光学ガラスの屈折率(n)及び部分分散比(θ・F)が高められる。このため、高い屈折率(n)及び大きい部分分散比(θ・F)を有しながらも、光学素子や光学系の小型化を図ることが可能な光学ガラスと、これを用いたプリフォームを得ることができる。
 本発明の実施形態に係る光学ガラスは、酸化物基準の質量%でBi成分を75.0%以上、酸化物基準の質量%でアルカリ土類金属(Mg、Ca、Sr及びBaのいずれか1種以上)を10.0%未満、酸化物基準の質量%でZnO成分を10.0%未満及び酸化物基準の質量%でTeO成分を10.0%未満それぞれ含有することによって、屈折率(n)が2.15以上、分光透過率(5%)が450nm以下にすることができる。上述した成分を所定内の範囲にすることによって、光学ガラスの屈折率(n)及び分光透過率(5%)が高められる。このため、高いガラス屈折率(n)及び長い分光透過率(5%)を有しながらも、可視光に対する透明性が高く、且つガラスの作製時及び加工時に失透や曇りが生じ難く、研磨加工によるプリフォーム材や光学素子の作製を行い易い光学ガラスと、これを用いたプリフォームを得ることができる。
 本発明の実施形態に係る光学ガラスは、酸化物基準の質量%でBi成分を75.0%以上、酸化物基準の質量%でNb成分を10.0%未満、酸化物基準の質量%でZnO成分を10.0%未満含有することによって、屈折率(n)が2.15以上、液相温度における粘度η(dPa・s)の対数logηが0.3以上にすることができる。少なくともBi、Nb及びZnO成分を所定の範囲内にすることによって、光学ガラスの屈折率(n)及び液相温度における粘度η(dPa・s)の対数logηを高められる。このため、高い屈折率(n)及び液相温度における粘度η(dPa・s)の対数logηを有しながらも、良好な耐失透性及び研磨加工によるプリフォーム材や光学素子の作製を行い易い光学ガラスと、これを用いたプリフォームを得ることができる。
 以下、本発明の実施形態を詳細に説明する。なお、本発明は以下の実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々な態様で実施することができる。
[ガラス成分]
 本発明の実施形態に係る光学ガラスを構成する各成分の組成範囲を以下に述べる。各成分は酸化物基準の質量%にて表現する。ここで「酸化物基準」とは、本発明の実施形態に係るガラス構成成分の原料として使用される酸化物、硝酸塩等が溶融時にすべて分解され酸化物へ変化すると仮定した場合に、当該生成酸化物の質量の総和を100質量%として、ガラス中に含有される各成分を表記した組成である。
<必須成分、任意成分について>
 SiO成分は、ガラスの安定性を向上して失透を低減させる成分であり、且つガラスの低分散化を図る効果、透過率、科学的耐久性、磨耗度の向上及び液相温度に対する粘性を高くする効果のある成分であり、本発明の実施形態に係る光学ガラスの任意成分である。しかしながら、SiO成分の含有量が多すぎると、ガラスの屈折率(n)や部分分散比(θ・F)が低下し易く、ガラスの溶融性も悪化し易い。従って、SiO成分の含有量は、酸化物基準の質量%で、好ましくは10.0%、より好ましくは7.0%、最も好ましくは3.0%を上限とする。SiO成分は、原料として例えばSiO等を用いてガラス内に含有することができる。
 B成分は、ガラスの安定性を向上して失透を低減し、且つガラスの部分分散比(θ・F)を高く維持して、科学的耐久性を向上させる効果のある成分である。しかしながら、B成分の含有量が多すぎると、ガラスの安定性が低下し易くなって失透が発生し易くなり、且つガラスが低屈折率化及び低分散化し易くなる。従って、B成分の含有量は、酸化物基準の質量%で、好ましくは15.0%、より好ましくは12.0%、最も好ましくは9.0%を上限とする。一方、B成分の含有量は、酸化物基準の質量%で、好ましくは1.0%、より好ましくは2.0%、最も好ましくは4.0%を下限とする。B成分は、原料として例えばHBO、Na、Na・10HO、BPO等を用いてガラス内に含有することができる。
 SiO成分及びB成分は、必ずしも含まれていなくてもよいが、これらはガラス形成成分であり、ガラスの失透性の低減及び液相温度に対する粘性を高くするのに非常に効果がある成分であるため、両者のうち少なくとも一方が0%超含有されていることが好ましい。しかしながら、これらの含有量が多すぎると、所望の部分分散比(θ・F)やアッベ数(ν)が得難くなる。従って、SiO成分及びB成分の質量和は、酸化物基準の質量%で、好ましくは0%を超え、より好ましくは2.5%、最も好ましくは5.0%を下限とする。一方、SiO成分及びB成分の質量和は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。なお、SiOはBと同時に使用することにより、ガラスの液相温度を下げ、耐失透性を向上させ、ガラスの溶融性、安定性及び化学耐久性が増すと共に、可視域における透明性も向上するため、同時に使うのが好ましい。
 Al成分は、ガラスの化学的耐久性や機械的強度、磨耗度の向上及び液相温度に対する粘性を高くするために有用な任意成分である。しかしながら、Al成分の含有量が多すぎると、ガラスの溶融性が低下し易くなり失透性が増し、ガラス屈伏点を高くする傾向にある。従って、Al成分の含有量は、酸化物基準の質量%で、好ましくは10.0%、より好ましくは5.0%、最も好ましくは1.0%を上限とする。Al成分は、原料として例えばAl、Al(OH)等を用いてガラス内に含有することができる。
 Y成分は、ガラスを低分散化して、高屈折率化するために有用な任意成分である。しかしながら、その含有量が多すぎるとガラス安定性を低下させやすくなる。したがって、Y成分の含有量については、好ましくは10.0%未満、さらに好ましくは5.0%、最も好ましくは1.0%を上限とする。
 La成分は、ガラスを低分散化して、高屈折率化するために有用な任意成分である。しかしながら、その含有量が多すぎるとガラス安定性を低下させやすくなる。したがって、La成分の含有量については、好ましくは10.0%未満、さらに好ましくは5.0%、最も好ましくは1.0%を上限とする。
 Gd成分は、ガラスを低分散化して、高屈折率化するために有用な任意成分である。しかしながら、その含有量が多すぎるとガラス安定性を低下させやすくなる。したがって、Gd成分の含有量については、好ましくは10.0%未満、さらに好ましくは5.0%、最も好ましくは1.0%を上限とする。
 Yb成分はガラスを低分散化して、高屈折率化するために有用な任意成分である。しかしながら、その含有量が多すぎるとガラス安定性を低下させやすくなる。したがって、Yb成分の含有量については、好ましくは10.0%未満、さらに好ましくは5.0%、最も好ましくは1.0%を上限とする。
 Y成分、La成分、Gd成分及びYb成分は、ガラスの化学的耐久性の向上に効果があり、任意に添加し得る成分であるが、その量が多いと分散が低分散になる傾向があり、耐失透性も増加しやすくなる。しかしながら、これらの含有量が多すぎると、ガラスの安定性が低下して可視領域の光に対する透過率が低下し易くなる。また、Ln成分(式中、Lnは、Y、La、Gd及びYbからなる群より選択される1種以上である)の質量和は、酸化物基準の質量%で、好ましくは10.0%未満、より好ましくは5.0%、さらに好ましくは2.0%を上限とする。特に、Ln成分の質量和は、1.0%未満とすることが、ガラスの着色をより一層低減できるため、最も好ましい。ガラスのY成分、La成分、Gd成分及びYb成分は、原料として例えばLa、La(NO・XHO(Xは任意の整数)、Gd、Y、Yb等を用いることができる。
 TiO成分は、ガラスの屈折率(n)、部分分散比(θ・F)を高め、液相温度を下げるのには効果的な任意成分である。しかしながら、その含有量が多すぎると、ガラスの安定性が低下して透過率が低下し易くなる。従って、TiO成分の含有量は、酸化物基準の質量%で、好ましくは10.0%、より好ましくは5.0%、最も好ましくは1.0%を上限とする。TiO成分は、原料として例えばTiO等を用いてガラス内に含有することができる。
 ZrO成分は、ガラスの化学的耐久性や機械的強度を向上するために有用な任意成分である。しかしながら、ZrO成分の含有量が多すぎると、ガラスの安定性が低下して透過率が低下し易くなる。従って、ZrO成分の含有量は、酸化物基準の質量%で、好ましくは10.0%、より好ましくは5.0%、最も好ましくは1.0%を上限とする。ZrO成分は、原料として例えばZrO等を用いてガラス内に含有することができる。
 Nb成分は、ガラスの屈折率(n)、部分分散比(θ・F)の向上、ガラスの失透性を改善させるために有用な必須成分である。従って、Nb成分の含有量は、酸化物基準の質量%で、好ましくは0%を超え、より好ましくは0.05%、最も好ましくは0.1%を下限とする。一方、Nb成分の含有量が多すぎると、ガラスの安定性が低下して透過率が低下し易くなる。従って、Nb成分の含有量は、酸化物基準の質量%で、好ましくは10.0%、より好ましくは5.0%、最も好ましくは1.0%を上限とする。Nb成分は、原料として例えばNb等を用いてガラス内に含有することができる。
 TiO成分は必ずしも含まれていなくてもよいが、Nb成分は必ず含むことが好ましく、所定量のBi成分(後述する)と、TiO成分又はNb成分と、を併用することで、高い透過率を維持したまま、ガラスの部分分散比(θ・F)をより一層高めることができる。従って、TiO成分及びNb成分の合計含有量は、酸化物基準の質量%で、好ましくは0%を超え、より好ましくは0.2%、最も好ましくは0.5%を下限とする。一方、TiO成分及びNb成分の合計含有量が多すぎると、ガラスの安定性が低下して可視領域の波長の光に対する透過率が低下し易くなる。従って、TiO成分及びNb成分の合計含有量は、酸化物基準の質量%で、好ましくは10.0%、より好ましくは5.0%、最も好ましくは3.0%を上限とする。
 Nb成分及びB成分は、Nb成分/B成分として含有することで、ガラスの安定化に寄与することができる。従って、Nb成分/B成分の含有量の比は、好ましくは0.001、より好ましくは0.01、最も好ましくは0.03を下限とする。一方、Nb成分/B成分の含有量が多すぎると、ガラスの安定性が低下して可視領域の波長の光に対する透過率が低下し易くなる。従って、Nb成分/B成分の含有量の比は、好ましくは0.5、より好ましくは0.25、最も好ましくは0.20を上限とする。
 Ta成分は、ガラスの屈折率(n)を高め、ガラスの安定性を向上するために有用な任意成分である。しかしながら、Ta成分の含有量が多すぎると、ガラスの安定性が低下して透過率が低下し易くなり、且つガラスの原料コストが大幅に上昇する。従って、Ta成分の含有量は、酸化物基準の質量%で、好ましくは10.0%、より好ましくは5.0%、最も好ましくは3.0%を上限とする。Ta成分は、原料として例えばTa等を用いてガラス内に含有することができる。
 Nb成分及びTa成分は、併用することで、高い透過率を維持したまま、ガラスの安定化に寄与することができる。従って、Nb成分及びTa成分の合計含有量は、酸化物基準の質量%で、好ましくは10.0%、より好ましくは5.0%、最も好ましくは1.0%を上限とする。
 WO成分は、ガラスの屈折率(n)を高め、ガラスの部分分散比(θ・F)を向上させ、且つ低Tg(ガラス転移点)化を図るために有用な任意成分である。しかしながら、その含有量が多すぎると、ガラスの安定性が低下して透過率が低下し易くなる。従って、WO成分の含有量は、酸化物基準の質量%で、好ましくは10.0%、より好ましくは5.0%、最も好ましくは3.0%を上限とする。WO成分は、原料として例えばWO等を用いてガラス内に含有することができる。
 ZnO成分は、ガラスの化学的耐久性、耐失透性を向上させることに有用な成分である。しかしながら、その含有量が多すぎると所望の部分分散比(θ・F)とアッベ数(ν)が得にくくなる。したがって、ZnO成分の含有量については、好ましくは10.0%未満、さらに好ましくは5.0%、最も好ましくは3.0%を上限とする。また、ZnO成分を含有しなくとも、本発明の実施形態において所望の光学特性を有する光学ガラスを作製することはできるが、上記部分分散比(θ・F)とアッベ数(ν)の調整を容易にするためには、好ましくは0%を超え、より好ましくは0.1%、最も好ましくは0.2%を下限としてZnO成分を含有する。
 MgO成分は、ガラスの高分散化と耐失透性の向上に有用な任意成分である。しかしながら、MgO成分の含有量が多すぎると、ガラスの安定性が低下し易くなるため、可視光の透過率が低下し易くなり、且つプレス成形時の再加熱処理によって失透し易くなる。従って、MgO成分の含有量は、酸化物基準の質量%で、好ましくは10.0%未満、より好ましくは5.0%、最も好ましくは3.0%を上限とする。一方、MgO成分の含有量は、酸化物基準の質量%で、好ましくは0%を超え、より好ましくは0.1%、最も好ましくは0.2%を下限とする。MgO成分は、原料として例えばMgO、MgCO等を用いてガラス内に含有することができる。
 CaO成分は、透過率、ガラスの低分散化と耐失透性、化学的耐久性の向上に有用な任意成分である。しかしながら、CaO成分の含有量が多すぎると、ガラスの耐失透性が低下し易くなる。従って、CaO成分の含有量、酸化物基準の質量%で、好ましくは10.0%未満、より好ましくは5.0%、最も好ましくは3.0%を上限とする。一方、CaO成分の含有量は、酸化物基準の質量%で、好ましくは0%を超え、より好ましくは0.1%、最も好ましくは0.2%を下限とする。CaO成分は、原料として例えばCaCO等を用いてガラス内に含有することができる。
 SrO成分は、ガラスの耐失透性の向上に有用な成分である。しかしながら、SrO成分の含有量が多すぎると、耐失透性が低下し易くなる。また、所望の部分分散比(θ・F)やアッベ数(ν)を得ることが困難になる。従って、SrO成分の含有量は、酸化物基準の質量%で、好ましくは10.0%未満、より好ましくは5.0%、最も好ましくは3.0%を上限とする。一方、SrO成分の含有量は、酸化物基準の質量%で、好ましくは0%を超え、より好ましくは0.1%、最も好ましくは0.2%を下限とする。SrO成分は、原料として例えばSr(NO等を用いてガラス内に含有することができる。
 BaO成分は、ガラスの耐失透性の向上に有用な任意成分である。しかしながら、BaO成分の含有量が多すぎると、ガラスの屈折率(n)が得られにくくなり、所望の部分分散比(θ・F)やアッベ数(ν)を得ることが困難になる。従って、BaO成分の含有量は、酸化物基準の質量%で、好ましくは10.0%未満、より好ましくは5.0%、最も好ましくは3.0%を上限とする。一方、BaO成分の含有量は、酸化物基準の質量%で、好ましくは0%を超え、より好ましくは0.1%、最も好ましくは0.2%を下限とする。BaO成分は、原料として例えばBaCO、Ba(NO等を用いてガラス内に含有することができる。
 本発明の実施形態に係る光学ガラスでは、RO成分(RはMg、Ca、Sr及びBaから選ばれる1種又は2種以上)は、ガラスの耐失透性や分散、機械的強度、液相温度に対する粘性等のあらゆる物性を調整するために有用な成分である。しかしながら、RO成分の合計含有量が多すぎると、所望の部分分散比(θ・F)やアッベ数(ν)を得ることが困難になる。従って、RO成分の合計含有量は、酸化物基準の質量%で、好ましくは10.0%未満、より好ましくは5.0%、最も好ましくは3.0%を上限とする。一方、RO成分を含有しなくとも、本発明の実施形態における所望の特性を有する光学ガラスを作製できるが、RO成分の少なくともいずれかを含有することで、ガラスの耐失透性を高めながらも、ガラスの部分分散比(θ・F)とアッベ数(ν)の調整及び液相温度に対する粘度η(dPa・s)の対数logηを下げることが容易にできる。従って、RO成分の合計含有量は、酸化物基準の質量%で、好ましくは0%を超え、より好ましくは0.1%、最も好ましくは0.2%を下限とする。
 RO成分とSiO成分及びB成分においては、RO成分/(SiO成分+B成分)として含有することで、ガラスの失透性の低減及び液相温度に対する粘性を高くすることができる。従って、RO成分/(SiO成分+B成分)の含有量の比は、好ましくは0.5、より好ましくは0.4、最も好ましくは0.3を上限とする。一方、RO成分/(SiO成分+B成分)の含有量の比は、好ましくは0を超え、より好ましくは0.05、最も好ましくは0.1を下限とする。
 LiO成分は、ガラスの安定性を向上させて失透や着色を低減させる成分であり、且つガラスの低Tg化に効果のある任意成分である。しかしながら、LiO成分の含有量が多すぎると、ガラスの安定性が低下し易くなり、高い屈折率(n)が得られにくくなり、部分分散比(θ・F)が低く且つ機械的強度が低下し易くなる。従って、LiO成分の含有量は、酸化物基準の質量%で、好ましくは10.0%、より好ましくは5.0%、最も好ましくは3.0%を上限とする。LiO成分は、原料として例えばLiCO、LiNO等を用いてガラス内に含有することができる。
 NaO成分は、ガラスの失透性を改善させ、ガラスの部分分散比(θ・F)とアッベ数(ν)を調整して、ガラスの低Tg化に効果のある任意成分である。しかしながら、NaO成分の含有量が多すぎると、ガラスの屈折率(n)が下がり、ガラスの安定性が低下し易くなり、ガラスの化学的耐久性及び機械的強度も低下し易くなる。従って、NaO成分の含有量は、酸化物基準の質量%で、好ましくは10.0%、より好ましくは5.0%、最も好ましくは3.0%を上限とする。NaO成分は、原料として例えばNaCO、NaNO等を用いてガラス内に含有することができる。
 KO成分は、ガラスの失透性を改善させ、ガラスの部分分散比(θ・F)とアッベ数(ν)を調整して、ガラスの低Tg化に効果のある任意成分である。しかしながら、KO成分の含有量が多すぎると、ガラスの安定性が低下し易くなり、ガラスの化学的耐久性及び機械的強度も低下し易くなる。従って、KO成分の含有量は、酸化物基準の質量%で、好ましくは10.0%、より好ましくは5.0%、最も好ましくは3.0%を上限とする。KO成分は、原料として例えばKCO、KNO等を用いてガラス内に含有することができる。
 本発明の実施形態に係る光学ガラスでは、RnO成分(RnはLi、Na及びKから選ばれる1種又は2種以上)の含有量の質量和が、5.0%以下であることが好ましい。この質量和を5.0%以下にすることで、ガラスのアッベ数(ν)を所望の範囲に調整しつつ、ガラスの安定性をより高めて透過率の低下を抑えることができる。特に、RnO成分の質量和を1.0%以下にすることで、部分分散比(θ・F)の低下が抑制されるため、所望の高い部分分散比(θ・F)をより得易くすることができる。従って、RnO成分(RnはLi、Na及びKから選ばれる1種又は2種以上)の含有量は、好ましくは5.0%、より好ましくは3.0%、最も好ましくは1.0%を上限とする。
 なお、RO成分及びRnO成分は、ガラスの溶融性と安定性の向上、低Tg化に効果があり、更に可視域におけるガラス透明性の向上に大きな役割を果たすので、これらの成分のいずれかが必要不可欠である。これら成分の1種または2種合計の含有量が少なすぎると効果が見られず、多すぎると液相温度の上昇やガラス安定性が悪くなる。従って、RO及びRnO成分の合計含有量は、好ましくは0%を超え、さらに好ましくは0.1%、最も好ましくは0.2%を下限とする。一方、RO及びRnO成分の合計含有量は、好ましくは10.0%、より好ましくは5.0%、最も好ましくは3.0%を上限とする。
 Sb成分は、ガラスの清澄を促す効果がある任意成分である。しかしながら、その含有量が多すぎると、溶融性の悪化、ガラスの透過率及び耐失透性が低下する。従って、Sb成分の含有量は、酸化物基準の質量%で、好ましくは3.0%、より好ましくは2.0%、最も好ましくは1.0%を上限とする。Sb成分は、原料として例えばSb、Sb、NaSb・5HO等を用いてガラス内に含有することができる。なお、ガラスを清澄し脱泡する成分は、上記のSb成分に限定されるものではなく、ガラス製造の分野における公知の清澄剤や脱泡剤、或いはそれらの組み合わせを用いることができる。
 P成分は、ガラスの着色の改善に効果があり、ガラスの透過率を向上するために有用な任意成分である。しかしながら、P成分の含有量が多すぎると、ガラスの溶融性が低下し易くなる。従って、P成分の含有量の上限は、酸化物基準の質量%で、好ましくは10.0%、より好ましくは5.0%、最も好ましくは3.0%を上限とする。P成分は、原料として例えばAl(PO、Ca(PO、Ba(PO、Na(PO)、BPO、HPO等を用いてガラス内に含有することができる。
 Bi成分は、ガラスの屈折率(n)を高め、ガラスの部分分散比(θ,F)を大きくし、且つガラスの低分散化に効果がある成分である。また、低Tg化、耐水性の向上等にも効果がある成分であり、本発明の実施形態に係る光学ガラスに欠かすことができない成分である。ここで、Bi成分の含有量を75.0%以上にすることで、所望の高い屈折率(n)を有する光学ガラスを得易くすることができる。従って、Bi成分の含有量は、酸化物基準の質量%で、好ましくは75.0%、より好ましくは77.0%、最も好ましくは79.0%を下限とする。一方、Bi成分の含有量は、酸化物基準の質量%で、好ましくは98.0%、より好ましくは96.0%、最も好ましくは94.0%を上限とすることで、ガラスの安定性が高められるため、ガラスの着色を低減できる。Bi成分は、原料として例えばBi等を用いてガラス内に含有することができる。
 Bi成分及びNb成分は、併用することで、高い透過率を維持したまま、ガラスの安定化に寄与し、さらに、部分分散比(θ・F)をより一層高めることができる。従って、Bi成分及びNb成分の合計含有量は、酸化物基準の質量%で、好ましくは90.0%、より好ましくは94.0%、最も好ましくは98.0%を下限とする。
 Bi成分及びB成分は併用することが好ましいが、B成分は、必ずしも含まれなくてもよい。Bi成分及びB成分は、高屈折率化、かつ、ガラスの安定化に寄与し、さらに、部分分散比(θ・F)をより一層高めることができる。従って、Bi成分及びB成分の合計含有量は、酸化物基準の質量%で、好ましくは90.0%、より好ましくは94.0%、最も好ましくは98.0%を下限とする。
 GeO成分は、ガラスの耐失透性、ガラスの屈折率(n)を高め、高い部分分散比(θ・F)の向上に効果がある成分であるが、高価であるために任意に添加し得る成分である。しかしながら、GeO成分の含有量が多すぎると、ガラスの溶融性が低下し易くなる。従って、GeO成分の含有量は、酸化物基準の質量%で、好ましくは10.0%、より好ましくは5.0%、最も好ましくは3.0%を上限とする。GeO成分は、原料として例えばGeO等を用いてガラス内に含有することができる。
 TeO成分は、ガラスの清澄を促し、高屈折率の維持及びガラスの低分散化の効果がある任意成分である。しかしながら、その含有量が多すぎると、ガラスの耐失透性が低下し易くなる。従って、TeO成分の含有量は、酸化物基準の質量%で、好ましくは10.0%、より好ましくは5.0%、最も好ましくは1.5%を上限とする。一方、TeO成分の含有量は、酸化物基準の質量%で、好ましくは0%を超え、より好ましくは0.1%、最も好ましくは0.2%を下限とする。TeO成分は、原料として例えばTeO等を用いてガラス内に含有することができる。
<含有させるべきでない成分について>
 本発明の実施形態においては、他の成分を本発明の実施形態に係る光学ガラスの特性を損なわない範囲で必要に応じ、添加することができる。ただし、Tiを除くV,Cr,Mn,Fe,Co,Ni,Cu,Ag及びMo等の各遷移金属成分は、それぞれを単独又は複合して少量含有した場合においても、ガラスが着色し、可視域の特定の波長に吸収を生じさせる。したがって、可視領域の波長を使用する光学ガラスにおいては、実質的に含まないことが好ましい。ここで「実質的に含まない」とは、不純物として混入される場合を除き、人為的に含有させないことを意味する。
 Th成分は高屈折率化又はガラスとしての安定性向上を目的として、Cd及びTl成分は低Tg化を目的として含有することができる。しかし、Th、Cd、Osの各成分は、近年有害な化学物質成分として使用を控える傾向にあるため、ガラスの製造工程のみならず、加工工程、及び製品化後の処分に至るまで環境対策上の措置が必要とされる。したがって、環境上の影響を重視する場合には実質的に含まない方が好ましい。
 鉛成分は、ガラスを製造、加工、及び廃棄をする際に環境対策上の措置を講ずる必要があるため、コストが高くなり、本発明の実施形態に係る光学ガラスに鉛成分を含有させるべきでない。
 As成分は、ガラスを溶融する際、泡切れ(脱法性)を良くするために使用されている成分であるが、ガラスを製造、加工、及び廃棄をする際に環境対策上の措置を講ずる必要があるため、本発明の実施形態に係る光学ガラスにAsを含有させることが好ましくない。
[製造方法]
 本発明の実施形態に係る光学ガラスは、例えば以下のように作製される。すなわち、上記原料を各成分が所定の含有率の範囲内になるように均一に混合し、作製した混合物を石英坩堝又は金坩堝に入れて750℃~950℃の温度範囲で2~3時間溶融して攪拌均質化を行い、800℃~650℃程度の温度に下げてから1時間程度経過した後、金型に鋳込んで徐冷することにより作製される。
[物性]
 本発明の実施形態に係る光学ガラスは、屈折率(n)が高く、部分分散比(θ・F)が大きい。より具体的には、本発明の実施形態に係る光学ガラスの屈折率(n)は、好ましくは2.4、より好ましくは2.35、最も好ましくは2.3を上限とする。一方、本発明の実施形態に係る光学ガラスの屈折率(n)は、好ましくは2.15、より好ましくは2.17、最も好ましくは2.2を下限とする。これにより、光学設計の自由度が広がり、さらに光学素子の薄型化を図っても大きな光の屈折量を得ることができる。本発明の実施形態に係る光学ガラスの部分分散比(θ・F)は、好ましくは0.72、より好ましくは0.715、最も好ましくは0.71を上限とする。一方、本発明の実施形態に係る光学ガラスの部分分散比(θ・F)は、好ましくは0.67、より好ましくは0.675、最も好ましくは0.68を下限とする。これにより、光学素子の色収差の補正に顕著な効果を奏することができ、光学設計の自由度を広げることができる。
 また、本発明の実施形態に係る光学ガラスは、高分散(低アッベ数)を有することが好ましい。より具体的には、本発明の実施形態に係る光学ガラスのアッベ数(ν)は、好ましくは25、より好ましくは20、最も好ましくは16を上限とする。一方、本発明の実施形態に係る光学ガラスのアッベ数(ν)の下限は特に限定されないが、好ましくは13以上、より好ましくは13.5以上、最も好ましくは14以上であることが好ましい。これにより光学素子の色収差の補正に顕著な効果を奏することができ、光学設計の自由度を広げることができる。
 本発明の実施形態に係る光学ガラスは、屈折率(n)が高く、分光透過率(5%)における波長が小さいため、光学系の縮小化に繋がると共に、様々な光学設計の自由度を広げることができる。より具体的には、本発明の実施形態に係る光学ガラスの屈折率(n)の上限値及び下限値については上述したため省略する。本発明の実施形態に係る光学ガラスの分光透過率(70%)における波長は、好ましくは520nm、より好ましくは515nm、最も好ましくは510nmを上限とする。一方、本発明の実施形態に係る光学ガラスの分光透過率(70%)は、好ましくは445nm、より好ましくは455nm、最も好ましくは465nmを下限とする。これにより、可視光に対する透明性が高く、且つガラスの作製時及び加工時に失透や曇りが生じ難くできる。本発明の実施形態に係る光学ガラスの分光透過率(5%)は、好ましくは450nm、より好ましくは449nm、最も好ましくは448nmを上限とする。一方、本発明の実施形態に係る光学ガラスの分光透過率(5%)は、好ましくは415nm、より好ましくは420nm、最も好ましくは425nmを下限とする。これにより、可視光に対する透明性が高いため、様々な光学用途に使用する事ができる。
 本発明の実施形態に係る光学ガラスは、屈折率(n)が高く液相温度における粘度η(dPa・s)の対数logηが高い。より具体的には、本発明の実施形態に係る光学ガラスの屈折率(n)の上限値及び下限値については上述したため省略する。本発明の実施形態に係る光学ガラスの液相温度における粘度η(dPa・s)の対数logηは、好ましくは2.0、より好ましくは1.5、最も好ましくは1.2を上限とする。一方、本発明の実施形態に係る光学ガラスの液相温度における粘度η(dPa・s)の対数logηは、好ましくは0.30、より好ましくは0.35、最も好ましくは0.40を下限とする。これにより、精密プレスのガラスプリフォームを得ることができる。
 本発明の実施形態に係る光学ガラスは、耐失透性が高いこと、より具体的には、低い液相温度を有することが好ましい。すなわち、本発明の光学ガラスの液相温度は、好ましくは900℃、より好ましくは880℃、さらに好ましくは850℃を上限とする。これにより、より低い温度で熔融ガラスを流出しても、作製されたガラスの結晶化が低減されるため、特に熔融状態からガラスを形成したときの失透を低減でき、ガラスを用いた光学素子の光学特性への影響を低減できる。また、ガラスの熔解温度を低くしてもガラスを成形できるため、ガラスの成形時に消費するエネルギーを抑えることで、ガラスの製造コストを低減できる。一方、本発明の光学ガラスの液相温度の下限は特に限定しないが、本発明によって得られるガラスの液相温度は、好ましくは550℃、より好ましくは530℃、さらに好ましくは500℃を下限としてもよい。
[プリフォーム及び光学素子]
 作製された光学ガラスから、例えばリヒートプレス成形や精密プレス成形等の手段を用いて、ガラス成形体を作製することができる。すなわち、光学ガラスからモールドプレス成形用のプリフォームを作製し、このプリフォームに対してリヒートプレス成形を行った後で研磨加工を行ってガラス成形体を作製したり、例えば研磨加工を行って作製したプリフォームに対して精密プレス成形を行ってガラス成形体を作製したりすることができる。本発明の実施形態に係る光学ガラスからなるガラス成形体は、例えばレンズ、プリズム、ミラー等の光学素子の用途に用いることができ、典型的にはデジタルカメラやプロジェクタ等に用いることができる。なお、ガラス成形体を作製する手段は、これらの手段に限定されない。
 本発明の実施例1~69の組成及び比較例1及び2の組成、並びに、屈折率(n)、アッベ数(ν)及び部分分散比(θ・F)を示す。表1~表8に示した屈折率(n)、アッベ数(ν)及び部分分散比(θ・F)から、図1は、本発明の実施例1~69及び比較例1及び2に係る光学ガラスの屈折率(n)と部分分散比(θ,F)との関係を示す図である。図1に示すように、縦軸に屈折率(n)、横軸に部分分散比(θ,F)を示し、「◇」を実施例とし、「□」を比較例とした。図2は、本発明の実施例1~69及び比較例1及び2に係る光学ガラスの部分分散比(θ,F)とアッベ数(ν)との関係を示す図である。図2に示すように、縦軸に部分分散比(θ,F)、横軸にアッベ数(ν)を示し、「◇」を実施例とし、「□」を比較例とした。なお、以下の実施例はあくまで例示の目的であり、これらの実施例のみ限定されるものではない。
 本発明の実施例3~8、10~70の組成及び比較例2及び3の組成、並びに、屈折率(n)、分光透過率(70%)を示す波長(λ70)、分光透過率(5%)を示す波長(λ)及びアッベ数(ν)の結果を表1~表8に示す。表1~表8に示した屈折率(n)、分光透過率(5%)を示す波長(λ)及びアッベ数(ν)から、図3は、本発明の実施例3~8、10~70及び比較例2及び3に係る光学ガラスの屈折率(n)と分光透過率(5%)との関係を示す図である。図3に示すように、縦軸に屈折率(n)、横軸に分光透過率(5%)を示し、「◇」を実施例とし、「□」を比較例とした。図4は、本発明の実施例3~8、10~70及び比較例2及び3に係る光学ガラスの屈折率(n)とアッベ数(ν)との関係を示す図である。図4に示すように、縦軸に屈折率(n)、横軸にアッベ数(ν)を示し、「◇」を実施例とし、「□」を比較例とした。
 本発明の実施例18、20~22、25~69の組成及び比較例2及び4の組成、並びに、屈折率(n)、液相温度(℃)及び液相温度における粘度η(dPa・s)の対数logηの結果を表1~表8に示す。表1~表8に示した屈折率(n)、液相温度(℃)及び液相温度における粘度η(dPa・s)の対数logηから、図5は、本発明の実施例18、20~22、25~69及び比較例2及び4に係る光学ガラスの屈折率(n)と液相温度における粘度η(dPa・s)の対数logηとの関係を示す図である。図5に示すように、縦軸に屈折率(n)、横軸に液相温度における粘度η(dPa・s)の対数logηを示し、「◇」を実施例とし、「□」を比較例とした。図6は、本発明の実施例18、20~22、25~69及び比較例2及び4に係る光学ガラスの屈折率(n)とアッベ数(ν)との関係を示す図である。図6に示すように、縦軸に屈折率(n)、横軸にアッベ数(ν)を示し、「◇」を実施例とし、「□」を比較例とした。
 表1~表8に示した本発明の実施例及び比較例に係る光学ガラスは、いずれも各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、水酸化物、メタ燐酸化合物等の通常の光学ガラスに使用される高純度の原料を選定した。表1~表8に示した各実施例の組成及び各比較例の組成で、ガラス重量が400gになるように秤量して均一に混合した後、石英坩堝又は金坩堝に投入し、ガラス組成の熔融難易度に応じて電気炉で750℃~950℃の温度範囲で2時間~3時間溶融して攪拌均質化を行い、800℃~650℃程度の温度に下げてから1時間程度経過した後、金型に鋳込んで徐冷することにより作製した。比較例2は、ガラス化しなかった。
 ここで、実施例及び比較例に係る光学ガラスの屈折率(n)、部分分散比(θ・F)及びアッベ数(ν)は、日本光学硝子工業会規格JOGIS01-2003に基づいて測定した。なお、本測定に用いた光学ガラスは、徐冷降温速度を-25℃/hrとして、徐冷炉にて処理を行ったものを用いた。
 表1~表8に示した本発明の実施例及び比較例に係る光学ガラスの可視域の波長の光線透過率については、日本光学硝子工業会規格JOGIS02-2003に準じて測定した。具体的には、厚さ10±0.1mmの対面平行研磨品をJISZ8722に準じ、200nm~800nmの分光透過率を測定し、反射損失を含む分光透過率(λ)(分光透過率5%時の波長)と分光透過率(λ70)(分光透過率70%時の波長)とを求めた。
 表1~表8に示した本発明の実施例及び比較例に係る「液相温度」とは、400℃~1100℃の温度勾配のついた失透試験炉に30分保持し、倍率80倍の顕微鏡により結晶の有無を観察し、結晶の無い温度を液相温度とした。
 また、本発明の実施例及び比較例に係る光学ガラスの液相温度における粘性は、球引上げ式粘度計(有限会社オプト企業社製 型番BVM-13LH)を用いて粘度η(dPa・s)を求めた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表1~表8に示したように、本発明の実施例1~69に係る光学ガラスは、屈折率(n)が2.2以上2.4以下であり、部分分散比(θ・F)が0.68以上0.72以下であった。一方、比較例1に係る光学ガラスは、ガラスの屈折率(n)が1.92であり、部分分散比(θ,F)が0.63であった。従って、本発明の実施例に係る光学ガラスは、所望の屈折率(n)を有し、且つ、所望の部分分散比(θ・F)を有することが明らかになった。
 本発明の実施例1~69に係る光学ガラスは、少なくともBi成分の含有量、アルカリ土類金属(Mg、Ca、Sr及びBa)の含有量、ZnO成分の含有量及びB成分の含有量を所定の範囲内にすることによって、高い屈折率(n)を有し、且つ、大きな部分分散比(θ・F)を有することが明らかになった。
 表1~表8に示したように、本発明の実施例3~8、10~70に係る光学ガラスは、ガラスの屈折率(n)が2.2以上2.4以下であり、分光透過率(5%)が425nm以上450nm以下であった。一方、比較例3に係る光学ガラスは、ガラスの屈折率(n)が1.85であり、分光透過率(5%)が430nmであった。従って、本発明の実施例3~8、10~70に係る光学ガラスは、所望の屈折率(n)を有し、且つ、分光透過率(5%)を有することが明らかになった。
 本発明の実施例3~8、10~70に係る光学ガラスは、少なくともBi成分の含有量及びアルカリ土類金属(Mg、Ca、Sr及びBaのいずれか1種以上)の含有量、ZnO成分の含有量及びTeO成分の含有量を所定の範囲内にすることによって、高い屈折率(n)及び長い分光透過率(5%)を有することが明らかになった。
 表1~表8に示したように、本発明の実施例18、20~22、25~69に係る光学ガラスは、屈折率(n)が2.2以上2.4以下であり、液相温度における粘度η(dPa・s)の対数logηが0.30以上0.60以下であった。一方、比較例4に係る光学ガラスは、ガラスの屈折率(n)が1.87以下であり、液相温度における粘度η(dPa・s)の対数logηが0.2であった。従って、本発明の実施例18、20~22、25~69に係る光学ガラスは、所望の屈折率(n)を有し、且つ、所望の液相温度における粘度η(dPa・s)の対数logηを有することが明らかになった。
 本発明の実施例18、20~22、25~69に係る光学ガラスは、少なくともBiの含有量、Nbの含有量、ZnOの含有量をそれぞれ所定の範囲内にすることによって、高い屈折率(n)を有し、且つ、高い液相温度における粘度η(dPa・s)の対数logηを有することが明らかになった。

Claims (15)

  1.  酸化物基準の質量%でBi成分を75.0%以上、ZnO成分を10.0%未満の成分をそれぞれ含有することを特徴とする光学ガラス。
  2.  Bi成分を98.0%以下含有することを特徴とする請求項1に記載の光学ガラス。
  3.  Bi成分とB成分とを合計で90%以上含有することを特徴とする請求項1に記載の光学ガラス。
  4.  ZnO成分が0%を超えて含有することを特徴とする請求項1に記載の光学ガラス。
  5.  酸化物基準の質量%でMgO成分、CaO成分、SrO成分、BaO成分、Y成分、La成分、Gd成分及びYb成分のうちいずれか1種以上が0を超え10.0%未満含有することを特徴とする請求項1に記載の光学ガラス。
  6.  酸化物基準の質量%でMgO成分、CaO成分、SrO成分及びBaO成分のうちいずれか1種以上が0を超え10.0%未満、TeO成分が0を超え10.0%未満の成分をそれぞれ含有することを特徴とする請求項1に記載の光学ガラス。
  7. 酸化物基準の質量%でNb成分が0を超え10.0%未満含有することを特徴とする請求項1に記載の光学ガラス。
  8.  MgO成分  0%を超えて10.0%未満、及び/又は
     CaO成分  0%を超えて10.0%未満、及び/又は
     SrO成分  0%を超えて10.0%未満、及び/又は
     BaO成分  0%を超えて10.0%未満の各成分をさらに含有することを特徴とする請求項1に記載の光学ガラス。
  9. 部分分散比(θg,F)が0.67以上であることを特徴とする請求項1に記載の光学ガラス。
  10. 厚み10mmのサンプルで分光透過率(5%)を示す波長(λ)が450nm以下であることを特徴とする請求項1に記載の光学ガラス。
  11. 液相温度における粘度η(dPa・s)の対数logηが0.3以上であることを特徴とする請求項1に記載の光学ガラス。
  12.  屈折率(nd)が2.15以上であり、アッベ数(ν)が13.0以上25.0以下であることを特徴とする請求項1に記載の光学ガラス。
  13.  請求項1に記載の光学ガラスからなることを特徴とする精密プレス成形用のプリフォーム。
  14.  請求項1に記載の光学ガラスを含んでなることを特徴とする光学素子。
  15.  請求項13に記載のプリフォームを精密プレスすることにより成形されることを特徴とする光学素子。
PCT/JP2012/060376 2011-04-28 2012-04-17 光学ガラス、プリフォーム及び光学素子 WO2012147570A1 (ja)

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP2011102076 2011-04-28
JP2011-102076 2011-04-28
JP2011-102075 2011-04-28
JP2011-102074 2011-04-28
JP2011102075 2011-04-28
JP2011102074 2011-04-28
JP2012029519 2012-02-14
JP2012-029517 2012-02-14
JP2012-029519 2012-02-14
JP2012-029518 2012-02-14
JP2012029517A JP2012236756A (ja) 2011-04-28 2012-02-14 光学ガラス、プリフォーム及び光学素子
JP2012029518 2012-02-14
JP2012080551A JP2013189364A (ja) 2011-04-28 2012-03-30 光学ガラス、プリフォーム及び光学素子
JP2012-080551 2012-03-30
JP2012-092933 2012-04-16
JP2012092933A JP2013189366A (ja) 2011-04-28 2012-04-16 光学ガラス、プリフォーム及び光学素子

Publications (1)

Publication Number Publication Date
WO2012147570A1 true WO2012147570A1 (ja) 2012-11-01

Family

ID=47072092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060376 WO2012147570A1 (ja) 2011-04-28 2012-04-17 光学ガラス、プリフォーム及び光学素子

Country Status (1)

Country Link
WO (1) WO2012147570A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189521A (ja) * 2007-02-05 2008-08-21 Ohara Inc 光学ガラスの製造方法
JP2009203140A (ja) * 2008-02-29 2009-09-10 Ohara Inc 光学ガラス、光学素子及び精密プレス成形用プリフォーム
JP2009234805A (ja) * 2008-03-25 2009-10-15 Ohara Inc 光学ガラス
JP2009263191A (ja) * 2008-04-29 2009-11-12 Ohara Inc 光学ガラス
JP2010059012A (ja) * 2008-09-03 2010-03-18 Fujinon Corp 光学ガラス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189521A (ja) * 2007-02-05 2008-08-21 Ohara Inc 光学ガラスの製造方法
JP2009203140A (ja) * 2008-02-29 2009-09-10 Ohara Inc 光学ガラス、光学素子及び精密プレス成形用プリフォーム
JP2009234805A (ja) * 2008-03-25 2009-10-15 Ohara Inc 光学ガラス
JP2009263191A (ja) * 2008-04-29 2009-11-12 Ohara Inc 光学ガラス
JP2010059012A (ja) * 2008-09-03 2010-03-18 Fujinon Corp 光学ガラス

Similar Documents

Publication Publication Date Title
JP5917791B2 (ja) 光学ガラス、プリフォーム材及び光学素子
WO2010038597A1 (ja) 光学ガラス及び分光透過率の劣化抑制方法
JP7195040B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP5946237B2 (ja) 光学ガラス、プリフォーム材及び光学素子
WO2011052687A1 (ja) 光学ガラス、プリフォーム及び光学素子
JP2009263191A (ja) 光学ガラス
JP2020019711A (ja) 光学ガラス、プリフォーム及び光学素子
TWI777931B (zh) 光學玻璃、預成形體及光學元件
JP2009203135A (ja) 光学ガラス、光学素子及び精密プレス成形用プリフォーム
JP2017105702A (ja) 光学ガラス、プリフォーム及び光学素子
TW202313501A (zh) 光學玻璃、預成形體及光學元件
JP2012206893A (ja) 光学ガラス、プリフォーム及び光学素子
JPWO2007029434A1 (ja) 光学ガラス
JPWO2010126097A1 (ja) 光学ガラス、光学素子及び精密プレス成形用プリフォーム
JP2023017903A (ja) 光学ガラスおよび光学素子
JP2011230997A (ja) 光学ガラス、光学素子及び精密プレス成形用プリフォーム
JP6055876B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP2017119619A (ja) 光学ガラス、プリフォーム及び光学素子
TW201927712A (zh) 光學玻璃和光學元件
JP2012197211A (ja) 光学ガラス、プリフォーム及び光学素子
JP2010195674A (ja) 光学ガラス、光学素子及び精密プレス成形用プリフォーム
JP2016088759A (ja) 光学ガラス、プリフォーム及び光学素子
JP2013087009A (ja) 光学ガラス、プリフォーム及び光学素子
JP2014111521A (ja) 光学ガラス、プリフォーム、及び光学素子
JP2012206892A (ja) 光学ガラス、プリフォーム及び光学素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12776482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12776482

Country of ref document: EP

Kind code of ref document: A1