WO2012145897A1 - 一种电池保护装置及保护方法 - Google Patents

一种电池保护装置及保护方法 Download PDF

Info

Publication number
WO2012145897A1
WO2012145897A1 PCT/CN2011/073362 CN2011073362W WO2012145897A1 WO 2012145897 A1 WO2012145897 A1 WO 2012145897A1 CN 2011073362 W CN2011073362 W CN 2011073362W WO 2012145897 A1 WO2012145897 A1 WO 2012145897A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
discharge
battery
gate
drain
Prior art date
Application number
PCT/CN2011/073362
Other languages
English (en)
French (fr)
Inventor
熊运远
潘启辉
卢良飞
Original Assignee
海能达通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海能达通信股份有限公司 filed Critical 海能达通信股份有限公司
Priority to PCT/CN2011/073362 priority Critical patent/WO2012145897A1/zh
Publication of WO2012145897A1 publication Critical patent/WO2012145897A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection

Definitions

  • the present invention relates to the field of electronic circuits, and in particular, to a battery protection device and a protection method.
  • the universal rechargeable battery protection scheme is that the battery voltage is output to the load through two serially connected charging switches and discharging switches. If the battery voltage is within the range set by the battery protection chip, the charging switch and the discharging switch are always turned on. A large current can be output to the outside at any time. Since the pole piece of the battery is exposed to the air, it is easily contacted by the external conductive object. When the discharge output end of the battery is short-circuited between the positive and negative electrodes, the battery instantaneously has a large current output, thereby causing a pole piece to fire. An accident that is prone to fire or burns.
  • the rechargeable battery is used in the hand-held electrical appliance.
  • the battery pole piece When the battery is replaced, due to the charging of the electrical circuit capacitor by the battery, the battery pole piece has a large current flowing at the moment of power-on, and the pole piece is ignited and carbonized. After the carbonization of the ignition caused by repeated battery replacement, the battery pole piece is in poor contact, and the battery pole piece must be repaired or replaced, and the electrical appliance can supply power normally, which affects the reliability of the battery and the electrical appliance.
  • the overcurrent protection is to first convert the output current into a voltage for sampling, compare the sampling voltage with a preset reference voltage, and adjust the working state of the battery discharge switch tube according to the comparison result to achieve the purpose of changing the output current.
  • the actual output current of the battery has exceeded the preset limit current value when the current limit control starts to operate. During this delay time, a fast momentary high current may have caused an accident.
  • a conventional battery protection device which includes a charge and discharge control logic U1 and a voltage comparator U2.
  • the voltage comparator U2 the input terminal is connected to the reference voltage Vref, and the other input terminal is connected to the battery discharge port anode through the resistor RS.
  • P-, charge and discharge control logic U1 - the output is connected to the gate of the discharge M0S tube Q1, the other output is connected to the gate of the charge MOS tube Q2; the discharge MOS tube Q1 source is connected to the negative pole of the battery, the drain connection The source of the MOSFET Q2 is charged, and the drain of the charging MOSFET Q2 is connected to the negative terminal P- of the discharge port.
  • Discharge M0S tube Q1 controls discharge
  • charging M0S tube Q2 controls charging.
  • Comparator U2 compares the sampling voltage of the negative port P- of the discharge port with a preset reference voltage Vref.
  • the charge and discharge control logic U1 controls the discharge MOSFET Q1 to be turned off, and the battery stops discharging.
  • This type of control first limits the current. When the current is greater than the set value, the limit is imposed. However, the circuit compares the sampling voltage of the negative terminal P- of the discharge port with the reference voltage Vref, and then outputs the signal Dout to control the discharge of the M0S tube Q1. This process has a certain delay time. Because of this delay time, if the circuit current of the battery output rises rapidly, when the discharge M0S tube Q 1 is turned off, the current output from the battery will be much larger than the current limit value. For example, there is a battery with the above current limiting protection scheme, and the discharge output current limit of the line setting is 3A, but when the battery is powered by the hand-held appliance (the maximum average current when the appliance is working normally is 1. 7A), The instantaneous peak current measured is up to 15A (see Figure 2).
  • the drawback of the existing battery discharge protection device is that since the external power supply switch of the battery is always open, the discharge output port of the battery has a current output as long as it is connected to the load, and if the output is suddenly short-circuited, it is easy to cause fire and injury. Accident. Moreover, the fire accident causes the battery pole piece to be prone to poor carbonization contact, affecting the service life of the battery pole piece, thereby affecting the reliability of the electronic product.
  • An object of the present invention is to provide a battery protection device that effectively suppresses transient large currents, prevents accidents caused by sparking, and enhances the safety of battery use.
  • a battery protection device of the present invention includes a charge and discharge control logic, and an output terminal is connected to the first
  • the gate of the MOSFET (Q1), the other output is connected to the gate of the second MOSFET (Q2); the source of the first MOS transistor (Q1) is connected to the ground, and the drain is connected to the source of the second MOS transistor (Q2).
  • the drain of the second MOS transistor (Q2) is connected to the negative terminal of the discharge port (P-); further comprising: a feedback terminal (S) and a discharge control unit: one end of the discharge control unit is connected to the feedback terminal (S), and the other end is connected to the discharge port;
  • the terminal (S) is used to obtain a feedback voltage when the battery is connected to the load; and the discharge control unit is configured to control the discharge switch to be turned on when the feedback terminal (S) obtains the feedback voltage, and to guide the discharge switch tube
  • the on-resistance varies from large to small.
  • the discharge control unit comprises a third MOS tube (Q 3 ), a fourth MOS tube (Q and a fifth MOS tube (Q5), and a fifth MOS tube (Q5) source connected to charge the second MOS tube (Q2) ) of the drain tube M0S fifth (Q 5) connected to the drain discharge port negative (P -), the fifth tube M0S (Q 5) and through a gate
  • the first capacitor (CI) is grounded and connected to the drain of the third MOS transistor (Q3); the source of the third MOS transistor (Q3) is connected to the positive terminal of the discharge port (P+), and the gate is connected to the positive terminal of the discharge port ( P+), also connected to the drain of the fourth M0S transistor (Q4); the fourth M0S transistor (Q4) source is grounded, and the gate is connected to the feedback terminal (S).
  • the discharge control unit further includes a second resistor (R2) connected in parallel with the first capacitor (C1).
  • the fourth MOS transistor (the Q gate is grounded through the sixth resistor (R6).
  • the discharge control unit comprises a third MOS transistor (Q3) and a fourth MOS transistor (Q4), the third MOS transistor (Q3) is connected to the discharge port positive terminal (P+), and the gate is connected through the third resistor (R3).
  • the discharge port positive (P+) is also connected to the drain of the fourth M0S tube (Q4); the fourth M0S tube (Q4) source is grounded, the gate is connected to the feedback terminal S; and the third M0S tube (Q3) is connected to the gate A gate of the MOSFET (Q1), a first capacitor (C1) connected in parallel between the gate of the first MOSFET (Q1) and the cathode of the cell.
  • the discharge control unit further comprises a first diode (D1), the anode of the first diode (D1) is connected to discharge the gate of the first MOS tube (Q1), and the cathode is connected to the discharge output of the electric control logic .
  • the fourth MOSFET (the gate of Q is grounded through the sixth resistor (R6).
  • the discharge control unit comprises a fifth MOS transistor (Q5), the fifth MOS transistor (Q5) is connected to the charging port (C+) of the battery, the gate is connected to the feedback terminal S, and the first capacitor is connected between the source and the gate. (C1), the drain is connected to the discharge port positive (P+).
  • the discharge control unit further includes a second resistor (R2) connected in parallel with the first capacitor (C1).
  • R2 second resistor
  • the invention also provides a battery protection method, which can effectively suppress transient high current, prevent accidents caused by sparking, and enhance the safety of battery use.
  • the battery protection method of the present invention further comprises: obtaining a feedback voltage of the discharge port when the battery is connected to the load; controlling the delay switch of the discharge switch connected to the discharge port in the battery protection circuit to make the discharge switch tube
  • the on-resistance varies from large to small.
  • the invention When the battery is connected to the load, the invention opens the discharge switch tube for a time delay, and avoids a large current output at the moment when the discharge output port of the battery is connected to the load, thereby preventing an accident of causing fire and injury.
  • the discharge electrode piece exposed by the protection tree is blocked by the discharge switch tube, and there is no leakage of electricity, which prolongs the storage time of the battery.
  • the present invention changes the on-resistance of the discharge switch tube from large to small, and effectively suppresses transient high current.
  • DRAWINGS 1 is a structural view of a conventional battery protection device
  • Figure 2 is a test result diagram of the existing battery protection device
  • FIG. 3 is a structural view of a battery protection device of the present invention.
  • FIG. 4 is a structural view of a first embodiment of a battery protection device of the present invention.
  • Figure 5 is a structural view showing a second embodiment of the battery protection device of the present invention.
  • Figure 6 is a structural view showing a third embodiment of the battery protection device of the present invention.
  • Figure 7 is a waveform diagram of the output current of the battery of the present invention.
  • FIG. 8 is a flow chart of a battery protection method according to the present invention. The present invention will be further described in detail with reference to the drawings and specific embodiments.
  • the invention adds a feedback terminal s as a load-on judgment at the discharge output end of the battery.
  • the feedback terminal s obtains a feedback voltage.
  • the discharge switch tube is commanded to start.
  • the conduction of the discharge switch tube has a varistor process from a large resistance to a small resistance to suppress a transient high current of the battery discharge.
  • the battery protection device of the present invention includes a charge and discharge control logic U1.
  • the charge and discharge control logic U1 is connected to the battery discharge port negative pole P- through a resistor RS, and the charge and discharge control logic U1 is connected to the output terminal. Discharge the gate of the MOS tube Q1, and connect the other output terminal to the gate of the charging M0S tube Q2; the discharge M0S tube Q1 is connected to the cathode of the battery cell, the drain is connected to the source of the charging M0S tube Q2, and the charging M0S tube Q2 Drain connection discharge port negative P-;
  • a feedback terminal S is provided, and the feedback terminal S is connected to the discharge port positive P+ or the discharge port negative P-, and the feedback terminal S is connected to a discharge control unit 1 1.
  • the discharge control unit 1 1 obtains a feedback voltage at the feedback terminal S.
  • the discharge control unit 11 controls the discharge switch tube to be turned on, and the discharge switch tube is guided.
  • the on-resistance varies from large to small, effectively suppressing the transient high current of the battery discharge.
  • a first embodiment of the battery protection device of the present invention including a charge and discharge control logic U1, and a charge and discharge control logic U1 is connected to a battery charge port negative C- through a resistor RS, and a charge and discharge control logic U1-
  • the output is connected to the gate of the discharge M0S tube Q1, and the other output is connected and charged.
  • the discharge control unit 11 includes a MOS transistor Q3, a MOS transistor Q4, and a MOS transistor Q5.
  • the source of the MOS transistor Q5 is connected to the drain of the charging MOS transistor Q2, and the drain of the MOS transistor Q5 is connected.
  • the discharge port negative pole P-, the gate of the MOS transistor Q5 is grounded through the capacitor C 1 and the resistor R2 connected in parallel, and is also connected to the drain of the MOS transistor Q3 through the resistor R1; the source of the MOS transistor Q3 is connected to the positive terminal P+ of the discharge port, and the gate passes
  • the resistor R3 is connected to the positive terminal P+ of the discharge port, and is also connected to the drain of the MOS transistor Q4 through the resistor R4; the source of the MOS transistor Q4 is grounded, the gate is connected to the feedback terminal S through the resistor R5, and is also grounded through the resistor R6.
  • the feedback terminal S obtains a positive feedback voltage input from the positive terminal P+ of the discharge port, so that the M0S tube Q4 is turned on, and after the M0S tube Q4 is turned on, the M0S tube Q 3 obtains the bias voltage conduction, and the M0S tube Q3 leads.
  • the battery positive voltage charges the capacitor C1 through the MOS tube Q 3 and the resistor R1.
  • the charging voltage on the capacitor C1 rises, when the charging voltage is greater than the turn-on voltage of the MOSFET Q5, the MOSFET Q5 is turned off and turned on, and the positive ports P+ and P_ of the discharging port have a current output.
  • the on-resistance of MOS transistor Q5 has a large to small variation process, which limits the transient high current of the battery output.
  • the invention can also change the change speed of the on-resistance of the M0S tube Q5 by adjusting the resistance of the resistor R1 and the capacitance value of the capacitor C1 to adapt to the requirements of different load circuits.
  • the M0S tube Q4 and the M0S tube Q5 are N-type field effect switching tubes, and the M0S tube Q 3 is a P-type field effect switching tube.
  • the M0S tube Q5 is a discharge switch tube.
  • a second embodiment of the battery protection device of the present invention includes a charge and discharge control logic U1, and a charge and discharge control logic U1 is connected to a battery discharge port negative pole P- through a resistor RS, and a charge and discharge control logic U1-
  • the output terminal is connected to the gate of the discharge M0S tube Q1, and the other output terminal is connected to the gate of the charging M0S tube Q2;
  • the discharge M0S tube Q1 source is connected to the negative pole of the battery cell, and the drain is connected to the source of the charging M0S tube Q2, the discharge port
  • the positive electrode P+ is connected to the positive electrode of the battery core;
  • the discharge control unit 11 includes a MOS transistor Q3 and a MOS transistor Q4, the drain of the MOS transistor Q3 is connected to the positive terminal P+ of the discharge port, and the gate is connected to the positive terminal P+ of the discharge port through the resistor R3, and also passes
  • the resistor R4 is connected to the drain of the M0S tube Q4; the source of the M0S tube Q4 is grounded, the gate is connected to the feedback terminal S through the resistor R5, and passes through the resistor R6 to the ground; the drain of the M0S transistor Q3 passes through the resistor R1 Connect the gate of the discharge MOS transistor Q1, connect the capacitor CI and the resistor R2 between the gate of the MOS transistor Q1 and the cathode of the battery; the anode of the diode D1 is connected to the gate of the MOS transistor Q1, and the discharge terminal of the cathode is connected to the discharge control terminal of the U1 .
  • the feedback terminal S When the battery is loaded, the feedback terminal S has a positive feedback voltage input.
  • the positive feedback voltage will turn on the M0S tube Q4.
  • the M0S tube Q4 After the M0S tube Q4 is turned on, the M0S tube Q 3 is turned on, and the M0S tube Q 3 is turned on.
  • the battery positive voltage charges the capacitor C 1 through the MOS transistor Q 3 and the resistor R1.
  • the MOSFET Q1 As the charging voltage on the capacitor C1 rises, the MOSFET Q1 is turned on and turned off.
  • the on-resistance of MOSFET Q1 has a large to small variation process, which limits the transient high current of the battery output.
  • the rate of change of the on-resistance of the MOSFET Q1 can be adjusted to suit the requirements of different load circuits.
  • the MOS transistor Q4 is an N-type field effect switching transistor
  • the MOS transistor Q3 is a P-type field effect switching transistor
  • the M0S tube Q1 is a discharge switch tube.
  • a third embodiment of the battery protection device of the present invention includes a charge and discharge control logic U1, and a charge and discharge control logic U1 is connected to a battery discharge port negative pole P- through a resistor RS, and a charge and discharge control logic U1-
  • the output terminal is connected to the gate of the discharge M0S tube Q1, and the other output terminal is connected to the gate of the charging M0S tube Q2;
  • the discharge M0S tube Q 1 source is connected to the negative pole of the battery core, and the drain is connected to the source of the charging M0S tube Q2, discharging
  • the positive pole of the port P+ is connected to the positive pole of the battery;
  • the discharge control unit 1 1 includes a MOS transistor Q5, the source of the MOS transistor Q5 is connected to the positive terminal C+ of the charging port, the gate is connected to the feedback terminal S through the resistor R1, the source and the control gate The capacitor C1 and the resistor R2 are connected in parallel, and the drain is connected to the positive terminal P+ of the discharge port.
  • the feedback terminal S When the battery is connected to the load, the feedback terminal S is connected to the negative pole P- of the battery discharge port through the load circuit, and the positive voltage of the battery is charged to the capacitor C1 through the resistor R1. As the charging voltage on the capacitor C 1 increases, the MOSFET Q5 is disconnected. Turn into conduction. During the charging of capacitor C1, the on-resistance of MOS transistor Q5 has a large to small variation process, which limits the transient high current of the battery output. By adjusting the resistance of the resistor R1 and the capacitance of the capacitor C1, the change speed of the on-resistance of the M0S tube Q5 can be adjusted to suit different load voltages.
  • the MOS transistor Q5 is a P-type field effect switching transistor.
  • the M0S tube Q5 is a discharge switch tube.
  • the battery output current waveform of the present invention is shown.
  • the current waveform transient current value is only 2. 5A,. It can be seen that the invention has obvious effects on the limitation of the battery-on load transient high current.
  • the invention When the battery is connected to the load, the invention opens the discharge switch tube for a time delay, and avoids a large current output at the moment when the discharge output port of the battery is connected to the load, thereby preventing an accident of causing fire and injury.
  • the discharge electrode piece exposed by the protection tree is blocked by the discharge switch tube, and there is no leakage of electricity, which prolongs the storage time of the battery.
  • the present invention changes the on-resistance of the discharge switch tube from large to small, and effectively suppresses a transient large current.
  • the present invention also provides a battery discharge protection method. See Figure 8, the specific steps are as follows.
  • Step S801 Acquire a feedback voltage of the discharge port when the battery is connected to the load;
  • Step S802 controlling the discharge switch tube connected to the discharge port in the battery protection circuit to be turned on, and changing the on-resistance of the discharge switch tube from large to small, reducing the increase speed of the discharge current of the battery, and effectively suppressing the discharge of the battery. Transient high current.

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Protection Of Static Devices (AREA)

Description

一种电池保护装置及保护方法 技术领域
本发明涉及电子电路领域, 特别涉及一种电池保护装置及保护方法。
背景技术
通用的可充电池保护方案是电芯电压通过两个串接的充电开关和放电开 关向负载输出,如果电芯电压在电池保护芯片设定的范围内, 充电开关和放电 开关一直是开通的, 随时可以向外输出大的电流。 由于电池的极片棵露在空气 中, 容易被外界的导电物体接触到, 当电池的放电输出端正、 负极片间有导体 短路, 电池瞬间有大电流输出, 由此而产生极片打火, 易引发火灾或烫伤的事 故。
可充电池用在手持电器上,更换电池时,由于电池对电器线路电容的充电, 电池极片在上电瞬间有大电流流通, 出现极片打火碳化。 经多次更换电池产生 的打火碳化之后, 电池极片接触不良, 必须维修或更换电池极片, 电器才能正 常供电, 影响电池和电器的可靠性。
目前, 过流保护多数是先把输出电流转换成电压进行采样,将采样电压与 预先设定的基准电压比较,根据比较结果调整电池放电开关管的工作状态, 达 到改变输出电流的目的。但由于电流控制环路的延迟作用,对于输出快速变化 的大电流来说,在限流控制开始动作时, 电池的实际输出电流已经超出预先设 定的限制电流值。 在这段延迟时间内, 快速的瞬间大电流可能已造成事故。
参见图 1 , 示出现有的电池保护装置, 包括充放电控制逻辑器 U1和电压 比较器 U2 , 电压比较器 U2—输入端接入基准电压 Vref , 另一输入端通过电阻 RS连接电池放电端口负极 P-, 充放电控制逻辑器 U1 —输出端连接放电 M0S 管 Q1的栅极, 另一输出端连接充电 M0S管 Q2的栅极; 放电 M0S管 Q1源极极 连接电芯的负极, 漏极连接充电 M0S管 Q2的源极, 充电 M0S管 Q2的漏极连接 放电端口负极 P -。 放电 M0S管 Q1控制放电, 充电 M0S管 Q2控制充电。
在正常情况下, 放电 M0S管 Ql、 充电 M0S管 Q2都处于导通状态, 导通时 有一定的导通电阻 Rds ( on ), 当电池放电端口正极 P+、 P -间加上负载后, 电 池的输出电流会在导通的放电 M0S管 Ql、 充电 M0S管 Q2上产生压降, 电压比 较器 U2把放电端口负极 P-的采样电压与预先设置的基准电压 Vref 进行比较, 电池输出电流大于限定值时,放电端口负极 P-的采用电压高于基准电压 Vr ef , 电压比较器 U1将改变输出状态, 充放电控制逻辑器 U1控制放电 M0S管 Q1断 开, 电池停止放电。
这种控制方式先对电流不做限制,待电流大于设定值时,再做限制。但是, 电路把放电端口负极 P-的采样电压与基准电压 Vref作比较, 然后再输出信号 Dout去控制放电 M0S管 Q1断开, 这个过程有一定的延迟时间。 因为该延迟时 间存在, 如果电池输出的电路电流快速上升, 放电 M0S管 Q 1断开时, 电池输 出的电流比实际要限制的电流值将会大得多。例如,有一款用上述限流保护方 案的电池, 线路设置的放电输出电流极限时 3A , 但是, 当这个电池在给手持 电器供电瞬间 (该电器正常工作时的最大平均电流是 1. 7A ), 测试到的瞬间峰 值电流可达 15A (见图 2 )。
可见, 现有电池放电保护装置的缺陷在于, 由于平时电池对外的供电开关 是常通的, 电池的放电输出端口只要接上负载就有电流输出,输出如果突然短 路,很容易发生打火伤人的事故。 并且打火事故使电池极片易出现碳化接触不 良的现象, 影响电池极片的使用寿命, 从而影响电子产品的可靠性。
发明内容
本发明的目的提供一种电池保护装置,该电池保护装置有效抑制的瞬态大 电流, 防止发生打火伤人的事故, 增强电池使用的安全性。
本发明一种电池保护装置, 包括充放电控制逻辑器, 一输出端连接第一
M0S管的栅极(Q1 ), 另一输出端连接第二 M0S管 (Q2 ) 的栅极; 第一 M0S管 ( Q1 )源极连地, 漏极连接第二 M0S管(Q2 )源极, 第二 M0S管( Q2 )的漏极 连接放电端口负极(P- ); 还包括: 反馈端(S )和放电控制单元: 放电控制单 元一端连接反馈端(S ), —端连接放电端口; 反馈端(S ), 用于电池接通负载 时, 获取反馈电压; 放电控制单元, 用于在反馈端 (S )获得反馈电压时, 控 制放电开关管延时导通, 且使放电开关管的导通电阻由大到小变化。
优选的, 所述放电控制单元包括第三 M0S管 (Q 3 )、 第四 M0S管 (Q 和 第五 M0S管 (Q5 ), 第五 M0S管 (Q5 ) 源极接充电第二 M0S管 ( Q2 ) 的漏极, 第五 M0S管(Q5 )漏极接放电端口负极(P - ), 第五 M0S管(Q5 )栅极通过并 联的第一电容(CI )接地, 还接到第三 MOS管(Q3)的漏极; 第三 M0S管( Q3 ) 的源极接放电端口正极( P+ ),栅极接到放电端口正极( P+ ), 还接到第四 M0S 管 (Q4) 的漏极; 第四 M0S管 (Q4) 源极接地, 栅极接到反馈端 (S)。
优选的, 所述放电控制单元还包括与第一电容(C1 )并联连接的第二电阻 (R2)。
优选的, 第四 M0S管 (Q 栅极通过第六电阻(R6 )接地。
优选的, 放电控制单元包括第三 M0S管 (Q3)和第四 M0S管 (Q4 ), 第三 M0S 管 (Q3) 漏极接放电端口正极(P+), 栅极通过第三电阻(R3)连接放电 端口正极(P+), 还接第四 M0S管(Q4)的漏极; 第四 M0S管(Q4)源极接地, 栅极接反馈端 S; 第三 M0S管 ( Q3 ) 的栅极连接第一 M0S管 ( Q1 )栅极, 第一 M0S管 (Q1 )栅极与电芯负极之间并联第一电容(C1 )。
优选的, 放电控制单元包括还包括第一二极管 (D1 ), 第一二极管 (D1 ) 的阳极连接放电第一 M0S管( Q1 )栅极, 阴极连接电控制逻辑器的放电输出端。
优选的, 第四 M0S管 (Q 的栅极通过第六电阻(R6)接地。
优选的, 放电控制单元包括第五 M0S管 (Q5 ), 第五 M0S管 ( Q5 ) 源极接 电池的充电端口 (C+), 栅极接反馈端 S,源极和栅极之间接第一电容(C1 ), 漏极接放电端口正极( P+ )。
优选的, 放电控制单元还包括与第一电容(C1 )并联的第二电阻(R2)。 本发明还提供一种电池保护方法, 该方法可有效抑制的瞬态大电流, 防止 发生打火伤人的事故, 增强电池使用的安全性。
本发明一种电池保护方法, 该方法还包括: 在电池接通负载时, 获取放 电端口的反馈电压;控制电池保护电路中与放电端口相连接的放电开关管延时 导通, 使放电开关管的导通电阻由大到小变化。 与现有技术相比, 本发明具有 以下优点:
本发明在电池接通负载时,延时打开放电开关管, 避免电池的放电输出端 口接上负载的瞬间有较大电流输出, 防止发生打火伤人的事故。 因保护棵露在 外的放电极片被放电开关管隔断, 无漏电之忧, 延长了电池的存储时间。 并且 本发明使放电开关管的导通电阻由大到小变化, 有效抑制的瞬态大电流。
附图说明 图 1为现有电池保护装置结构图;
图 2为现有电池保护装置测试效果图;
图 3为本发明的电池保护装置结构图;
图 4为本发明的电池保护装置第一实施例结构图;
图 5为本发明的电池保护装置第二实施例结构图;
图 6为本发明的电池保护装置第三实施例结构图;
图 7为本发明电池输出电流波形图;
图 8为本发明电池保护方法流程图。 具体实施方式 为使本发明的上述目的、特征和优点能够更加明显易懂, 下面结合附图和 具体实施方式对本发明作进一步详细的说明。
本发明在电池放电输出端增加一个反馈端 s作为负载接通的判断,当电池 与指定的负载接通时, 反馈端 s获得一个反馈电压, 当反馈电压符合要求时, 指令放电开关管开始导通,放电开关管的导通有一个由大电阻到小电阻的变阻 过程, 以抑制电池放电的瞬态大电流。
参见图 3 , 示出本发明的电池保护装置, 包括充放电控制逻辑器 U1 , 充放 电控制逻辑器 U1—端通过电阻 RS连接电池放电端口负极 P-, 充放电控制逻 辑器 U1—输出端连接放电 M0S管 Q1的栅极, 另一输出端连接充电 M0S管 Q2 的栅极;放电 M0S管 Q1源极极连接电芯的负极, 漏极连接充电 M0S管 Q2的源 极, 充电 M0S管 Q2的漏极连接放电端口负极 P-;
设置一反馈端 S , 反馈端 S与放电端口正极 P+或放电端口负极 P-连接, 反馈端 S连接一放电控制单元 1 1。 当电池接通负载后, 放电控制单元 1 1在反 馈端 S获取反馈电压, 当反馈电压达到设定值时, 放电控制单元 1 1控制放电 开关管延时导通,且使放电开关管的导通电阻由大到小变化,有效抑制电池放 电的瞬态大电流。
第一实施例。
参见图 4 , 示出本发明电池保护装置第一实施例, 包括充放电控制逻辑器 U1 , 充放电控制逻辑器 U1—端通过电阻 RS连接电池充电端口负极 C- , 充放 电控制逻辑器 U1—输出端连接放电 M0S管 Q1 的栅极, 另一输出端连接充电 MOS管 Q2的栅极; 放电 MOS管 Q1源极连接电芯的负极, 漏极连接充电 M0S管 Q2的源极, 放电端口正极 P+、 充电端口正极 C+与电芯的正极连接;
还包括与放电端口正极 P+连接的反馈端 S , 放电控制单元 11包括 M0S管 Q3、 MOS管 Q4和 M0S管 Q5 , M0S管 Q5源极接充电 M0S管 Q2的漏极, M0S管 Q5漏极接放电端口负极 P-, MOS管 Q5栅极通过并联的电容 C 1和电阻 R2接地, 还通过电阻 R1接到 M0S管 Q3的漏极; M0S管 Q3的源极接放电端口正极 P+, 栅极通过电阻 R3接到放电端口正极 P+,还通过电阻 R4接到 M0S管 Q4的漏极; M0S管 Q4源极接地, 栅极通过电阻 R5接到反馈端 S,还通过电阻 R6接地。
电池加上负载时, 反馈端 S从放电端口正极 P+获得一正反馈电压输入, 使 M0S管 Q4导通, M0S管 Q4导通后, M0S管 Q 3获得偏置电压导通, M0S管 Q3 导通后, 电池正极电压通过 M0S管 Q 3、 电阻 R1对电容 C1充电。 随着电容 C1 上的充电电压升高, 当充电电压大于 M0S管 Q5的导通电压时, M0S管 Q5由断 开转入导通, 放电端口正极 P+、 P_有电流输出。
在电容 C1充电期间, M0S管 Q5的导通电阻有一个由大到小的变化过程, 限制了电池输出的瞬态大电流。 本发明还可通过调整电阻 R1的阻值和电容 C1 的电容值, 改变 M0S管 Q5导通电阻的变化速度, 以适应不同的负载电路的要 求。
该实施例中, M0S管 Q4和 M0S管 Q5为 N型场效应开关管, M0S管 Q 3为 P 型场效应开关管。 M0S管 Q5为放电开关管。
第二实施例。
参见图 5 , 示出本发明电池保护装置第二实施例, 包括充放电控制逻辑器 U1 , 充放电控制逻辑器 U1—端通过电阻 RS连接电池放电端口负极 P- , 充放 电控制逻辑器 U1—输出端连接放电 M0S管 Q1 的栅极, 另一输出端连接充电 M0S管 Q2的栅极; 放电 M0S管 Q1源极极连接电芯的负极, 漏极连接充电 M0S 管 Q2的源极, 放电端口正极 P+连接电芯的正极;
还包括与放电端口正极 P+连接的反馈端 S , 放电控制单元 11包括 M0S管 Q3和 M0S管 Q4 , M0S管 Q3漏极接放电端口正极 P+, 栅极通过电阻 R3接放电 端口正极 P+, 还通过电阻 R4接 M0S管 Q4的漏极; M0S管 Q4源极接地, 栅极 通过电阻 R5接反馈端 S,并通过电阻 R6到地; M0S管 Q3的漏极通过电阻 R1 连接放电 MOS管 Q1栅极, MOS管 Q1栅极与电芯负极之间并联电容 CI和电阻 R2 ; 二极管 D1的阳极连接放电 M0S管 Q1栅极, 阴极连接电控制逻辑器 U1的 放电输出端 Dout。
电池加上负载时, 反馈端 S 有一个正反馈电压输入, 该正反馈电压将使 M0S管 Q4导通, M0S管 Q4导通后, M0S管 Q 3得到偏置电压导通, M0S管 Q 3 导通后, 电池正极电压通过 M0S管 Q 3、 电阻 R1对电容 C 1充电。 随着电容 C1 上充电电压升高, M0S管 Q1由断开转入导通。 在电容 C1充电期间, M0S管 Q1 的导通电阻有一个由大到小的变化过程, 限制了电池输出的瞬态大电流。通过 调整电阻 R1的阻值和 C 1的电容值,可以调节 M0S管 Q1导通电阻的变化速度, 以适应不同的负载电路的要求。
该实施例中, M0S管 Q4为 N型场效应开关管, M0S管 Q 3为 P型场效应开 关管。 M0S管 Q1为放电开关管。
第三实施例。
参见图 6 , 示出本发明电池保护装置第三实施例, 包括充放电控制逻辑器 U1 , 充放电控制逻辑器 U1—端通过电阻 RS连接电池放电端口负极 P- , 充放 电控制逻辑器 U1—输出端连接放电 M0S管 Q1 的栅极, 另一输出端连接充电 M0S管 Q2的栅极; 放电 M0S管 Q 1源极极连接电芯的负极, 漏极连接充电 M0S 管 Q2的源极, 放电端口正极 P+连接电芯的正极;
还包括与放电端口正极 P+连接的反馈端 S , 放电控制单元 1 1包括 M0S管 Q5 , M0S管 Q5源极接充电端口正极 C+ , 栅极通过电阻 R1接反馈端 S,源极和 控制栅极之间接并联的电容 C1和电阻 R2 , 漏极接放电端口正极 P+。
电池接通负载时, 反馈端 S通过负载电路与电池放电端口负极 P-连接, 电芯正极电压通过电阻 R1对电容 C1充电, 随着电容 C 1上充电电压升高, M0S 管 Q5由断开转入导通。 在电容 C1充电期间, M0S管 Q5的导通电阻有一个有 大到小的变化过程, 限制了电池输出的瞬态大电流。 通过调整电阻 R1的阻值 和电容 C1的电容值, 可以调节 M0S管 Q5导通电阻的变化速度, 以适应不同的 负载电^ "求。
该实施例中, M0S管 Q5为 P型场效应开关管。 M0S管 Q5为放电开关管。 参见图 7 , 示出本发明电池输出电流波形。 该电流波形瞬态电流值只有 2. 5A,。 可见, 本发明对电池接通负载瞬态大电流限制效果明显。
本发明在电池接通负载时,延时打开放电开关管, 避免电池的放电输出端 口接上负载的瞬间有较大电流输出, 防止发生打火伤人的事故。 因保护棵露在 外的放电极片被放电开关管隔断, 无漏电之忧, 延长了电池的存储时间。 并且 本发明使放电开关管的导通电阻由大到小变化, 有效抑制了的瞬态大电流。
基于上述电池保护装置,本发明还提供一种电池放电保护方法。参见图 8 , 具体步骤如下。
步骤 S801、 在电池接通负载时, 获取放电端口的反馈电压;
步骤 S802、 控制电池保护电路中与放电端口相连接的放电开关管延时导 通,且使放电开关管的导通电阻由大到小变化,降低电池放电电流的增加速度, 有效抑制电池放电的瞬态大电流。
以上所述仅为本发明的优选实施方式, 并不构成对本发明保护范围的限 定。 任何在本发明的精神和原则之内所作的任何修改、 等同替换和改进等, 均 应包含在本发明的权利要求保护范围之内。

Claims

权 利 要 求
1、 一种电池保护装置, 包括充放电控制逻辑器, 一输出端连接第一 M0S 管的栅极(Q1 ), 另一输出端连接第二 M0S管(Q2)的栅极; 第一 M0S管(Q1 ) 源极连地, 漏极连接第二 M0S管(Q2)源极, 第二 M0S管(Q2)的漏极连接放 电端口负极(P-); 其特征在于, 还包括: 反馈端(S)和放电控制单元: 放电 控制单元一端连接反馈端 ( S ), —端连接放电端口;
反馈端 (S), 用于电池接通负载时, 获取反馈电压;
放电控制单元, 用于在反馈端 (S)获得反馈电压时, 控制放电开关管延 时导通, 且使放电开关管的导通电阻由大到小变化。
2、 如权利要求 1所述的装置, 其特征在于, 所述放电控制单元包括第三
M0S管 ( Q3 )、 第四 M0S管 ( Q4 )和第五 M0S管 ( Q5 ), 第五 M0S管 ( Q5 ) 源极 接充电第二 M0S管( Q2 )的漏极,第五 M0S管( Q5 )漏极接放电端口负极( P -), 第五 M0S管(Q5 )栅极通过并联的第一电容(C1 )接地,还接到第三 M0S管(Q3) 的漏极; 第三 M0S管 ( Q3 ) 的源极接放电端口正极( P+ ) ,栅极接到放电端口 正极(P+), 还接到第四 M0S管 (Q4) 的漏极; 第四 M0S管 ( Q4 ) 源极接地, 栅极接到反馈端 ( S )。
3、 如权利要求 2所述的装置, 其特征在于, 所述放电控制单元还包括与 第一电容(C1 )并联连接的第二电阻 2)。
4、 如权利要求 2所述的装置, 其特征在于, 第四 M0S管 (Q4)栅极通过 第六电阻 6)接地。
5、 如权利要求 1所述的装置, 其特征在于, 放电控制单元包括第三 M0S 管 (Q3)和第四 M0S管 (Q4), 第三 M0S管 (Q3) 漏极接放电端口正极(P+), 栅极通过第三电阻 3)连接放电端口正极(P+), 还接第四 M0S管 (Q 的 漏极; 第四 M0S管 (Q 源极接地, 栅极接反馈端 S; 第三 M0S管 (Q3)的栅 极连接第一 M0S管(Q1 )栅极, 第一 M0S管(Q1 )栅极与电芯负极之间并联第 一电容(Cl)。
6、 如权利要求 5所述的装置, 其特征在于, 放电控制单元包括还包括第 一二极管 ( D1 ), 第一二极管 ( D1 ) 的阳极连接放电第一 M0S管 ( Q1 )栅极, 阴极连接电控制逻辑器的放电输出端。
7、 如权利要求 5所述的装置, 其特征在于, 第四 M0S管 (Q4) 的栅极通 过第六电阻 6)接地。
8、 如权利要求 5所述的装置, 其特征在于, 放电控制单元包括第五 M0S 管 (Q5), 第五 M0S管 (Q5) 源极接电池的充电端口 (C+), 栅极接反馈端 S, 源极和栅极之间接第一电容 ( C1 ), 漏极接放电端口正极( P+ )。
9、 如权利要求 8所述的装置, 其特征在于, 放电控制单元还包括与第一 电容(C1 )并联的第二电阻 2)。
10、 一种电池保护方法, 其特征在于, 该方法还包括:
在电池接通负载时, 获取放电端口的反馈电压;
控制电池保护电路中与放电端口相连接的放电开关管延时导通,使放电开 关管的导通电阻由大到 d、变化。
PCT/CN2011/073362 2011-04-27 2011-04-27 一种电池保护装置及保护方法 WO2012145897A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/073362 WO2012145897A1 (zh) 2011-04-27 2011-04-27 一种电池保护装置及保护方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/073362 WO2012145897A1 (zh) 2011-04-27 2011-04-27 一种电池保护装置及保护方法

Publications (1)

Publication Number Publication Date
WO2012145897A1 true WO2012145897A1 (zh) 2012-11-01

Family

ID=47071552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073362 WO2012145897A1 (zh) 2011-04-27 2011-04-27 一种电池保护装置及保护方法

Country Status (1)

Country Link
WO (1) WO2012145897A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104578307A (zh) * 2015-01-23 2015-04-29 浙江大学 一种容错锂离子电池组的结构及故障检测方法
CN107706966A (zh) * 2017-09-22 2018-02-16 安徽皖通邮电股份有限公司 用于DyingGasp功能的延长断电保持时间的方法
CN111416449A (zh) * 2020-03-30 2020-07-14 维沃移动通信有限公司 一种无线充设备
WO2021179779A1 (zh) * 2020-03-09 2021-09-16 深圳市创芯微微电子有限公司 电池保护芯片和电池保护板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001127613A (ja) * 1999-10-28 2001-05-11 Harumi Suzuki 突入電流防止回路
JP2005045957A (ja) * 2003-07-24 2005-02-17 Mitsubishi Electric Corp 突入電流防止回路
CN1979992A (zh) * 2005-12-07 2007-06-13 比亚迪股份有限公司 一种二次电池组的充放电保护电路
CN101252309A (zh) * 2008-02-04 2008-08-27 中兴通讯股份有限公司 一种直流电源缓启动控制电路
CN201576933U (zh) * 2009-12-15 2010-09-08 北京遥测技术研究所 一种抑制启动时产生瞬时浪涌电流的电路
CN101971450A (zh) * 2008-05-30 2011-02-09 松下电器产业株式会社 防冲击电流电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001127613A (ja) * 1999-10-28 2001-05-11 Harumi Suzuki 突入電流防止回路
JP2005045957A (ja) * 2003-07-24 2005-02-17 Mitsubishi Electric Corp 突入電流防止回路
CN1979992A (zh) * 2005-12-07 2007-06-13 比亚迪股份有限公司 一种二次电池组的充放电保护电路
CN101252309A (zh) * 2008-02-04 2008-08-27 中兴通讯股份有限公司 一种直流电源缓启动控制电路
CN101971450A (zh) * 2008-05-30 2011-02-09 松下电器产业株式会社 防冲击电流电路
CN201576933U (zh) * 2009-12-15 2010-09-08 北京遥测技术研究所 一种抑制启动时产生瞬时浪涌电流的电路

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104578307A (zh) * 2015-01-23 2015-04-29 浙江大学 一种容错锂离子电池组的结构及故障检测方法
CN104578307B (zh) * 2015-01-23 2017-01-18 浙江大学 一种容错锂离子电池组的结构及故障检测方法
CN107706966A (zh) * 2017-09-22 2018-02-16 安徽皖通邮电股份有限公司 用于DyingGasp功能的延长断电保持时间的方法
WO2021179779A1 (zh) * 2020-03-09 2021-09-16 深圳市创芯微微电子有限公司 电池保护芯片和电池保护板
CN111416449A (zh) * 2020-03-30 2020-07-14 维沃移动通信有限公司 一种无线充设备

Similar Documents

Publication Publication Date Title
CN203166467U (zh) 一种过压保护电路
US9099873B2 (en) Over-current and over-voltage protection circuit and method for an electronic cigarette
US20170170653A1 (en) Explosion-proof circuit, charging circuit and charging/discharging protection circuit of battery
CN102170117B (zh) 一种电池保护装置及保护方法
WO2016119694A1 (zh) 电池保护电路、电能提供装置与电子装置
CN203398771U (zh) 一种用于电子烟的过流过压保护电路
CN104218558B (zh) 防浪涌高压保护电路
WO2012145897A1 (zh) 一种电池保护装置及保护方法
CN202014087U (zh) 便携式系统锂电池充电保护电路
WO2019019505A1 (zh) 一种抑制浪涌电流的电路结构
CN104009509A (zh) 开关电路、半导体装置以及电池装置
TW201422463A (zh) 電動車輛的電能管理裝置和方法
CN114336885B (zh) 一种过压过流充电保护装置及铅酸电池充电电路
CN107425599B (zh) 用于电源补偿器的浪涌保护电路
CN102957177A (zh) 充电管理系统
CN214280911U (zh) 过流保护电路、风机以及清洁设备
CN103701313A (zh) 一种用于dc-dc直流转换器的阻尼限流电路
CN212695971U (zh) 一种具有限流功能的短路保护模块
CN210137202U (zh) 电池保护电路及机器人
CN210350810U (zh) 电源充电保护装置
CN209692346U (zh) 一种过流保护电路模块
CN202150690U (zh) 辅助电源的保护装置
TWI686028B (zh) 電池保護架構
CN112952924A (zh) 一种电池管理装置以及一种电器装置
CN114256810A (zh) 一种电池保护控制电路和相关芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864541

Country of ref document: EP

Kind code of ref document: A1