WO2012145923A1 - 多用户多输入多输出系统中选择多用户配对的方法和装置 - Google Patents

多用户多输入多输出系统中选择多用户配对的方法和装置 Download PDF

Info

Publication number
WO2012145923A1
WO2012145923A1 PCT/CN2011/073532 CN2011073532W WO2012145923A1 WO 2012145923 A1 WO2012145923 A1 WO 2012145923A1 CN 2011073532 W CN2011073532 W CN 2011073532W WO 2012145923 A1 WO2012145923 A1 WO 2012145923A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
users
sinr
base station
precoding matrix
Prior art date
Application number
PCT/CN2011/073532
Other languages
English (en)
French (fr)
Inventor
吴炳洋
姜宇
王轶
周华
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to CN2011800614065A priority Critical patent/CN103262454A/zh
Priority to PCT/CN2011/073532 priority patent/WO2012145923A1/zh
Publication of WO2012145923A1 publication Critical patent/WO2012145923A1/zh
Priority to US14/062,395 priority patent/US20140050277A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and apparatus for selecting multi-user pairing in a multi-user multi-input multiple output (MU-MIMO) system.
  • MU-MIMO multi-input multiple output
  • MIMO Multiple Input Multiple Output
  • Point-to-multipoint MU-MIMO systems can apply spatial division multiple access (SDMA) technology to transmit data to multiple users on the same time-frequency resource, thus greatly increasing system capacity and spectrum efficiency.
  • SDMA spatial division multiple access
  • MIMO technology has become a research hotspot for LTE and LTE advanced.
  • multi-user detection techniques cannot be used to avoid interference between users because of the incompatibility between users.
  • the pre-coding of the transmitted signal by the transmitting end by using the learned channel information can effectively suppress the co-channel interference between users, improve the transmission rate and reliability of the system, reduce the complexity of the receiver, and solve the power consumption problem of the mobile station.
  • ZF Zero-forcing (Channel Inverse)) (literature [7][8]), MMSE (Regularized Channel Inverse) (literature [8][9]), Block Diagonalization (BD). ) (Document [10] [11] ) and so on.
  • ZF adopts the pseudo-inverse of the channel matrix as the pre-coding matrix, which can completely eliminate the interference between users and the data streams in the user. The cost is that a large transmission power is needed to eliminate these interferences.
  • the base station transmits only one data stream to each user, the matrix between each user is degraded into a vector, and the precoding scheme is also called transmit beamforming (ZFBF).
  • the ZFBF scheme can obtain better performance, but when the number of users in the system is small or the SNR is low, its performance is poor.
  • MMSE precoding for the purpose of minimizing MSE between transmitted and received signals
  • the scheme preserves a certain degree of receiver interference when preprocessing at the transmitting end, and its rate performance is better than ZF precoding.
  • BD precoding improves the ZF precoding scheme for multiple users with multiple receiving antennas. This scheme only eliminates interference between users when preprocessing the transmitted signal, and the interference between data streams within the user is It is left to the receiver processing of each user.
  • the TDD system generally utilizes the reciprocity of the uplink and downlink channels to estimate the channel information of the downlink according to the uplink channel information estimated by the base station as the receiving end; for the FDD system, it is generally estimated by the user.
  • the downlink channel information is fed back to the base station through the channel. Due to the errors caused by system channel estimation, quantization and feedback delay, it is difficult for the transmitting end to obtain the ideal CSI. Therefore, the research on precoding technology based on limited feedback has more practical significance.
  • each user quantizes channel information based on a predetermined channel codebook and feeds back to the base station. Based on the information, the base station is based on certain criteria (such as ZF, MMSE). Design a precoding matrix.
  • the CVQ-based precoding scheme generally takes the channel information acquired by the base station as the actual channel, and based on this, applies a precoding scheme based on the ideal CSIT hypothesis. This method is low. The inaccurate CSI brought by rate feedback is very sensitive and therefore has poor performance.
  • the projection-based precoding technique uses a precoding codebook to limit the precoding matrix to a limited number of choices, including orthogonal random beamforming (ORBF) (literature [14]) and per-user orthogonal bit rate. Control (PU2RC, Per User Unitary Rate Control) (literature [15][16]), these programs are combined with user choices at design time.
  • ORBF orthogonal random beamforming
  • Control PU2RC, Per User Unitary Rate Control
  • the ORBF scheme uses a set of randomly generated standard orthogonal vectors as precoding codebooks. Based on the codebook, each user reports the label of the best beamforming vector to the base station and the corresponding SINR. After receiving the feedback information from all users, the base station selects the set of users with the largest system and rate for parallel data. transmission.
  • PU2RC promotes the ORBF scheme, which uses multiple sets of randomly generated standard orthogonal vector groups as precoding codebooks.
  • PU2RC has become a basic implementation of MU-MIMO in the 3GPP-LTE standard because it can achieve good performance at a lower feedback rate.
  • the precoding vector of PU2RC is limited to the predefined codebook, when the number of users is small. At the time, the probability of finding a user who selects mutually orthogonal codebooks is low, so that the selected user cannot match well with the defined codebook, thus limiting system performance.
  • Some methods for improving PU2RC have been proposed, mainly in two cases (Ref. [17]): one is to improve the codebook by effectively developing channel information, and the other is to adaptively calculate the codebook.
  • An object of the embodiments of the present invention is to provide a method and apparatus for selecting multi-user pairing in a multi-user multiple-input multiple-output MU-MIMO system, so as to improve the selection of multiple users when the number of users is small or when the SINR is low. Paired performance.
  • a method for selecting a multi-user pairing in a multi-user multiple-input multiple-output MU-MIM0 system includes:
  • the user equipment calculates a signal to interference plus noise ratio SINR of each precoding vector of the precoding matrix
  • the user equipment selects a precoding vector corresponding to the SINR that is greater than the first preset threshold according to the calculated SINR of each precoding vector;
  • the user equipment feeds back the sequence number PMI of the selected precoding vector and the quantized value of the corresponding SINR to the base station, or the user equipment compares the PMI of the selected precoding vector with the quantized value of the corresponding SINR and the SINR.
  • the number of conversions is fed back to the base station, or the user equipment feeds back the number of conversions corresponding to the SINR to the base station.
  • a method for selecting a multi-user pairing in a multi-user multiple-input multiple-output MU-MIMO system includes:
  • the base station receives the information fed back by the multiple users, and the information fed back by the multiple users includes: a sequence number PMI of each user's precoding vector and a quantized value of the SINR of the precoding vector, or a precoding vector of each user.
  • the base station selects, according to the information fed back by the plurality of users, the number of times that the number of transformations to the original precoding matrix is the same, and the predetermined number of users satisfying the user pairing condition as the selected user.
  • a user equipment is provided, where the user equipment includes:
  • a calculating unit configured to calculate a signal to interference plus noise ratio (SINR) of each precoding vector of the precoding matrix
  • a selecting unit configured to select, according to the calculated SINR of each precoding vector, a SINR corresponding to the first preset threshold Precoding vector
  • a feedback unit configured to feed back the quantized value of the selected precoding vector sequence number PMI and the corresponding SINR to the base station, or transform the PMI of the selected precoding vector and the corresponding SINR quantization value and the SINR corresponding to the transform The number of times is fed back to the base station, or the number of conversions corresponding to the SINR is fed back to the base station.
  • a base station configured to receive information fed back by multiple users, where the information fed by the multiple users includes each a sequence number PMI of the precoding vector of the user and a quantized value of the SINR of the precoding vector, or a sequence number PMI of the precoding vector of each user and a quantized value of the SINR of the precoding vector and a number of times of transform corresponding to the SINR Information, or information on the number of times of conversion of the precoding matrix of each user;
  • a selecting unit configured to select, according to the information of the plurality of user feedbacks received by the receiving unit, a predetermined number of users that have the same number of transformations to the original precoding matrix and satisfy the user pairing condition as the selected user.
  • a computer readable program wherein when the program is executed in a user equipment, the program causes the computer to perform the selection in the user equipment in the aforementioned MU-MIMO system User pairing method.
  • a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform a method of selecting multi-user pairing in the aforementioned MU-MIMO system in a user equipment .
  • a computer readable program wherein when the program is executed in a base station, the program causes a computer to perform multi-user pairing in performing the aforementioned MU-MIMO system in the base station Methods.
  • a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform a method of selecting multi-user pairing in the aforementioned MU-MIMO system in a base station.
  • the beneficial effects of the embodiment of the present invention are: the user equipment searches for the precoding vector corresponding to the SINR maximum in the precoding matrix, and the information corresponding to the selected precoding vector, for example, the symbol PMI of the precoding vector and the corresponding SINR, Or the symbol PMI of the precoding vector and the corresponding SINR and the corresponding number of transforms, or the number of transforms corresponding to the precoding vector, are fed back to the base station, so that the base station can select multi-user pairing according to the feedback information of the user equipment based on the SINR, and complete the MU.
  • - MIMO scheduling improving performance when the number of users is small or when the SINR is low.
  • FIG. 1 is a flowchart of a method for selecting multi-user pairing in a multi-user MIMO system according to Embodiment 1 of the present invention
  • FIG. 2 is a flowchart of a method for selecting multi-user pairing in a multi-user MIMO system according to Embodiment 2 of the present invention
  • FIG. 4 is a flow chart of selecting a plurality of users from a user based on an original precoding matrix in the embodiment of FIG. 3;
  • FIG. 5 is a flowchart of a selection method of another embodiment of FIG.
  • FIG. 6 is a schematic structural diagram of a user equipment according to Embodiment 3 of the present invention.
  • Fig. 7 is a block diagram showing the configuration of a base station according to a fourth embodiment of the present invention. detailed description
  • FIG. 1 is a flow chart showing a method of selecting multi-user pairing in a MU-MIMO system according to Embodiment 1 of the present invention. As shown in Figure 1, the method includes:
  • Step 101 The user equipment calculates a signal to interference plus noise ratio SINR of each precoding vector of the precoding matrix;
  • Step 103 The user equipment feeds back the sequence number PMI of the selected precoding vector and the quantized value of the corresponding SINR to the base station, or the user equipment selects the sequence number PMI of the precoding vector and the quantized value of the corresponding SINR and the SINR.
  • the corresponding number of transformations is fed back to the base station, or the user equipment feeds back the number of transformations corresponding to the SINR to the base station.
  • the user equipment Before step 101, the user equipment first performs channel estimation, and the specific channel estimation method can be implemented by means of the prior art, which is omitted here.
  • the precoding matrix may be an original precoding matrix or a transformed precoding matrix.
  • step 104 the user equipment feeds back the sequence number PMI of the selected precoding vector and the quantized value of the corresponding SINR to the base station, so that the base station passes Among the users who schedule feedback, users based on the original precoding matrix select multi-user pairing and perform resource allocation, which will be described in detail in the following base station side embodiment.
  • step 101 is to calculate the SINR of each precoding vector of the transformed precoding matrix
  • step 104 the user equipment may convert the PMI of the selected precoding vector and the quantized value of the corresponding SINR and the transform corresponding to the SINR. The number of times is fed back to the base station, and the user equipment can also feed back the number of times of the SINR corresponding to the base station, and the user equipment can also feed back the sequenced PMI of the selected precoding vector and the quantized value of the corresponding SINR to the base station.
  • the base station selects the multi-user pairing and performs resource allocation by scheduling the users with the same number of times of the feedback, which will be described in detail in the following embodiment of the base station side.
  • the base station When the user equipment only feeds back the number of times of the conversion, if the base station does not complete the resource allocation by the user based on the original precoding matrix, the base station sends an indication of the number of times of the change according to the pairing policy. After receiving the indication, the user equipment transforms the current precoding matrix according to the indicated number of times of the transformation, and performs step 101, when the precoding vector corresponding to the SINR greater than the first preset threshold is selected according to step 102. The user equipment only feeds back the sequence number PMI of the selected precoding vector and the quantized value of the corresponding SINR to the base station, and does not feed back the number of times of conversion.
  • step 102 may include the following steps: Step 1021: The user equipment determines whether there is an SINR greater than the first preset threshold in the calculated SINR of each precoding vector, if yes, step 1022 is performed, otherwise step 1023 is performed;
  • Step 1022 The user equipment selects a precoding vector corresponding to the SINR corresponding to the first preset threshold according to a predetermined policy, and performs step 103;
  • Step 1023 The user equipment transforms the precoding matrix by using a preset transform matrix, and proceeds to step 101.
  • the user equipment may first determine whether the number of times of transformation of the precoding matrix has reached the maximum number of transformations. If the maximum number of transformations is reached, the user equipment does not feed back information to the base station to avoid unnecessary overhead; After the maximum number of transforms is reached, the user equipment may transform the precoding matrix by using a preset transform matrix.
  • the maximum number of transformations can be flexibly set according to the complexity and performance requirements of the specific implementation.
  • the precoding matrix is transformed by using a preset transform matrix, which may be a left multiply transform or a right multiply transform, so that the transformed precoding matrix can be obtained, and step 101 is continued.
  • a preset transform matrix which may be a left multiply transform or a right multiply transform
  • the transform matrix of this embodiment needs to satisfy: the feature direction of the precoding can be changed, and the orthogonality of the transformed precoding matrix is guaranteed.
  • the transformation matrix is a unitary matrix or an orthogonal matrix, such as a rotation matrix, a random matrix, or the like.
  • the rotation matrix set the angle of one rotation to ⁇ then the angle of two rotations is 2 ⁇ , and so on.
  • the random ⁇ matrix transform actually obtains a new random precoding matrix.
  • a main diagonal value is relatively large and approximately equal, while other relatively small ⁇ matrix is used as the transformation matrix, which is equivalent to the precoding matrix. Disturbed.
  • the original precoding matrix and the transform matrix are both a matrix, and the precoding matrix is transformed by using a preset transform matrix.
  • the new precoding matrix Q can be obtained by multiplying the original precoding matrix P by the transform matrix W.
  • the transformation matrix W satisfies several powers of the matrix without repeating results, that is, W" ⁇ W m , « ⁇ w.
  • the transformation matrix may also be equal to the precoding matrix.
  • the precoding matrix P of the MU-MIMO is a matrix containing L precoding vectors, where LM t , M t is the number of base station transmit antennas. Then according to the method of the embodiment:
  • initial precoding matrices for the MU-MIMO system, such as ⁇ ...? ⁇
  • initial precoding matrices there can be a one-to-one transformation matrix It is also possible to have the same transformation matrix, ie WfWf
  • the interference to other users may also be calculated at the same time.
  • the current precoding matrix (the original precoding matrix or the transformed precoding matrix) has a total of L vectors, and one of the vectors V (or several vectors) is occupied by itself, and all other vectors are allocated.
  • the specific calculation method can be implemented by means of the prior art, and the description is omitted here. The above assumptions are for illustrative purposes only, and other conditions may be assumed in actual implementation, and the embodiment is not limited thereto.
  • the user equipment searches for a precoding vector corresponding to the maximum SINR in the precoding matrix, and feeds back the PMI of the vector and the SINR to the base station, so that the base station determines the precoding transformation according to the feedback information.
  • Multi-user pairing is selected to complete the scheduling of MU-MIMO. This method of selecting multi-user pairing improves the probability and performance of pairing in the case of a small number of users.
  • the embodiment of the present invention further provides a method for selecting multi-user pairing in a multi-user MIMO system, as described in Embodiment 2 below.
  • the user pairing condition means that the codewords of the selected user feedback belong to the same code group and are located in different vectors;
  • the SINR condition means that the feedback SINR is greater than the first preset threshold.
  • the method includes:
  • Step 201 The base station receives information fed back by multiple users.
  • the user based on the original precoding matrix feeds back a message to the base station.
  • the feedback information received by the base station includes the sequence number PMI of the precoding vector of each user and the information of the quantized value of the SINR of the precoding vector.
  • the user of the transform-based precoding matrix feeds back information to the base station.
  • the information received by the base station may include the sequence number PMI of each user's precoding vector and the The information of the quantized value of the SINR of the precoding vector and the number of times of the transform corresponding to the SINR may include only information of the number of times of conversion of the precoding matrix of each user.
  • Step 202 The base station selects, according to the information fed back by the multiple users, a predetermined number of users that have the same number of transformations to the original precoding matrix and satisfy the user pairing condition as the selected user.
  • the base station selects a predetermined number of users from the feedback users, which may be completed by the method shown in FIG. 3 or by the method shown in FIG. 5. The following will be explained separately.
  • the information of the plurality of user feedbacks received by the base station includes the sequence number PMI of the precoding vector of each user and the quantized value of the SINR of the precoding vector, or includes a precoding vector of each user.
  • the base station does not need to perform a second interaction with the user equipment to complete the selection of multi-user pairing. Referring to Figure 3, the method includes:
  • Step 301 The base station determines, in the feedback user, whether the number of users based on the original precoding matrix is greater than or equal to a predetermined number, if yes, step 302 is performed, otherwise step 304 is performed;
  • Step 302 The base station determines whether the number of users satisfying the user pairing condition is greater than or equal to the predetermined number among the users based on the original precoding matrix, and if yes, executing step 303, otherwise performing step 304;
  • Step 303 A predetermined number of users satisfying the user pairing condition are selected among the users based on the original precoding matrix as the selected users.
  • steps 301 and 302 if the result of the determination is no, it indicates that the base station cannot select a predetermined number of users from the users based on the original precoding matrix.
  • the base station can select a predetermined number of users required from the users based on the original precoding matrix. Therefore, the base station only needs to schedule the user based on the original precoding matrix to complete the resource allocation, thereby completing the scheduling of the MU-MIMO.
  • the base station may select, from the user based on the original precoding matrix, that the user matches A predetermined number of users for the condition are selected users.
  • Step 304 The base station determines whether the number of users having the same number of times of change is greater than or equal to a predetermined number. If yes, step 305 is performed, otherwise step 307 is performed;
  • Step 305 The base station determines whether the number of users satisfying the user pairing condition is greater than or equal to the predetermined number among the users having the same number of times of conversion. If yes, step 306 is performed, otherwise step 307 is performed: Step 306: The base station has the Among the users of the same number of conversions, a predetermined number of users who satisfy the user pairing condition are selected as the selected users.
  • step 304 and step 305 if the result of the determination is no, it indicates that the base station cannot select a predetermined number of users required from among users having the same number of conversions.
  • step 304 and step 305 if the result of the determination is YES, the base station can select a predetermined number of users required from among users having the same number of transitions. Therefore, the base station only needs to schedule users with the same number of transforms to complete resource allocation, thereby completing MU-MIMO scheduling.
  • the base station may select, from the users having the same number of transitions, a predetermined number of users satisfying the user pairing condition as the selected user.
  • Step 307 The base station determines a number of transformations
  • Step 308 The base station selects a user that satisfies the SINR condition and the user pairing condition from the user having the number of times of the transformation and the user based on the original precoding matrix, and selects when the number of selected users is greater than or equal to the predetermined number. Among the out-of-users, a predetermined number of users are selected as the selected users.
  • the base station selects a user who satisfies the SINR condition and the user pairing condition from among the users having the number of times of the conversion, since the user having the number of times of the conversion has satisfied the SINR condition, the user who satisfies the condition of the user can be directly selected from the user.
  • the base station selects a user that satisfies the SINR condition and the user pairing condition from the users based on the original precoding matrix, and can be completed by the method shown in FIG.
  • the method includes:
  • the base station performs the following operations for each user based on the original precoding matrix to determine whether to select the user. Specifically include: Step 401: The base station performs the transformation of the number of transformations on the original precoding matrix of the user by using a preset transformation matrix.
  • Step 402 The base station calculates an SINR of each precoding vector of the transformed precoding matrix.
  • Step 403 The base station determines whether there is an SINR greater than the second preset threshold among all the calculated SINRs. If yes, step 404 is performed:
  • Step 404 The base station determines whether the user satisfies the user pairing condition, and if yes, performs step 405;
  • Step 405 The base station selects the user as the selected user.
  • step 403 and step 404 if the result of the determination is no, the base station does not use the user as the selected user.
  • the base station can select a desired user from among the users based on the original precoding matrix.
  • step 403 and step 404 If the result of the determination in step 403 and step 404 is no, the base station cannot use the user as the selected user.
  • the second preset threshold may be the same as the first preset threshold, or may be the offset value of the first preset threshold.
  • the base station selects a user who satisfies the SINR condition and the user pairing condition from among the users having the determined number of transforms and the users based on the original precoding matrix. If the number of selected users is greater than or equal to the predetermined number required by the base station, the base station can select a desired predetermined number of users as the final selected user according to a predetermined policy. If the number of selected users is smaller than the predetermined number required by the base station, the base station cannot select a predetermined number of users. At this time, the base station may re-determine the number of times of the conversion according to the number of times of the user corresponding to the feedback, and re-execute according to steps 307-308.
  • the base station can allocate the maximum number of users in the previous allocation process, and each The user's codeword belongs to the same code group, and the user selection result at different vector positions is taken as the best result, and the corresponding precoding matrix is used as the codebook group, and the same vector with the codeword fed back by the user is allocated to the user. .
  • the base station may determine a number of times of transformation. Then select from the users with the number of transformations and the users based on the original precoding matrix The user who satisfies the SINR condition and the user pairing condition selects a predetermined number of users from the selected users as the selected user when the number of selected users is greater than or equal to the predetermined number.
  • the base station can perform multi-user selection and pairing according to the multi-user feedback information without secondary interaction with the user, thereby performing resource allocation, and improving the pairing when the number of users is small. Probability and performance.
  • the information of multiple user feedbacks received by the base station includes the sequence number PMI of the precoding vector of each user and the quantized value of the SINR of the precoding vector, or only the precoding of each user is included.
  • the number of transformations of the matrix when the base station schedules the user based on the original precoding matrix from the fed back user, and does not select the appropriate multi-user pairing, the base station needs to perform secondary interaction with the user equipment to complete multi-user pairing. s Choice.
  • steps 501-503 are the same as steps 301-303, and are omitted here.
  • the method also includes:
  • Step 504 The base station determines, according to the number of times of the feedback provided by the user, a number of times of transformation.
  • Step 505 The base station sends an indication of the determined number of times of transforms to a user that is lower than the number of times of the transformation.
  • Step 506 The base station is lower than the number of times. The information fed back by the user of the number of times of conversion selects a user who satisfies the user pairing condition among the users having the determined number of times of conversion.
  • the user below the number of transformations will use the preset transformation matrix to perform the corresponding precoding matrix according to the previous transformation number.
  • the conversion of the number of times (the specific conversion method is the same as that of the foregoing embodiment 1), and the corresponding information is fed back to the base station according to the method of the first embodiment.
  • the user only needs to feed back the PMI of the precoding vector and the corresponding quantized value of the SINR. can.
  • the base station selects a user who satisfies the user pairing condition from the user below the number of times of the transition according to the information fed back again.
  • the base station sends the number of transformations 3 to the user whose previous feedback has less than 3 conversions.
  • the user who has not undergone the precoding matrix transformation performs three transformations on the original precoding matrix, calculates the SINR value of each precoding vector of the transformed precoding matrix, and selects a prea with the SINR greater than the first preset threshold.
  • the coding vector feeds back the PMI of the precoding vector and the quantized value of the SINR to the base station, so that the base station performs selection of multi-user pairing.
  • the user who has undergone a precoding matrix transformation performs two transformations on the previously transformed precoding matrix, and then calculates the SINR value of each precoding vector of the transformed precoding matrix, and selects the SINR to be greater than the first.
  • Precoding the precoding vector of the threshold and feeding back the PMI of the precoding vector and the quantized value of the SINR to the base station, so that the base station performs selection of multi-user pairing.
  • the user of the two precoding matrix transforms, after performing the transformation on the previously transformed precoding matrix, calculates the SINR value of each precoding vector of the transformed precoding matrix, and selects that the SINR is greater than the first preset threshold.
  • the precoding vector feeds back the PMI of the precoding vector and the quantized value of the SINR to the base station, so that the base station performs selection of multi-user pairing.
  • the base station may also send only the number of transformations to a user with a fixed number of transformations, for example, only the user based on the original coding matrix among the users of the feedback.
  • the base station selects a user who satisfies the SINR condition and the user pairing condition from the user having the determined number of transitions (including the user at the time of the first feedback and the user at the second feedback). If the number of selected users is greater than or equal to the predetermined number required by the base station, the base station can select a desired predetermined number of users as the final selected user according to a predetermined policy. If the number of selected users is less than the predetermined number required by the base station, the base station cannot select a predetermined number of users. At this time, the base station can re-determine the number of times of the conversion and re-select, and the specific selection method is the same as the method of steps 504-506. , and so on.
  • the base station can allocate the number of users allocated in the previous allocation process.
  • the most, and the codewords of each user belong to the same code group, and the user selection results at different vector positions are taken as the best result, and the corresponding precoding matrix is used as the codebook group, which is the same as the codeword fed back by the user.
  • the vector is assigned to the user.
  • the base station determines the number of times of the transformation, and notifies the determined number of times of the transformation to the user below the number of times of the transformation. Then, according to the information fed back by the users again, the user who satisfies the user pairing condition is selected. If the number of selected users is greater than or equal to the predetermined number, a predetermined number of users are selected as the selected users from the selected users.
  • the method of transforming the precoding matrix by the base station is the same as the method of transforming the precoding matrix by the user equipment in the first embodiment, and the description thereof is omitted here.
  • the base station determines the precoding transformation according to the feedback information. If the resource allocation is completed by scheduling the user based on the original precoding matrix in the information fed back by the multiple users, the precoding matrix is not transformed.
  • the base station is based on the multiuser reverse The transformation value with the same number of transformations in the feed information, or the transformation value with the least number of transformations in the multi-user feedback information, or the transformation of the precoding matrix according to other strategies, or the selection of multi-user pairing, or notifying the user
  • the current precoding matrix performs the transformation of the change value
  • the information is fed back again, and the selection of the multi-user pairing is performed according to the information fed back by the user.
  • the base station performs pairing and resource allocation for the user from all feedback users. It is assumed that the base station supports the maximum of the data transmission. In the feedback user, it can find that the code words fed by the L users belong to the same code group and are located in different vectors, that is, the user pairing condition is satisfied, and the base station is considered to have completed the MU-MIOM. Resource allocation. That is, for the paired user, the feedback precoding matrix / vector V, satisfies ... corpse or
  • the base station can transform the precoding matrix, and then select after the transform.
  • the number of transformations can be made according to the instructions of the user. For example, after the transformed user, the number of conversions indicated by the user is
  • the base station can perform the transform of the precoding matrix 3 times according to the transform value with the largest number of transforms, for example, 3; the base station can also perform the transform value according to the least number of transforms, for example, 2,
  • the coding matrix performs 2 transformations; to pair and allocate resources to users among users with the same number of transformations.
  • the base station may also perform an indication on the current precoding matrix by the user whose number of transformations is less than 3 times, and feedback the corresponding information after the number of transformations reaches 3 times. Based on the feedback information, the base station performs pairing and resource allocation for the user among the users having three transformations.
  • pairing and resource allocation among users with the same number of times of conversion can satisfy the orthogonality between codebooks.
  • the number of users allocated in the previous allocation process is The most, and the codewords of each user belong to the same code group, and the user selection results at different vector positions are taken as the best result, and the corresponding precoding matrix is used as the codebook group, which is the same as the codeword fed back by the user.
  • Vector is assigned to the user
  • the base station can notify the user after performing the selection of the multi-user pairing and the resource allocation.
  • the base station determines the precoding transformation according to the feedback information, and is in the multi-user reverse In the information fed, by scheduling users with the same number of transformations to complete user pairing and resource allocation, the complexity is reduced and system performance is guaranteed.
  • An embodiment of the present invention further provides a user equipment, as described in Embodiment 3 below.
  • a user equipment refer to the implementation of the method in Embodiment 1, and the description of the method is not repeated here.
  • FIG. 6 is a block diagram showing the structure of a user equipment according to Embodiment 3 of the present invention.
  • the user equipment includes: a calculating unit 61, configured to calculate a signal to interference plus noise ratio SINR of each precoding vector of the precoding matrix; and a selecting unit 62, configured to calculate, according to each precoding vector SINR, selecting a precoding vector corresponding to the SINR that is greater than the first preset threshold;
  • the feedback unit 63 is configured to feed back the sequence number PMI of the precoding vector of the precoding vector selected by the selecting unit 62 and the quantized value of the corresponding SINR to the base station, or the PMI of the precoding vector selected by the selecting unit.
  • the quantized value of the corresponding SINR and the number of transforms corresponding to the SINR are fed back to the base station, or the number of transforms corresponding to the SINR is fed back to the base station.
  • selection unit 62 includes:
  • the transforming module 621 is configured to: when the SINR calculated by the calculating unit 61 is not greater than the SINR of the first preset threshold, transform the precoding matrix by using a preset transform matrix, so that the calculating unit The SINR of each precoding vector of the transformed precoding matrix is calculated.
  • the transform module 621 can include:
  • the determining sub-module 6211 is configured to determine whether the number of times of transforming the precoding matrix reaches a maximum number of transforms; the transform sub-module 6212 is configured to: in the determining sub-module 6211, the number of times of transforming the pre-coding matrix is not When the maximum number of transforms is reached, the precoding matrix is transformed using a preset transform matrix.
  • the user equipment further includes:
  • the receiving unit 64 is configured to: when the feedback unit 62 feeds back the number of times of transforming the precoding matrix to the base station, receive an indication of the number of times of transmission sent by the base station;
  • a transforming unit 65 configured to perform, according to the indication received by the receiving unit 64, a current precoding matrix to obtain the number of times of the indication, so that the calculating unit calculates each of the transformed precoding matrices The SINR of the precoding vector, and the pre-programming that the feedback unit 63 further selects the selection unit 62
  • the PMI of the code vector and the quantized value of the corresponding SINR are fed back to the base station.
  • the user equipment in this embodiment searches for a precoding vector corresponding to the maximum SINR in the precoding matrix, and feeds back the PMI of the vector and the SINR to the base station, or feeds back the number of times of the transformation, or only feedbacks the number of times of transformation, so that the base station determines according to the feedback information.
  • precoding transformation multi-user pairing is selected to complete the scheduling of MU-MIMO, and the performance when the number of users is small or the SNR is low is improved.
  • An embodiment of the present invention further provides a base station, as described in Embodiment 4 below.
  • a base station refer to the implementation of the method in Embodiment 2, and the description of the method is not repeated here.
  • Fig. 7 is a block diagram showing the configuration of a base station according to a fourth embodiment of the present invention.
  • the base station includes: a receiving unit 71, configured to receive information fed back by multiple users, where the information fed back by the multiple users includes a sequence number PMI of a precoding vector of each user and an SINR of the precoding vector. a quantized value, or a sequence number PMI of a precoding vector of each user, a quantized value of a SINR of the precoding vector, and information of a number of transforms corresponding to the SINR, or information of a number of times of transform of a precoding matrix of each user;
  • the selecting unit 72 is configured to select, according to the information of the plurality of user feedbacks received by the receiving unit, the number of times of conversion of the original precoding matrix is the same, and a predetermined number of users satisfying the user pairing condition are selected as the selected users.
  • selection unit 72 includes:
  • a first selection module 721 configured to: when the plurality of users, the number of users based on the original precoding matrix is greater than or equal to the predetermined number, and the number of users satisfying the user pairing condition among the users based on the original coding matrix is greater than or equal to At the predetermined number, a predetermined number of users satisfying the user pairing condition are selected from the users based on the original precoding matrix as the selected users.
  • the selection unit 72 includes:
  • a second selection module 722 configured to: when the number of users based on the original precoding matrix is less than the predetermined number, the number of users having the same number of transformations is greater than or equal to the predetermined number, and has the same transformation
  • a predetermined number of users satisfying the user pairing condition are selected as the selected users from the users having the same number of times of conversion.
  • the selection unit 72 includes: a third selection module 723, configured to determine, when the number of users based on the original precoding matrix is less than the predetermined number, and the number of users having the same number of transformations is less than the predetermined number, Transforming the number of times, and selecting a user who satisfies the SINR condition and the user pairing condition from among the users of the first number of transformations and from the user based on the original precoding matrix, if the number of selected users is greater than or equal to the predetermined number And selecting a predetermined number of users from the selected users as the selected users.
  • a third selection module 723 configured to determine, when the number of users based on the original precoding matrix is less than the predetermined number, and the number of users having the same number of transformations is less than the predetermined number, Transforming the number of times, and selecting a user who satisfies the SINR condition and the user pairing condition from among the users of the first number of transformations and from the user based on the original precoding matrix, if the number of
  • the third selection module 723 can include:
  • the transform sub-module 7231 is configured to perform, by using a preset transform matrix, the first pre-transformation of the original pre-coding of the user by using a preset transform matrix for each user of the feedback based on the original pre-coding matrix;
  • a calculation submodule 7232 configured to calculate an SINR of each precoding vector of the precoding matrix transformed by the transform submodule 7231;
  • the first selection sub-module 7233 is configured to: in the SINR calculated by the calculating sub-module 7232, the SINR is greater than the second preset threshold, and the user corresponding to the SINR that is greater than the second preset threshold meets the user pairing condition.
  • the user is selected as the user who satisfies the SINR condition and the user pairing condition.
  • the selection unit 72 includes:
  • a fourth selection module 724 configured to determine, when the number of users based on the original precoding matrix is less than the predetermined number, among the plurality of users, and from a user that is lower than the number of times of the transformation, The user who satisfies the SINR condition and the user pairing condition is selected, and if the number of selected users is greater than or equal to the predetermined number, a predetermined number of users are selected from the selected users as the selected users.
  • the fourth selection module 724 can include:
  • a sending submodule 7241 configured to send the second number of transforms to the user who is feedback, and the number of times of transforming the precoding matrix is lower than the number of times of the second transforming;
  • the receiving sub-module 7242 is configured to receive, by the user, feedback information that the number of times of transforming the precoding matrix is lower than that of the second number of transforms;
  • the second selection sub-module 7243 is configured to select a user that satisfies the user pairing condition according to the information of the feedback again.
  • the base station in this embodiment searches for a precoding vector corresponding to the maximum SINR in the precoding matrix according to the user equipment, and the PMI and the SINR of the vector that are fed back determine the precoding transformation, thereby selecting multi-user pairing and completing the MU-MIMO. Scheduling, improving performance when there are fewer users or lower SNR.
  • the embodiment of the invention further provides a computer readable program, wherein the program is executed in a user equipment
  • the program causes the computer to perform the method of selecting multi-user pairing in the multi-user MIMO system described in Embodiment 1 in the user equipment.
  • Embodiments of the present invention also provide a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform a method of selecting multi-user pairing in the multi-user MIMO system described in Embodiment 1 in a user equipment.
  • the embodiment of the present invention further provides a computer readable program, wherein when the program is executed in a base station, the program causes the computer to perform multi-user pairing in the MU-MIMO system described in Embodiment 2 in the base station. method.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform a method of selecting multi-user pairing in the MU-MIMO system described in Embodiment 2 in a base station.
  • the above apparatus and method of the present invention may be implemented by hardware, or may be implemented by hardware in combination with software.
  • the present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods described above Or steps.
  • Logic components such as field programmable logic components, microprocessors, processors used in computers, and the like.
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

多用户多输入多输出系统中选择多用户配对的方法和装置 技术领域
本发明涉及通信领域, 尤其涉及一种多用户多输入多输出 MU-MIMO ( Multi User-Multiple Input Multiple Output) 系统中选择多用户配对的方法和装置。 背景技术
在未来移动通信系统中, 如何利用有限的无线频谱资源实现高速、可靠的数据传 输是需要解决的关键问题之一。 多输入多输出 (MIMO)技术可以在不增加系统带宽 的前提下显著提高系统的传输速率和链路可靠性,已经成为下一代移动通信系统的关 键技术之一。 点到多点的 MU-MIMO 系统能够应用空分多址 (SDMA) 技术在同一 时频资源上向多个用户传输数据, 因此极大提高了系统容量和频谱效率。 MIMO技术 已经成为 LTE以及 LTE advanced 的研究热点。在 MU-MIMO系统下行链路中, 由于 各个用户之间不能协同, 多用户检测技术不能用来避免用户间的干扰。发送端利用获 知的信道信息对发射信号进行预编码可以有效抑制用户间的共信道干扰,提高系统传 输速率和可靠性, 降低接收机的复杂度, 解决移动台的功耗问题。
当发送端已知完全信道状态信息 (CSIT) 时, 采用脏纸编码 (DPC, Dirty Paper Coding) (文献 [1] ) 可以达到 MIMO BC的系统容量 (文献 [2])。 然而 DPC实现非常 复杂,因此一些次优的线性以及非线性预编码方案已经被提出。常见的基于理想 CSIT 的非线性预编码方案包括 Tomlinson-Harashima预编码 (THP) (文献 [3][4])、 矢量扰 动 (VP, Vector Perturbation) 预编码 (文献 [5][6] ) 等。 非线性预编码复杂度高, 难 以实现, 因此线性预编码技术得到了广泛的研究。 一些基于理想 CSIT的线性预编码 方案有 ZF (Zero-forcing (Channel Inverse)) (文献 [7][8])、 MMSE (Regularized Channel Inverse) (文献 [8][9])、 Block Diagonalization(BD) (文献 [10][11] ) 等。 其中 ZF采用 信道矩阵的伪逆作为预编码矩阵, 可完全消除用户之间和用户内各数据流之间的干 扰,代价是需要较大的发射功率来消除这些干扰。当基站向每个用户只发送一路数据 流时, 各个用户间矩阵退化为向量, 此时预编码方案也称为发送波束成型 (ZFBF)。 当系统中用户数较多时, ZFBF方案可获得较好的性能, 然而当系统中用户数较少或 SNR较低时其性能较差。 MMSE预编码以最小化发射和接收信号之间的 MSE为目的 来设计预编码矩阵, 该方案在发射端进行预处理时保留了一定程度的接收端干扰,其 速率性能优于 ZF预编码。 BD预编码针对多用户配有多根接收天线对 ZF预编码方案 进行了改进, 该方案在对发送信号进行预处理时仅仅消除了用户之间的干扰, 而用户 内数据流之间的干扰则留给各个用户的接收机处理。
在实际的无线通信系统中, CSIT—般通过以下两种方式获取 (文献 [12] ): 对于
TDD系统, 一般利用上下行链路信道的互易性 (reciprocity) 根据基站作为接收端所 估计出的上行链路信道信息来推测下行链路的信道信息; 对于 FDD系统, 一般由用 户将估计出的下行链路信道信息通过信道反馈给基站。 由于系统信道估计、量化和反 馈延时带来的误差, 发送端很难获得理想的 CSI, 因此对基于有限反馈的预编码技术 的研究具有更重要的实际意义。
近年来, 一些基于有限反馈的多用户 MIMO系统下行链路的预编码方案已经提 出, 主要有两类 (文献 [13] ): 基于信道矢量量化 (CVQ) 的预编码技术和基于投影 的预编码技术。
在基于信道矢量量化(CVQ)的预编码方案中, 各个用户基于预先给定的信道码 本对其信道信息量化后反馈给基站, 根据这些信息, 基站基于某种准则 (如 ZF, MMSE) 来设计预编码矩阵。 在 CSIT非理想的情况下, 基于 CVQ的预编码方案一 般把基站所获取的信道信息当作实际的信道, 在此基础上应用基于理想 CSIT假设所 设计出的预编码方案,这种方法对于低速率反馈带来的不精确的 CSI很敏感, 因此性 能较差。
基于投影的预编码技术采用预编码码本, 将预编码矩阵限制在有限数目的选择 内, 包括正交随机波束成型(ORBF, orthogonal random beamforming) (文献 [14] )和 每用户正交码率控制 (PU2RC, Per User Unitary Rate Control ) (文献 [15][16] ), 这些 方案在设计时结合了用户选择。其中, ORBF方案采用一组随机产生的标准正交向量 作为预编码码本。基于该码本,每个用户向基站报告其最佳波束成型向量的标号以及 相应的 SINR, 在接收到来自所有用户的反馈信息后, 基站选择出使系统和速率最大 的用户集合来进行并行数据传输。 为了进一步提高系统性能, PU2RC对 ORBF方案 进行了推广, 它采用多组随机产生的标准正交向量组作为预编码码本。 PU2RC 因其 在较低反馈速率下能够取得良好的性能已经成为 3GPP-LTE标准中 MU-MIMO的基 本实现方案。 然而, PU2RC 的预编码向量被限制在预定义的码本中, 当用户数较少 时, 找到选择相互正交的码本的用户的概率较低,使得选择的用户不能与已定义的码 本很好的匹配, 因而使系统性能受到限制。 一些改进 PU2RC 的方法已经提出, 主要 有两种 (文献 [17] ) : —种是通过有效地开发信道信息来改善码本, 一种是自适应地 计算码本。
下面列出了对于理解本发明和常规技术有益的文献, 通过引用将它们并入本文 中, 如同在本文中完全阐明了一样。
参考文献:
[1] M. Costa, "Writing on dirty paper," IEEE Trans. Inform. Theory, vol.29, no.3, pp.439_441, May 1983.
[2] H. Weingarten, Y. Steinberg and S. Shamai. "The capacity region of the Guassian
MIMO broadcast channel," in Proc.IEEE Int. Symp. Inform. Theory (ISIT), Chicago, IL, Jun./Jul. 2004,p. 174.
[3] H. Harashima and H. Miyakawa, "Matched-transmission technique for channels with intersymbol interference," IEEE Trans. Commun., pp. 774-780, Aug. 1972.
[4] M. Tomlinson, "New automatic equalizer employing modulo arithmetic," IEEE.
Let , pp.l38-139, Mar. 1971.
[5] B. M. Hochward, C. B. Peel, and A. L. Swindlehurst, "A vector perturbation technique for near capacity multiantennas multiuser communication-part II: perturbation," IEEE Trans. Comm., vol.52, pp. 537-544, March 2005.
[6] C. Windpassingger, R. F. H. Fischer, and J. B. Huber, "Lattice-reduction-aided broadcast precoding 'IEEE Trans. Commun., vol. 52,no. 12, pp. 2057-2060, Dec.2004.
[7] G. Caire and S. Shamai, "On the achievable throughout of a multi-antenna Guassian broadcast channel," IEEE Trans. Info. Theory., vol. 44, pp. 1691-1706, July 2003.
[8] B. M. Hochward, C. B. Peel, and A. L. Swindlehurst, "A vector perturbation technique for near capacity multiantennas multiuser communication-part I : Channel inverse and regularization," IEEE Trans. Comm., vol.52, pp. 195-202, March 2005.
[9] M. Joham, W. Utschick, and J. A. Nossek. "Linear transmit processing in MIMO communication systems," IEEE Trans. Signal process., vol. 53, no.8, pp. 2700-2712, Aug.2005.
[10] H. spencer, A. L. Swindlehurst, and M. Haardt, "Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels," IEEE Trans. Signal Processing, vol. 52, no. 2, Feb. 2004, pp.461-471.
[11] L. U. Choi and R. D. Murch, "A transmit preprocessing techinique for multiuser
MIMO systems using a decomposition approach ," IEEE Trans. Wireless Commun., vol. 3, no. I, Jan. 2004, pp.20-24.
[12] M. Vu and A. PAulraj, "MIMO wireless linear precoding," IEEE Signal Process. Mag., vol. 24, no. 5,pp. 86-105,Sept. 2007.
[13] D. J. Love, R. W. Heath, V. Lau, D. Gesbert, B.D. Rao and M. Andrews, "An
Overview of limited feedback in wireless communication systems," IEEE J. Sel. Areas Commun, vol.26, no. 8, pp.1341-1365, Oct. 2008.
[14] M. Sharif, and B. Hassibi, "On the Capacity of MIMO broadcast Channels with Partial Side Information," IEEE Trans. Inf. Theory, vol.51, no. 2,pp. 506-522, Feb.2005.
[15] Samsung Electronics, Downlink MIMO for EUTRA, Feb. 2006. 3GPP TSG
RAN WG1 44/R1 -060335.
[16] K. Huang, J. G. Andrew, and R. W. Heath, "Performance of orthogonal beamforming for SDMA with limited feedback," IEEE Trans. Veh.Technol., vol.58, no. 1, pp. 152-164, Jan.2009.
[17] H. Lee, I. Sohn and K. B. Lee, "Low-Feedback-Rate and Low-Complexity
Downlink Multiuser MIMO Systems," IEEE. Veh. Technol.,vol. 59.no. 7, pp3640-3645, Sept, 2010.
应该注意, 上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、 完整的说明, 并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发 明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。 发明内容
本发明实施例的目的在于提供一种多用户多输入多输出 MU-MIMO系统中选择 多用户配对的方法和装置, 以改善基站在用户数较少时或 SINR较低时, 选择多用户 配对的性能。
根据本发明实施例的一个方面,提供了一种多用户多输入多输出 MU-MIM0系统 中选择多用户配对的方法, 其中, 所述方法包括:
计算步骤, 用户设备计算预编码矩阵的各预编码向量的信号与干扰加噪声比 SINR;
选择步骤, 用户设备根据计算出的各预编码向量的 SINR, 选择大于第一预设门 限的 SINR对应的预编码向量;
反馈步骤,用户设备将选择出的预编码向量的序号 PMI和对应的 SINR的量化值 反馈给基站,或者用户设备将选择出的预编码向量的 PMI和对应的 SINR的量化值以 及所述 SINR对应的变换次数反馈给基站, 或者用户设备将所述 SINR对应的变换次 数反馈给基站。
根据本发明实施例的另外一个方面, 提供了一种多用户多输入多输出 MU-MIMO 系统中选择多用户配对的方法, 其中, 所述方法包括:
接收步骤, 基站接收多个用户反馈的信息, 所述多个用户反馈的信息包括: 各个 用户的预编码向量的序号 PMI以及所述预编码向量的 SINR的量化值,或者各个用户 的预编码向量的序号 PMI以及所述预编码向量的 SINR的量化值以及所述 SINR对应 的变换次数的信息, 或者各个用户的预编码矩阵的变换次数的信息;
选择步骤, 基站根据所述多个用户反馈的信息, 选择对原始预编码矩阵的变换次 数相同, 且满足用户配对条件的预定数目的用户作为选定用户。
根据本发明实施例的另外一个方面, 提供了一种用户设备, 其中, 所述用户设备 包括:
计算单元, 用于计算预编码矩阵的各预编码向量的信号与干扰加噪声比 SINR; 选择单元, 用于根据计算出的各预编码向量的 SINR, 选择大于第一预设门限的 SINR对应的预编码向量;
反馈单元,用于将选择出的预编码向量的序号 PMI和对应的 SINR的量化值反馈 给基站, 或者将选择出的预编码向量的 PMI和对应的 SINR的量化值以及所述 SINR 对应的变换次数反馈给基站, 或者将所述 SINR对应的变换次数反馈给基站。
根据本发明实施例的另外一个方面, 提供了一种基站, 其中, 所述基站包括: 接收单元, 用于接收多个用户反馈的信息, 所述多个用户反馈的信息包括各个用 户的预编码向量的序号 PMI以及所述预编码向量的 SINR的量化值,或者各个用户的 预编码向量的序号 PMI以及所述预编码向量的 SINR的量化值以及所述 SINR对应的 变换次数的信息, 或者各个用户的预编码矩阵的变换次数的信息;
选择单元, 用于根据所述接收单元接收到的多个用户反馈的信息, 选择对原始预 编码矩阵的变换次数相同, 且满足用户配对条件的预定数目的用户作为选定用户。
根据本发明实施例的另外一个方面,提供了一种计算机可读程序,其中当在用户 设备中执行该程序时, 该程序使得计算机在所述用户设备中执行前述的 MU-MIMO 系统中选择多用户配对的方法。
根据本发明实施例的另外一个方面,提供了一种存储有计算机可读程序的存储介 质, 其中该计算机可读程序使得计算机在用户设备中执行前述的 MU-MIMO系统中 选择多用户配对的方法。
根据本发明实施例的另外一个方面,提供了一种计算机可读程序,其中当在基站 中执行该程序时, 该程序使得计算机在所述基站中执行前述的 MU-MIMO系统中选 择多用户配对的方法。
根据本发明实施例的另外一个方面,提供了一种存储有计算机可读程序的存储介 质, 其中该计算机可读程序使得计算机在基站中执行前述的 MU-MIMO系统中选择 多用户配对的方法。
本发明实施例的有益效果在于: 用户设备通过搜索预编码矩阵中 SINR最大对应 的预编码向量, 并将选择出的预编码向量对应的信息,例如该预编码向量的符号 PMI 和对应的 SINR, 或者该预编码向量的符号 PMI和对应的 SINR和对应的变换次数, 或者该预编码向量对应的变换次数, 反馈给基站, 使得基站可以根据用户设备基于 SINR 的反馈信息选择多用户配对, 完成 MU-MIMO 的调度, 改善用户数较少时或 SINR较低时的性能。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原 理可以被采用的方式。应该理解, 本发明的实施方式在范围上并不因而受到限制。在 所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和 /或示出的特征可以以相同或类似的方式在一个或更多 个其它实施方式中使用, 与其它实施方式中的特征相组合, 或替代其它实施方式中的 特征。 应该强调, 术语 "包括 /包含"在本文使用时指特征、 整件、 步骤或组件的存在, 但并不排除一个或更多个其它特征、 整件、 步骤或组件的存在或附加。 附图说明
参照以下的附图可以更好地理解本发明的很多方面。附图中的部件不是成比例绘 制的, 而只是为了示出本发明的原理。 为了便于示出和描述本发明的一些部分, 附图 中对应部分可能被放大或缩小。在本发明的一个附图或一种实施方式中描述的元素和 特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在 附图中,类似的标号表示几个附图中对应的部件, 并可用于指示多于一种实施方式中 使用的对应部件。 在附图中:
图 1是本发明实施例 1的多用户 MIMO系统中选择多用户配对的方法的流程图; 图 2是本发明实施例 2的多用户 MIMO系统中选择多用户配对的方法的流程图; 图 3是图 2中一个实施例的选择方法的流程图;
图 4是图 3的实施例中从基于原始预编码矩阵的用户中选择多用户的流程图; 图 5是图 2中另外一个实施例的选择方法的流程图;
图 6是本发明实施例 3的用户设备构成示意图;
图 7是本发明实施例 4的基站构成示意图。 具体实施方式
参照附图, 通过下面的说明书, 本发明实施例的前述以及其它特征将变得明显。 这些实施方式只是示例性的, 不是对本发明的限制。为了使本领域的技术人员能够容 易地理解本发明的原理和实施方式,本发明的实施方式以多波带的载波聚合系统中的 时间提前计时器的维护方法为例进行说明,但可以理解,本发明实施例并不限于上述 系统, 对于涉及多波带的其他系统均适用。
实施例 1
图 1是本发明实施例 1的 MU-MIMO系统中选择多用户配对的方法的流程图。 如图 1所示, 该方法包括:
步骤 101 : 用户设备计算预编码矩阵的各预编码向量的信号与干扰加噪声比 SINR; 步骤 102:用户设备根据计算出的各预编码向量的 SINR,选择大于第一预设门限 的 SINR对应的预编码向量;
步骤 103: 用户设备将选择出的预编码向量的序号 PMI和对应的 SINR的量化值 反馈给基站,或者用户设备将选择出的预编码向量的序号 PMI和对应的 SINR的量化 值以及所述 SINR对应的变换次数反馈给基站, 或者用户设备将所述 SINR对应的变 换次数反馈给基站。
在步骤 101之前, 用户设备先进行信道估计, 具体信道估计的方法可以通过现有 技术的手段实现, 在此省略。
在步骤 101中, 预编码矩阵可以是原始预编码矩阵, 也可以是经过变换的预编码 矩阵。
如果步骤 101 中是计算原始预编码矩阵的各预编码向量的 SINR, 则在步骤 104 中,用户设备将选择出的预编码向量的序号 PMI和对应的 SINR的量化值反馈给基站, 以便基站通过调度反馈的用户中基于原始预编码矩阵的用户,来选择多用户配对并进 行资源分配, 这将在以下基站侧的实施例中进行详细说明。
如果步骤 101是计算变换后的预编码矩阵的各预编码向量的 SINR,则在步骤 104 中,用户设备可以将选择出的预编码向量的 PMI和对应的 SINR的量化值以及该 SINR 对应的变换次数反馈给基站, 用户设备也可以将所述 SINR对应的变换次数反馈给基 站,用户设备还可以将选择出的预编码向量的序号 PMI和对应的 SINR的量化值反馈 给基站。
当用户设备反馈 PMI和 SINR以及变换次数时,基站通过调度反馈的用户中具有 相同变换次数的用户,来选择多用户配对并进行资源分配,这将在以下基站侧的实施 例中进行详细说明。
当用户设备仅反馈变换次数时, 如果基站通过调度反馈的用户中基于原始预编码 矩阵的用户,没有完成资源分配,则基站根据自己的配对策略会下发变换次数的指示。 用户设备在接收到该指示后,根据指示的变换次数,对其当前的预编码矩阵进行变换, 并执行步骤 101, 当根据步骤 102选择出大于第一预设门限的 SINR对应的预编码向 量时,用户设备仅将选择出的预编码向量的序号 PMI和对应的 SINR的量化值反馈给 基站, 而不再反馈变换次数。
在本实施例中, 步骤 102可以包括以下步骤: 步骤 1021 : 用户设备判断计算出的各预编码向量的 SINR中是否有大于所述第一 预设门限的 SINR, 如果有, 则执行步骤 1022, 否则执行步骤 1023;
步骤 1022: 用户设备按照预定策略, 选择一个大于所述第一预设门限的 SINR对 应的预编码向量, 并执行步骤 103;
步骤 1023: 用户设备利用预设的变换矩阵对所述预编码矩阵进行变换, 并继续执 行步骤 101。
在步骤 1023 中, 用户设备可以先判断该预编码矩阵的变换次数是否达到了最大 变换次数, 如果达到了最大变换次数, 则该用户设备不向基站反馈信息, 以避免不必 要的开销; 如果没有达到最大变换次数, 则该用户设备可以利用预设的变换矩阵对所 述预编码矩阵进行变换。
其中, 最大变换次数可以根据具体实现的复杂度及性能要求灵活设定。
其中, 利用预设的变换矩阵对所述预编码矩阵进行变换, 可以是左乘变换, 也可 以是右乘变换, 由此可以获得变换后的预编码矩阵, 并继续执行步骤 101。
其中, 本实施例的变换矩阵需满足: 能够改变预编码的特征方向, 且保证变换后 的预编码矩阵的正交性。 优选的, 变换矩阵为酉矩阵或正交阵, 例如旋转矩阵、 随机 酉阵等。 对于旋转矩阵, 设一次旋转的角度为^ 那么两次旋转的角度就是 2^, 依 次类推。而随机酉阵变换实际得到一个新的随机预编码阵,例如采用一个主对角线值 相对较大且近似相等, 而其它值相对较小的酉阵作为转换矩阵, 则相当于对预编码阵 进行了扰动。
以下以原始预编码矩阵和变换矩阵都是酉阵为例, 对利用预设的变换矩阵对所述 预编码矩阵进行变换进行说明。
在本实施例中, 假设原始预编码矩阵为!5, 变换矩阵为 W, 变换后的新的预编码 矩阵为 Q, 则本实施例可以通过对原始预编码矩阵 P乘以变换矩阵 W得到新的预编 码矩阵 Q。优选的, 变换矩阵可以通过对原始预编码矩阵进行左乘变换, 获得新的预 编码矩阵 Q=WP, 该变换矩阵也可以通过对原始预编码矩阵进行右乘变换, 获得新 的预编码矩阵。 其中, 变换矩阵 W满足该矩阵的若干次幂不会出现重复的结果, 即 W"≠Wm ,«≠w。 在本实施例中, 变换矩阵也可以等于预编码矩阵。
以下以一个具体示例对实施例 1的方法进行说明。 在本示例中, MU-MIMO的预 编码矩阵 P为一个包含 L个预编码向量的矩阵,其中, L Mt, Mt为基站发射天线数。 则根据本实施例的方法:
每个用户设备在这个预编码矩阵 P里搜索最佳的向量使 SINR达到最大,对 SINR 最大的值, 如果 SINR达到门限则上报对应向量的 PMI和该 SINR结果, 否则对预编 码矩阵 P进行变换, 得到新的预编码矩阵 (^=WP。 用户设备再按照相同的方法, 对 预编码矩阵 Q1进行搜索,对 SINR最大的值,如果 SINR达到门限则上报对应向量的 PMI和该 SINR结果, 否则继续对预编码矩阵 Q1进行变换 QZ WQ 以此类推, 直 到找到满足要求的 SINR。
优选的, 用于 MU-MIMO系统的初始预编码矩阵有多个, 如 ^…?^对于 M 个初始预编码矩阵, 可以有一一对应的变换矩阵
Figure imgf000012_0001
也可以各个变换矩阵 相同, 即 WfWf
优选的, 用户设备计算预编码矩阵的各预编码向量的 SINR时, 也可以同时计算 对其他用户的干扰。在一个实施例中, 假定当前的预编码矩阵(原始预编码矩阵或变 换后的预编码矩阵)共有 L个向量, 自己占用其中的一个向量 V, (或几个向量), 其 他的向量全部分配给别的用户, 具体计算的方法可以通过现有技术的手段实现,在此 省略说明。 以上假定条件只是举例说明, 在实际实施时, 也可以假定其他条件, 本实 施例并不以此作为限制。
在实施例 1的方法中,用户设备搜索预编码矩阵里 SINR最大对应的预编码向量, 并向基站反馈该向量的 PMI和该 SINR, 以便基站根据该反馈信息决定预编码变换的 情况, 以此选择多用户配对, 完成 MU-MIMO的调度。 这种选择多用户配对的方法, 在用户数较小的情况下, 提高了配对的概率和性能。
本发明实施例还提供了一种多用户 MIMO系统中选择多用户配对的方法,如下面 的实施例 2所述。
实施例 2
图 2是本发明实施例 2的多用户 MIMO系统中选择多用户配对的方法的流程图。 在以下的说明中,用户配对条件是指选择出的用户反馈的码字属于同一个码组, 且位 于不同的向量; SINR条件是指反馈的 SINR大于第一预设门限。
请参照图 2, 该方法包括:
步骤 201 : 基站接收多个用户反馈的信息;
在一个实施例中, 根据前述实施例 1, 基于原始预编码矩阵的用户向基站反馈信 息, 此时, 基站收到的该反馈信息包括各个用户的预编码向量的序号 PMI 以及所述 预编码向量的 SINR的量化值的信息。
在另外一个实施例中, 根据前述实施例 1, 基于变换的预编码矩阵的用户向基站 反馈信息, 此时, 基站收到的该信息, 可以包括各个用户的预编码向量的序号 PMI 以及所述预编码向量的 SINR的量化值以及所述 SINR对应的变换次数的信息, 也可 以仅包括各个用户的预编码矩阵的变换次数的信息。
步骤 202: 基站根据所述多个用户反馈的信息, 选择对原始预编码矩阵的变换次 数相同, 且满足用户配对条件的预定数目的用户作为选定用户。
在本实施例中, 基站从反馈的用户中选择预定数目的用户, 可以通过图 3所示的 方法来完成, 也可以通过图 5所示的方法来完成。 以下将分别说明。
在图 3所示的选择方法中, 基站接收到的多个用户反馈的信息包括各个用户的预 编码向量的序号 PMI以及所述预编码向量的 SINR的量化值,或者包括各个用户的预 编码向量的序号 PMI以及所述预编码向量的 SINR的量化值以及所述 SINR对应的变 换次数。在图 3所示的实施例中,基站不需要与用户设备进行二次交互即可完成多用 户配对的选择。 请参照图 3, 该方法包括:
步骤 301 : 基站判断在所述反馈的用户中, 基于原始预编码矩阵的用户的数目是 否大于等于预定数目, 如果是, 则执行步骤 302, 否则执行步骤 304;
步骤 302: 基站判断基于原始预编码矩阵的用户中, 满足用户配对条件的用户的 数目是否大于等于所述预定数目, 如果是, 则执行步骤 303, 否则执行步骤 304; 步骤 303: 基站从所述基于原始预编码矩阵的用户中选择满足用户配对条件的预 定数目的用户作为选定用户。
在步骤 301和步骤 302中, 如果判断的结果为否, 则说明基站不能从基于原始预 编码矩阵的用户中选择出所需要的预定数目的用户。
在步骤 301和步骤 302中, 如果判断的结果为是, 则基站可以从基于原始预编码 矩阵的用户中选择所需要的预定数目的用户。 由此,基站只需要调度基于原始预编码 矩阵的用户即可完成资源的分配, 进而完成 MU-MIMO的调度。
通过步骤 301-303, 当反馈的用户中, 基于原始预编码矩阵的用户的数目大于等 于所述预定数目,且基于原始编码矩阵的用户中满足用户配对条件的用户的数目大于 等于所述预定数目时,基站可以从所述基于原始预编码矩阵的用户中选择满足用户配 对条件的预定数目的用户作为选定用户。
步骤 304: 基站判断具有相同变换次数的用户的数目是否大于等于预定数目, 如 果是, 则执行步骤 305, 否则执行步骤 307;
步骤 305: 基站判断具有相同变换次数的用户中, 满足用户配对条件的用户的数 量是否大于等于所述预定数目, 如果是, 则执行步骤 306, 否则执行步骤 307: 步骤 306: 基站从所述具有相同变换次数的用户中, 选择满足用户配对条件的预 定数目的用户作为选定用户。
在步骤 304和步骤 305中, 如果判断的结果为否, 则说明基站不能从具有相同变 换次数的用户中选择出所需要的预定数目的用户。
在步骤 304和步骤 305中, 如果判断的结果为是, 则基站可以从具有相同变换次 数的用户中选择所需要的预定数目的用户。 由此,基站只需要调度具有相同变换次数 的用户即可完成资源的分配, 进而完成 MU-MIMO的调度。
通过步骤 304-306, 当所述反馈的用户中, 基于原始预编码矩阵的用户的数目小 于所述预定数目, 具有相同变换次数的用户的数目大于等于所述预定数目, 且具有相 同变换次数的用户中满足用户配对条件的用户的数量大于等于所述预定数目时,基站 可以从所述具有相同变换次数的用户中选择满足用户配对条件的预定数目的用户作 为选定用户。
步骤 307: 基站确定一个变换次数;
步骤 308: 基站从具有所述变换次数的用户中以及基于原始预编码矩阵的用户中 选择满足 SINR条件以及用户配对条件的用户, 在选择出的用户的数目大于等于所述 预定数目时, 从选择出的用户中选择预定数目的用户作为选定用户。
其中, 基站从具有该变换次数的用户中选择满足 SINR条件以及用户配对条件的 用户时, 由于具有该变换次数的用户已经满足了 SINR条件, 故可以直接从中选择满 足用户配条件的用户。
其中, 基站从基于原始预编码矩阵的用户中选择满足 SINR条件以及用户配对条 件的用户, 可以通过图 4所示的方法来完成。
请参照图 4, 该方法包括:
基站针对每一个基于原始预编码矩阵的用户, 进行如下操作, 以确定是否选择该 用户。 具体包括: 步骤 401 : 基站利用预设的变换矩阵对该用户的原始预编码矩阵进行所述变换次 数的变换;
步骤 402: 基站计算变换后的预编码矩阵的各预编码向量的 SINR;
步骤 403: 基站判断计算出的所有 SINR中是否有大于第二预设门限的 SINR, 如 果有, 则执行步骤 404:
步骤 404: 基站判断所述用户是否满足用户配对条件, 如果是, 则执行步骤 405; 步骤 405: 基站将该用户作为选择的用户。
在步骤 403和步骤 404中, 如果判断的结果为否, 则基站不将该用户作为选择的 用户。
根据图 4所示的方法, 基站可以从基于原始预编码矩阵的用户中选择出所需的用 户。
其中, 如果步骤 403和步骤 404的判断结果为否, 则基站不能将该用户作为选定 用户。
其中, 第二预设门限可以与前述的第一预设门限相同, 也可以是前述第一预设门 限经过偏移后的值。
根据步骤 307-308以及图 4的方法, 基站从具有确定的变换次数的用户中以及基 于原始预编码矩阵的用户中, 选择出了满足 SINR条件以及用户配对条件的用户。 如 果选择出的用户数目大于等于基站所需的预定数目,则基站可以根据预定策略从中选 择出所需预定数目的用户作为最终的选定用户。如果选择出的用户数目小于基站所需 的预定数目, 则基站无法选择到预定数目的用户, 此时, 基站可以根据反馈的用户对 应的变换次数, 重新确定变换次数, 根据步骤 307-308重新进行选择, 以此类推。 如 果反馈的用户对应的变换次数已经全部用完, 也即,基站已经遍历对应的所有变换次 数, 都没有选到合适的用户, 则基站可以把之前分配过程中, 分配的用户数最多, 且 各个用户的码字属于同一个码组, 且位于不同向量位置的用户选择结果作为最佳结 果, 并将相应的预编码矩阵作为码本组,将其中与用户反馈的码字相同的向量分配给 用户。
通过步骤 307-308, 当反馈的用户中, 基于原始预编码矩阵的用户的数目小于所 述预定数目, 具有相同变换次数的用户的数目也小于所述预定数目时,基站可以确定 一个变换次数,然后从具有该变换次数的用户中以及基于原始预编码矩阵的用户中选 择满足 SINR条件以及用户配对条件的用户, 在选择出的用户的数目大于等于所述预 定数目时, 从选择出的用户中选择预定数目的用户作为选定用户。
通过图 3的方法, 基站根据多用户的反馈信息, 无需与用户的二次交互, 即可完 成多用户的选择配对, 据此进行资源分配, 在用户数较小的情况下, 提高了配对的概 率和性能。
在图 5所示的选择方法中, 基站接收到的多个用户反馈的信息包括各个用户的预 编码向量的序号 PMI以及所述预编码向量的 SINR的量化值,或者仅包括各个用户的 预编码矩阵的变换次数。在图 5所示的实施例中, 当基站从反馈的用户中, 调度基于 原始预编码矩阵的用户, 没有选到合适的多用户配对时,基站需要与用户设备的二次 交互完成多用户配对的选择。 请参照图 5, 其中步骤 501-503与步骤 301-303相同, 在此省略。 该方法还包括:
步骤 504: 基站根据反馈的用户提供的变换次数, 确定一个变换次数; 步骤 505: 基站向低于所述变换次数的用户发送所述确定的变换次数的指示; 步骤 506: 基站根据所述低于所述变换次数的用户再次反馈的信息, 选择具有所 述确定的变换次数的用户中, 满足用户配对条件的用户。
根据步骤 504-506, 在反馈的用户中, 低于所述变换次数的用户接收到基站发送 的变换次数后,会根据自己之前的变换次数,利用预设的变换矩阵对当前预编码矩阵 进行相应次数的变换 (具体的变换方法与前述实施例 1相同), 再按照实施例 1的方 法向基站反馈相应的信息,此时,用户只需要反馈预编码向量的 PMI以及对应的 SINR 的量化值即可。 以便基站根据该再次反馈的信息, 从该低于所述变换次数的用户中选 择满足用户配对条件的用户。
例如, 假设基站将变换次数 3下发给之前反馈的变换次数低于 3的用户。 其中, 之前没有经过预编码矩阵变换的用户,对其原始预编码矩阵进行三次变换后,计算变 换后的预编码矩阵的各个预编码向量的 SINR值, 并选择 SINR大于第一预设门限的 预编码向量,将该预编码向量的 PMI以及该 SINR的量化值反馈给基站, 以便基站进 行多用户配对的选择。其中, 之前经过一次预编码矩阵变换的用户, 对其之前变换后 的预编码矩阵再进行两次变换后, 计算变换后的预编码矩阵的各个预编码向量的 SINR值, 并选择 SINR大于第一预设门限的预编码向量, 将该预编码向量的 PMI以 及该 SINR的量化值反馈给基站, 以便基站进行多用户配对的选择。 其中, 之前经过 两次预编码矩阵变换的用户,对其之前变换后的预编码矩阵再进行一次变换后,计算 变换后的预编码矩阵的各个预编码向量的 SINR值, 并选择 SINR大于第一预设门限 的预编码向量,将该预编码向量的 PMI以及该 SINR的量化值反馈给基站, 以便基站 进行多用户配对的选择。
以上只是举例说明, 在具体实施时, 该基站也可以只将变换次数发送给具有固定 变换次数的用户, 例如只发送给所述反馈的用户中基于原始编码矩阵的用户。
根据步骤 504-506, 基站从具有确定的变换次数的用户 (包含第一次反馈时的用 户以及第二次反馈时的用户)中,选择出了满足 SINR条件以及用户配对条件的用户。 如果选择出的用户数目大于等于基站所需的预定数目,则基站可以根据预定策略从中 选择出所需预定数目的用户作为最终的选定用户。如果选择出的用户数目小于基站所 需的预定数目, 则基站无法选择到预定数目的用户, 此时, 基站可以重新确定变换次 数, 重新进行选择, 具体选择的方法与步骤 504-506的方法相同, 以此类推。 如果反 馈的用户对应的变换次数已经全部用完, 也即,基站已经遍历第一次反馈时的所有变 换次数,都没有选到合适的用户,则基站可以把之前分配过程中,分配的用户数最多, 且各个用户的码字属于同一个码组,且位于不同向量位置的用户选择结果作为最佳结 果, 并将相应的预编码矩阵作为码本组,将其中与用户反馈的码字相同的向量分配给 用户。
通过步骤 504-506, 当反馈的用户中, 基于原始预编码矩阵的用户的数目小于所 述预定数目时,基站确定变换次数, 并将该确定的变换次数告知低于所述变换次数的 用户, 再根据这些用户再次反馈的信息, 选择满足用户配对条件的用户, 如果选择出 的用户的数目大于等于所述预定数目,则从选择出的用户中选择预定数目的用户作为 选定用户。
在实施例 2中, 基站对预编码矩阵进行变换的方法与实施例 1中用户设备对预编 码矩阵进行变换的方法相同, 在此省略说明。
以下以一个具体示例对实施例 2的方法进行说明。 在本示例中, 基站根据反馈信 息决定预编码变换的情况, 如果在多用户反馈的信息中,通过调度基于原始预编码矩 阵的用户即可完成资源的分配, 则不对预编码矩阵进行变换, 也不再与用户进行信息 交互, 采用当前的预编码矩阵分配资源并通知用户, 完成 MU-MIMO 的调度; 如果 通过调度基于原始预编码矩阵的用户不能完成资源的全部分配,则基站根据多用户反 馈信息中相同变换次数最多的变换值,或者根据多用户反馈信息中变换次数最少的变 换值, 或者根据其他策略, 对预编码矩阵进行变换后再进行多用户配对的选择, 或者 通知用户对其当前预编码矩阵进行所述变化值的变换后, 再次反馈信息, 并根据用户 再次反馈的信息进行多用户配对的选择。
优选的, 基站从所有反馈的用户中, 对用户进行配对和资源分配。 假设基站最多 支持 £路数据传输, 在反馈的用户中能够找到 L个用户反馈的码字属于同一个码组, 且位于 个不同的向量, 即满足用户配对条件, 则认为基站完成了 MU-MIOM的资 源分配。 即对于配对的用户, 所反馈的预编码矩阵 /向量 V, 满足 … 尸或
优选的, 如果基站通过调度基于原始预编码矩阵的用户不能完成资源的分配, 且 基站通过调度具有相同变换次数的用户也不能完成资源的分配,则基站可以对预编码 矩阵进行变换, 变换后选择满足 SINR条件以及用户配对条件的用户。 其中, 变换的 次数可根据用户的指示进行。 例如, 经过变换的用户, 用户指示的变换次数分别为
3,2,3,3,4, 那么基站可以根据相同变换次数最多的变换值, 例如 3, 对预编码矩阵进 行 3次变换; 基站也可以根据变换次数最少的变换值, 例如 2, 对预编码矩阵进行 2 次变换; 以便在具有相同变换次数的用户中对用户进行配对和资源分配。
优选的, 基站也可以通过指示, 使变换次数低于 3次的用户对当期预编码矩阵进 行变换, 使变换次数达到 3次后反馈相应的信息。 基站根据该反馈的信息, 在具有 3 次变换的用户中对用户进行配对和资源分配。
其中, 在具有同样变换次数的用户中对用户进行配对和资源分配, 可以满足码本 间的正交性。
其中, 如果基站对预编码矩阵的变换次数达到最大变换次数, 依然不能选出 个 用户反馈的码字属于同一个码组, 且位于 个不同的向量, 则把前面分配过程中, 分 配的用户数最多, 且各个用户的码字属于同一个码组, 且位于不同向量位置的用户选 择结果作为最佳结果, 并将相应的预编码矩阵作为码本组,将其中与用户反馈的码字 相同的向量分配给用户
根据本实施例的方法, 基站在进行了多用户配对的选择和资源分配后, 可以通知 用户。
在实施例 2的方法中, 基站根据反馈信息决定预编码变换的情况, 并在多用户反 馈的信息中,通过调度具有相同变换次数的用户以完成用户配对和资源分配, 降低了 复杂度, 保证了系统性能。
本发明实施例还提供了一种用户设备, 如下面的实施例 3所述。 由于该用户设备 解决问题的原理与上述实施例 1的方法相似,因此该用户设备的实施可以参见实施例 1的方法的实施, 重复之处不再赘述。
实施例 3
图 6是本发明实施例 3的用户设备构成示意图。 如图 6所示, 该用户设备包括: 计算单元 61,用于计算预编码矩阵的各预编码向量的信号与干扰加噪声比 SINR; 选择单元 62, 用于根据计算出的各预编码向量的 SINR, 选择大于第一预设门限 的 SINR对应的预编码向量;
反馈单元 63, 用于将所述选择单元 62选择出的预编码向量的预编码向量的序号 PMI和对应的 SINR的量化值反馈给基站, 或者将所述选择单元选择出的预编码向量 的 PMI和对应的 SINR的量化值以及所述 SINR对应的变换次数反馈给基站,或者将 所述 SINR对应的变换次数反馈给基站。
在一个实施例中, 选择单元 62包括:
变换模块 621,用于在所述计算单元 61计算出的 SINR中没有大于所述第一预设 门限的 SINR时, 利用预设的变换矩阵对所述预编码矩阵进行变换, 以便所述计算单 元计算变换后的预编码矩阵的各预编码向量的 SINR。
其中, 该变换模块 621可以包括:
判断子模块 6211, 用于判断所述预编码矩阵的变换次数是否达到最大变换次数; 变换子模块 6212, 用于在所述判断子模块 6211的判断结果为, 所述预编码矩阵 的变换次数没有达到最大变换次数时,利用预设的变换矩阵对所述预编码矩阵进行变 换。
在另外一个实施例中, 该用户设备还包括:
接收单元 64, 用于在反馈单元 62将对预编码矩阵的变换次数反馈给基站时, 接 收基站发送的变换次数的指示;
变换单元 65, 用于根据所述接收单元 64接收到的所述指示, 对当前预编码矩阵 进行变换, 以达到所述指示的变换次数, 以便所述计算单元计算变换后的预编码矩阵 的各预编码向量的 SINR, 以及所述反馈单元 63将选择单元 62进一步选择出的预编 码向量的 PMI和对应的 SINR的量化值反馈给所述基站。
本实施例的用户设备搜索预编码矩阵里 SINR最大对应的预编码向量, 并向基站 反馈该向量的 PMI和该 SINR, 或者同时反馈变换次数, 或者仅反馈变换次数, 以便 基站根据该反馈信息决定预编码变换的情况, 以此选择多用户配对, 完成 MU-MIMO 的调度, 改善用户数较少或 SNR较低时的性能。
本发明实施例还提供了一种基站, 如下面的实施例 4所述。 由于该基站解决问题 的原理与上述实施例 2的方法相似,因此该基站的实施可以参见实施例 2的方法的实 施, 重复之处不再赘述。
实施例 4
图 7是本发明实施例 4的基站构成示意图。 如图 7所示, 该基站包括: 接收单元 71, 用于接收多个用户反馈的信息, 所述多个用户反馈的信息包括各 个用户的预编码向量的序号 PMI以及所述预编码向量的 SINR的量化值,或者各个用 户的预编码向量的序号 PMI以及所述预编码向量的 SINR的量化值以及所述 SINR对 应的变换次数的信息, 或者各个用户的预编码矩阵的变换次数的信息;
选择单元 72, 用于根据所述接收单元接收到的多个用户反馈的信息, 选择对原 始预编码矩阵的变换次数相同, 且满足用户配对条件的预定数目的用户作为选定用 户。
在一个实施例中, 选择单元 72包括:
第一选择模块 721, 用于当所述多个用户中, 基于原始预编码矩阵的用户的数目 大于等于所述预定数目,且基于原始编码矩阵的用户中满足用户配对条件的用户的数 目大于等于所述预定数目时,从所述基于原始预编码矩阵的用户中选择满足用户配对 条件的预定数目的用户作为选定用户。
在另外一个实施例中, 选择单元 72包括:
第二选择模块 722, 用于当所述多个用户中, 基于原始预编码矩阵的用户的数目 小于所述预定数目, 具有相同变换次数的用户的数目大于等于所述预定数目, 且具有 相同变换次数的用户中满足用户配对条件的用户的数量大于等于所述预定数目时,从 所述具有相同变换次数的用户中选择满足用户配对条件的预定数目的用户作为选定 用户。
在另外一个实施例中, 选择单元 72包括: 第三选择模块 723, 用于当所述多个用户中, 基于原始预编码矩阵的用户的数目 小于所述预定数目, 具有相同变换次数的用户的数目也小于所述预定数目时,确定第 一变换次数,并从所述第一变换次数的用户中,以及从基于原始预编码矩阵的用户中, 选择满足 SINR条件以及用户配对条件的用户, 如果选择出的用户的数目大于等于所 述预定数目, 则从选择出的用户中选择预定数目的用户作为选定用户。
其中, 该第三选择模块 723可以包括:
变换子模块 7231, 用于针对反馈的用户中每一个基于原始预编码矩阵的用户, 利用预设的变换矩阵对所述用户的原始预编码进行所述第一变换次数的变换;
计算子模块 7232, 用于计算所述变换子模块 7231变换后的预编码矩阵的各预编 码向量的 SINR;
第一选择子模块 7233, 用于在所述计算子模块 7232计算出的所有 SINR中, 有 大于第二预设门限的 SINR, 且该大于第二预设门限的 SINR对应的用户满足用户配 对条件时, 选择该用户作为满足 SINR条件以及用户配对条件的用户。
在另外一个实施例中, 选择单元 72包括:
第四选择模块 724, 用于当所述多个用户中, 基于原始预编码矩阵的用户的数目 小于所述预定数目时, 确定第二变换次数, 并从低于所述变换次数的用户中, 选择满 足 SINR条件以及用户配对条件的用户, 如果选择出的用户的数目大于等于所述预定 数目, 则从选择出的用户中选择预定数目的用户作为选定用户。
其中, 该第四选择模块 724可以包括:
发送子模块 7241, 用于将所述第二变换次数发送给反馈的用户中, 对预编码矩 阵的变换次数低于所述第二变换次数的用户;
接收子模块 7242, 用于接收所述对预编码矩阵的变换次数低于所述第二变换次 数的用户再次反馈的信息;
第二选择子模块 7243, 用于根据所述再次反馈的信息, 选择满足用户配对条件 的用户。
本实施例的基站根据用户设备搜索预编码矩阵里 SINR最大对应的预编码向量, 反馈的该向量的 PMI和该 SINR, 决定预编码变换的情况, 以此选择多用户配对, 完 成 MU-MIMO的调度, 改善用户数较少或 SNR较低时的性能。
本发明实施例还提供了一种计算机可读程序, 其中当在用户设备中执行该程序 时, 该程序使得计算机在所述用户设备中执行实施例 1所述的多用户 MIMO系统中 选择多用户配对的方法。
本发明实施例还提供了一种存储有计算机可读程序的存储介质,其中该计算机可 读程序使得计算机在用户设备中执行实施例 1所述的多用户 MIMO系统中选择多用 户配对的方法。
本发明实施例还提供了一种计算机可读程序,其中当在基站中执行该程序时, 该 程序使得计算机在所述基站中执行实施例 2所述的 MU-MIMO系统中选择多用户配 对的方法。
本发明实施例还提供了一种存储有计算机可读程序的存储介质,其中该计算机可 读程序使得计算机在基站中执行实施例 2所述的 MU-MIMO系统中选择多用户配对 的方法。
本发明以上的装置和方法可以由硬件实现, 也可以由硬件结合软件实现。本发明 涉及这样的计算机可读程序, 当该程序被逻辑部件所执行时, 能够使该逻辑部件实现 上文所述的装置或构成部件, 或使该逻辑部件实现上文所述的各种方法或步骤。逻辑 部件例如现场可编程逻辑部件、微处理器、 计算机中使用的处理器等。本发明还涉及 用于存储以上程序的存储介质, 如硬盘、 磁盘、 光盘、 DVD、 flash存储器等。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这 些描述都是示例性的, 并不是对本发明保护范围的限制。本领域技术人员可以根据本 发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围 内。

Claims

权 利 要 求 书
1、 一种多用户多输入多输出 MU-MIMO系统中选择多用户配对的方法, 其中, 所述方法包括:
计算步骤, 用户设备计算预编码矩阵的各预编码向量的信号与干扰加噪声比
SINR;
选择步骤, 用户设备根据计算出的各预编码向量的 SINR, 选择大于第一预设门 限的 SINR对应的预编码向量;
反馈步骤,用户设备将选择出的预编码向量的序号 PMI和对应的 SINR的量化值 反馈给基站,或者用户设备将选择出的预编码向量的 PMI和对应的 SINR的量化值以 及所述 SINR对应的变换次数反馈给基站, 或者用户设备将所述 SINR对应的变换次 数反馈给基站。
2、 根据权利要求 1 所述的方法, 其中, 所述预编码矩阵为原始预编码矩阵或者 变换后的预编码矩阵。
3、 根据权利要求 1所述的方法, 其中, 在所述选择步骤中, 如果计算出的 SINR 中没有大于所述第一预设门限的 SINR, 则所述方法还包括:
第一变换步骤, 用户设备利用预设的变换矩阵对所述预编码矩阵进行变换, 并继 续执行所述计算步骤。
4、 根据权利要求 3所述的方法, 其中, 所述第一变换步骤包括:
判断所述预编码矩阵的变换次数是否达到最大变换次数;
如果所述预编码矩阵的变换次数没有达到最大变换次数, 则用户设备利用预设的 变换矩阵对所述预编码矩阵进行变换。
5、 根据权利要求 3所述的方法, 其中, 利用预设的变换矩阵对所述预编码矩阵 进行变换, 包括:
利用预设的变换矩阵对所述预编码矩阵进行左乘变换或者右乘变换, 得到变换后 的预编码矩阵。
6、 根据权利要求 5所述的方法, 其中, 所述变换矩阵为改变预编码矩阵的特征 方向, 且保证变换后的预编码矩阵的正交性的矩阵。
7、 根据权利要求 6所述的方法, 其中, 所述变换矩阵为酉矩阵或者正交阵。
8、 根据权利要求 1 所述的方法, 其中, 在所述反馈步骤中, 如果所述用户设备 将对预编码矩阵的变换次数反馈给基站时, 所述方法还包括:
接收步骤, 用户设备接收基站发送的变换次数的指示;
第二变换步骤, 用户设备根据所述指示, 对当前预编码矩阵进行变换, 使变换次 数达到所述指示的变换次数, 并执行所述计算步骤, 并在反馈步骤将选择出的预编码 向量的序号 PMI和对应的 SINR的量化值反馈给基站。
9、 一种多用户多输入多输出 MU-MIMO系统中选择多用户配对的方法, 其中, 所述方法包括:
接收步骤, 基站接收多个用户反馈的信息, 所述多个用户反馈的信息包括: 各个 用户的预编码向量的序号 PMI以及所述预编码向量的 SINR的量化值,或者各个用户 的预编码向量的序号 PMI以及所述预编码向量的 SINR的量化值以及所述 SINR对应 的变换次数的信息, 或者各个用户的预编码矩阵的变换次数的信息;
选择步骤, 基站根据所述多个用户反馈的信息, 选择对原始预编码矩阵的变换次 数相同, 且满足用户配对条件的预定数目的用户作为选定用户。
10、 根据权利要求 9所述的方法, 其中, 所述选择步骤包括:
第一选择步骤, 当所述多个用户中, 基于原始预编码矩阵的用户的数目大于等于 所述预定数目,且基于原始编码矩阵的用户中满足用户配对条件的用户的数目大于等 于所述预定数目时,从所述基于原始预编码矩阵的用户中选择满足用户配对条件的预 定数目的用户作为选定用户。
11、 根据权利要求 9所述的方法, 其中, 所述选择步骤包括:
第二选择步骤, 当所述多个用户中, 基于原始预编码矩阵的用户的数目小于所述 预定数目, 具有相同变换次数的用户的数目大于等于所述预定数目, 且具有相同变换 次数的用户中满足用户配对条件的用户的数量大于等于所述预定数目时,从所述具有 相同变换次数的用户中选择满足用户配对条件的预定数目的用户作为选定用户.
12、 根据权利要求 9所述的方法, 其中, 所述选择步骤包括:
第三选择步骤, 当所述多个用户中, 基于原始预编码矩阵的用户的数目小于所述 预定数目, 具有相同变换次数的用户的数目也小于所述预定数目时,基站确定第一变 换次数,并从具有所述第一变换次数的用户中,以及从基于原始预编码矩阵的用户中, 选择满足 SINR条件以及用户配对条件的用户, 如果选择出的用户的数目大于等于所 述预定数目, 则从选择出的用户中选择预定数目的用户作为选定用户。
13、 根据权利要求 12所述的方法, 其中, 从基于原始预编码矩阵的用户中选择 满足 SINR条件以及用户配对条件的用户, 包括:
针对反馈的用户中每一个基于原始预编码矩阵的用户 - 基站利用预设的变换矩阵对所述用户的原始预编码矩阵进行所述第一变换次数 的变换;
基站计算变换后的预编码矩阵的各预编码向量的 SINR;
如果计算出的所有 SINR中有大于第二预设门限的 SINR,且该大于第二预设门限 的 SINR对应的用户满足用户配对条件, 则基站选择该用户作为满足 SINR条件以及 用户配对条件的用户。
14、 根据权利要求 9所述的方法, 其中, 所述选择步骤包括:
第四选择步骤, 当所述多个用户中, 基于原始预编码矩阵的用户的数目小于所述 预定数目时, 基站确定第二变换次数, 并从低于所述第二变换次数的用户中, 选择满 足 SINR条件以及用户配对条件的用户, 如果选择出的用户的数目大于等于所述预定 数目, 则从选择出的用户中选择预定数目的用户作为选定用户。
15、根据权利要求 14所述的方法,从低于所述变换次数的用户中,选择满足 SINR 条件以及用户配对条件的用户, 包括:
基站将所述第二变换次数发送给反馈的用户中, 对预编码矩阵的变换次数低于所 述第二变换次数的用户;
基站接收所述对预编码矩阵的变换次数低于所述第二变换次数的用户再次反馈 的信息;
基站根据所述再次反馈的信息, 选择满足用户配对条件的用户。
16、根据权利要求 12或 14所述的方法,其中,所述变换次数为所述多个用户中, 相同变换次数最多的变换值, 或者所述多个用户中, 变换次数最少的变换值。
17、 根据权利要求 12或 14所述的方法, 其中, 如果选择出的用户数目小于所述 预定数目, 则判断是否已经遍历反馈的用户的所有变换次数, 如果不是, 则确定另一 变换次数, 并执行所述第三选择步骤或者所述第四选择步骤。
18、 一种用户设备, 其中, 所述用户设备包括:
计算单元, 用于计算预编码矩阵的各预编码向量的信号与干扰加噪声比 SINR; 选择单元, 用于根据计算出的各预编码向量的 SINR, 选择大于第一预设门限的
SINR对应的预编码向量;
反馈单元,用于将选择出的预编码向量的序号 PMI和对应的 SINR的量化值反馈 给基站, 或者将选择出的预编码向量的 PMI和对应的 SINR的量化值以及所述 SINR 对应的变换次数反馈给基站, 或者将所述 SINR对应的变换次数反馈给基站。
19、 根据权利要求 18所述的用户设备, 其中, 所述选择单元包括:
变换模块, 用于在所述计算单元计算出的 SINR中没有大于所述第一预设门限的
SINR时, 利用预设的变换矩阵对所述预编码矩阵进行变换, 以便所述计算单元计算 变换后的预编码矩阵的各预编码向量的 SINR。
20、 根据权利要求 19所述的用户设备, 其中, 所述变换模块包括:
判断子模块, 用于判断所述预编码矩阵的变换次数是否达到最大变换次数; 变换子模块, 用于在所述判断子模块的判断结果为, 所述预编码矩阵的变换次数 没有达到最大变换次数时, 利用预设的变换矩阵对所述预编码矩阵进行变换。
21、 根据权利要求 18所述的用户设备, 其中, 所述用户设备还包括: 接收单元, 用于在所述反馈单元将对预编码矩阵的变换次数反馈给基站后, 接收 基站发送的变换次数的指示;
变换单元, 用于根据所述接收单元接收到的所述指示, 对当前预编码矩阵进行变 换, 以达到所述指示的变换次数, 以便所述计算单元计算变换后的预编码矩阵的各预 编码向量的 SINR, 以及所述反馈单元进一步将选择出的预编码向量的 PMI和对应的 SINR的量化值反馈给所述基站。
22、 一种基站, 其中, 所述基站包括:
接收单元, 用于接收多个用户反馈的信息, 所述多个用户反馈的信息包括各个用 户的预编码向量的序号 PMI以及所述预编码向量的 SINR的量化值,或者各个用户的 预编码向量的序号 PMI以及所述预编码向量的 SINR的量化值以及所述 SINR对应的 变换次数的信息, 或者各个用户的预编码矩阵的变换次数的信息;
选择单元, 用于根据所述接收单元接收到的多个用户反馈的信息, 选择对原始预 编码矩阵的变换次数相同, 且满足用户配对条件的预定数目的用户作为选定用户。
23、 根据权利要求 22所述的基站, 其中, 所述选择单元包括:
第一选择模块, 用于当所述多个用户中, 基于原始预编码矩阵的用户的数目大于 等于所述预定数目,且基于原始编码矩阵的用户中满足用户配对条件的用户的数目大 于等于所述预定数目时,从所述基于原始预编码矩阵的用户中选择满足用户配对条件 的预定数目的用户作为选定用户。
24、 根据权利要求 22所述的基站, 其中, 所述选择单元包括:
第二选择模块, 用于当所述多个用户中, 基于原始预编码矩阵的用户的数目小于 所述预定数目, 具有相同变换次数的用户的数目大于等于所述预定数目, 且具有相同 变换次数的用户中满足用户配对条件的用户的数量大于等于所述预定数目时,从所述 具有相同变换次数的用户中选择满足用户配对条件的预定数目的用户作为选定用户。
25、 根据权利要求 22所述的基站, 其中, 所述选择单元包括:
第三选择模块, 用于当所述多个用户中, 基于原始预编码矩阵的用户的数目小于 所述预定数目, 具有相同变换次数的用户的数目也小于所述预定数目时,确定第一变 换次数, 并从所述第一变换次数的用户中, 以及从基于原始预编码矩阵的用户中, 选 择满足 SINR条件以及用户配对条件的用户, 如果选择出的用户的数目大于等于所述 预定数目, 则从选择出的用户中选择预定数目的用户作为选定用户。
26、 根据权利要求 25所述的基站, 其中, 所述第三选择模块包括:
变换子模块, 用于针对反馈的用户中每一个基于原始预编码矩阵的用户, 利用预 设的变换矩阵对所述用户的原始预编码进行所述第一变换次数的变换;
计算子模块, 用于计算所述变换子模块变换后的预编码矩阵的各预编码向量的 SINR;
第一选择子模块, 用于在所述计算子模块计算出的所有 SINR中, 有大于第二预 设门限的 SINR, 且该大于第二预设门限的 SINR对应的用户满足用户配对条件时, 选择该用户作为满足 SINR条件以及用户配对条件的用户。
27、 根据权利要求 22所述的基站, 其中, 所述选择单元包括:
第四选择模块, 用于当所述多个用户中, 基于原始预编码矩阵的用户的数目小于 所述预定数目时, 确定第二变换次数, 并从低于所述第二变换次数的用户中, 选择满 足 SINR条件以及用户配对条件的用户, 如果选择出的用户的数目大于等于所述预定 数目, 则从选择出的用户中选择预定数目的用户作为选定用户。
28、 根据权利要求 27所述的基站, 所述第四选择模块包括:
发送子模块, 用于将所述第二变换次数发送给反馈的用户中, 对预编码矩阵的变 换次数低于所述第二变换次数的用户;
接收子模块, 用于接收所述对预编码矩阵的变换次数低于所述第二变换次数的用 户再次反馈的信息;
第二选择子模块,用于根据所述再次反馈的信息,选择满足用户配对条件的用户。
29、 一种计算机可读程序, 其中当在用户设备中执行该程序时, 该程序使得计算 机在所述用户设备中执行如权利要求 1至 8中的任意一项权利要求所述的 MU-MIMO 系统中选择多用户配对的方法。
30、一种存储有计算机可读程序的存储介质,其中该计算机可读程序使得计算机 在用户设备中执行权利要求 1至 8中的任意一项权利要求所述的 MU-MIMO系统中 选择多用户配对的方法。
31、 一种计算机可读程序, 其中当在基站中执行该程序时, 该程序使得计算机在 所述基站中执行如权利要求 9至 17中的任意一项权利要求所述的 MU-MIMO系统中 选择多用户配对的方法。
32、 一种存储有计算机可读程序的存储介质, 其中该计算机可读程序使得计算机 在基站中执行权利要求 9至 17中的任意一项权利要求所述的 MU-MIMO系统中选择 多用户配对的方法。
PCT/CN2011/073532 2011-04-29 2011-04-29 多用户多输入多输出系统中选择多用户配对的方法和装置 WO2012145923A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011800614065A CN103262454A (zh) 2011-04-29 2011-04-29 多用户多输入多输出系统中选择多用户配对的方法和装置
PCT/CN2011/073532 WO2012145923A1 (zh) 2011-04-29 2011-04-29 多用户多输入多输出系统中选择多用户配对的方法和装置
US14/062,395 US20140050277A1 (en) 2011-04-29 2013-10-24 Method and apparatus for selecting multi-user pairing in a multi-user multi-input multi-output system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/073532 WO2012145923A1 (zh) 2011-04-29 2011-04-29 多用户多输入多输出系统中选择多用户配对的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/062,395 Continuation US20140050277A1 (en) 2011-04-29 2013-10-24 Method and apparatus for selecting multi-user pairing in a multi-user multi-input multi-output system

Publications (1)

Publication Number Publication Date
WO2012145923A1 true WO2012145923A1 (zh) 2012-11-01

Family

ID=47071575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073532 WO2012145923A1 (zh) 2011-04-29 2011-04-29 多用户多输入多输出系统中选择多用户配对的方法和装置

Country Status (3)

Country Link
US (1) US20140050277A1 (zh)
CN (1) CN103262454A (zh)
WO (1) WO2012145923A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014089824A1 (zh) * 2012-12-14 2014-06-19 华为技术有限公司 调度方法和调度装置以及基站

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9281880B2 (en) * 2011-08-15 2016-03-08 Sharp Kabushiki Kaisha Wireless transmission device and wireless reception device
US11438915B2 (en) * 2018-06-08 2022-09-06 Telefonaktiebolaget Lm Ericsson (Publ) SDMA carrier sharing
US11309992B2 (en) * 2018-07-17 2022-04-19 Qualcomm Incorporated Using lattice reduction for reduced decoder complexity
WO2020079475A1 (en) 2018-10-18 2020-04-23 Telefonaktiebolaget Lm Ericsson (Publ) Multi-user pairing and sinr calculation based on relative beam power for codebook-based dl mu-mimo
CN111224697A (zh) * 2018-11-27 2020-06-02 索尼公司 用于无线通信系统的电子设备、方法和存储介质
CN113783590B (zh) * 2020-06-10 2023-04-07 华为技术有限公司 一种多用户配对方法、装置及系统
CN117062095A (zh) * 2023-08-31 2023-11-14 华能伊敏煤电有限责任公司 一种基于人工智能算法的多用户波束预测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006062356A1 (en) * 2004-12-08 2006-06-15 Electronics And Telecommunications Research Institute Transmitter, receiver and method for controlling multiple input multiple output system
CN101277172A (zh) * 2007-03-30 2008-10-01 华为技术有限公司 一种预编码矩阵生成方法、装置和系统
US20100142640A1 (en) * 2008-12-08 2010-06-10 Nan Zhao Method and system for selecting a pre-coding matrix
CN101848174A (zh) * 2009-03-24 2010-09-29 鼎桥通信技术有限公司 发射预处理方法和发射预处理信号的数据解调方法
CN101980467A (zh) * 2010-10-28 2011-02-23 中国科学技术大学 一种多输入多输出系统重传线性预编码处理方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100696208B1 (ko) * 2004-12-08 2007-03-20 한국전자통신연구원 다중 안테나 송수신 시스템의 제어 방법, 송신기 및 수신기
EP2451086B1 (en) * 2008-06-30 2018-02-28 Alcatel Lucent Method of assigning precoding vectors in a mobile cellular network
JP5611447B2 (ja) * 2010-04-07 2014-10-22 アルカテル−ルーセント 情報フィードバックおよびプリコーディングの方法および装置
KR101704391B1 (ko) * 2010-04-20 2017-02-22 텔레콤 이탈리아 소시에떼 퍼 아찌오니 무선 통신들을 위한 방법 및 시스템, 대응하는 네트워크 및 컴퓨터 프로그램 제품
US8750358B2 (en) * 2011-04-06 2014-06-10 Nec Laboratories America, Inc. Method for improving multiuser MIMO downlink transmissions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006062356A1 (en) * 2004-12-08 2006-06-15 Electronics And Telecommunications Research Institute Transmitter, receiver and method for controlling multiple input multiple output system
CN101277172A (zh) * 2007-03-30 2008-10-01 华为技术有限公司 一种预编码矩阵生成方法、装置和系统
US20100142640A1 (en) * 2008-12-08 2010-06-10 Nan Zhao Method and system for selecting a pre-coding matrix
CN101848174A (zh) * 2009-03-24 2010-09-29 鼎桥通信技术有限公司 发射预处理方法和发射预处理信号的数据解调方法
CN101980467A (zh) * 2010-10-28 2011-02-23 中国科学技术大学 一种多输入多输出系统重传线性预编码处理方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014089824A1 (zh) * 2012-12-14 2014-06-19 华为技术有限公司 调度方法和调度装置以及基站
CN104170505A (zh) * 2012-12-14 2014-11-26 华为技术有限公司 调度方法和调度装置以及基站

Also Published As

Publication number Publication date
CN103262454A (zh) 2013-08-21
US20140050277A1 (en) 2014-02-20

Similar Documents

Publication Publication Date Title
Gesbert et al. Shifting the MIMO paradigm
JP5745017B2 (ja) ワイヤレス通信ネットワーク中の複数ユーザのmimoのためのスケジューリング
US9042474B2 (en) Method and apparatus for information feedback and precoding
JP5127394B2 (ja) Mimoシステムのプリコーディング方法及び該方法を用いた装置
US8934565B2 (en) Reference signaling scheme using compressed feedforward codebooks for multi-user, multiple-input multiple-output (MU-MIMO) systems
US8687527B2 (en) Low complexity link adaptatation for LTE/LTE-A uplink with a turbo receiver
WO2012145923A1 (zh) 多用户多输入多输出系统中选择多用户配对的方法和装置
US7929636B2 (en) Techniques for reducing precoding overhead in a multiple-input multiple-output wireless communication system
EP3025436A1 (en) Methods and a device for multi-resolution precoding matrix indicator feedback
WO2011098015A1 (zh) 基于码书的信道信息反馈方法、设备和系统
JP2017539184A (ja) 通信システム及び方法、基地局、及びユーザ端末
JP2011517524A (ja) Mimoシステムでコードブックを用いてフィードバックを行うフィードバック方法
EP2420005A1 (en) Method and device for data processing in a communication network
Mohammed et al. A low-complexity precoder for large multiuser MISO systems
KR20110097570A (ko) 채널품질정보 전송방법 및 사용자기기와, 다중사용자 데이터 전송방법 및 기지국
Maruko et al. Efficient combination of multi-user MIMO THP and user selection based on spatial orthogonality
Song et al. Compressive feedback based on sparse approximation for multiuser MIMO systems
Gaur et al. Enhancing ZF-DPC performance with receiver processing
WO2017157123A1 (zh) 一种预编码处理方法、用户设备及基站
Liu et al. Multi-user MIMO linear precoding schemes in OFDM systems
CN107819499B (zh) 无线网络中的调度方法、装置和网络设备
Krishna et al. Weighted Sum-rate Maximization for Multi-user Mimo-OFDM Downlink with ZF-DPC Methods
Joung et al. Performance evaluation of large-scale MIMO systems with compressed channel feedback
Zhi et al. Joint linear precoder and power allocation design for uplink MIMO systems with limited feedback

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864590

Country of ref document: EP

Kind code of ref document: A1