WO2012146060A1 - 阳极效应抑制与熄灭的方法和设备 - Google Patents

阳极效应抑制与熄灭的方法和设备 Download PDF

Info

Publication number
WO2012146060A1
WO2012146060A1 PCT/CN2012/000554 CN2012000554W WO2012146060A1 WO 2012146060 A1 WO2012146060 A1 WO 2012146060A1 CN 2012000554 W CN2012000554 W CN 2012000554W WO 2012146060 A1 WO2012146060 A1 WO 2012146060A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
anode effect
effect
suppressing
extinguishing
Prior art date
Application number
PCT/CN2012/000554
Other languages
English (en)
French (fr)
Inventor
杨晓东
周东方
马恩杰
张钦菘
符勇
殷小宝
Original Assignee
中铝国际工程股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铝国际工程股份有限公司 filed Critical 中铝国际工程股份有限公司
Priority to CA2834498A priority Critical patent/CA2834498A1/en
Publication of WO2012146060A1 publication Critical patent/WO2012146060A1/zh
Priority to NO20131575A priority patent/NO20131575A1/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/20Automatic control or regulation of cells

Definitions

  • the invention relates to a method and a device for suppressing and extinguishing an anode effect of a prebaked anode electrolytic cell, in particular, after determining a specific area of an anode effect of a prebaked anode aluminum electrolytic cell, how to pass a single point partial blanking The occurrence of the anode effect region is suppressed and the extinguishing method and apparatus after the anode effect occurs.
  • the conventional prebaked anode electrolyzer predicts the anode effect of the electrolysis cell based on the signal of the overall cell voltage. After the anode effect is predicted, the method is adopted to suppress all the feed ports simultaneously and increase the amount of feed (for large blanking). The occurrence of the anode effect. However, in fact, the anode effect occurs firstly on individual anodes. All the methods of cutting off the feed opening will change the concentration of alumina in the electrolyte, making it unevenly distributed in space, increasing alumina consumption. In the extreme case, precipitation occurs on the cathode surface of the cell.
  • the conventional prebaked anode cell usually adopts an integral elevated pressure bus bar or an artificial effect bar to achieve the extinction of the anode effect.
  • the effect of manually inserting the effect bar to extinguish the anode effect is not only delayed in time, but also increases the operator's operating intensity.
  • the use of the effect rod becomes larger and larger. If it is not controlled, it will inevitably cause serious damage to the forest. .
  • the present invention provides a method for suppressing and extinguishing an anode effect, which aims to suppress the anode by controlling the alumina single-point feeding device after precisely positioning the region where the anode effect is about to occur.
  • the effect is to reduce the occurrence of the anode effect and reduce the consumption of alumina. After the anode effect occurs, a targeted local bus bar can be realized to extinguish the anode effect, thereby achieving energy saving.
  • the method for suppressing and extinguishing the anode effect of the present invention comprises the following steps: determining an anode which is about to have an anode effect; the electrolytic cell is being discharged by a lower opening corresponding to the anode which is about to have an anode effect; if an anode occurs Effect, according to the anode position where the anode effect occurs, only the local busbar is lifted to extinguish the anode effect.
  • the anode for determining the impending anode effect refers to: dividing the anode corresponding to different feed openings, according to the distance between the anode and the discharge port, the decreasing of the electrolyte gradient around the feed port, through different feed openings Corresponding to the anode weighting, when the number of anode effect characteristics of the anode corresponding to different feed openings is greater than the specified ratio, it can be determined that the position of the lower feed port of the aluminum halide blanking is required to suppress the anode effect.
  • the anode effect can be extinguished according to the anode position where the anode effect occurs only by pressing up the local bus bar.
  • the method includes: dividing the busbars on both sides of the electrolytic cell into at least two partial regions, each of which is controlled by a respective anode lifting mechanism; In the region of the moving pole, if the characteristic of the anode guide rod before the anode effect occurs is 1, the characteristic of the anode guide rod before the occurrence of the anode effect is 0, and the partial regions are summed, and the threshold value of the local moving pole is set. For Q, if the summation of each partial area is greater than that, the corresponding local busbar needs to be lifted.
  • the present invention also provides an apparatus for implementing a front anode effect suppression and extinguishing method, characterized in that the apparatus comprises: an anode guiding rod connected to the electrolytic cell for determining an impending anode effect
  • the anode voltage signal acquisition processing control system supplements the blanking according to the command issued by the voltage signal acquisition processing control system to suppress the anode lifting mechanism that only raises the local bus bar according to the anode position where the anode effect occurs if the anode effect occurs.
  • the targeted addition of alumina can effectively suppress the generation of the anode effect and the anode effect that has already occurred can be extinguished by raising the partial bus.
  • the invention can suppress the occurrence of the anode effect by the single point partial blanking of the anode having the anode effect characteristic, and avoid the destruction of the state of the electrolytic tank by the simultaneous feeding of all the feeding openings. It is beneficial to stabilize the operation of the electrolytic cell. At the same time, the effect of energy saving and consumption reduction can be achieved by pressing the local bus bar to extinguish the anode effect.
  • Figure f is a schematic view showing the specific distribution of the ⁇ port in the electrolytic cell of the present invention.
  • FIG. 2 is a schematic view showing a partial busbar division of the electrolytic cell of the present invention.
  • the anode guide rod isometric pressure drop signal is obtained in real time, and then calculated by the data processor according to the anode effect. Characteristics, find the anode that is about to have an anode effect.
  • Step 1 Preprocessing of the data.
  • the pre-treatment of the anode guide rod isometric data is to pre-process the raw data of the anode guide rod equidistant pressure drop for each anode guide rod of the electrolytic cell, and the processing method adopts the following smoothing formula.
  • y i+ 2 —(- y t -2 + — i a 6y t + 4y M + 69y l+2 )
  • is the smooth value of ⁇
  • is the original data acquisition value
  • the first two points and the last two points of the data The calculations are performed using only the first, second, fourth, and fifth equations in the above formula group.
  • Step 2 Low pass filtering.
  • Low-pass filtering of the processed anode guide bar equidistant pressure drop data refers to the use of Butterworth bilinear filtering, and the filter frequency upper limit is defaulted to l/600 Hz.
  • Step 3 High frequency needle shock treatment.
  • Shake ⁇ k) 0.75 * Shake ⁇ k - 1) + 0.25 * Shake ⁇ k) '
  • k ⁇ 1,2,3,4,5 ⁇ '> then the intensity of the shock in the current prediction period t is Max ( ⁇ ' w ) ; where is the maximum and minimum values of the equidistant pressure drop of the original anode lead in each equalization period, which is the low-pass filtered anode lead in each equalization period Rod isometric pressure drop.
  • Step 4 Slope processing.
  • the slope processing of the obtained low-pass filter data respectively refers to the average rate of change of the equidistant pressure drop of the anode guide rod after the low-pass filtering in the period of the prediction period t;
  • the t is divided into 5 equal parts, then the slope of the equidistant pressure drop of the anode guide rods in the period ⁇ is calculated as:
  • Step 5 Accumulate slope processing.
  • the cumulative slope processing of the obtained low-pass filter data is calculated by the following formula:
  • Lslope(0) S pe(0) °
  • Step 6 The determination of the anode effect is about to occur.
  • the data after the high frequency needle shock processing, the slope processing and the cumulative slope processing are subjected to the anode effect discrimination processing to set the threshold for the slope, the cumulative slope and the high frequency needle shock, if the cumulative slope of the anode guide rod isometric continuously continues for several consecutive periods. Decrease, the anode guide rod isometric pressure drop The slope of this period is greatly reduced or the anode guide rod isometric pressure drop high frequency needle vibration is greatly increased, then the anode effect is determined to be about to occur.
  • Step 1 First, according to the original design of the electrolytic cell, determine how many discharge ports of the type of electrolytic cell and the specific positions of these discharge ports.
  • Steps: A] -A]4 and B1 -B14 in Figure 1 are anodes, which are divided into 4 feed openings, which are A, B, C and D feed openings.
  • Step 2 Determine the anode responsible for each feed port according to the distance between each anode and the discharge port.
  • A ⁇ A 1 , ⁇ 2, ⁇ 3, ⁇ , ⁇ 1 , ⁇ 2, ⁇ 3, ⁇ 4 ⁇
  • Step 3 Since there should be a decrease in the gradient of the alumina concentration around each of the feed openings, the distribution of the alumina concentration in the electrolyte is considered according to the distance between the anode and the discharge port, and the anodes responsible for each feed port are weighted. Corrected.
  • Kl, K2, K3 are weights, K1, K2, respectively K3 is 0.9, 0.95, 1, respectively.
  • Step 4 In step 3, ⁇ 1 ⁇ 14, ⁇ 1 ⁇ 14 respectively represent whether the corresponding guide has the characteristics before the anode effect occurs. If there is a feature, the corresponding value is 1, otherwise it is 0.
  • the four sets of A, ⁇ , C, and D are summed, that is, s wn(A), sum(B), sum(C), and sum(D) are calculated respectively.
  • Step 6 If the anode effect cannot be controlled, after the anode effect has occurred, determine how to pressurize the local busbar to extinguish the anode effect according to the following steps.
  • FIG 2 shows the local busbar division of one type of electrolytic cell.
  • G ⁇ E11, E12, E13, E14, F1 1, F12, F13JF14) is the third partial region.
  • Step 1 E1 ⁇ E14, Fb F14 respectively represent whether the corresponding guide has the characteristics before the occurrence of the anode effect. If there is a feature, then ⁇ is ⁇ , otherwise it is 0.
  • the three sets of E, F, and G are summed, that is, sum(E), sum(F), and sum(G) are calculated separately.
  • Step 3 Wait for the positive effect of the sun plate effect sent by the slot control machine. If the slot control machine confirms that the anode effect has occurred, then lift the local bus bar determined in step 2 to extinguish the anode effect that has occurred.
  • the present invention also relates to an apparatus for carrying out the aforementioned anode effect suppressing and extinguishing method.
  • the device includes: a voltage signal acquisition and processing control system connected to the anode guide rod of the electrolytic cell for determining an anode effect of an anode effect, and an instruction issued by the voltage signal acquisition processing control system to replace the anode to suppress the anode.
  • the shell blanking device corresponding to the anode that is about to have an anode effect, and the anode lift mechanism that only presses the local bus bar according to the anode position where the anode effect occurs if an anode effect occurs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

一种用于预焙阳极电解槽的阳极效应抑制与熄灭的方法以及实施该方法的设备,该方法包括下列步骤:确定即将发生阳极效应的阳极;电解槽通过与即将发生阳极效应的阳极对应的下料口进行下料;如果发生阳极效应,根据发生阳极效应的阳极位置只抬压局部母线即可熄灭阳极效应。通过有针对性的局部补充氧化铝能够有效抑制阳极效应的产生以及通过抬压局部母线可以熄灭已经发生的阳极效应。对出现阳极效应特征的阳极通过单点局部下料来抑制阳极效应的发生,避免了全部下料口同时下料对电解槽状态的破坏,有利于稳定电解槽的运行,同时,通过抬压局部母线来熄灭阳极效应可以达到节能降耗的效果。

Description

阳极效应抑制与熄灭的方法和设备 技术领域
本发明涉及一种用于预焙阳极电解槽的阳极效应抑制与熄灭的方 法和设备, 尤其涉及当确定预焙阳极铝电解槽即将发生阳极效应具体 区域后, 如何通过单点局部下料对即将发生的阳极效应区域进行抑制 以及当发生阳极效应后的熄灭方法和设备。
背景技术
传统预焙阳极电解槽根据整体槽电压的信号来预测电解槽阳极效 应的情况, 在预测出阳极效应后通过采用的方法是全部下料口同时加 大下料量 (进行大下料) 来抑制阳极效应的发生。 但实际上阳极效应 的发生首先往往于个別阳极上, 所有下料口都进行下料的方法, 会改 变氧化铝在电解质中的浓度, 使其在空间分布上不均勾, 增加氧化铝 消耗量, 极端情况下会在电解槽阴极表面产生沉淀。
传统预焙阳极电解槽在发生阳极效应时通常采用整体抬压母线或 者人工插效应棒的方式来实现阳极效应的熄灭。 人工插效应棒的方式 熄灭阳极效应不仅时间上滞后, 增加工人的操作强度, 而且随着铝产 能的增加, 效应棒的使用越来越大, 如不得到控制, 必然会给森林带 来严重破坏。 而整体括压母戏的方式来熄灭阳极效应, 由于没有针对 性, 不仅造成能量的浪费, 而且容易使电解槽的热平衡经常随着整体 极距的调整而受到破坏。
近年来随着电解槽尺寸不断变大, 这种传统的没有针对性的阳极 效应抑制与熄灭方法已经不能适应对新型电解槽进行精细化操作的要 求, 也不符合现在社会对降低铝电解过程能源消耗的目标。 新的阳极 效应抑制与熄灭方法对进一步提高铝电解槽的技术经济指标十分重 要。
发明内容
为解决上述技术问题本发明提供一种阳极效应抑制与熄灭的方 法, 目的是能够在精确定位即将发生阳极效应的区域后, 通过控制氧 化铝单点下料装置, 实现针对性下料而抑制阳极效应, 减少阳极效应 的发生, 降低氧化铝消耗, 在发生阳极效应后, 能够实现具有针对性 的抬压局部母线来熄灭阳极效应, 从而实现节约能源消耗。 为达上迷目的, 本发明阳极效应抑制与熄灭的方法包括下迷步骤: 确定即将发生阳极效应的阳极; 电解槽通过与即将发生阳极效应的阳 极对应的下料口进行下料; 如果发生阳极效应, 根据发生阳极效应的 阳极位置只抬压局部母线即可熄灭阳极效应。
所述的确定即将发生阳极效应的阳极是指: 对不同下料口对应的 阳极进行划分, 根据阳极与下料口之间的距离, 下料口周围电解质梯 度的递减, 通过对不同下料口对应阳极进行加权, 当不同下料口对应 的阳极出现阳极效应特征的数量大于规定的比例后, 即可确定为抑制 阳极效应发生而需要进行氡化铝下料的下料口位置。
所述的阳极出现阳极效应特征取值为 1 , 阳极不出现阳极效应特征 取值为 0, 对各个下料口对应的阳极特征取值求和; 设下料口判別阈值 为 P , 0<P<=1 , 判断各个下料口对应阳极特征取值的和除以各个下料 口对应的阳极数与 P之间的大小, 如果各个下料口对应阳极特征取值 的和除以各个下料口对^的阳极数大于 P,那么该下料口需要进行氧化 铝下料, 下料数量为能够抑制阳极效应发生的最小量。
所述的根据发生阳极效应的阳极位置只抬压局部母线即可熄灭阳 极效应包括: 将电解槽两側母线分为至少两部分区域, 每部分分别由 各自的阳极提升机构进行控制; 确定需要局部动极的区域, 如果阳极 导杆具有阳极效应发生前的特征取值为 1 ,阳极导杆不具有阳极效应发 生前的特征取值为 0,对各个部分区域求和,设局部动极判别阈值为 Q, 各个部分区域求和如果大于 则需要抬压对应的局部母线。
为达上述目的, 本发明还提供了一种用于实施前迷阳极效应抑制 与熄灭方法的设备, 其特征在于, 所述设备包括: 与电解槽阳极导杆 相连的用于确定即将发生阳极效应的阳极的电压信号采集处理控制系 统、 根据所述电压信号采集处理控制系统发出的指令补充下料来抑制 如杲发生阳极效应则根据发生阳极效应的阳极位置只抬压局部母线的 阳极提升机构。
本发明的优点效果: 通过有针对性的局部补充氧化铝能够有效抑 制阳极效应的产生以及通过抬压局部母线可以熄灭已经发生的阳极效 应。 本发明能对出现阳极效应特征的阳极通过单点局部下料来抑制阳 极效应的发生, 避免了全部下料口同时下料对电解槽状态的破坏, 有 利于稳定电解槽运行, 同时, 通过抬压局部母线来熄灭阳极效应可以 达到节能降耗的效果。
附图说明
图 f 是本发明的电解槽中的 τ料口的具体分布示意图。
图 2是本发明的电解槽局部母线划分示意图。
具体实施方式
一、 首先通过安装在电解槽阳极导杆 (图中未示出) 上的电压信 号采集装置, 实时获得阳极导杆等距压降信号, 然后通过数据处理器 的运算, 根据阳极效应发生前的特征, 找到即将发生阳极效应的阳极。
具体方法如下:
步骤 1:数据的预处理。 对阳极导杆等距压降数据的预处理是对电 解槽每个阳极导杆, 截取时间长度为 t的阳极导杆等距压降原始数据进 行数据预处理; 处理方法采用如下平滑公式进行, 实现将信号中的异 常针振去除, 公式如下: y,-2 = (69 — 2 + 4γΜ - 6yt + yM― yi+2)
y,^二 ~ (2 ,-2 +27^+12^,. -8 ,+1+2 , +2)
y,二 +12^+1 ^ + 12^, -3y!+ )
= ~(2 -2-8^ +12^. +21yin+2yi+2)
yi+2 =—(- yt-2 + — i一 6yt + 4yM + 69yl+2) 其中^是^的光滑值, ^为原始数据采集值, 数据的开始两点和最后两 点分别只用上述公式组中的第一, 第二和第四, 第五两式进行计算。
步骤 2: 低通滤波处理。 对处理后的阳极导杆等距压降数据进行低 通滤波是指采用巴特沃斯双线性滤波, 滤波频率上限默认值为 l/600Hz。
步骤 3: 高频针震处理。 将得到的低通滤波数据分别进行高频针震 处理是指将时间长度/均分为 5 等份, 按下式计算每个周期 t内的阳极 导杆等距压降针震强度, 公式如下'. shakeW = max- ,η- Ρ(Α- 1)|; 然后按下式对各时间周 期上的针震强度进行平滑处理;
Shake {k) = 0.75 * Shake{k - 1) + 0.25 * Shake{k) ' 其中 k = { 1,2,3,4,5}■ '> 则在当前预测 周期 t内的针震强度为 max(^^'w) ; 其中 为在每个均分时间段 内原始阳极导杆的等距压降的最大值与最小值, 为在每个均分时间 段内经过低通滤波的阳极导杆等距压降。
步骤 4: 斜率处理。 将得到的低通滤波数据分别进行斜率处理是指 阳极导杆等距压降斜率为预测周期 t时间段内经过低通滤波后的阳极 导杆等距压降的平均变化速率; 同样将时间长度 t均分为 5等份, 则周 期 ί内阳极各阳极导杆等距压降的斜率计算公式为:
Slope(i) = (VF{k -】) - VF(k - 3) + 2(VF(k) - VF(k - 4)))/ 5。 步骤 5 : 累计斜率处理。 将得到的低通滤波数据分别进行累计斜率 处理是指通过下述公式进行计算:
Lslope(t) = (7 /8) * Lslope{t - 1) + 2 * Slope{i) 13
Lslope(0) = S pe(0) ° 步骤 6: 即将发生阳极效应的判定。 高频针震处理、 斜率处理和累 计斜率处理后的数据再经过阳极效应判別处理是指对斜率, 累计斜率 与高频针震设置阈值, 如果阳极导杆等距压降累积斜率连续若干周期 持续下降、 阳极导杆等距压降本周期斜率大幅下降或阳极导杆等距压 降高频针振大幅增加, 则判定即将发生阳极效应。
二、 根据下迷方法确定需要进行补充下料来抑制阳极效应发生的 下料口。
方法如下:
步骤 1:首先根据电解槽原始设计确定该类型电解槽有多少下料口 以及这些下料口的具体位置。
下面以图 1为例进行说明。
步骤】: 图 1 中的 A] -A】4和 B1 -B14为阳极, 共分为 4个下料口, 分别为 A、 B、 C和 D下料口。
步骤 2: 根据各阳极与下料口的距离来确定各下料口负责的阳极,
- A - 并划分出集合。 即如果个别导杆具有阳极效应的特征, 那么需要哪个 下料口下料来抑制阳极效应。 考虑下料口与各阳极的位置关系, 对各 下料口负责的阳极进行了如下划分:
A={A 1 ,Λ2,Λ3,Λ^,Β 1 ,Β2,Β3,Β4 }
Β={Α4,Α5,Α6,Α7,Α8,Β4,Β5,Β6,Β7,Β8}
C={A7,A8,A9,A10,A11,B7,B8,B9,B10,B11}
D={A11,A12,A13,A14,B11,B12,B13,B14}0
步骤 3: 由于在各下料口周围应存在氧化铝浓度梯度递减, 因此根 据阳极与下料口的距离, 考虑氧化铝浓度在电解质中的分布情况, 对 各下料口负责的阳极进行权重的修正。
情况如下:
A={K1*A1,K2*A2,K2*A3, 1*A4,K1*B1, 2*B2, 2*B3,K1*B4} B={K1*A4,K2*A5,K3*A6, 2*A7, 1*A8, 1*B4,K2*B5,K3*B6,K2 *B7,K1*B8)
C={K1*A7,K2*A8,K3*A9, 2*A10,K1*A11,K1*B7, 2*B8,K3*B9, K2*BlO,Kl*Blij
D-{K1*A11, 2*A12, 2*A13,K1*A14,K1*B11,K2*B12,K2*B13, 1*B14}; 其中 Kl, K2, K3分别为权重, K1,K2,K3分别取 0.9,0.95,1。
步骤 4: 在步骤 3 中 Α1〜Α14, Β1〜Β14分别代表对应导杆是否具 有阳极效应发生前的特征。 如果有特征那么对应取值为 1, 否则取值为 0。对各 A, Β , C, D四个集合进行求和 ,即分別计算 s wn(A),sum(B),sum(C) 及 sum(D)。
步骤 5·,设下料口判別阈值为 P, 0<Ρ<=ίο 判断 sum(A)/Ml>P, sum(B)/M2>P, sum(C)/M2>P, sum(D)/Ml>P是否成立。 其中 Ml=8, M2=10, 即不同下料口负责的阳极数量, 不同结构电解槽同样可以按 该方法进行处理。 如果成立那么该下料口需要进行氧化铝下料, 下料 数量为能够抑制阳极效应发生的最小量。
步骤 6: 如果无法押制阳极效应的发生, 在阳极效应已经发生后根 据下面步骤来确定如何抬压局部母线来熄灭阳极效应。
如图 2 表示一种类型的电解槽局部母线划分情况。 即将电解槽原 有 两 侧 母 线 分 为 E 、 F 和 G 三 部 分 区 域 , 其 中 E={E1,E2,E3,E4,F1,F2,F3,F4} 为 第 一 部 分 区 域 。 F={E5,E6,E7,E8,E9,E10,F5,F6,F7,F8,F9,F10} 为 第 二 部 分 区 域 。 G={E11,E12,E13,E14,F1 1,F12,F13JF14)为第三部分区域。
这三部分分别由各自的阳极提升机构 (图中未示出) 控制进行控 制, 可以使这三部分单独进行提升和下降。 不同类型电解槽可以根据 可以根
Figure imgf000008_0001
步骤 1 :E1〜E14 , F卜 F14分别代表对应导杆是否具有阳极效应发生 前的特征。 如果有特征那么对 取^为】, 否则取值为 0。 对各 E, F, G三个集合进行求和, 即分别计算 sum(E),sum(F)及 sum(G)。
步骤 2: 设局部动极判別闳值为 Q, —般取 Q=0。 判断 sum(E) :>Q, sum(F) >Q及 sum(G) >Q是否成立。即在不同的局部母线划分中是否有 具有即将发生阳极效应特征的阳极。 如杲成立那么需要抬压对应的局 部母线。
步骤 3:等待槽控机发送的阳板效应发生标志, 如杲槽控机确认已 经发生了阳极效应, 那么抬压步骤 2 中确定的局部母线以熄灭已经发 生的阳极效应。
本发明还涉及一种用于实施前述的阳极效应抑制与熄灭方法的设 备。 所迷设备包括: 与电解槽阳极导杆相连的用于确定即将发生阳极 效应的阳极的电压信号采集处理控制系统、 根据所迷电压信号采集处 理控制系统发出的指令补克下料来抑剁阳极效^发生的与即将发生阳 极效应的阳极对应的打壳下料装置、 和如果发生阳极效应则根据发生 阳极效应的阳极位置只括压局部母线的阳极提升机构。
已在附图和说明书中阐释了本发明的实施例, 尽管采用了专门的 术语, 这些术语仅仅是用在广义的含意而不是用作限制的目的。 在不 背离本发明如所附权利要求书限定的精神和范围的情况下, 由于情况 需要或权宜之下可构想前述部分的改变以及等同替换。

Claims

权 利 要 求
1. 阳极效应抑制与熄灭的方法, 其特征在于包括下述步骤: 确定 即将发生阳极效应的阳极; 电解槽通过与即将发生阳极效应的阳极对 应的下料口进行下料; 如果发生阳极效应, 根据发生阳极效应的阳极 位置只抬压局部母线即可熄灭阳极效应。
2. 根据权利要求 1 所迷的阳极效应抑制与熄灭的方法, 其特征在 于所迷的确定即将发生阳极效应的阳极是指: 对不同下料口对应的阳 极进行划分, 根据阳衩与 T料口之间的距离, 下料口周围电解质梯度 的递减, 通过对不同下料口对应阳极进行加权, 当不同下料口对应的 阳极出现阳极效应特征的数量大于规定的比例后, 即可确定为抑制阳 极效应发生而需要进行氧化铝下料的下料口位置。
3. 根据权利要求 2所迷的阳极效应抑制与熄灭的方法, 其特征在 于所迷的阳极出现阳极效^特征取值为】,阳极不出现阳极效应特征取 值为 0 , 对各个下料口对应的阳极特征取值求和; 设下料口判别阈值为 P, 0<P<=1 , 判断各个下料口对应阳极特征取值的和除以各个下料口对 应的阳极数与 P之间的大小, 如果各个下料口对应阳极特征取值的和 除以各个下料口对应的阳极数大于 P,那么该下料口需要进行氧化铝下 料, 下料数量为能够抑制阳极效应发生的最小量。
4. 根据权利要求 1 所迷的阳极效应抑制与熄灭的方法, 其特征在 于所迷的根据发生阳极效应的 极位置只抬压局部母线即可熄灭阳极 效应包括: 将电解槽两側母线分为至少两部分区域, 每部分分别由各 自的阳极提升机构进行控制; 确定需要局部动极的区域, 如果阳极导 杆具有阳极效应发生前的特征取值为 1 , 阳极导杆不具有阳极效应发生 前的特征取值为 0, 对各个部分区域求和, 设局部动极判别阈值为 Q, 各个部分 域求和如果大于 Q, 则需要抬压对 的局部母线。
5. 一种用于实施如前述权利要求 1 - 4中任一项所迷的方法的阳极 效应抑制与熄灭设备, 其特征在于, 所述设备包括: 与电解槽阳极导 杆相连的用于确定即将发生阳极效应的阳极的电压信号采集处理控制 系统、 根据所述电压信号采集处理控制系统发出的指令补充下料来抑 和如果发生阳极效应则根据发生阳极效应的阳极位置只抬压局部母线 的阳极提升机构。
PCT/CN2012/000554 2011-04-29 2012-04-25 阳极效应抑制与熄灭的方法和设备 WO2012146060A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA2834498A CA2834498A1 (en) 2011-04-29 2012-04-25 Method and apparatus for suppressing and extinguishing anode effect
NO20131575A NO20131575A1 (no) 2011-04-29 2013-11-28 Fremgangsmåte og anordning for å undertrykke og fjerne anodeeffekt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110109898.2A CN102758224B (zh) 2011-04-29 2011-04-29 阳极效应抑制与熄灭的方法
CN201110109898.2 2011-04-29

Publications (1)

Publication Number Publication Date
WO2012146060A1 true WO2012146060A1 (zh) 2012-11-01

Family

ID=47052865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000554 WO2012146060A1 (zh) 2011-04-29 2012-04-25 阳极效应抑制与熄灭的方法和设备

Country Status (4)

Country Link
CN (1) CN102758224B (zh)
CA (1) CA2834498A1 (zh)
NO (1) NO20131575A1 (zh)
WO (1) WO2012146060A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105839145A (zh) * 2016-06-13 2016-08-10 中南大学 一种铝电解槽非均匀下料方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3539461A (en) * 1967-10-19 1970-11-10 Kaiser Aluminium Chem Corp Anode effect termination
SU526683A1 (ru) * 1974-04-22 1976-08-30 Институт Автоматики Способ автоматического гашени анодных эффектов на алюминиевых электролизерах
US4126525A (en) * 1977-06-22 1978-11-21 Mitsubishi Keikinzoku Kogyo Kabushiki Kaisha Method of controlling feed of alumina to an aluminum electrolytic cell
US4654130A (en) * 1986-05-15 1987-03-31 Reynolds Metals Company Method for improved alumina control in aluminum electrolytic cells employing point feeders
CN1040065A (zh) * 1988-08-04 1990-02-28 艾尔坎国际有限公司 生产铝时终止阳极效应的方法
US20070095672A1 (en) * 2005-11-02 2007-05-03 Shaidulin Eugeniy E Method of controlling aluminum reduction cell with prebaked anodes

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1170961C (zh) * 2001-04-20 2004-10-13 贵阳铝镁设计研究院 铝电解生产中自动熄灭阳极效应的方法
CN101748445B (zh) * 2008-12-08 2012-10-10 贵阳铝镁设计研究院有限公司 一种电解槽阳极效应的分区报警方法及报警器
CN201634783U (zh) * 2009-12-17 2010-11-17 沈阳铝镁设计研究院 铝电解槽区域控制系统
CN101967658B (zh) * 2010-11-18 2012-08-15 北方工业大学 铝电解槽阳极效应预测装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3539461A (en) * 1967-10-19 1970-11-10 Kaiser Aluminium Chem Corp Anode effect termination
SU526683A1 (ru) * 1974-04-22 1976-08-30 Институт Автоматики Способ автоматического гашени анодных эффектов на алюминиевых электролизерах
US4126525A (en) * 1977-06-22 1978-11-21 Mitsubishi Keikinzoku Kogyo Kabushiki Kaisha Method of controlling feed of alumina to an aluminum electrolytic cell
US4654130A (en) * 1986-05-15 1987-03-31 Reynolds Metals Company Method for improved alumina control in aluminum electrolytic cells employing point feeders
CN1040065A (zh) * 1988-08-04 1990-02-28 艾尔坎国际有限公司 生产铝时终止阳极效应的方法
US20070095672A1 (en) * 2005-11-02 2007-05-03 Shaidulin Eugeniy E Method of controlling aluminum reduction cell with prebaked anodes

Also Published As

Publication number Publication date
CN102758224B (zh) 2015-02-25
NO20131575A1 (no) 2013-11-28
CA2834498A1 (en) 2012-11-01
CN102758224A (zh) 2012-10-31

Similar Documents

Publication Publication Date Title
EA027729B1 (ru) Электролитическая ячейка для электровыделения металлов
WO2012146060A1 (zh) 阳极效应抑制与熄灭的方法和设备
CN102758219B (zh) 利用阳极导杆等距压降预测阳极效应的方法
CN103060842A (zh) 一种大流量下制备电积钴的方法
CN106835196A (zh) 生产阴极铜的混合电解系统
EP3420123A1 (en) Equipment for a metal electrowinning or liberator process and way of operating the process
AU2018247009B2 (en) Systems and methods of electrolytic production of aluminum
CN104233369B (zh) 铜电解精炼阳极板下沿等间距固定装置
JP4403463B2 (ja) 単・複極式電解装置
CN107090587B (zh) 一种控制电势电积脱除铜砷的方法
CN108914162B (zh) 一种氧化铝加料量控制方法及系统
EP3452640A1 (en) Equipment for decopperising an electrorefining process and way of operating the process
KR101884400B1 (ko) 전해조 하부에 슬러지 처리 장치가 구비된 비철금속 전해 제련 시스템
CN201354386Y (zh) 铝电解槽节能阴极结构
JP2012092447A (ja) コバルトの電解採取方法
JP2008308742A (ja) 電着応力が大きな金属の電解採取方法
CN103526226A (zh) 一种新电解槽
JP7067215B2 (ja) コバルト電解採取方法
CN202671701U (zh) 一种铝箔电解装置
CN207659153U (zh) 一种电解装置
JP2017214612A (ja) 銅の電解精製方法
JP3221091B2 (ja) 非鉄金属電解方法
RU2652607C1 (ru) Устройство для очистки алюминийсодержащих хлоридных растворов от железа
RU2259428C2 (ru) Ошиновка мощных алюминиевых электролизеров
CN101922019B (zh) 一种铝电解槽的阴极

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12776127

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2834498

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2013/12450

Country of ref document: TR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12776127

Country of ref document: EP

Kind code of ref document: A1