WO2012144673A1 - Apparatus for manufacturing semiconductor device - Google Patents
Apparatus for manufacturing semiconductor device Download PDFInfo
- Publication number
- WO2012144673A1 WO2012144673A1 PCT/KR2011/002918 KR2011002918W WO2012144673A1 WO 2012144673 A1 WO2012144673 A1 WO 2012144673A1 KR 2011002918 W KR2011002918 W KR 2011002918W WO 2012144673 A1 WO2012144673 A1 WO 2012144673A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- supply
- process fluid
- receiving groove
- support
- semiconductor device
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 87
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 68
- 238000000034 method Methods 0.000 claims abstract description 256
- 239000012530 fluid Substances 0.000 claims abstract description 232
- 230000008569 process Effects 0.000 claims abstract description 230
- 230000007246 mechanism Effects 0.000 claims description 151
- 230000004308 accommodation Effects 0.000 claims description 55
- 238000003860 storage Methods 0.000 claims description 50
- 238000002347 injection Methods 0.000 claims description 20
- 239000007924 injection Substances 0.000 claims description 20
- 238000007789 sealing Methods 0.000 claims description 17
- 238000001035 drying Methods 0.000 claims description 13
- 230000003028 elevating effect Effects 0.000 claims description 12
- 238000004140 cleaning Methods 0.000 claims description 9
- 238000005406 washing Methods 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims description 4
- 230000008878 coupling Effects 0.000 claims 3
- 238000010168 coupling process Methods 0.000 claims 3
- 238000005859 coupling reaction Methods 0.000 claims 3
- 238000000926 separation method Methods 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 abstract description 6
- 239000010703 silicon Substances 0.000 abstract description 6
- 238000009434 installation Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 239000010949 copper Substances 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/001—Apparatus specially adapted for electrolytic coating of wafers, e.g. semiconductors or solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/288—Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76898—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
Definitions
- the present invention relates to a semiconductor device manufacturing apparatus for manufacturing a semiconductor device having a through electrode (Through Silicon Via, TSV).
- a semiconductor device is mounted on a printed circuit board, and is subjected to a wire bonding process of connecting the semiconductor device and the printed circuit board with wires to electrically connect the semiconductor device and the printed circuit board.
- a wire bonding process of connecting the semiconductor device and the printed circuit board with wires to electrically connect the semiconductor device and the printed circuit board.
- a technology for improving performance of a semiconductor device and a final product including the same has been developed by stacking two or more semiconductor devices and electrically connecting the stacked semiconductor devices. Two or more stacked semiconductor devices are electrically connected to each other through a wire, which causes signal delays and the like, and there is a limit in miniaturizing the semiconductor device and the final product including the same.
- TSV Through Silicon Via
- a semiconductor device having a through electrode is mainly manufactured by a dry process.
- the dry process has a difficulty in improving the quality of a semiconductor device having a through electrode, such as difficulty in uniformly forming the surface of the through electrode.
- the semiconductor element manufacturing apparatus which can manufacture the semiconductor element which has a through electrode by the wet process is actively performed.
- the present invention has been made to solve the above-described needs, and an object of the present invention is to provide a semiconductor device manufacturing apparatus capable of manufacturing a semiconductor device having a through electrode by a wet process.
- the present invention may include the following configuration.
- the semiconductor device manufacturing apparatus may include a support for supporting a wafer for manufacturing a semiconductor device having a through electrode, and a supply for supplying a process fluid for forming the through electrode.
- the supply unit may include an accommodation mechanism in which an accommodation groove for accommodating the process fluid is formed, and a supply mechanism in which a first flow path through which the process fluid is supplied is formed.
- the supply mechanism may include a supply hole formed to be connected to each of the first flow path and the accommodation groove so that the process fluid supplied to the first flow path is supplied to the accommodation groove.
- the supply hole may be formed to be inclined with respect to the vertical direction from the supply portion toward the support portion so that the process fluid accommodated in the receiving groove is moved by the process fluid discharged from the supply hole.
- a semiconductor device manufacturing apparatus includes a support for supporting a wafer for manufacturing a semiconductor device having a through electrode;
- a supply unit including a receiving groove in which a process for forming the through electrode is formed, and supplying a process fluid for forming the through electrode in the receiving groove; And it may include a seal coupled to the supply to seal the receiving groove.
- the supply unit may include a supply hole for supplying the process fluid to the receiving groove so that the process fluid accommodated in the receiving groove is rotated relative to the center of the wafer supported by the support.
- the supply hole may be formed to be inclined in the circumferential direction with respect to the center of the wafer supported by the support.
- the present invention can manufacture a semiconductor device having a through electrode by a wet process, thereby achieving an effect of improving the quality of the semiconductor device having a through electrode.
- FIG. 1 and 2 are schematic cross-sectional views of a semiconductor device manufacturing apparatus according to the present invention.
- FIG. 3 is an enlarged bottom view of portion A of FIG. 2 for a feed mechanism according to the present invention
- FIG. 4 is a cross-sectional view taken along line I-I of FIG. 3 for a feed hole according to the present invention.
- FIG. 5 is a conceptual plan view for explaining a state in which the process fluid accommodated in the receiving groove rotates in the semiconductor device manufacturing apparatus according to the present invention
- FIG. 6 and 7 are enlarged views of portion B of FIG. 2 for the seal according to the invention.
- FIG. 8 is a cross-sectional view illustrating a first electrode member and a second electrode member in a semiconductor device manufacturing apparatus according to the present invention.
- FIG. 9 is an enlarged cross-sectional view of a second electrode member according to a modified embodiment of the present invention.
- 10 to 14 are schematic cross-sectional views for explaining the operation relationship of the semiconductor device manufacturing apparatus according to the present invention
- 15 is a cross-sectional view based on line II-II of FIG. 12 for explaining the discharge hole according to the present invention.
- 16 and 17 are schematic cross-sectional views for describing the second channel and the injection hole in the semiconductor device manufacturing apparatus according to the present invention.
- FIGS. 2 is an enlarged view of portion B of FIG. 2 with respect to the sealing portion
- FIG. 8 is a cross-sectional view for explaining the first electrode member and the second electrode member in the semiconductor device manufacturing apparatus according to the present invention
- FIG. 9 is a modified embodiment of the present invention.
- FIG. 10 to 14 is a schematic cross-sectional view for explaining the operating relationship of the semiconductor device manufacturing apparatus according to the present invention
- Figure 15 is for explaining the discharge hole according to the present invention
- a cross-sectional view taken on the basis of -II lines, 16 and 17 are a schematic sectional view for illustrating the second flow path and the injection port in the semiconductor device manufacturing apparatus according to the present invention.
- a semiconductor device manufacturing apparatus 1 includes a support part 2 supporting a wafer 10 for manufacturing a semiconductor device having a through electrode (TSV). ), And a supply unit 3 to which a process fluid 100 (shown in FIG. 2) for supplying through electrodes is supplied.
- the process fluid 100 may be a liquid containing copper (Cu) for forming an electrode layer, a liquid containing silicon (Si) for forming an insulating layer, or the like.
- the support 2 supports the wafer 10.
- the wafer 10 has a through hole for forming a through electrode.
- a plurality of through holes may be formed in the wafer 10.
- the support part 2 may be installed to be positioned below the supply part 3.
- the wafer 10 may be attached to the support 2.
- the wafer 10 may be attached to the support 2 by suction force.
- the support unit 2 may be connected to a suction device (not shown) that provides a suction force.
- the support part 2 may include at least one suction hole (not shown) to allow the suction force provided from the suction device to be transferred to the wafer 10.
- the wafer 10 may be attached to the support part 2 by static electricity.
- the support 2 may be an electrostatic chuck (ESC).
- the support part 2 may be formed in a disk shape as a whole, but is not limited thereto and may be formed in another shape such as a square plate shape as long as it can stably support the wafer 10.
- a process fluid for forming a through electrode is supplied to the supply part 3.
- the supply unit 3 may be connected to the process fluid storage unit 20 in which the process fluid 100 is stored.
- the supply part 3 may include a receiving mechanism 31 and a supply mechanism 32.
- the accommodation mechanism 31 includes an accommodation groove 311 for accommodating the process fluid 100.
- the process fluid 100 supplied from the process fluid storage unit 20 may be accommodated in the accommodation groove 311.
- the process fluid 100 may be accommodated in the accommodating groove 311 to be in contact with the wafer 10 so as to form a through electrode for the wafer 10 supported by the support part 2.
- the receiving groove 311 may be formed in a cylindrical shape as a whole.
- the accommodation mechanism 31 may be formed in a cylindrical shape, one side of which is opened by the accommodation groove 311.
- the receiving mechanism 31 may be coupled to the supply mechanism 32.
- the process fluid 100 is supplied to the supply mechanism 32.
- the process fluid 100 may be supplied from the process fluid storage unit 20 to the supply mechanism 32, and may be supplied to the receiving groove 311 through the supply mechanism 32.
- the supply mechanism 32 includes a first flow passage 321 and a supply hole 322.
- the first passage 321 serves as a passage for the process fluid 100 to move.
- the first flow passage 321 is formed to be connected to the supply hole 322.
- the process fluid 100 may move along the first flow path 321 and then be supplied to the receiving groove 311 through the supply hole 322.
- the first passage 321 may be connected to the process fluid storage unit 20.
- the first flow passage 321 may be a through hole formed inside the supply mechanism 32.
- the first passage 321 may be formed in a cylindrical shape as a whole. When the supply mechanism 32 includes a plurality of supply holes 322, the supply holes 322 may be formed to be connected to the first passage 321.
- the supply hole 322 is formed to be connected to each of the first passage 321 and the receiving groove 311.
- the supply hole 322 may be formed to penetrate through one surface 32a (shown in FIG. 4) of the supply mechanism 32.
- One surface 32a of the supply mechanism 32 is a surface facing the support part 2 among the surfaces of the supply mechanism 32.
- the supply hole 322 may be inclined with respect to the vertical direction (the arrow direction C) from the supply part 3 toward the support part 2.
- the process fluid 100 discharged from the supply hole 322 is a process fluid 100 accommodated in the receiving groove 311 in a direction in which the supply hole 322 is inclined with respect to the vertical direction (C arrow direction). ) Can be applied. That is, the process fluid 100 may be supplied to the receiving groove 311 at an inclined angle along the supply hole 322, thereby applying a force to the process fluid 100 accommodated in the receiving groove 311. . Accordingly, the process fluid 100 accommodated in the receiving groove 311 may be moved by the process fluid 100 discharged from the supply hole 322. Accordingly, the semiconductor device manufacturing apparatus 1 according to the present invention can achieve the following effects.
- the semiconductor device manufacturing apparatus 1 according to the present invention may be uniformly transmitted to the wafer 10 supported by the support part 2 while the process fluid 100 accommodated in the receiving groove 311 moves. Therefore, the through electrode having improved quality may be formed on the wafer 10.
- the semiconductor device manufacturing apparatus 1 does not have a separate mechanism for moving the process fluid 100 accommodated in the receiving groove 311, such as an impeller (Imperller), the receiving groove 311 The process fluid 100 accommodated in) can be moved. Therefore, the semiconductor device manufacturing apparatus 1 according to the present invention can form a through electrode having an improved quality on the wafer 10 at a low cost.
- a separate mechanism for moving the process fluid 100 accommodated in the receiving groove 311, such as an impeller (Imperller), the receiving groove 311 The process fluid 100 accommodated in) can be moved. Therefore, the semiconductor device manufacturing apparatus 1 according to the present invention can form a through electrode having an improved quality on the wafer 10 at a low cost.
- the supply hole 322 is in the vertical direction (C arrow direction, based on the center (D, shown in FIG. 2) of the wafer 10 supported by the support part 2. It may be formed to be inclined in the circumferential direction (shown in E arrow direction, shown in Figure 4) with respect to Figure 4).
- the process fluid 100 discharged from the supply hole 322 may provide a rotational force to the process fluid 100 accommodated in the receiving groove 311 in the circumferential direction (E arrow direction). Accordingly, the process fluid 100 accommodated in the accommodating groove 311 forms a center (D, shown in FIG. 2) of the wafer 10 by the process fluid 100 discharged from the supply hole 322. It can be rotated relative to the reference.
- the process fluid 100 accommodated in the receiving groove 311 is moved by the centrifugal force while rotating based on the center (D, shown in FIG. 2) of the wafer 10 supported by the support part 2. It can be delivered to the edge of the wafer 10. Accordingly, the semiconductor device manufacturing apparatus 1 according to the present invention may form a through electrode having an improved quality up to the edge of the wafer 10.
- the supply mechanism 32 may include a plurality of supply holes 322.
- the supply holes 322 may be formed along circumferences having different diameters with respect to the center (D, shown in FIG. 2) of the wafer 10 supported by the support part 2. Accordingly, the process fluid 100 accommodated in the receiving groove 311 may be rotated by the process fluid 100 discharged from the supply holes 322. Therefore, the semiconductor device manufacturing apparatus 1 according to the present invention may form a through electrode having an improved quality up to the edge of the wafer 10.
- the semiconductor device manufacturing apparatus 1 according to the present invention since the process fluid 100 supplied from the first flow passage 321 is distributed through the supply holes 322 and supplied to the receiving groove 311, The process fluid 100 may be uniformly supplied to the wafer 10 as a whole. Therefore, the semiconductor device manufacturing apparatus 1 according to the present invention may form a through electrode having an improved uniformity with respect to the wafer 10.
- a plurality of supply holes 322 may be formed along circumferences having different sizes with respect to the center (D, shown in FIG. 3) of the wafer 10 supported by the support part 2. That is, a plurality of supply holes 322 may be formed along each of circumferences of N (N is an integer greater than 1). In the circumference having a larger diameter than the other circumference, the number of the supply holes 322 may be formed to be approximately equal to or larger than the number of the supply holes 322 formed along the smaller circumference.
- the circumferences are circumferences centered on the same point. The centers of the circumferences may approximately coincide with the centers of the wafer 10 supported by the support 2. That is, the centers of the circumferences may be positioned on the same vertical line as the center D of the wafer 10 supported by the support 2.
- the supply mechanism 32 is formed along a plurality of first supply holes 322a formed along a first circumference R1 (shown in FIG. 3) and a second circumference R2 (shown in FIG. 3). It may include a plurality of second supply holes (322b).
- the first circumference R1 and the second circumference R2 may have different diameters with respect to the center D of the wafer 10 supported by the support part 2.
- the first supply holes 322a may be spaced apart from each other at equal intervals along the first circumference R1.
- the second supply holes 322b may be formed to be spaced apart from each other at equal intervals along the second circumference R2.
- first supply holes 322a and eight second supply holes 322b are formed, but the present invention is not limited thereto, and the first supply holes 322a and the second supply holes are not limited thereto.
- Each of the two or more 322b may be formed two or more and seven or less, or nine or more.
- the second circumference R2 may have a diameter larger than that of the first circumference R1.
- the second supply holes 322b formed along the second circumference R2 may be formed to be substantially coincident with or larger than the first supply holes 322a formed along the first circumference R1. It may be.
- the supply holes 322 are respectively disposed in the vertical direction (C arrow direction) with respect to the center (D, shown in FIG. 5) of the wafer 10 supported by the support part 2. 4 may be inclined in the circumferential direction (the direction of the E arrow). Accordingly, the process fluid 100 discharged from the supply holes 322 has a rotational force in the process fluid 100 accommodated in the receiving groove 311 (shown in FIG. 2) in the circumferential direction (E arrow direction). Can be provided. Therefore, the process fluid 100 accommodated in the receiving groove 311 (shown in FIG. 2) is formed by the process fluid 100 discharged from the supply holes 322 to form the center D of the wafer 10. It can be rotated relative to the reference.
- the process fluid 100 accommodated in the accommodation groove 311 may be rotated in one of a clockwise direction and a counterclockwise direction according to a direction in which the supply holes 322 are inclined.
- the process fluid 100 accommodated in the receiving groove 311 may rotate in a clockwise direction.
- a plurality of arrows in a clockwise direction in FIG. 5 shows a direction in which the process fluid 100 is discharged from the supply hole 322. Therefore, the semiconductor device manufacturing apparatus 1 according to the present invention may form a through electrode having improved uniformity on the wafer 10 as a whole, and provide a through electrode having an improved quality up to an edge of the wafer 10. Can be formed.
- the semiconductor device manufacturing apparatus 1 includes a sealing part 4 for sealing the receiving groove 311, and the support part ( It may include a lifting unit (5) for elevating (2).
- the seal 4 is coupled to the supply 3.
- the seal 4 may be in contact with the wafer 10 supported by the support 2. Accordingly, the sealing part 4 may seal the accommodating groove 311 so that a process for forming a through electrode with respect to the wafer 10 supported by the support part 2 is performed.
- the seal 4 may be in contact with an upper surface of an edge portion of the wafer 10.
- the sealing part 4 may be formed in a circular ring shape as a whole, but is not limited thereto. If the sealing part 4 is in contact with the wafer 10 supported by the support part 2 to seal the accommodating groove 311, an ellipse may be used. It may be formed in other forms such as form.
- the seal 4 may be coupled to the receiving mechanism 31.
- the sealing part 4 may include a fixing member 41, a contact member 42, and a moving groove 43.
- the fixing member 41 is coupled to the supply part 3 (shown in FIG. 2).
- the fixing member 41 may be coupled to the receiving mechanism 31.
- the fixing member 41 may include a protruding member 411 to be inserted into the receiving mechanism 31.
- the fixing member 41 may be coupled to the accommodation mechanism 31 by an interference fit method by inserting the protrusion member 411 into the accommodation mechanism 31.
- the fixing member 41 may be coupled to the receiving mechanism 31 by fastening means such as a bolt.
- the contact member 42 may be in contact with the wafer 10 supported by the support 2. When the support part 2 rises, the contact member 42 may contact the wafer 10 supported by the support part 2. When the support part 2 is lowered, the contact member 42 may be spaced apart from the wafer 10 supported by the support part 2. The contact member 42 may move closer to or further from the fixing member 41 by the moving groove 43. As shown in FIG. 6, when the contact member 42 is not in contact with the wafer 10 supported by the support part 2, the contact member 42 is moved by the movable groove 43. It may be located at a position spaced a predetermined distance from the fixing member (41). After the contact member 42 is brought into contact with the wafer 10 supported by the support 2, the lifter 5 continuously lifts the support 2, the contact as shown in FIG. 7. The member 42 may be moved in a direction closer to the fixing member 41.
- the sealing part 4 may not only contact the wafer 10 supported by the support part 2 to seal the accommodating groove 311, but also in the process of sealing the accommodating groove 311. By damaging the force applied to the wafer 10 supported by the support 2, it is possible to prevent the wafer 10 from being damaged.
- the seal 4 may be formed of a material having elasticity, for example, silicon, rubber, or the like.
- the moving groove 43 may be formed at a portion where the fixing member 41 and the contact member 42 are connected.
- the contact member 42 and the fixing member 41 may be spaced apart by a predetermined distance by the moving groove 43. When the contact member 42 contacts the wafer 10 supported by the support 2, the contact member 42 may move closer to the fixing member 41.
- the lifting unit 5 may raise and lower the support unit 2 between a first position and a second position.
- the seal 4 When the support 2 is located in the first position, the seal 4 is in contact with the wafer 10 supported by the support 2.
- the receiving groove 311 When the sealing part 4 contacts the wafer 10 supported by the support part 2, the receiving groove 311 may be sealed.
- the seal 4 When the support 2 is located in the second position, the seal 4 is spaced apart from the wafer 10 supported by the support 2.
- the receiving groove 311 may be opened.
- the lifting and lowering part 5 can raise the supporting part 2 to position the supporting part 2 in the first position.
- the receiving fluid 311 may be supplied with a process fluid 100 for forming a through electrode. Accordingly, a process for forming a through electrode for the wafer 10 may be performed.
- the lifting unit 5 can position the support 2 in the second position by lowering the support 2.
- the receiving groove 311 may be opened. Accordingly, the wafer 10 on which the through electrode is formed may be unloaded from the support 2, and a new wafer 10 may be loaded on the support 2.
- the process of unloading the wafer 10 from the support 2 and the process of loading the wafer 10 into the support 2 may be performed by separate transfer means (not shown).
- the lifting unit 5 may be coupled to the support unit 2.
- the lifting unit 5 is a cylinder method using a hydraulic cylinder or a pneumatic cylinder, a gear method using a motor, a rack gear and a pinion gear, and the like, using a motor and a ball screw.
- the support part 2 can be elevated using a ball screw method, a belt method using a motor, a pulley and a belt, a method using a linear motor, and the like.
- the lifting unit 5 may be installed in the chamber 200 (shown in FIG. 1).
- the support part 2, the supply part 3, and the lifting part 5 may be installed in the chamber 200.
- the support part 2 may be installed to be elevated in the chamber 200.
- the elevating unit 5 may elevate the supply unit 3.
- the lifting unit 5 may lower the supply unit 3 such that the sealing unit 4 contacts the wafer 10 supported by the support unit 2.
- the lifting unit 5 may raise the supply unit 3 so that the sealing unit 4 is spaced apart from the wafer 10 supported by the support unit 2.
- the supply part 3 may be installed to be elevated in the chamber 200.
- the lifting unit 5 may lift both the supporting unit 2 and the supply unit 3.
- the lifting unit 5 may raise and lower the support unit 2 and the supply unit 3 in directions opposite to each other. That is, the lifting unit 5 may lower the supply unit 3 when raising the support unit 2.
- the lifting unit 5 may raise the supply unit 3 when the support unit 2 is lowered.
- the semiconductor device manufacturing apparatus 1 may include a first electrode member 6 and a second electrode member 7.
- the first electrode member 6 is coupled to the supply part 3.
- the first electrode member 6 may be coupled to the supply mechanism 32 to be positioned in the first flow passage 321.
- the first electrode member 6 is supported by the support part 2 by causing the process fluid 100 accommodated in the receiving groove 311 to become an anode with respect to the wafer 10 supported by the support part 2.
- a process of forming a through electrode for the wafer 10 may be performed.
- the first electrode member 6 may be coupled to the supply mechanism 32 to be positioned in the supply hole 322.
- the first electrode member 6 may be coupled to the supply mechanism 32 such that the first electrode member 6 is positioned in both the first flow path 321 and the supply hole 322.
- the second electrode member 7 is coupled to the supply part 3.
- the second electrode member 7 may be coupled to the accommodation mechanism 31.
- the second electrode member 7 may contact the wafer 10 supported by the support part 2.
- the second electrode member 7 may be coupled to the accommodation mechanism 31 such that the second electrode member 7 is located outside the position where the sealing portion 4 is coupled to the accommodation mechanism 31. That is, the second electrode member 7 may be coupled to the accommodation mechanism 31 to be located outside the accommodation groove 311.
- the second electrode member 7 is in contact with the wafer 10 supported by the support part 2, so that the wafer supported by the support part 2 with respect to the process fluid 100 accommodated in the receiving groove 311 ( 10) may be a cathode.
- the semiconductor device manufacturing apparatus 1 may include a plurality of second electrode members 7, and the second electrode members 7 may be separated from each other by a predetermined distance and coupled to the supply part 3. Can be.
- the second electrode member 7 may include a moving member 71 and an installation member 72.
- the moving member 71 may be coupled to the installation member 72.
- the movable member 71 has a contact surface 711 for contacting the wafer 10 supported by the support part 2 and a spaced groove for moving the contact surface 711 closer to or farther from the installation member 72. 712 may be included.
- the contact surface 711 may contact the wafer 10 supported by the support part 2.
- the contact surface 711 may move closer to the installation member 72. Therefore, the moving member 71 buffers the force applied to the wafer 10 supported by the support 2 in the process of contacting the wafer 10 supported by the support 2, thereby providing the wafer 10. ) Can be prevented from being damaged.
- the contact surface 711 may be restored to its original shape by moving away from the installation member 72 as it is spaced apart from the wafer 10 supported by the support 2.
- the moving member 71 may be formed to a thin thickness to have elasticity.
- the installation member 72 is coupled to the supply portion 3 (shown in FIG. 2).
- the installation member 72 may be coupled to the accommodation mechanism 31.
- the second electrode member 7 may be coupled to the accommodation mechanism 31 by an interference fit method by inserting the installation member 72 into the accommodation mechanism 31.
- the second electrode member 7 may be coupled to the receiving mechanism 31 by a fastening means such as a bolt.
- the accommodation mechanism 31 has a discharge passage 312 through which the process fluid 100 is discharged from the accommodation groove 311.
- the discharge passage 312 may be connected to the process fluid storage 20.
- the process fluid storage 20 may have one side connected to the first passage 321 and the other side connected to the discharge passage 312. Accordingly, the process fluid 100 is supplied from the process fluid storage unit 20 to the receiving groove 311 through the first passage 321, and then through the discharge passage 312. Ejected from the 311 may be supplied to the process fluid storage unit 20 again. That is, the semiconductor device manufacturing apparatus 1 according to the present invention may perform a process of forming a through electrode on the wafer 10 while circulating the process fluid 100.
- the semiconductor device manufacturing apparatus 1 has a circulation for circulating the process fluid 100 between the process fluid storage unit 20 and the receiving groove 311. East 30 may be included.
- the circulation movement part 30 is supplied to the receiving groove 311 after the process fluid 100 is supplied from the process fluid storage part 20 to the receiving groove 311 by the supply mechanism 32.
- the process fluid 100 may be circulated to be discharged from the receiving groove 311 to be supplied to the process fluid storage 20.
- the process fluid 100 is supplied from the process fluid storage unit 20 to the receiving groove 311 through the first passage 321 and the supply hole 322, and then the discharge passage 312. It may be discharged from the receiving groove 311 through the supplied to the process fluid storage unit 20.
- the circulation moving unit 30 may be a circulation pump.
- the circulation movement unit 30 may include a first circulation movement mechanism 310 installed between one side of the process fluid storage unit 20 and the supply unit 3.
- the first circulation movement mechanism 310 may suck the process fluid 100 from the process fluid storage unit 20 and discharge the sucked process fluid 100 into the first flow path 311.
- the circulation movement unit 30 may include a second circulation movement mechanism 320 installed between the other side of the process fluid storage unit 20 and the supply unit 3.
- the second circulation movement mechanism 320 sucks the process fluid 100 from the receiving groove 311 through the discharge passage 312, and sucks the sucked process fluid 100 into the process fluid storage unit 20. Can be discharged.
- the circulation movement unit 30 may optionally include any one of the first circulation movement mechanism 310 and the second circulation movement mechanism 320, and the first circulation movement mechanism 310 and the first movement mechanism. It may include both the two circulation mechanism (320).
- the semiconductor device manufacturing apparatus 1 may include a first supply connection part 40, a second supply connection part 50, and a supply opening and closing part 60.
- the first supply connection part 40 connects the process fluid storage part 20 and the supply mechanism 32.
- the first supply connection part 40 functions as a passage for the process fluid 100 to move.
- the first supply connection part 40 may be connected to the first flow path 321.
- the process fluid 100 stored in the process fluid storage part 20 is supplied to the first flow path 321 through the first supply connection part 40, and then through the supply hole 322, the receiving groove ( 311).
- the second supply connection part 50 connects the process fluid storage part 20 and the receiving mechanism 31.
- the second supply connector 50 functions as a passage for the process fluid 100 to move.
- the accommodation mechanism 31 includes a supply passage 313 for supplying the process fluid 100 supplied from the second supply connection portion 50 to the accommodation groove 311.
- the supply passage 313 is formed such that one side is connected to the second supply connector 50 and the other side is connected to the receiving groove 311. After the process fluid 100 stored in the process fluid storage unit 20 is supplied to the supply passage 313 through the second supply connection unit 50, the receiving groove 311 through the supply passage 313. ) Can be supplied.
- the second supply connector 50 and the first supply connector 40 may be branched from the first conduit 210 connected to one side of the process fluid storage unit 20.
- the supply opening and closing part 60 selectively opens or closes any one of the first supply connection part 40 and the second supply connection part 50.
- the process fluid 100 stored in the process fluid storage unit 20 may be connected to the first flow path 321 through any one of the first supply connection part 40 and the second supply connection part 50.
- the supply opening and closing unit 60 may include a first supply opening and closing mechanism 610 installed at the first supply connection portion 40 and a second supply opening and closing mechanism 620 installed at the second supply connection portion 50.
- the supply opening and closing part 60 selectively opens or closes any one of the first supply opening and closing mechanism 610 and the second supply opening and closing mechanism 620, thereby providing the first supply connecting portion 40 and the second supply connecting portion ( Any one of 50) can be selectively opened and closed.
- the first supply opening and closing mechanism 610 and the second supply opening and closing mechanism 620 may be valves.
- the semiconductor device manufacturing apparatus 1 may include a first discharge connection unit 70, a second discharge connection unit 80, and a discharge opening and closing unit 90.
- the first discharge connection part 70 connects the process fluid storage part 20 and the receiving mechanism 31.
- the first discharge connection portion 70 functions as a passage for the process fluid 100 to move.
- the first discharge connector 70 may be connected to the discharge passage 312.
- the process fluid 100 may be discharged from the receiving groove 311 through the discharge passage 312, and then supplied to the process fluid storage unit 20 through the first discharge connection unit 70.
- the second discharge connection portion 80 connects the process fluid storage portion 20 and the supply mechanism 32.
- the second discharge connector 80 functions as a passage for the process fluid 100 to move.
- the second discharge connector 80 may be connected to the first flow passage 321.
- the process fluid 100 is discharged from the receiving groove 311 through the supply hole 322 and the first flow path 321, and then the process fluid storage unit through the second discharge connection portion 80 20).
- the second discharge connection unit 80 and the first discharge connection unit 70 may be formed branched from the second conduit 220 connected to the other side of the process fluid storage unit 20.
- the discharge opening and closing part 90 selectively opens and closes any one of the first discharge connection part 70 and the second discharge connection part 80.
- the process fluid 100 is discharged from the receiving groove 311 through any one of the first discharge connection portion 70 and the second discharge connection portion 80, the process fluid storage unit 20 ) Can be supplied.
- the process fluid 100 is discharged from the receiving groove 311 through the discharge passage 312. Then, it may be supplied to the process fluid storage unit 20 through the first discharge connection portion 70.
- the process fluid storage unit 20 may be supplied through the second discharge connection unit 80.
- the discharge opening and closing unit 90 may include a first discharge opening and closing mechanism 910 installed at the first discharge connection portion 70 and a second discharge opening and closing mechanism 920 installed at the second discharge connection portion 80.
- the discharge opening and closing portion 90 selectively opens and closes any one of the first discharge opening and closing mechanism 910 and the second discharge opening and closing mechanism 920, thereby allowing the first discharge connection portion 70 and the second discharge connection portion ( Either one of 80) can be selectively opened and closed.
- the first discharge opening and closing mechanism 910 and the second discharge opening and closing mechanism 920 may be valves.
- the accommodation mechanism 31 includes a discharge hole 314 connected to each of the accommodation groove 311 and the discharge passage 312.
- the discharge hole 314 may be formed to be positioned between the wafer 10 supported by the support part 2 and the supply mechanism 32. That is, the discharge hole 314 is formed at a position spaced apart from the supply mechanism 32 by a predetermined distance, and formed at a position spaced apart from the wafer 10 supported by the support portion 2. Therefore, the semiconductor device manufacturing apparatus 1 according to the present invention is compared with the process fluid 100 is discharged from the receiving groove 311 through the supply hole 322 and the first passage 321, A larger amount of process fluid 100 may be discharged from the receiving groove 311.
- the supply part 3 further includes an elevating mechanism 33 for elevating the supply mechanism 32.
- the lifting mechanism 33 may lower the supply mechanism 32 toward the support part 2. As the process fluid 100 accommodated in the receiving groove 311 is discharged through the discharge passage 312, the level of the process fluid 100 accommodated in the receiving groove 311 is lowered. As shown in FIG. 13, when the water level of the process fluid 100 is lower than the position where the discharge hole 314 is formed, the process fluid 100 passes through the discharge passage 312 through the receiving groove 311. ) Can not be discharged. In this case, as shown in FIG. 14, the lifting mechanism 33 supports the supply mechanism 32 such that the supply mechanism 32 is close to the process fluid 100 remaining in the receiving groove 311. Descend toward (2).
- the process fluid 100 remaining in the accommodating groove 311 may be discharged from the accommodating groove 311 through the supply hole 322 and the first passage 321. Therefore, the semiconductor device manufacturing apparatus 1 according to the present invention may discharge a larger amount of the process fluid 100 from the receiving groove 311 from the receiving groove 311.
- the semiconductor device manufacturing apparatus 1 according to the present invention is to remove the process fluid 100 from the receiving groove 311
- the process fluid 100 remaining in the accommodation groove 311 may be discharged from the accommodation groove 311 through the supply hole 322 and the first flow path 321.
- the lifting mechanism 33 is a cylinder method using a hydraulic cylinder or a pneumatic cylinder, a gear method using a motor and a rack gear and a pinion gear, a ball screw method using a motor and a ball screw, a motor, a pulley and a belt, etc.
- the feeding mechanism 32 can be elevated by using a belt method, a method using a linear motor, or the like.
- the lifting mechanism 33 may be installed in the chamber 200 (shown in FIG. 1).
- the supply mechanism 32 may be installed to be elevated in the chamber 200.
- the semiconductor device manufacturing apparatus 1 after supplying the process fluid 100 to the receiving groove 311, the process fluid storage unit 20 and the accommodation The process of forming a through electrode for the wafer 10 supported by the support part 2 while circulating the process fluid 100 between the grooves 311 is performed.
- the semiconductor device manufacturing apparatus 1 according to the present invention is to remove the process fluid 100 from the receiving groove 311 Discharge. Looking specifically at this, it is as follows.
- a wafer 10 for forming a through electrode in a state in which the support 2 and the supply 3 are spaced apart from each other is loaded on the support 2.
- the support portion 2 is in a lowered state to be positioned at the second position.
- the wafer 10 may be loaded onto the support 2 by a separate transfer means.
- the elevating part 5 raises the supporting part 2 such that the supporting part 2 is positioned at the first position.
- the sealing part 4 (shown in FIG. 7) may be in contact with the wafer 10 supported by the support part 2 to seal the receiving groove 311.
- the second electrode member 7 (shown in FIG. 9) may be in contact with the wafer 10 supported by the support 2.
- the supply opening and closing part 60 opens the second supply connection part 50 and closes the first supply connection part 40. Accordingly, the process fluid 100 stored in the process fluid storage unit 20 is supplied to the supply passage 313 through the second supply connection unit 50, and then the supply passage of the accommodation mechanism 31 is provided. It is supplied to the receiving groove 311 (shown in FIG. 10) through 313. Accordingly, the receiving groove 311 may be filled with the process fluid 100. The process fluid 100 may be supplied to the accommodating groove 311 through the supply passage 313 until the process fluid 100 reaches a position at or near the supply mechanism 32. A portion connected to the receiving groove 311 in the supply passage 313 may be formed between the wafer 10 supported by the support 2 and the supply mechanism 32.
- the portion of the supply passage 313 connected to the receiving groove 311 is greater than the distance from which the supply mechanism 32 is spaced apart from the wafer 10 supported by the support portion 2. It may be formed to be spaced apart from the wafer 10 supported by a short distance. Therefore, in the semiconductor device manufacturing apparatus 1 according to the present invention, the process fluid 100 is compared with the process fluid 100 supplied to the empty receiving groove 311 through the supply mechanism 32. The force applied to the wafer 10 supported by the support 2 in the process of being supplied to the empty receiving groove 311 can be reduced. Accordingly, the semiconductor device manufacturing apparatus 1 according to the present invention may prevent the wafer 10 from being damaged while the process fluid 100 is supplied to the empty receiving groove 311. In this case, the discharge opening and closing part 90 may close both the first discharge connection part 70 and the second discharge connection part 80 such that the receiving groove 311 is filled with the process fluid 100.
- the supply opening and closing part 60 closes the second supply connection part 50.
- the first supply connection part 40 is opened. Accordingly, the process fluid 100 stored in the process fluid storage part 20 is supplied to the first flow path 321 through the first supply connection part 40 and then through the supply hole 322. It is supplied to the receiving groove 311.
- the discharge opening and closing part 90 opens the first discharge connection part 70 and closes the second discharge connection part 80. Accordingly, the process fluid 100 accommodated in the receiving groove 311 is discharged from the receiving groove 311 through the discharge hole 314 and the discharge passage 312, the first discharge connection portion 70 It may be supplied to the process fluid storage unit 20 through).
- the process fluid 100 supplied to the process fluid storage 20 is supplied to the first flow path 321 through the first supply connection part 40, and then again through the supply hole 322. It is supplied to the receiving groove 311. That is, in the semiconductor device manufacturing apparatus 1 according to the present invention, as shown in FIG. 12, the first supply connection part 40, the first flow path 321, the supply hole 322, and the discharge hole 314. ), The process fluid 100 may be circulated between the process fluid storage unit 20 and the receiving groove 311 through the discharge passage 312 and the first discharge connection unit 70. In this process, a process of forming a through electrode may be performed on the wafer 10 supported by the support 2.
- the process fluid 100 accommodated in the receiving groove 311 is illustrated in the first electrode member 6 (FIG. 8).
- the wafer 10 supported by the support 2 may be a cathode by the second electrode member 7 (shown in FIG. 8).
- the process fluid 100 accommodated in the receiving groove 311 is the wafer 10 supported by the support part 2 by the process fluid 100 discharged from the supply hole 322. It can be rotated relative to the center (D, shown in Figure 12) of.
- the discharge hole 314 is implemented as follows so that the process fluid 100 accommodated in the receiving groove 311 can be easily discharged from the receiving groove 311 through the discharge hole (314).
- the discharge hole 314 is an inlet hole 3141 for introducing the process fluid 100 (shown in FIG. 12) from the receiving groove 311 and the process fluid 100.
- the outlet hole 3142 is formed in the receiving groove (D, shown in FIG. 15) from an imaginary straight line P (shown in FIG. 15) connecting the center (D, shown in FIG. 15) of the wafer 10 and the inlet hole 3141.
- the process fluid 100 accommodated in 311 may be formed at positions spaced apart from each other in a direction in which the process fluid is rotated (the direction of the E arrow, shown in FIG. That is, the discharge hole 314 may be formed to be inclined with respect to the straight line P in the direction (E arrow direction) in which the process fluid 100 accommodated in the receiving groove 311 rotates.
- the process fluid 100 accommodated in the receiving groove 311 is the center D of the wafer 10 supported by the support part 2 by the process fluid 100 discharged from the supply hole 322. It can be easily discharged from the receiving groove 311 through the discharge hole 314 while moving relative to the.
- a plurality of discharge holes 314 may be formed in the accommodation mechanism 31.
- the discharge hole 314 may be formed in the receiving mechanism 31 to be spaced apart from each other at a predetermined angle in the direction in which the process fluid 100 rotates (E arrow direction).
- the discharge passage 312 may be formed in the accommodation mechanism 31 to surround the discharge holes 314.
- the discharge passage 312 may be formed in a circular ring shape as a whole.
- the discharge passage 312 and the supply passage 311 may be separately formed in the accommodation mechanism 31.
- a single flow path may be formed in the accommodation mechanism 31, and in this case, the discharge flow path may be formed by selectively opening or closing one of the second supply connection part 50 and the first discharge connection part 70. 312 and the supply passage 311 may selectively function.
- the discharge hole 314 is also for discharging the process fluid 100 from the receiving groove 311 as any one of the first supply connection portion 50 and the first discharge connection portion 70 is selectively opened and closed.
- a function may be performed or a function for supplying the process fluid 100 to the receiving groove 311 may be performed.
- the process fluid 100 accommodated in the receiving groove 311 is discharged as shown in FIG. It is discharged from the receiving groove 311 through the 314 and the discharge passage 312.
- the process fluid 100 may be supplied to the process fluid storage unit 20 through the first discharge connection unit 70.
- the supply opening and closing part 60 closes both the first supply connection part 40 and the second supply connection part 50. Accordingly, the process fluid 100 accommodated in the accommodating groove 311 is discharged into the accommodating groove 311 through the discharge hole 314 and the discharge passage 312 is lowered.
- the lifting mechanism 33 is the supply mechanism ( The supply mechanism 32 is lowered toward the support part 2 so that 32 is close to the process fluid 100 remaining in the receiving groove 311. Accordingly, the process fluid 100 remaining in the accommodating groove 311 may be discharged from the accommodating groove 311 through the supply hole 322 and the first passage 321.
- the discharge opening and closing part 90 closes the first discharge connection part 70 and opens the second discharge connection part 80. Accordingly, the process fluid 100 remaining in the accommodating groove 311 is discharged from the accommodating groove 311 through the supply hole 322 and the first flow passage 321, and then the second discharge connection part. It may be supplied to the process fluid storage unit 20 through 80.
- the elevating part 5 has the support part 2 such that the support part 2 is positioned at the second position. Down).
- the transfer means (not shown) unloads the wafer 10 from the support part 2, and then a new wafer 10 is loaded into the support part 2.
- Can be loaded on This process may be performed after the elevating mechanism 33 raises the supply mechanism 32.
- the supply mechanism 32 may include a second passage 323 and an injection hole 324.
- the second flow passage 323 is connected to the fluid supply unit (8).
- the fluid supply unit 8 may include at least one of a cleaning fluid for washing the sidewall 31a on which the accommodation groove 311 is formed and a drying fluid for drying the sidewall 31a at the accommodation mechanism 31. Supply to 2 euros (323).
- the washing fluid may be water, pure water (DI, Disilled Water) and the like.
- the dry fluid may be air, nitrogen (N 2 ), or the like.
- the second flow path 323 is formed to be positioned outside the first flow path 321 in the supply mechanism 32.
- the first flow passage 321 includes a portion formed in a cylindrical shape and a portion formed in a disk shape.
- a portion formed in a cylindrical shape in the first flow passage 321 is connected to the process fluid storage portion 20, and a portion formed in a disk shape is connected to the supply holes 322.
- the second passage 323 is formed in the supply mechanism 32 to be positioned outside the first passage 321 along the first passage 321.
- the injection hole 324 is formed to be connected to the second passage 323.
- the injection hole 324 may be formed through the supply mechanism 32 in the direction toward the side wall 31a of the accommodation mechanism 31. Accordingly, the washing fluid and the drying fluid may be injected toward the side wall 31a of the receiving device 31 through the injection hole 324. Therefore, after the semiconductor device manufacturing apparatus 1 according to the present invention performs the process of forming a through electrode for the wafer 10, the sidewall 31a of the accommodation mechanism 31 is cleaned using the cleaning fluid. can do.
- the semiconductor device manufacturing apparatus 1 according to the present invention may dry the sidewall 31a of the accommodation mechanism 31 by using the drying fluid. In the semiconductor device manufacturing apparatus 1 according to the present invention, after washing the sidewall 31a of the accommodation mechanism 31 using the cleaning fluid, the sidewall 31a of the accommodation mechanism 31 is used using the drying fluid. ) May be dried.
- the injection hole 324 may be formed to be inclined in a downward direction (F arrow direction) from the supply mechanism 32 toward the support 2. Accordingly, the injection hole 324 may allow the cleaning fluid to be injected at an inclined angle in the downward direction (F arrow direction). Therefore, the semiconductor device manufacturing apparatus 1 according to the present invention uses the cleaning fluid injected from the injection hole 324, the process fluid 100, foreign matters, etc. remaining on the side wall 31a of the receiving mechanism 31. By moving in the downward direction (F arrow direction), the side wall 31a of the accommodation mechanism 31 can be washed easily and efficiently. In addition, the injection hole 324 may allow the drying fluid to be injected at an inclined angle in the downward direction (F arrow direction).
- the side wall 31a of the accommodation mechanism 31 is dried in the downward direction (F) using a dry fluid injected from the injection hole 324.
- the injection holes 324 may be spaced apart from each other by a predetermined distance along the circumferential direction of the supply mechanism 32.
- the injection holes 324 may be formed to be connected to the second passage 323.
- the semiconductor device manufacturing apparatus 1 may clean the entire sidewall 31a of the accommodation mechanism 31 by using a cleaning fluid injected from the injection hole 324 (shown in FIG. 16). have.
- a drying fluid is injected toward the side wall 31a of the accommodation mechanism 31 through the second flow path 323 and the injection hole 324 (shown in FIG. 16), as shown in FIG.
- the lifting mechanism 33 may lower the supply mechanism 32 toward the support part 2.
- the semiconductor device manufacturing apparatus 1 according to the present invention may dry the entire sidewall 31a of the accommodation mechanism 31 by using a drying fluid injected from the injection hole 324 (shown in FIG. 16). have.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Sustainable Development (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
The present invention relates to an apparatus for manufacturing a semiconductor device which comprises: a support portion which supports a wafer for manufacturing a semiconductor device having TSV (Through Silicon Via); and a supply portion which comprises a groove for containing process fluid and a supply hole slopingly formed in a vertical direction in order to transfer the process fluid contained in the groove. According to the invention, a semiconductor device having TSV (Through Silicon Via) can be manufactured by a wet process and consequently the quality of the semiconductor device having TSV can be improved.
Description
본 발명은 관통전극(Through Silicon Via, TSV)을 갖는 반도체 소자를 제조하기 위한 반도체 소자 제조장치에 관한 것이다.The present invention relates to a semiconductor device manufacturing apparatus for manufacturing a semiconductor device having a through electrode (Through Silicon Via, TSV).
일반적으로 반도체 소자는 인쇄회로기판에 실장되고, 반도체 소자와 인쇄회로기판을 전기적으로 연결하기 위하여 반도체 소자와 인쇄회로기판을 와이어로 연결하는 와이어 본딩공정을 거치게 된다. 이와 같이 와이어를 이용하여 반도체 소자와 인쇄회로기판을 전기적으로 연결함에 따라, 신호 딜레이 등이 발생되고 반도체 소자 및 이를 포함한 최종 제품을 소형화하는데 한계가 있는 문제가 있다.In general, a semiconductor device is mounted on a printed circuit board, and is subjected to a wire bonding process of connecting the semiconductor device and the printed circuit board with wires to electrically connect the semiconductor device and the printed circuit board. As such, when the semiconductor device and the printed circuit board are electrically connected using wires, signal delays are generated and there is a limit in miniaturizing the semiconductor device and the final product including the same.
한편, 2개 이상의 반도체 소자를 적층하고, 적층한 반도체 소자들을 전기적으로 연결함으로써 반도체 소자 및 이를 포함한 최종제품이 갖는 성능을 향상시키는 기술이 개발된 바 있다. 적층된 2개 이상의 반도체 소자들은 와이어를 통해 서로 전기적으로 연결되는데, 이에 따라 신호 딜레이 등이 발생되고 반도체 소자 및 이를 포함한 최종제품을 소형화하는데 한계가 있는 문제가 있다.Meanwhile, a technology for improving performance of a semiconductor device and a final product including the same has been developed by stacking two or more semiconductor devices and electrically connecting the stacked semiconductor devices. Two or more stacked semiconductor devices are electrically connected to each other through a wire, which causes signal delays and the like, and there is a limit in miniaturizing the semiconductor device and the final product including the same.
상술한 바와 같은 문제를 해결하기 위해, 최근에는 관통전극(Through Silicon Via, TSV)을 갖는 반도체 소자의 개발이 활발하게 이루어지고 있다. 이러한 반도체 소자는 상기 관통전극을 이용하여 인쇄회로기판, 다른 반도체 소자 등과 전기적으로 연결될 수 있어 상술한 바와 같이 와이어를 통해 전기적으로 연결됨에 따른 문제를 해결할 수 있는 등 다양한 장점을 가지며, 이로 인해 관통전극을 갖는 반도체 소자를 여러 산업 분야에 적용하기 위한 기술 개발 또한 활발하게 이루어지고 있다.In order to solve the problems as described above, the development of a semiconductor device having a through electrode (Through Silicon Via, TSV) has been actively made in recent years. Such a semiconductor device may be electrically connected to a printed circuit board, another semiconductor device, etc. using the through electrode, and thus may have various advantages, such as solving the problem of being electrically connected through a wire as described above. There is also an active development of technology for applying a semiconductor device having a variety of industries.
이와 같이 관통전극을 갖는 반도체 소자는 주로 건식공정에 의해 제조되고 있는데, 건식공정에 의해서는 관통전극의 표면을 균일하게 형성시키는데 어려움이 있는 등 관통전극을 갖는 반도체 소자의 품질을 향상시키는데 한계가 있는 문제가 있다. 따라서, 최근 업계에서는 습식공정에 의해 관통전극을 갖는 반도체 소자를 제조할 수 있는 반도체 소자 제조장치의 개발이 활발하게 이루어지고 있다.As described above, a semiconductor device having a through electrode is mainly manufactured by a dry process. However, the dry process has a difficulty in improving the quality of a semiconductor device having a through electrode, such as difficulty in uniformly forming the surface of the through electrode. there is a problem. Therefore, in recent years, the development of the semiconductor element manufacturing apparatus which can manufacture the semiconductor element which has a through electrode by the wet process is actively performed.
본 발명은 상술한 바와 같은 요구를 해소하고자 안출된 것으로, 본 발명의 목적은 습식공정에 의해 관통전극을 갖는 반도체 소자를 제조할 수 있는 반도체 소자 제조장치를 제공하는 것이다.The present invention has been made to solve the above-described needs, and an object of the present invention is to provide a semiconductor device manufacturing apparatus capable of manufacturing a semiconductor device having a through electrode by a wet process.
상술한 바와 같은 목적을 달성하기 위해서, 본 발명은 하기와 같은 구성을 포함할 수 있다.In order to achieve the object as described above, the present invention may include the following configuration.
본 발명에 따른 반도체 소자 제조장치는 관통전극을 갖는 반도체 소자를 제조하기 위한 웨이퍼를 지지하는 지지부, 및 관통전극을 형성하기 위한 공정유체가 공급되는 공급부를 포함할 수 있다. 상기 공급부는 공정유체를 수용하기 위한 수용홈이 형성된 수용기구, 및 공정유체가 공급되는 제1유로가 형성된 공급기구를 포함할 수 있다. 상기 공급기구는 상기 제1유로로 공급된 공정유체가 상기 수용홈에 공급되도록 상기 제1유로와 상기 수용홈 각각에 연결되게 형성된 공급공을 포함할 수 있다. 상기 공급공은 상기 수용홈에 수용된 공정유체가 상기 공급공으로부터 배출되는 공정유체에 의해 이동되도록 상기 공급부에서 상기 지지부를 향하는 수직방향에 대해 기울어지게 형성될 수 있다.The semiconductor device manufacturing apparatus according to the present invention may include a support for supporting a wafer for manufacturing a semiconductor device having a through electrode, and a supply for supplying a process fluid for forming the through electrode. The supply unit may include an accommodation mechanism in which an accommodation groove for accommodating the process fluid is formed, and a supply mechanism in which a first flow path through which the process fluid is supplied is formed. The supply mechanism may include a supply hole formed to be connected to each of the first flow path and the accommodation groove so that the process fluid supplied to the first flow path is supplied to the accommodation groove. The supply hole may be formed to be inclined with respect to the vertical direction from the supply portion toward the support portion so that the process fluid accommodated in the receiving groove is moved by the process fluid discharged from the supply hole.
본 발명에 따른 반도체 소자 제조장치는 관통전극을 갖는 반도체 소자를 제조하기 위한 웨이퍼를 지지하는 지지부; 관통전극을 형성하기 위한 공정이 이루어지는 수용홈을 포함하고, 상기 수용홈에 관통전극을 형성하기 위한 공정유체를 공급하는 공급부; 및 상기 수용홈을 밀폐시키기 위해 상기 공급부에 결합되는 밀봉부를 포함할 수 있다. 상기 공급부는 상기 수용홈에 수용된 공정유체가 상기 지지부에 지지된 웨이퍼의 중앙을 기준으로 회전되도록 상기 수용홈에 공정유체를 공급하기 위한 공급공을 포함할 수 있다. 상기 공급공은 상기 지지부에 지지된 웨이퍼의 중앙을 기준으로 원주방향으로 기울어지게 형성될 수 있다.A semiconductor device manufacturing apparatus according to the present invention includes a support for supporting a wafer for manufacturing a semiconductor device having a through electrode; A supply unit including a receiving groove in which a process for forming the through electrode is formed, and supplying a process fluid for forming the through electrode in the receiving groove; And it may include a seal coupled to the supply to seal the receiving groove. The supply unit may include a supply hole for supplying the process fluid to the receiving groove so that the process fluid accommodated in the receiving groove is rotated relative to the center of the wafer supported by the support. The supply hole may be formed to be inclined in the circumferential direction with respect to the center of the wafer supported by the support.
본 발명에 따르면 다음과 같은 효과를 이룰 수 있다.According to the present invention can achieve the following effects.
본 발명은 습식공정에 의해 관통전극을 갖는 반도체 소자를 제조할 수 있고, 이에 따라 관통전극을 갖는 반도체 소자의 품질을 향상시킬 수 있는 효과를 도모할 수 있다.Industrial Applicability The present invention can manufacture a semiconductor device having a through electrode by a wet process, thereby achieving an effect of improving the quality of the semiconductor device having a through electrode.
도 1 및 도 2는 본 발명에 따른 반도체 소자 제조장치의 개략적인 단면도1 and 2 are schematic cross-sectional views of a semiconductor device manufacturing apparatus according to the present invention
도 3은 본 발명에 따른 공급기구에 대한 도 2의 A 부분의 확대 저면도3 is an enlarged bottom view of portion A of FIG. 2 for a feed mechanism according to the present invention;
도 4는 본 발명에 따른 공급공에 대한 도 3의 I-I 선 단면도4 is a cross-sectional view taken along line I-I of FIG. 3 for a feed hole according to the present invention.
도 5는 본 발명에 따른 반도체 소자 제조장치에 있어서 수용홈에 수용된 공정유체가 회전 이동하는 상태를 설명하기 위한 개념적인 평면도5 is a conceptual plan view for explaining a state in which the process fluid accommodated in the receiving groove rotates in the semiconductor device manufacturing apparatus according to the present invention;
도 6 및 도 7은 본 발명에 따른 밀봉부에 대한 도 2의 B 부분의 확대도6 and 7 are enlarged views of portion B of FIG. 2 for the seal according to the invention.
도 8은 본 발명에 따른 반도체 소자 제조장치에 있어서 제1전극부재와 제2전극부재를 설명하기 위한 단면도8 is a cross-sectional view illustrating a first electrode member and a second electrode member in a semiconductor device manufacturing apparatus according to the present invention.
도 9는 본 발명의 변형된 실시예에 따른 제2전극부재에 대한 확대 단면도9 is an enlarged cross-sectional view of a second electrode member according to a modified embodiment of the present invention.
도 10 내지 도 14는 본 발명에 따른 반도체 소자 제조장치의 작동관계를 설명하기 위한 개략적인 단면도10 to 14 are schematic cross-sectional views for explaining the operation relationship of the semiconductor device manufacturing apparatus according to the present invention
도 15는 본 발명에 따른 배출공을 설명하기 위한 도 12의 Ⅱ-Ⅱ 선을 기준으로 한 단면도15 is a cross-sectional view based on line II-II of FIG. 12 for explaining the discharge hole according to the present invention.
도 16 및 도 17은 본 발명에 따른 반도체 소자 제조장치에 있어서 제2유로와 분사공을 설명하기 위한 개략적인 단면도16 and 17 are schematic cross-sectional views for describing the second channel and the injection hole in the semiconductor device manufacturing apparatus according to the present invention.
이하에서는 본 발명에 따른 반도체 소자 제조장치의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명한다.Hereinafter, a preferred embodiment of a semiconductor device manufacturing apparatus according to the present invention will be described in detail with reference to the accompanying drawings.
도 1 및 도 2는 본 발명에 따른 반도체 소자 제조장치의 개략적인 단면도, 도 3은 본 발명에 따른 공급기구에 대한 도 2의 A 부분의 확대 저면도, 도 4는 본 발명에 따른 공급공에 대한 도 3의 I-I 선 단면도, 도 5는 본 발명에 따른 반도체 소자 제조장치에 있어서 수용홈에 수용된 공정유체가 회전 이동하는 상태를 설명하기 위한 개념적인 평면도, 도 6 및 도 7은 본 발명에 따른 밀봉부에 대한 도 2의 B 부분의 확대도, 도 8은 본 발명에 따른 반도체 소자 제조장치에 있어서 제1전극부재와 제2전극부재를 설명하기 위한 단면도, 도 9는 본 발명의 변형된 실시예에 따른 제2전극부재에 대한 확대 단면도, 도 10 내지 도 14는 본 발명에 따른 반도체 소자 제조장치의 작동관계를 설명하기 위한 개략적인 단면도, 도 15는 본 발명에 따른 배출공을 설명하기 위한 도 12의 Ⅱ-Ⅱ 선을 기준으로 한 단면도, 도 16 및 도 17은 본 발명에 따른 반도체 소자 제조장치에 있어서 제2유로와 분사공을 설명하기 위한 개략적인 단면도이다.1 and 2 are schematic cross-sectional views of a semiconductor device manufacturing apparatus according to the present invention, Figure 3 is an enlarged bottom view of part A of Figure 2 for a supply mechanism according to the present invention, Figure 4 is a supply hole according to the present invention FIG. 3 is a cross-sectional view taken along line II of FIG. 3, FIG. 5 is a conceptual plan view illustrating a state in which a process fluid accommodated in a receiving groove rotates in a semiconductor device manufacturing apparatus according to the present invention. FIGS. 2 is an enlarged view of portion B of FIG. 2 with respect to the sealing portion, FIG. 8 is a cross-sectional view for explaining the first electrode member and the second electrode member in the semiconductor device manufacturing apparatus according to the present invention, FIG. 9 is a modified embodiment of the present invention. An enlarged cross-sectional view of a second electrode member according to an example, Figures 10 to 14 is a schematic cross-sectional view for explaining the operating relationship of the semiconductor device manufacturing apparatus according to the present invention, Figure 15 is for explaining the discharge hole according to the present invention 12 A cross-sectional view taken on the basis of -Ⅱ lines, 16 and 17 are a schematic sectional view for illustrating the second flow path and the injection port in the semiconductor device manufacturing apparatus according to the present invention.
도 1 및 도 2를 참고하면, 본 발명에 따른 반도체 소자 제조장치(1)는 관통전극(Through Silicon Via, TSV)을 갖는 반도체 소자를 제조하기 위한 웨이퍼(10, Wafer)를 지지하는 지지부(2), 및 관통전극을 형성하기 위한 공정유체(100, 도 2에 도시됨)가 공급되는 공급부(3)를 포함한다. 상기 공정유체(100)는 전극층을 형성하기 위한 구리(Cu) 등이 포함된 액체, 절연층을 형성하기 위한 실리콘(Si) 등이 포함된 액체 등일 수 있다.1 and 2, a semiconductor device manufacturing apparatus 1 according to the present invention includes a support part 2 supporting a wafer 10 for manufacturing a semiconductor device having a through electrode (TSV). ), And a supply unit 3 to which a process fluid 100 (shown in FIG. 2) for supplying through electrodes is supplied. The process fluid 100 may be a liquid containing copper (Cu) for forming an electrode layer, a liquid containing silicon (Si) for forming an insulating layer, or the like.
도 1 및 도 2를 참고하면, 상기 지지부(2)는 상기 웨이퍼(10)를 지지한다. 상기 웨이퍼(10)에는 관통전극이 형성되기 위한 관통공이 형성되어 있다. 상기 웨이퍼(10)에는 복수개의 관통공이 형성될 수 있다. 도 1에 도시된 바와 같이, 상기 지지부(2)는 상기 공급부(3) 아래에 위치되게 설치될 수 있다.1 and 2, the support 2 supports the wafer 10. The wafer 10 has a through hole for forming a through electrode. A plurality of through holes may be formed in the wafer 10. As shown in FIG. 1, the support part 2 may be installed to be positioned below the supply part 3.
상기 지지부(2)에는 상기 웨이퍼(10)가 부착될 수 있다. 상기 웨이퍼(10)는 흡입력에 의해 상기 지지부(2)에 부착될 수 있다. 이를 위해, 상기 지지부(2)에는 흡입력을 제공하는 흡입장치(미도시)가 연결될 수 있다. 상기 지지부(2)는 상기 흡입장치로부터 제공되는 흡입력이 상기 웨이퍼(10)에 전달되도록 하기 위한 적어도 하나의 흡입공(미도시)을 포함할 수 있다. 상기 웨이퍼(10)는 정전기에 의해 상기 지지부(2)에 부착될 수도 있다. 이 경우, 상기 지지부(2)는 정전척(ESC, Electrostatic Chuck)일 수 있다. 상기 지지부(2)는 전체적으로 원반 형태로 형성될 수 있으나, 이에 한정되지 않으며 상기 웨이퍼(10)를 안정적으로 지지할 수 있는 형태이면 사각판형 등 다른 형태로 형성될 수도 있다. The wafer 10 may be attached to the support 2. The wafer 10 may be attached to the support 2 by suction force. To this end, the support unit 2 may be connected to a suction device (not shown) that provides a suction force. The support part 2 may include at least one suction hole (not shown) to allow the suction force provided from the suction device to be transferred to the wafer 10. The wafer 10 may be attached to the support part 2 by static electricity. In this case, the support 2 may be an electrostatic chuck (ESC). The support part 2 may be formed in a disk shape as a whole, but is not limited thereto and may be formed in another shape such as a square plate shape as long as it can stably support the wafer 10.
도 1 및 도 2를 참고하면, 상기 공급부(3)에는 관통전극을 형성하기 위한 공정유체가 공급된다. 상기 공급부(3)는 상기 공정유체(100)가 저장된 공정유체저장부(20)에 연결될 수 있다. 상기 공급부(3)는 수용기구(31) 및 공급기구(32)를 포함할 수 있다.1 and 2, a process fluid for forming a through electrode is supplied to the supply part 3. The supply unit 3 may be connected to the process fluid storage unit 20 in which the process fluid 100 is stored. The supply part 3 may include a receiving mechanism 31 and a supply mechanism 32.
상기 수용기구(31)는 상기 공정유체(100)를 수용하기 위한 수용홈(311)을 포함한다. 상기 수용홈(311)에는 상기 공정유체저장부(20)로부터 공급된 공정유체(100)가 수용될 수 있다. 상기 공정유체(100)는 상기 지지부(2)에 지지된 웨이퍼(10)에 대해 관통전극을 형성하기 위한 공정이 이루어지도록 상기 수용홈(311)에 수용되어 상기 웨이퍼(10)에 접촉될 수 있다. 상기 수용홈(311)은 전체적으로 원통 형태로 형성될 수 있다. 상기 수용기구(31)는 상기 수용홈(311)에 의해 일측이 개방된 원통 형태로 형성될 수 있다. 상기 수용기구(31)는 상기 공급기구(32)와 결합될 수 있다.The accommodation mechanism 31 includes an accommodation groove 311 for accommodating the process fluid 100. The process fluid 100 supplied from the process fluid storage unit 20 may be accommodated in the accommodation groove 311. The process fluid 100 may be accommodated in the accommodating groove 311 to be in contact with the wafer 10 so as to form a through electrode for the wafer 10 supported by the support part 2. . The receiving groove 311 may be formed in a cylindrical shape as a whole. The accommodation mechanism 31 may be formed in a cylindrical shape, one side of which is opened by the accommodation groove 311. The receiving mechanism 31 may be coupled to the supply mechanism 32.
도 1 및 도 2를 참고하면, 상기 공급기구(32)에는 상기 공정유체(100)가 공급된다. 상기 공정유체(100)는 상기 공정유체저장부(20)에서 상기 공급기구(32)에 공급되고, 상기 공급기구(32)를 통해 상기 수용홈(311)에 공급될 수 있다. 상기 공급기구(32)는 제1유로(321) 및 공급공(322)을 포함한다.1 and 2, the process fluid 100 is supplied to the supply mechanism 32. The process fluid 100 may be supplied from the process fluid storage unit 20 to the supply mechanism 32, and may be supplied to the receiving groove 311 through the supply mechanism 32. The supply mechanism 32 includes a first flow passage 321 and a supply hole 322.
상기 제1유로(321)는 상기 공정유체(100)가 이동하기 위한 통로로 기능한다. 상기 제1유로(321)는 상기 공급공(322)에 연결되게 형성된다. 상기 공정유체(100)는 상기 제1유로(321)을 따라 이동한 후, 상기 공급공(322)을 통해 상기 수용홈(311)에 공급될 수 있다. 상기 제1유로(321)는 상기 공정유체저장부(20)에 연결될 수 있다. 상기 제1유로(321)는 상기 공급기구(32) 내측에 형성된 관통공일 수 있다. 상기 제1유로(321)는 전체적으로 원통 형태로 형성될 수 있다. 상기 공급기구(32)가 복수개의 공급공(322)을 포함하는 경우, 상기 공급공(322)들은 상기 제1유로(321)에 연결되게 형성될 수 있다.The first passage 321 serves as a passage for the process fluid 100 to move. The first flow passage 321 is formed to be connected to the supply hole 322. The process fluid 100 may move along the first flow path 321 and then be supplied to the receiving groove 311 through the supply hole 322. The first passage 321 may be connected to the process fluid storage unit 20. The first flow passage 321 may be a through hole formed inside the supply mechanism 32. The first passage 321 may be formed in a cylindrical shape as a whole. When the supply mechanism 32 includes a plurality of supply holes 322, the supply holes 322 may be formed to be connected to the first passage 321.
도 2 내지 도 5를 참고하면, 상기 공급공(322)은 상기 제1유로(321)와 상기 수용홈(311) 각각에 연결되게 형성된다. 상기 공급공(322)은 상기 공급기구(32)의 일면(32a, 도 4에 도시됨)을 관통하여 형성될 수 있다. 상기 공급기구(32)의 일면(32a)은 상기 공급기구(32)가 갖는 면들 중에서 상기 지지부(2) 쪽을 향하는 면이다.2 to 5, the supply hole 322 is formed to be connected to each of the first passage 321 and the receiving groove 311. The supply hole 322 may be formed to penetrate through one surface 32a (shown in FIG. 4) of the supply mechanism 32. One surface 32a of the supply mechanism 32 is a surface facing the support part 2 among the surfaces of the supply mechanism 32.
도 4에 도시된 바와 같이, 상기 공급공(322)은 상기 공급부(3)에서 상기 지지부(2)를 향하는 수직방향(C 화살표 방향)에 대해 기울어지게 형성될 수 있다. 상기 공급공(322)으로부터 배출되는 공정유체(100)는, 상기 공급공(322)이 상기 수직방향(C 화살표 방향)에 대해 기울어지게 형성된 방향으로 상기 수용홈(311)에 수용된 공정유체(100)에 힘을 가할 수 있다. 즉, 상기 공정유체(100)는 상기 공급공(322)을 따라 경사진 각도로 상기 수용홈(311)에 공급됨으로써, 상기 수용홈(311)에 수용된 공정유체(100)에 힘을 가할 수 있다. 따라서, 상기 수용홈(311)에 수용된 공정유체(100)는, 상기 공급공(322)으로부터 배출되는 공정유체(100)에 의해 이동될 수 있다. 이에 따라, 본 발명에 따른 반도체 소자 제조장치(1)는 다음과 같은 작용효과를 도모할 수 있다.As shown in FIG. 4, the supply hole 322 may be inclined with respect to the vertical direction (the arrow direction C) from the supply part 3 toward the support part 2. The process fluid 100 discharged from the supply hole 322 is a process fluid 100 accommodated in the receiving groove 311 in a direction in which the supply hole 322 is inclined with respect to the vertical direction (C arrow direction). ) Can be applied. That is, the process fluid 100 may be supplied to the receiving groove 311 at an inclined angle along the supply hole 322, thereby applying a force to the process fluid 100 accommodated in the receiving groove 311. . Accordingly, the process fluid 100 accommodated in the receiving groove 311 may be moved by the process fluid 100 discharged from the supply hole 322. Accordingly, the semiconductor device manufacturing apparatus 1 according to the present invention can achieve the following effects.
첫째, 본 발명에 따른 반도체 소자 제조장치(1)는 상기 수용홈(311)에 수용된 공정유체(100)가 이동하면서 상기 지지부(2)에 지지된 웨이퍼(10)에 대해 전체적으로 균일하게 전달될 수 있으므로, 상기 웨이퍼(10)에 향상된 품질을 갖는 관통전극을 형성할 수 있다.First, the semiconductor device manufacturing apparatus 1 according to the present invention may be uniformly transmitted to the wafer 10 supported by the support part 2 while the process fluid 100 accommodated in the receiving groove 311 moves. Therefore, the through electrode having improved quality may be formed on the wafer 10.
둘째, 본 발명에 따른 반도체 소자 제조장치(1)는 임펠러(Imperller) 등과 같이 상기 수용홈(311)에 수용된 공정유체(100)를 이동시키기 위한 별도의 기구물을 구비하지 않고도, 상기 수용홈(311)에 수용된 공정유체(100)를 이동시킬 수 있다. 따라서, 본 발명에 따른 반도체 소자 제조장치(1)는 저렴한 비용으로 상기 웨이퍼(10)에 향상된 품질을 갖는 관통전극을 형성할 수 있다.Second, the semiconductor device manufacturing apparatus 1 according to the present invention does not have a separate mechanism for moving the process fluid 100 accommodated in the receiving groove 311, such as an impeller (Imperller), the receiving groove 311 The process fluid 100 accommodated in) can be moved. Therefore, the semiconductor device manufacturing apparatus 1 according to the present invention can form a through electrode having an improved quality on the wafer 10 at a low cost.
도 2 내지 도 5를 참고하면, 상기 공급공(322)은 상기 지지부(2)에 지지된 웨이퍼(10)의 중앙(D, 도 2에 도시됨)을 기준으로 상기 수직방향(C 화살표 방향, 도 4에 도시됨)에 대해 원주방향(E 화살표 방향, 도 4에 도시됨)으로 기울어지게 형성될 수 있다. 상기 공급공(322)으로부터 배출되는 공정유체(100)는, 상기 원주방향(E 화살표 방향)으로 상기 수용홈(311)에 수용된 공정유체(100)에 회전력을 제공할 수 있다. 이에 따라, 상기 수용홈(311)에 수용된 공정유체(100)는 상기 공급공(322)으로부터 배출되는 공정유체(100)에 의해 상기 웨이퍼(10)의 중앙(D, 도 2에 도시됨)을 기준으로 회전 이동될 수 있다. 따라서, 상기 수용홈(311)에 수용된 공정유체(100)는, 상기 지지부(2)에 지지된 웨이퍼(10)의 중앙(D, 도 2에 도시됨)을 기준으로 회전 이동하면서 원심력에 의해 상기 웨이퍼(10)의 가장자리 부분까지 전달될 수 있다. 이에 따라, 본 발명에 따른 반도체 소자 제조장치(1)는 상기 웨이퍼(10)의 가장자리 부분까지 향상된 품질을 갖는 관통전극을 형성할 수 있다.2 to 5, the supply hole 322 is in the vertical direction (C arrow direction, based on the center (D, shown in FIG. 2) of the wafer 10 supported by the support part 2. It may be formed to be inclined in the circumferential direction (shown in E arrow direction, shown in Figure 4) with respect to Figure 4). The process fluid 100 discharged from the supply hole 322 may provide a rotational force to the process fluid 100 accommodated in the receiving groove 311 in the circumferential direction (E arrow direction). Accordingly, the process fluid 100 accommodated in the accommodating groove 311 forms a center (D, shown in FIG. 2) of the wafer 10 by the process fluid 100 discharged from the supply hole 322. It can be rotated relative to the reference. Therefore, the process fluid 100 accommodated in the receiving groove 311 is moved by the centrifugal force while rotating based on the center (D, shown in FIG. 2) of the wafer 10 supported by the support part 2. It can be delivered to the edge of the wafer 10. Accordingly, the semiconductor device manufacturing apparatus 1 according to the present invention may form a through electrode having an improved quality up to the edge of the wafer 10.
도 2 내지 도 5를 참고하면, 상기 공급기구(32)는 상기 공급공(322)을 복수개 포함할 수 있다. 상기 공급공(322)들은 상기 지지부(2)에 지지된 웨이퍼(10)의 중앙(D, 도 2에 도시됨)을 기준으로 서로 다른 직경을 갖는 원주(圓周)들을 따라 형성될 수 있다. 이에 따라, 상기 수용홈(311)에 수용된 공정유체(100)는 상기 공급공(322)들로부터 배출되는 공정유체(100)에 의해 회전 이동될 수 있다. 따라서, 본 발명에 따른 반도체 소자 제조장치(1)는 상기 웨이퍼(10)의 가장자리 부분까지 향상된 품질을 갖는 관통전극을 형성할 수 있다. 또한, 본 발명에 따른 반도체 소자 제조장치(1)는 상기 제1유로(321)로부터 공급된 공정유체(100)가 상기 공급공(322)들을 통해 분산되어 상기 수용홈(311)에 공급되므로, 상기 공정유체(100)가 상기 웨이퍼(10)에 대해 전체적으로 균일하게 공급되도록 할 수 있다. 따라서, 본 발명에 따른 반도체 소자 제조장치(1)는 상기 웨이퍼(10)에 대해 전체적으로 균일성(Uniformity)이 향상된 관통전극을 형성할 수 있다.2 to 5, the supply mechanism 32 may include a plurality of supply holes 322. The supply holes 322 may be formed along circumferences having different diameters with respect to the center (D, shown in FIG. 2) of the wafer 10 supported by the support part 2. Accordingly, the process fluid 100 accommodated in the receiving groove 311 may be rotated by the process fluid 100 discharged from the supply holes 322. Therefore, the semiconductor device manufacturing apparatus 1 according to the present invention may form a through electrode having an improved quality up to the edge of the wafer 10. In addition, in the semiconductor device manufacturing apparatus 1 according to the present invention, since the process fluid 100 supplied from the first flow passage 321 is distributed through the supply holes 322 and supplied to the receiving groove 311, The process fluid 100 may be uniformly supplied to the wafer 10 as a whole. Therefore, the semiconductor device manufacturing apparatus 1 according to the present invention may form a through electrode having an improved uniformity with respect to the wafer 10.
상기 공급공(322)은 상기 지지부(2)에 지지된 웨이퍼(10)의 중앙(D, 도 3에 도시됨)을 기준으로 서로 다른 크기를 갖는 원주들을 따라 각각 복수개가 형성될 수 있다. 즉, 상기 공급공(322)은 N개(N은 1보다 큰 정수)의 원주 각각을 따라 복수개가 형성될 수 있다. 다른 원주에 비해 큰 직경을 갖는 원주에는, 그보다 작은 원주를 따라 형성된 공급공(322)의 개수와 대략 일치하거나 더 많은 개수의 공급공(322)이 형성될 수 있다. 상기 원주들은 동일한 지점을 중심으로 하는 원주이다. 상기 원주들의 중심은 상기 지지부(2)에 지지된 웨이퍼(10)의 중심과 대략 일치할 수 있다. 즉, 상기 원주들의 중심은 상기 지지부(2)에 지지된 웨이퍼(10)의 중앙(D)과 동일한 수직선 상에 위치할 수 있다.A plurality of supply holes 322 may be formed along circumferences having different sizes with respect to the center (D, shown in FIG. 3) of the wafer 10 supported by the support part 2. That is, a plurality of supply holes 322 may be formed along each of circumferences of N (N is an integer greater than 1). In the circumference having a larger diameter than the other circumference, the number of the supply holes 322 may be formed to be approximately equal to or larger than the number of the supply holes 322 formed along the smaller circumference. The circumferences are circumferences centered on the same point. The centers of the circumferences may approximately coincide with the centers of the wafer 10 supported by the support 2. That is, the centers of the circumferences may be positioned on the same vertical line as the center D of the wafer 10 supported by the support 2.
예컨대, 상기 공급기구(32)는 제1원주(R1, 도 3에 도시됨)를 따라 형성된 복수개의 제1공급공(322a), 및 제2원주(R2, 도 3에 도시됨)를 따라 형성된 복수개의 제2공급공(322b)을 포함할 수 있다. 상기 제1원주(R1)와 상기 제2원주(R2)는 상기 지지부(2)에 지지된 웨이퍼(10)의 중앙(D)을 기준으로 서로 다른 직경을 가질 수 있다. 상기 제1공급공(322a)들은 상기 제1원주(R1)를 따라 서로 동일한 간격으로 이격되어 형성될 수 있다. 상기 제2공급공(322b)들은 상기 제2원주(R2)를 따라 서로 동일한 간격으로 이격되어 형성될 수 있다. 도 3에는 상기 제1공급공(322a)들과 상기 제2공급공(322b)들이 각각 8개씩 형성된 것으로 도시되어 있으나, 이에 한정되지 않으며 상기 제1공급공(322a)들과 상기 제2공급공(322b)들은 각각 2개씩 이상 7개씩 이하로 형성될 수도 있고, 9개 이상씩 형성될 수도 있다. 상기 제2원주(R2)는 상기 제1원주(R1)보다 큰 직경을 가질 수 있다. 이 경우, 상기 제2원주(R2)를 따라 형성된 제2공급공(322b)들은, 상기 제1원주(R1)를 따라 형성된 제1공급공(322a)들과 대략 일치하거나 더 많은 개수로 형성될 수도 있다.For example, the supply mechanism 32 is formed along a plurality of first supply holes 322a formed along a first circumference R1 (shown in FIG. 3) and a second circumference R2 (shown in FIG. 3). It may include a plurality of second supply holes (322b). The first circumference R1 and the second circumference R2 may have different diameters with respect to the center D of the wafer 10 supported by the support part 2. The first supply holes 322a may be spaced apart from each other at equal intervals along the first circumference R1. The second supply holes 322b may be formed to be spaced apart from each other at equal intervals along the second circumference R2. In FIG. 3, eight first supply holes 322a and eight second supply holes 322b are formed, but the present invention is not limited thereto, and the first supply holes 322a and the second supply holes are not limited thereto. Each of the two or more 322b may be formed two or more and seven or less, or nine or more. The second circumference R2 may have a diameter larger than that of the first circumference R1. In this case, the second supply holes 322b formed along the second circumference R2 may be formed to be substantially coincident with or larger than the first supply holes 322a formed along the first circumference R1. It may be.
도 4 및 도 5를 참고하면, 상기 공급공(322)들은 각각 상기 지지부(2)에 지지된 웨이퍼(10)의 중앙(D, 도 5에 도시됨)을 기준으로 상기 수직방향(C 화살표 방향, 도 4에 도시됨)에 대해 원주방향(E 화살표 방향)으로 기울어지게 형성될 수 있다. 이에 따라, 상기 공급공(322)들로부터 배출되는 공정유체(100)는, 상기 원주방향(E 화살표 방향)으로 상기 수용홈(311, 도 2에 도시됨)에 수용된 공정유체(100)에 회전력을 제공할 수 있다. 따라서, 상기 수용홈(311, 도 2에 도시됨)에 수용된 공정유체(100)는 상기 공급공(322)들로부터 배출되는 공정유체(100)에 의해 상기 웨이퍼(10)의 중앙(D)을 기준으로 회전 이동될 수 있다. 상기 수용홈(311, 도 2에 도시됨)에 수용된 공정유체(100)는 상기 공급공(322)들이 기울어지게 형성된 방향에 따라 시계방향과 반시계방향 중 어느 한 방향으로 회전 이동할 수 있다. 예컨대, 도 5에 도시된 바와 같이 상기 수용홈(311, 도 2에 도시됨)에 수용된 공정유체(100)는 시계방향으로 회전 이동할 수 있다. 도 5에서 시계방향으로 표시된 복수개의 화살표는 상기 공정유체(100)가 상기 공급공(322)으로부터 배출되는 방향을 나타낸 것이다. 따라서, 본 발명에 따른 반도체 소자 제조장치(1)는 상기 웨이퍼(10)에 대해 전체적으로 균일성이 향상된 관통전극을 형성할 수 있고, 상기 웨이퍼(10)의 가장자리 부분까지 향상된 품질을 갖는 관통전극을 형성할 수 있다.4 and 5, the supply holes 322 are respectively disposed in the vertical direction (C arrow direction) with respect to the center (D, shown in FIG. 5) of the wafer 10 supported by the support part 2. 4 may be inclined in the circumferential direction (the direction of the E arrow). Accordingly, the process fluid 100 discharged from the supply holes 322 has a rotational force in the process fluid 100 accommodated in the receiving groove 311 (shown in FIG. 2) in the circumferential direction (E arrow direction). Can be provided. Therefore, the process fluid 100 accommodated in the receiving groove 311 (shown in FIG. 2) is formed by the process fluid 100 discharged from the supply holes 322 to form the center D of the wafer 10. It can be rotated relative to the reference. The process fluid 100 accommodated in the accommodation groove 311 (shown in FIG. 2) may be rotated in one of a clockwise direction and a counterclockwise direction according to a direction in which the supply holes 322 are inclined. For example, as shown in FIG. 5, the process fluid 100 accommodated in the receiving groove 311 (shown in FIG. 2) may rotate in a clockwise direction. A plurality of arrows in a clockwise direction in FIG. 5 shows a direction in which the process fluid 100 is discharged from the supply hole 322. Therefore, the semiconductor device manufacturing apparatus 1 according to the present invention may form a through electrode having improved uniformity on the wafer 10 as a whole, and provide a through electrode having an improved quality up to an edge of the wafer 10. Can be formed.
도 1, 도 2, 도 6 및 도 7을 참고하면, 본 발명에 따른 반도체 소자 제조장치(1)는 상기 수용홈(311)을 밀폐(密閉)시키기 위한 밀봉부(4), 및 상기 지지부(2)를 승강(昇降)시키기 위한 승강부(5)를 포함할 수 있다.1, 2, 6, and 7, the semiconductor device manufacturing apparatus 1 according to the present invention includes a sealing part 4 for sealing the receiving groove 311, and the support part ( It may include a lifting unit (5) for elevating (2).
상기 밀봉부(4)는 상기 공급부(3)에 결합된다. 상기 밀봉부(4)는 상기 지지부(2)에 지지된 웨이퍼(10)에 접촉될 수 있다. 이에 따라, 상기 밀봉부(4)는 상기 지지부(2)에 지지된 웨이퍼(10)에 대해 관통전극을 형성하기 위한 공정이 이루어지도록 상기 수용홈(311)을 밀폐시킬 수 있다. 상기 밀봉부(4)는 상기 웨이퍼(10)가 갖는 가장자리 부분의 상면에 접촉될 수 있다. 상기 밀봉부(4)는 전체적으로 원형 고리형태로 형성될 수 있으나, 이에 한정되지 않으며 상기 지지부(2)에 지지된 웨이퍼(10)에 접촉되어 상기 수용홈(311)을 밀폐시킬 수 있는 형태이면 타원 형태 등 다른 형태로 형성될 수도 있다. 상기 밀봉부(4)는 상기 수용기구(31)에 결합될 수 있다. 상기 밀봉부(4)는 고정부재(41), 접촉부재(42), 및 이동홈(43)을 포함할 수 있다.The seal 4 is coupled to the supply 3. The seal 4 may be in contact with the wafer 10 supported by the support 2. Accordingly, the sealing part 4 may seal the accommodating groove 311 so that a process for forming a through electrode with respect to the wafer 10 supported by the support part 2 is performed. The seal 4 may be in contact with an upper surface of an edge portion of the wafer 10. The sealing part 4 may be formed in a circular ring shape as a whole, but is not limited thereto. If the sealing part 4 is in contact with the wafer 10 supported by the support part 2 to seal the accommodating groove 311, an ellipse may be used. It may be formed in other forms such as form. The seal 4 may be coupled to the receiving mechanism 31. The sealing part 4 may include a fixing member 41, a contact member 42, and a moving groove 43.
도 2, 도 6 및 도 7을 참고하면, 상기 고정부재(41)는 상기 공급부(3, 도 2에 도시됨)에 결합된다. 상기 고정부재(41)는 상기 수용기구(31)에 결합될 수 있다. 상기 고정부재(41)는 상기 수용기구(31)에 삽입되기 위한 돌출부재(411)를 포함할 수 있다. 상기 고정부재(41)는 상기 돌출부재(411)가 상기 수용기구(31)에 삽입됨으로써 억지끼워맞춤 방식에 의해 상기 수용기구(31)에 결합될 수 있다. 도시되지 않았지만, 상기 고정부재(41)는 볼트 등의 체결수단에 의해 상기 수용기구(31)에 결합될 수도 있다.2, 6 and 7, the fixing member 41 is coupled to the supply part 3 (shown in FIG. 2). The fixing member 41 may be coupled to the receiving mechanism 31. The fixing member 41 may include a protruding member 411 to be inserted into the receiving mechanism 31. The fixing member 41 may be coupled to the accommodation mechanism 31 by an interference fit method by inserting the protrusion member 411 into the accommodation mechanism 31. Although not shown, the fixing member 41 may be coupled to the receiving mechanism 31 by fastening means such as a bolt.
상기 접촉부재(42)는 상기 지지부(2)에 지지된 웨이퍼(10)에 접촉될 수 있다. 상기 지지부(2)가 상승하면, 상기 접촉부재(42)는 상기 지지부(2)에 지지된 웨이퍼(10)에 접촉될 수 있다. 상기 지지부(2)가 하강하면, 상기 접촉부재(42)는 상기 지지부(2)에 지지된 웨이퍼(10)로부터 이격될 수 있다. 상기 접촉부재(42)는 상기 이동홈(43)에 의해 상기 고정부재(41)에 가까워지거나 멀어지게 이동할 수 있다. 도 6에 도시된 바와 같이 상기 접촉부재(42)가 상기 지지부(2)에 지지된 웨이퍼(10)에 접촉되지 않은 상태인 경우, 상기 접촉부재(42)는 상기 이동홈(43)에 의해 상기 고정부재(41)로부터 소정 거리 이격된 위치에 위치될 수 있다. 상기 접촉부재(42)가 상기 지지부(2)에 지지된 웨이퍼(10)에 접촉된 이후 상기 승강부(5)가 상기 지지부(2)를 계속하여 상승시키면, 도 7에 도시된 바와 같이 상기 접촉부재(42)는 상기 고정부재(41)에 가까워지는 방향으로 이동될 수 있다.The contact member 42 may be in contact with the wafer 10 supported by the support 2. When the support part 2 rises, the contact member 42 may contact the wafer 10 supported by the support part 2. When the support part 2 is lowered, the contact member 42 may be spaced apart from the wafer 10 supported by the support part 2. The contact member 42 may move closer to or further from the fixing member 41 by the moving groove 43. As shown in FIG. 6, when the contact member 42 is not in contact with the wafer 10 supported by the support part 2, the contact member 42 is moved by the movable groove 43. It may be located at a position spaced a predetermined distance from the fixing member (41). After the contact member 42 is brought into contact with the wafer 10 supported by the support 2, the lifter 5 continuously lifts the support 2, the contact as shown in FIG. 7. The member 42 may be moved in a direction closer to the fixing member 41.
따라서, 상기 밀봉부(4)는 상기 지지부(2)에 지지된 웨이퍼(10)에 접촉되어 상기 수용홈(311)을 밀폐시킬 수 있을 뿐만 아니라, 상기 수용홈(311)을 밀폐시키는 과정에서 상기 지지부(2)에 지지된 웨이퍼(10)에 가하여지는 힘을 완충시킴으로써, 상기 웨이퍼(10)가 손상되는 것을 방지할 수 있다. 상기 밀봉부(4)는 탄성을 갖는 재질로 형성될 수 있고, 예컨대 실리콘, 고무 등으로 형성될 수 있다.Therefore, the sealing part 4 may not only contact the wafer 10 supported by the support part 2 to seal the accommodating groove 311, but also in the process of sealing the accommodating groove 311. By damaging the force applied to the wafer 10 supported by the support 2, it is possible to prevent the wafer 10 from being damaged. The seal 4 may be formed of a material having elasticity, for example, silicon, rubber, or the like.
상기 이동홈(43)은 상기 고정부재(41)와 상기 접촉부재(42)가 연결되는 부분에 형성될 수 있다. 상기 이동홈(43)에 의해 상기 접촉부재(42)와 상기 고정부재(41)는 소정 거리로 이격될 수 있다. 상기 접촉부재(42)가 상기 지지부(2)에 지지된 웨이퍼(10)에 접촉되면, 상기 접촉부재(42)는 상기 고정부재(41)에 가까워지게 이동할 수 있다.The moving groove 43 may be formed at a portion where the fixing member 41 and the contact member 42 are connected. The contact member 42 and the fixing member 41 may be spaced apart by a predetermined distance by the moving groove 43. When the contact member 42 contacts the wafer 10 supported by the support 2, the contact member 42 may move closer to the fixing member 41.
도 1, 도 2, 도 6 및 도 7을 참고하면, 상기 승강부(5)는 상기 지지부(2)를 제1위치 및 제2위치 간에 승강시킬 수 있다. 상기 지지부(2)가 상기 제1위치에 위치되면, 상기 밀봉부(4)는 상기 지지부(2)에 지지된 웨이퍼(10)에 접촉된다. 상기 밀봉부(4)가 상기 지지부(2)에 지지된 웨이퍼(10)에 접촉되면, 상기 수용홈(311)은 밀폐될 수 있다. 상기 지지부(2)가 상기 제2위치에 위치되면, 상기 밀봉부(4)는 상기 지지부(2)에 지지된 웨이퍼(10)로부터 이격된다. 상기 밀봉부(4)가 상기 지지부(2)에 지지된 웨이퍼(10)로부터 이격되면, 상기 수용홈(311)은 개방될 수 있다.1, 2, 6 and 7, the lifting unit 5 may raise and lower the support unit 2 between a first position and a second position. When the support 2 is located in the first position, the seal 4 is in contact with the wafer 10 supported by the support 2. When the sealing part 4 contacts the wafer 10 supported by the support part 2, the receiving groove 311 may be sealed. When the support 2 is located in the second position, the seal 4 is spaced apart from the wafer 10 supported by the support 2. When the seal 4 is spaced apart from the wafer 10 supported by the support 2, the receiving groove 311 may be opened.
상기 승강부(5)는 상기 지지부(2)를 상승시킴으로써 상기 지지부(2)를 상기 제1위치에 위치시킬 수 있다. 상기 지지부(2)가 상기 제1위치에 위치되면, 상기 수용홈(311)에는 관통전극을 형성시키기 위한 공정유체(100)가 공급될 수 있다. 이에 따라, 상기 웨이퍼(10)에 대해 관통전극을 형성시키기 위한 공정이 이루어질 수 있다. 상기 웨이퍼(10)에 대해 관통전극을 형성시키기 위한 공정이 완료되면, 상기 승강부(5)는 상기 지지부(2)를 하강시킴으로써 상기 지지부(2)를 상기 제2위치에 위치시킬 수 있다. 상기 지지부(2)가 상기 제2위치에 위치되면, 상기 수용홈(311)이 개방될 수 있다. 이에 따라, 관통전극이 형성된 웨이퍼(10)가 상기 지지부(2)로부터 언로딩(Unloading)될 수 있고, 새로운 웨이퍼(10)가 상기 지지부(2)에 로딩(Loading)될 수 있다. 상기 지지부(2)로부터 웨이퍼(10)를 언로딩하는 공정과 상기 지지부(2)에 웨이퍼(10)를 로딩하는 공정은, 별도의 이송수단(미도시)에 의해 이루어질 수 있다.The lifting and lowering part 5 can raise the supporting part 2 to position the supporting part 2 in the first position. When the support part 2 is positioned at the first position, the receiving fluid 311 may be supplied with a process fluid 100 for forming a through electrode. Accordingly, a process for forming a through electrode for the wafer 10 may be performed. When the process for forming the through electrode with respect to the wafer 10 is completed, the lifting unit 5 can position the support 2 in the second position by lowering the support 2. When the support part 2 is located in the second position, the receiving groove 311 may be opened. Accordingly, the wafer 10 on which the through electrode is formed may be unloaded from the support 2, and a new wafer 10 may be loaded on the support 2. The process of unloading the wafer 10 from the support 2 and the process of loading the wafer 10 into the support 2 may be performed by separate transfer means (not shown).
상기 승강부(5)는 상기 지지부(2)에 결합될 수 있다. 상기 승강부(5)는 유압실린더 또는 공압실린더 등을 이용한 실린더방식, 모터와 랙기어(Rack Gear)와 피니언기어(Pinion Gear) 등을 이용한 기어방식, 모터와 볼스크류(Ball Screw) 등을 이용한 볼스크류방식, 모터와 풀리와 벨트 등을 이용한 벨트방식, 리니어모터를 이용한 방식 등을 이용하여 상기 지지부(2)를 승강시킬 수 있다. 상기 승강부(5)는 챔버(200, 도 1에 도시됨)에 설치될 수 있다. 상기 챔버(200)에는 상기 지지부(2), 상기 공급부(3) 및 상기 승강부(5)가 설치될 수 있다. 상기 지지부(2)는 상기 챔버(200)에 승강 가능하게 설치될 수 있다.The lifting unit 5 may be coupled to the support unit 2. The lifting unit 5 is a cylinder method using a hydraulic cylinder or a pneumatic cylinder, a gear method using a motor, a rack gear and a pinion gear, and the like, using a motor and a ball screw. The support part 2 can be elevated using a ball screw method, a belt method using a motor, a pulley and a belt, a method using a linear motor, and the like. The lifting unit 5 may be installed in the chamber 200 (shown in FIG. 1). The support part 2, the supply part 3, and the lifting part 5 may be installed in the chamber 200. The support part 2 may be installed to be elevated in the chamber 200.
도시되지 않았지만, 상기 승강부(5)는 상기 공급부(3)를 승강시킬 수도 있다. 상기 승강부(5)는 상기 밀봉부(4)가 상기 지지부(2)에 지지된 웨이퍼(10)에 접촉되도록 상기 공급부(3)를 하강시킬 수 있다. 상기 승강부(5)는 상기 밀봉부(4)가 상기 지지부(2)에 지지된 웨이퍼(10)로부터 이격되도록 상기 공급부(3)를 상승시킬 수 있다. 이 경우, 상기 공급부(3)는 상기 챔버(200)에 승강 가능하게 설치될 수 있다. 상기 승강부(5)는 상기 지지부(2)와 상기 공급부(3) 모두를 승강시킬 수도 있다. 이 경우, 상기 승강부(5)는 상기 지지부(2)와 상기 공급부(3)를 서로 반대되는 방향으로 승강시킬 수 있다. 즉, 상기 승강부(5)는 상기 지지부(2)를 상승시킬 때 상기 공급부(3)를 하강시킬 수 있다. 상기 승강부(5)는 상기 지지부(2)를 하강시킬 때 상기 공급부(3)를 상승시킬 수 있다. Although not shown, the elevating unit 5 may elevate the supply unit 3. The lifting unit 5 may lower the supply unit 3 such that the sealing unit 4 contacts the wafer 10 supported by the support unit 2. The lifting unit 5 may raise the supply unit 3 so that the sealing unit 4 is spaced apart from the wafer 10 supported by the support unit 2. In this case, the supply part 3 may be installed to be elevated in the chamber 200. The lifting unit 5 may lift both the supporting unit 2 and the supply unit 3. In this case, the lifting unit 5 may raise and lower the support unit 2 and the supply unit 3 in directions opposite to each other. That is, the lifting unit 5 may lower the supply unit 3 when raising the support unit 2. The lifting unit 5 may raise the supply unit 3 when the support unit 2 is lowered.
도 1, 도 2 및 도 8을 참고하면, 본 발명에 따른 반도체 소자 제조장치(1)는 제1전극부재(6) 및 제2전극부재(7)를 포함할 수 있다.1, 2 and 8, the semiconductor device manufacturing apparatus 1 according to the present invention may include a first electrode member 6 and a second electrode member 7.
상기 제1전극부재(6)는 상기 공급부(3)에 결합된다. 상기 제1전극부재(6)는 상기 제1유로(321)에 위치되게 상기 공급기구(32)에 결합될 수 있다. 상기 제1전극부재(6)는 상기 지지부(2)에 지지된 웨이퍼(10)에 대해 상기 수용홈(311)에 수용된 공정유체(100)가 양극이 되도록 함으로써, 상기 지지부(2)에 지지된 웨이퍼(10)에 대해 관통전극을 형성시키는 공정이 이루어지도록 할 수 있다. 도시되지 않았지만, 상기 제1전극부재(6)는 상기 공급공(322)에 위치되게 상기 공급기구(32)에 결합될 수도 있다. 상기 제1전극부재(6)는 상기 제1유로(321)와 상기 공급공(322) 모두에 위치되게 상기 공급기구(32)에 결합될 수도 있다.The first electrode member 6 is coupled to the supply part 3. The first electrode member 6 may be coupled to the supply mechanism 32 to be positioned in the first flow passage 321. The first electrode member 6 is supported by the support part 2 by causing the process fluid 100 accommodated in the receiving groove 311 to become an anode with respect to the wafer 10 supported by the support part 2. A process of forming a through electrode for the wafer 10 may be performed. Although not shown, the first electrode member 6 may be coupled to the supply mechanism 32 to be positioned in the supply hole 322. The first electrode member 6 may be coupled to the supply mechanism 32 such that the first electrode member 6 is positioned in both the first flow path 321 and the supply hole 322.
상기 제2전극부재(7)는 상기 공급부(3)에 결합된다. 상기 제2전극부재(7)는 상기 수용기구(31)에 결합될 수 있다. 상기 지지부(2)가 상기 제1위치에 위치될 때, 상기 제2전극부재(7)는 상기 지지부(2)에 지지된 웨이퍼(10)에 접촉될 수 있다. 상기 제2전극부재(7)는 상기 수용기구(31)에서 상기 밀봉부(4)가 결합된 위치보다 외측에 위치되게 상기 수용기구(31)에 결합될 수 있다. 즉, 상기 제2전극부재(7)는 상기 수용홈(311) 외측에 위치되게 상기 수용기구(31)에 결합될 수 있다. 상기 제2전극부재(7)는 상기 지지부(2)에 지지된 웨이퍼(10)에 접촉됨으로써, 상기 수용홈(311)에 수용된 공정유체(100)에 대해 상기 지지부(2)에 지지된 웨이퍼(10)가 음극이 되도록 할 수 있다. 이에 따라, 상기 지지부(2)에 지지된 웨이퍼(10)에 대해 관통전극을 형성시키는 공정이 이루어질 수 있다. 본 발명에 따른 반도체 소자 제조장치(1)는 상기 제2전극부재(7)를 복수개 포함할 수 있고, 상기 제2전극부재(7)들은 서로 소정 거리로 이격되어 상기 공급부(3)에 결합될 수 있다.The second electrode member 7 is coupled to the supply part 3. The second electrode member 7 may be coupled to the accommodation mechanism 31. When the support part 2 is positioned at the first position, the second electrode member 7 may contact the wafer 10 supported by the support part 2. The second electrode member 7 may be coupled to the accommodation mechanism 31 such that the second electrode member 7 is located outside the position where the sealing portion 4 is coupled to the accommodation mechanism 31. That is, the second electrode member 7 may be coupled to the accommodation mechanism 31 to be located outside the accommodation groove 311. The second electrode member 7 is in contact with the wafer 10 supported by the support part 2, so that the wafer supported by the support part 2 with respect to the process fluid 100 accommodated in the receiving groove 311 ( 10) may be a cathode. Accordingly, a process of forming a through electrode for the wafer 10 supported by the support 2 may be performed. The semiconductor device manufacturing apparatus 1 according to the present invention may include a plurality of second electrode members 7, and the second electrode members 7 may be separated from each other by a predetermined distance and coupled to the supply part 3. Can be.
도 8 및 도 9를 참고하면, 상기 제2전극부재(7)는 이동부재(71) 및 설치부재(72)를 포함할 수 있다.8 and 9, the second electrode member 7 may include a moving member 71 and an installation member 72.
상기 이동부재(71)는 상기 설치부재(72)에 결합될 수 있다. 상기 이동부재(71)는 상기 지지부(2)에 지지된 웨이퍼(10)에 접촉되기 위한 접촉면(711) 및 상기 접촉면(711)이 상기 설치부재(72)에 가까워지거나 멀어지게 이동되기 위한 이격홈(712)을 포함할 수 있다. 상기 지지부(2)가 상기 제1위치에 위치되면, 상기 접촉면(711)은 상기 지지부(2)에 지지된 웨이퍼(10)에 접촉될 수 있다. 상기 접촉면(711)이 상기 지지부(2)에 지지된 웨이퍼(10)에 접촉됨에 따라, 상기 접촉면(711)은 상기 설치부재(72)에 가까워지게 이동할 수 있다. 따라서, 상기 이동부재(71)는 상기 지지부(2)에 지지된 웨이퍼(10)에 접촉되는 과정에서 상기 지지부(2)에 지지된 웨이퍼(10)에 가하여지는 힘을 완충시킴으로써, 상기 웨이퍼(10)가 손상되는 것을 방지할 수 있다. 상기 접촉면(711)은 상기 지지부(2)에 지지된 웨이퍼(10)로부터 이격됨에 따라 상기 설치부재(72)로부터 멀어지게 이동함으로써 본래의 형태로 복원될 수 있다. 상기 이동부재(71)는 탄성을 가질 수 있도록 얇은 두께로 형성될 수 있다.The moving member 71 may be coupled to the installation member 72. The movable member 71 has a contact surface 711 for contacting the wafer 10 supported by the support part 2 and a spaced groove for moving the contact surface 711 closer to or farther from the installation member 72. 712 may be included. When the support part 2 is positioned at the first position, the contact surface 711 may contact the wafer 10 supported by the support part 2. As the contact surface 711 contacts the wafer 10 supported by the support part 2, the contact surface 711 may move closer to the installation member 72. Therefore, the moving member 71 buffers the force applied to the wafer 10 supported by the support 2 in the process of contacting the wafer 10 supported by the support 2, thereby providing the wafer 10. ) Can be prevented from being damaged. The contact surface 711 may be restored to its original shape by moving away from the installation member 72 as it is spaced apart from the wafer 10 supported by the support 2. The moving member 71 may be formed to a thin thickness to have elasticity.
상기 설치부재(72)는 상기 공급부(3, 도 2에 도시됨)에 결합된다. 상기 설치부재(72)는 상기 수용기구(31)에 결합될 수 있다. 상기 제2전극부재(7)는 상기 설치부재(72)가 상기 수용기구(31)에 삽입됨으로써 억지끼워맞춤 방식에 의해 상기 수용기구(31)에 결합될 수 있다. 도시되지 않았지만, 상기 제2전극부재(7)는 볼트 등의 체결수단에 의해 상기 수용기구(31)에 결합될 수도 있다.The installation member 72 is coupled to the supply portion 3 (shown in FIG. 2). The installation member 72 may be coupled to the accommodation mechanism 31. The second electrode member 7 may be coupled to the accommodation mechanism 31 by an interference fit method by inserting the installation member 72 into the accommodation mechanism 31. Although not shown, the second electrode member 7 may be coupled to the receiving mechanism 31 by a fastening means such as a bolt.
도 10 내지 도 12를 참고하면, 본 발명에 따른 반도체 소자 제조장치(1)에 있어서 상기 수용기구(31)는 상기 공정유체(100)가 상기 수용홈(311)으로부터 배출되기 위한 배출유로(312)를 포함할 수 있다. 상기 배출유로(312)는 상기 공정유체저장부(20)에 연결될 수 있다. 상기 공정유체저장부(20)는 일측이 상기 제1유로(321)에 연결되고, 타측이 상기 배출유로(312)에 연결될 수 있다. 이에 따라, 상기 공정유체(100)는 상기 공정유체저장부(20)에서 상기 제1유로(321)를 통해 상기 수용홈(311)에 공급된 후, 상기 배출유로(312)를 통해 상기 수용홈(311)으로부터 배출되어 다시 상기 공정유체저장부(20)에 공급될 수 있다. 즉, 본 발명에 따른 반도체 소자 제조장치(1)는 상기 공정유체(100)를 순환 이동시키면서 상기 웨이퍼(10)에 관통전극을 형성시키는 공정을 수행할 수 있다.10 to 12, in the semiconductor device manufacturing apparatus 1 according to the present invention, the accommodation mechanism 31 has a discharge passage 312 through which the process fluid 100 is discharged from the accommodation groove 311. ) May be included. The discharge passage 312 may be connected to the process fluid storage 20. The process fluid storage 20 may have one side connected to the first passage 321 and the other side connected to the discharge passage 312. Accordingly, the process fluid 100 is supplied from the process fluid storage unit 20 to the receiving groove 311 through the first passage 321, and then through the discharge passage 312. Ejected from the 311 may be supplied to the process fluid storage unit 20 again. That is, the semiconductor device manufacturing apparatus 1 according to the present invention may perform a process of forming a through electrode on the wafer 10 while circulating the process fluid 100.
도 10 내지 도 12를 참고하면, 본 발명에 따른 반도체 소자 제조장치(1)는 상기 공정유체저장부(20)와 상기 수용홈(311) 간에 상기 공정유체(100)를 순환 이동시키기 위한 순환이동부(30)를 포함할 수 있다.10 to 12, the semiconductor device manufacturing apparatus 1 according to the present invention has a circulation for circulating the process fluid 100 between the process fluid storage unit 20 and the receiving groove 311. East 30 may be included.
상기 순환이동부(30)는 상기 공정유체(100)가 상기 공정유체저장부(20)에서 상기 공급기구(32)를 통해 상기 수용홈(311)에 공급된 후, 상기 수용기구(31)를 통해 상기 수용홈(311)으로부터 배출되어 상기 공정유체저장부(20)에 공급되도록 상기 공정유체(100)를 순환 이동시킬 수 있다. 상기 공정유체(100)는 상기 공정유체저장부(20)에서 상기 제1유로(321) 및 상기 공급공(322)을 통해 상기 수용홈(311)에 공급된 후, 상기 배출유로(312)를 통해 상기 수용홈(311)으로부터 배출되어 상기 공정유체저장부(20)에 공급될 수 있다. 상기 순환이동부(30)는 순환펌프일 수 있다.The circulation movement part 30 is supplied to the receiving groove 311 after the process fluid 100 is supplied from the process fluid storage part 20 to the receiving groove 311 by the supply mechanism 32. The process fluid 100 may be circulated to be discharged from the receiving groove 311 to be supplied to the process fluid storage 20. The process fluid 100 is supplied from the process fluid storage unit 20 to the receiving groove 311 through the first passage 321 and the supply hole 322, and then the discharge passage 312. It may be discharged from the receiving groove 311 through the supplied to the process fluid storage unit 20. The circulation moving unit 30 may be a circulation pump.
상기 순환이동부(30)는 상기 공정유체저장부(20)의 일측과 상기 공급부(3) 사이에 위치되게 설치되는 제1순환이동기구(310)를 포함할 수 있다. 상기 제1순환이동기구(310)는 상기 공정유체저장부(20)로부터 공정유체(100)를 흡입하고, 흡입한 공정유체(100)를 상기 제1유로(311)로 배출할 수 있다. 상기 순환이동부(30)는 상기 공정유체저장부(20)의 타측과 상기 공급부(3) 사이에 위치되게 설치되는 제2순환이동기구(320)를 포함할 수 있다. 상기 제2순환이동기구(320)는 상기 배출유로(312)를 통해 상기 수용홈(311)으로부터 공정유체(100)를 흡입하고, 흡입한 공정유체(100)를 상기 공정유체저장부(20)로 배출할 수 있다. 상기 순환이동부(30)는 상기 제1순환이동기구(310)와 상기 제2순환이동기구(320) 중 어느 하나를 선택적으로 포함할 수도 있고, 상기 제1순환이동기구(310)와 상기 제2순환이동기구(320)를 모두 포함할 수도 있다.The circulation movement unit 30 may include a first circulation movement mechanism 310 installed between one side of the process fluid storage unit 20 and the supply unit 3. The first circulation movement mechanism 310 may suck the process fluid 100 from the process fluid storage unit 20 and discharge the sucked process fluid 100 into the first flow path 311. The circulation movement unit 30 may include a second circulation movement mechanism 320 installed between the other side of the process fluid storage unit 20 and the supply unit 3. The second circulation movement mechanism 320 sucks the process fluid 100 from the receiving groove 311 through the discharge passage 312, and sucks the sucked process fluid 100 into the process fluid storage unit 20. Can be discharged. The circulation movement unit 30 may optionally include any one of the first circulation movement mechanism 310 and the second circulation movement mechanism 320, and the first circulation movement mechanism 310 and the first movement mechanism. It may include both the two circulation mechanism (320).
도 10 내지 도 12를 참고하면, 본 발명에 따른 반도체 소자 제조장치(1)는 제1공급연결부(40), 제2공급연결부(50) 및 공급개폐부(60)를 포함할 수 있다.10 to 12, the semiconductor device manufacturing apparatus 1 according to the present invention may include a first supply connection part 40, a second supply connection part 50, and a supply opening and closing part 60.
상기 제1공급연결부(40)는 상기 공정유체저장부(20)와 상기 공급기구(32)를 연결한다. 상기 제1공급연결부(40)는 상기 공정유체(100)가 이동하기 위한 통로로 기능한다. 상기 제1공급연결부(40)는 상기 제1유로(321)에 연결될 수 있다. 상기 공정유체저장부(20)에 저장된 공정유체(100)는 상기 제1공급연결부(40)를 통해 상기 제1유로(321)에 공급된 후, 상기 공급공(322)을 통해 상기 수용홈(311)에 공급될 수 있다.The first supply connection part 40 connects the process fluid storage part 20 and the supply mechanism 32. The first supply connection part 40 functions as a passage for the process fluid 100 to move. The first supply connection part 40 may be connected to the first flow path 321. The process fluid 100 stored in the process fluid storage part 20 is supplied to the first flow path 321 through the first supply connection part 40, and then through the supply hole 322, the receiving groove ( 311).
상기 제2공급연결부(50)는 상기 공정유체저장부(20)와 상기 수용기구(31)를 연결한다. 상기 제2공급연결부(50)는 상기 공정유체(100)가 이동하기 위한 통로로 기능한다. 상기 수용기구(31)는 상기 제2공급연결부(50)로부터 공급된 공정유체(100)를 상기 수용홈(311)에 공급하기 위한 공급유로(313)를 포함한다. 상기 공급유로(313)는 일측이 상기 제2공급연결부(50)에 연결되고, 타측이 상기 수용홈(311)에 연결되게 형성된다. 상기 공정유체저장부(20)에 저장된 공정유체(100)는 상기 제2공급연결부(50)를 통해 상기 공급유로(313)에 공급된 후, 상기 공급유로(313)를 통해 상기 수용홈(311)에 공급될 수 있다. 상기 제2공급연결부(50)와 상기 제1공급연결부(40)는 상기 공정유체저장부(20)의 일측에 연결된 제1관로(210)로부터 분기되어 형성될 수 있다.The second supply connection part 50 connects the process fluid storage part 20 and the receiving mechanism 31. The second supply connector 50 functions as a passage for the process fluid 100 to move. The accommodation mechanism 31 includes a supply passage 313 for supplying the process fluid 100 supplied from the second supply connection portion 50 to the accommodation groove 311. The supply passage 313 is formed such that one side is connected to the second supply connector 50 and the other side is connected to the receiving groove 311. After the process fluid 100 stored in the process fluid storage unit 20 is supplied to the supply passage 313 through the second supply connection unit 50, the receiving groove 311 through the supply passage 313. ) Can be supplied. The second supply connector 50 and the first supply connector 40 may be branched from the first conduit 210 connected to one side of the process fluid storage unit 20.
상기 공급개폐부(60)는 상기 제1공급연결부(40)와 상기 제2공급연결부(50) 중 어느 하나를 선택적으로 개폐(開閉)시킨다. 상기 공정유체저장부(20)에 저장된 공정유체(100)는, 상기 제1공급연결부(40)와 상기 제2공급연결부(50) 중에서 개방(開放)된 어느 하나를 통해 상기 제1유로(321)와 상기 공급유로(313) 중 어느 하나에 공급되고, 상기 제1유로(321)와 상기 공급유로(313) 중 어느 하나를 통해 상기 수용홈(311)에 공급된다. 상기 공급개폐부(60)는 상기 제1공급연결부(40)에 설치된 제1공급개폐기구(610) 및 상기 제2공급연결부(50)에 설치된 제2공급개폐기구(620)를 포함할 수 있다. 상기 공급개폐부(60)는 상기 제1공급개폐기구(610)와 상기 제2공급개폐기구(620) 중 어느 하나를 선택적으로 개폐시킴으로써, 상기 제1공급연결부(40)와 상기 제2공급연결부(50) 중 어느 하나를 선택적으로 개폐시킬 수 있다. 상기 제1공급개폐기구(610)와 상기 제2공급개폐기구(620)는 밸브일 수 있다. The supply opening and closing part 60 selectively opens or closes any one of the first supply connection part 40 and the second supply connection part 50. The process fluid 100 stored in the process fluid storage unit 20 may be connected to the first flow path 321 through any one of the first supply connection part 40 and the second supply connection part 50. ) Is supplied to any one of the supply passage 313 and the receiving groove 311 through any one of the first passage 321 and the supply passage 313. The supply opening and closing unit 60 may include a first supply opening and closing mechanism 610 installed at the first supply connection portion 40 and a second supply opening and closing mechanism 620 installed at the second supply connection portion 50. The supply opening and closing part 60 selectively opens or closes any one of the first supply opening and closing mechanism 610 and the second supply opening and closing mechanism 620, thereby providing the first supply connecting portion 40 and the second supply connecting portion ( Any one of 50) can be selectively opened and closed. The first supply opening and closing mechanism 610 and the second supply opening and closing mechanism 620 may be valves.
도 10 내지 도 12를 참고하면, 본 발명에 따른 반도체 소자 제조장치(1)는 제1배출연결부(70), 제2배출연결부(80) 및 배출개폐부(90)를 포함할 수 있다.10 to 12, the semiconductor device manufacturing apparatus 1 according to the present invention may include a first discharge connection unit 70, a second discharge connection unit 80, and a discharge opening and closing unit 90.
상기 제1배출연결부(70)는 상기 공정유체저장부(20)와 상기 수용기구(31)를 연결한다. 상기 제1배출연결부(70)는 상기 공정유체(100)가 이동하기 위한 통로로 기능한다. 상기 제1배출연결부(70)는 상기 배출유로(312)에 연결될 수 있다. 상기 공정유체(100)는 상기 배출유로(312)를 통해 상기 수용홈(311)으로부터 배출된 후, 상기 제1배출연결부(70)를 통해 상기 공정유체저장부(20)에 공급될 수 있다.The first discharge connection part 70 connects the process fluid storage part 20 and the receiving mechanism 31. The first discharge connection portion 70 functions as a passage for the process fluid 100 to move. The first discharge connector 70 may be connected to the discharge passage 312. The process fluid 100 may be discharged from the receiving groove 311 through the discharge passage 312, and then supplied to the process fluid storage unit 20 through the first discharge connection unit 70.
상기 제2배출연결부(80)는 상기 공정유체저장부(20)와 상기 공급기구(32)를 연결한다. 상기 제2배출연결부(80)는 상기 공정유체(100)가 이동하기 위한 통로로 기능한다. 상기 제2배출연결부(80)는 상기 제1유로(321)에 연결될 수 있다. 상기 공정유체(100)는 상기 공급공(322)과 상기 제1유로(321)를 통해 상기 수용홈(311)으로부터 배출된 후, 상기 제2배출연결부(80)를 통해 상기 공정유체저장부(20)에 공급될 수 있다. 상기 제2배출연결부(80)와 상기 제1배출연결부(70)는 상기 공정유체저장부(20)의 타측에 연결된 제2관로(220)로부터 분기되어 형성될 수 있다.The second discharge connection portion 80 connects the process fluid storage portion 20 and the supply mechanism 32. The second discharge connector 80 functions as a passage for the process fluid 100 to move. The second discharge connector 80 may be connected to the first flow passage 321. The process fluid 100 is discharged from the receiving groove 311 through the supply hole 322 and the first flow path 321, and then the process fluid storage unit through the second discharge connection portion 80 20). The second discharge connection unit 80 and the first discharge connection unit 70 may be formed branched from the second conduit 220 connected to the other side of the process fluid storage unit 20.
상기 배출개폐부(90)는 상기 제1배출연결부(70)와 상기 제2배출연결부(80) 중 어느 하나를 선택적으로 개폐시킨다. 상기 공정유체(100)는, 상기 제1배출연결부(70)와 상기 제2배출연결부(80) 중에서 개방된 어느 하나를 통해 상기 수용홈(311)으로부터 배출된 후, 상기 공정유체저장부(20)에 공급될 수 있다. 예컨대, 상기 제1배출연결부(70)가 개방되고 상기 제2배출연결부(80)가 폐쇄된 경우, 상기 공정유체(100)는 상기 배출유로(312)를 통해 상기 수용홈(311)으로부터 배출된 후, 상기 제1배출연결부(70)를 통해 상기 공정유체저장부(20)에 공급될 수 있다. 상기 제2배출연결부(80)가 개방되고 상기 제1배출연결부(70)가 폐쇄된 경우, 상기 공정유체(100)는 상기 제1유로(321)를 통해 상기 수용홈(311)으로부터 배출된 후, 상기 제2배출연결부(80)를 통해 상기 공정유체저장부(20)에 공급될 수 있다. 상기 배출개폐부(90)는 상기 제1배출연결부(70)에 설치된 제1배출개폐기구(910) 및 상기 제2배출연결부(80)에 설치된 제2배출개폐기구(920)를 포함할 수 있다. 상기 배출개폐부(90)는 상기 제1배출개폐기구(910)와 상기 제2배출개폐기구(920) 중 어느 하나를 선택적으로 개폐시킴으로써, 상기 제1배출연결부(70)와 상기 제2배출연결부(80) 중 어느 하나를 선택적으로 개폐시킬 수 있다. 상기 제1배출개폐기구(910)와 상기 제2배출개폐기구(920)는 밸브일 수 있다.The discharge opening and closing part 90 selectively opens and closes any one of the first discharge connection part 70 and the second discharge connection part 80. The process fluid 100 is discharged from the receiving groove 311 through any one of the first discharge connection portion 70 and the second discharge connection portion 80, the process fluid storage unit 20 ) Can be supplied. For example, when the first discharge connector 70 is opened and the second discharge connector 80 is closed, the process fluid 100 is discharged from the receiving groove 311 through the discharge passage 312. Then, it may be supplied to the process fluid storage unit 20 through the first discharge connection portion 70. When the second discharge connector 80 is opened and the first discharge connector 70 is closed, the process fluid 100 is discharged from the receiving groove 311 through the first flow path 321. In addition, the process fluid storage unit 20 may be supplied through the second discharge connection unit 80. The discharge opening and closing unit 90 may include a first discharge opening and closing mechanism 910 installed at the first discharge connection portion 70 and a second discharge opening and closing mechanism 920 installed at the second discharge connection portion 80. The discharge opening and closing portion 90 selectively opens and closes any one of the first discharge opening and closing mechanism 910 and the second discharge opening and closing mechanism 920, thereby allowing the first discharge connection portion 70 and the second discharge connection portion ( Either one of 80) can be selectively opened and closed. The first discharge opening and closing mechanism 910 and the second discharge opening and closing mechanism 920 may be valves.
도 13을 참고하면, 상기 수용기구(31)는 상기 수용홈(311)과 상기 배출유로(312) 각각에 연결되게 형성된 배출공(314)을 포함한다. 상기 배출공(314)은 상기 지지부(2)에 지지된 웨이퍼(10)와 상기 공급기구(32) 사이에 위치되게 형성될 수 있다. 즉, 상기 배출공(314)은 상기 공급기구(32)로부터 소정 거리 이격된 위치에 형성되고, 상기 지지부(2)에 지지된 웨이퍼(10)로부터 소정 거리 이격된 위치에 형성된다. 따라서, 본 발명에 따른 반도체 소자 제조장치(1)는 상기 공정유체(100)가 상기 공급공(322)과 상기 제1유로(321)를 통해 상기 수용홈(311)으로부터 배출되는 것과 비교할 때, 더 많은 양의 공정유체(100)를 상기 수용홈(311)으로부터 배출할 수 있다. 상기 수용홈(311)으로부터 공정유체(100)가 배출됨에 따라 상기 공정유체(100)의 수위(水位)가 낮아지게 되는데, 상기 공정유체(100)의 수위가 낮아지게 됨에 따라 상기 공급기구(32)가 고정된 상태에서는 상기 공급공(322)과 상기 제1유로(321)를 통해 상기 수용홈(311)으로부터 상기 공정유체(100)를 배출할 수 없기 때문이다. 한편, 상기 배출공(314) 또한 상기 지지부(2)에 지지된 웨이퍼(10)로부터 소정 거리 이격된 위치에 형성되기 때문에, 상기 수용홈(311)으로부터 공정유체(100)를 배출하는데 한계가 있다. 이를 해결하기 위해, 상기 공급부(3)는 상기 공급기구(32)를 승강시키는 승강기구(33)를 더 포함한다.Referring to FIG. 13, the accommodation mechanism 31 includes a discharge hole 314 connected to each of the accommodation groove 311 and the discharge passage 312. The discharge hole 314 may be formed to be positioned between the wafer 10 supported by the support part 2 and the supply mechanism 32. That is, the discharge hole 314 is formed at a position spaced apart from the supply mechanism 32 by a predetermined distance, and formed at a position spaced apart from the wafer 10 supported by the support portion 2. Therefore, the semiconductor device manufacturing apparatus 1 according to the present invention is compared with the process fluid 100 is discharged from the receiving groove 311 through the supply hole 322 and the first passage 321, A larger amount of process fluid 100 may be discharged from the receiving groove 311. As the process fluid 100 is discharged from the receiving groove 311, the water level of the process fluid 100 is lowered. As the water level of the process fluid 100 is lowered, the supply mechanism 32 is reduced. This is because the process fluid 100 cannot be discharged from the receiving groove 311 through the supply hole 322 and the first flow path 321 in the fixed state. On the other hand, since the discharge hole 314 is also formed at a position spaced apart from the wafer 10 supported by the support portion 2, there is a limit in discharging the process fluid 100 from the receiving groove 311. . In order to solve this problem, the supply part 3 further includes an elevating mechanism 33 for elevating the supply mechanism 32.
도 13 및 도 14를 참고하면, 상기 승강기구(33)는 상기 공급기구(32)를 상기 지지부(2) 쪽으로 하강시킬 수 있다. 상기 배출유로(312)를 통해 상기 수용홈(311)에 수용된 공정유체(100)가 배출됨에 따라, 상기 수용홈(311)에 수용된 공정유체(100)의 수위가 낮아지게 된다. 도 13에 도시된 바와 같이 상기 공정유체(100)의 수위가 상기 배출공(314)이 형성된 위치보다 낮아지게 되면, 상기 공정유체(100)는 상기 배출유로(312)를 통해 상기 수용홈(311)으로부터 배출될 수 없게 된다. 이 경우, 도 14에 도시된 바와 같이 상기 승강기구(33)는 상기 공급기구(32)가 상기 수용홈(311)에 남아있는 공정유체(100)에 가까워지도록 상기 공급기구(32)를 상기 지지부(2) 쪽으로 하강시킨다. 이에 따라, 상기 수용홈(311)에 남아있는 공정유체(100)는 상기 공급공(322)과 상기 제1유로(321)를 통해 상기 수용홈(311)으로부터 배출될 수 있다. 따라서, 본 발명에 따른 반도체 소자 제조장치(1)는 상기 수용홈(311)으로부터 더 많은 양의 공정유체(100)를 상기 수용홈(311)으로부터 배출할 수 있다. 상기 승강기구(33)가 상기 공급기구(32)를 하강시키는 거리를 조절함으로써, 본 발명에 따른 반도체 소자 제조장치(1)는 상기 수용홈(311)으로부터 상기 공정유체(100)가 제거되도록 상기 수용홈(311)에 남아있는 공정유체(100)를 상기 공급공(322)과 상기 제1유로(321)를 통해 상기 수용홈(311)으로부터 배출할 수 있다.13 and 14, the lifting mechanism 33 may lower the supply mechanism 32 toward the support part 2. As the process fluid 100 accommodated in the receiving groove 311 is discharged through the discharge passage 312, the level of the process fluid 100 accommodated in the receiving groove 311 is lowered. As shown in FIG. 13, when the water level of the process fluid 100 is lower than the position where the discharge hole 314 is formed, the process fluid 100 passes through the discharge passage 312 through the receiving groove 311. ) Can not be discharged. In this case, as shown in FIG. 14, the lifting mechanism 33 supports the supply mechanism 32 such that the supply mechanism 32 is close to the process fluid 100 remaining in the receiving groove 311. Descend toward (2). Accordingly, the process fluid 100 remaining in the accommodating groove 311 may be discharged from the accommodating groove 311 through the supply hole 322 and the first passage 321. Therefore, the semiconductor device manufacturing apparatus 1 according to the present invention may discharge a larger amount of the process fluid 100 from the receiving groove 311 from the receiving groove 311. By adjusting the distance that the lifting mechanism 33 lowers the supply mechanism 32, the semiconductor device manufacturing apparatus 1 according to the present invention is to remove the process fluid 100 from the receiving groove 311 The process fluid 100 remaining in the accommodation groove 311 may be discharged from the accommodation groove 311 through the supply hole 322 and the first flow path 321.
상기 승강기구(33)는 유압실린더 또는 공압실린더 등을 이용한 실린더방식, 모터와 랙기어와 피니언기어 등을 이용한 기어방식, 모터와 볼스크류 등을 이용한 볼스크류방식, 모터와 풀리와 벨트 등을 이용한 벨트방식, 리니어모터를 이용한 방식 등을 이용하여 상기 공급기구(32)를 승강시킬 수 있다. 상기 승강기구(33)는 챔버(200, 도 1에 도시됨)에 설치될 수 있다. 상기 공급기구(32)는 상기 챔버(200)에 승강 가능하게 설치될 수 있다.The lifting mechanism 33 is a cylinder method using a hydraulic cylinder or a pneumatic cylinder, a gear method using a motor and a rack gear and a pinion gear, a ball screw method using a motor and a ball screw, a motor, a pulley and a belt, etc. The feeding mechanism 32 can be elevated by using a belt method, a method using a linear motor, or the like. The lifting mechanism 33 may be installed in the chamber 200 (shown in FIG. 1). The supply mechanism 32 may be installed to be elevated in the chamber 200.
도 1 내지 도 15를 참고하면, 본 발명에 따른 반도체 소자 제조장치(1)는 상기 수용홈(311)에 상기 공정유체(100)를 공급한 후, 상기 공정유체저장부(20)와 상기 수용홈(311) 간에 상기 공정유체(100)를 순환 이동시키면서 상기 지지부(2)에 지지된 웨이퍼(10)에 대해 관통전극을 형성하는 공정을 수행한다. 상기 지지부(2)에 지지된 웨이퍼(10)에 대해 관통전극을 형성하는 공정이 완료되면, 본 발명에 따른 반도체 소자 제조장치(1)는 상기 수용홈(311)으로부터 상기 공정유체(100)를 배출한다. 이를 구체적으로 살펴보면, 다음과 같다.1 to 15, in the semiconductor device manufacturing apparatus 1 according to the present invention, after supplying the process fluid 100 to the receiving groove 311, the process fluid storage unit 20 and the accommodation The process of forming a through electrode for the wafer 10 supported by the support part 2 while circulating the process fluid 100 between the grooves 311 is performed. When the process of forming the through electrode for the wafer 10 supported by the support 2 is completed, the semiconductor device manufacturing apparatus 1 according to the present invention is to remove the process fluid 100 from the receiving groove 311 Discharge. Looking specifically at this, it is as follows.
우선, 도 1에 도시된 바와 같이 상기 지지부(2)와 상기 공급부(3)가 서로 이격된 상태에서 관통전극을 형성하기 위한 웨이퍼(10)가 상기 지지부(2)에 로딩된다. 이 경우, 상기 지지부(2)는 상기 제2위치에 위치되게 하강된 상태이다. 상기 웨이퍼(10)는 별도의 이송수단에 의해 상기 지지부(2)에 로딩될 수 있다.First, as shown in FIG. 1, a wafer 10 for forming a through electrode in a state in which the support 2 and the supply 3 are spaced apart from each other is loaded on the support 2. In this case, the support portion 2 is in a lowered state to be positioned at the second position. The wafer 10 may be loaded onto the support 2 by a separate transfer means.
다음, 도 10에 도시된 바와 같이 상기 승강부(5)는 상기 지지부(2)가 상기 제1위치에 위치되게 상기 지지부(2)를 상승시킨다. 이에 따라, 상기 밀봉부(4, 도 7에 도시됨)는 상기 지지부(2)에 지지된 웨이퍼(10)에 접촉됨으로써, 상기 수용홈(311)을 밀폐시킬 수 있다. 이 경우, 상기 제2전극부재(7, 도 9에 도시됨)는 상기 지지부(2)에 지지된 웨이퍼(10)에 접촉될 수 있다.Next, as shown in FIG. 10, the elevating part 5 raises the supporting part 2 such that the supporting part 2 is positioned at the first position. Accordingly, the sealing part 4 (shown in FIG. 7) may be in contact with the wafer 10 supported by the support part 2 to seal the receiving groove 311. In this case, the second electrode member 7 (shown in FIG. 9) may be in contact with the wafer 10 supported by the support 2.
다음, 도 11에 도시된 바와 같이 상기 공급개폐부(60)는 상기 제2공급연결부(50)를 개방시키고, 상기 제1공급연결부(40)를 폐쇄시킨다. 이에 따라, 상기 공정유체저장부(20)에 저장된 공정유체(100)는, 상기 제2공급연결부(50)를 통해 상기 공급유로(313)에 공급된 후, 상기 수용기구(31)의 공급유로(313)를 통해 상기 수용홈(311, 도 10에 도시됨)에 공급된다. 따라서, 상기 수용홈(311)은 상기 공정유체(100)로 채워질 수 있다. 상기 공정유체(100)는 상기 공급기구(32)가 있는 위치 또는 이에 근접한 위치에 도달할 때까지 상기 공급유로(313)를 통해 상기 수용홈(311)에 공급될 수 있다. 상기 공급유로(313)에서 상기 수용홈(311)에 연결된 부분은, 상기 지지부(2)에 지지된 웨이퍼(10)와 상기 공급기구(32) 사이에 위치되게 형성될 수 있다. 즉, 상기 공급유로(313)에서 상기 수용홈(311)에 연결된 부분은, 상기 공급기구(32)가 상기 지지부(2)에 지지된 웨이퍼(10)로부터 이격된 거리보다, 상기 지지부(2)에 지지된 웨이퍼(10)로부터 짧은 거리로 이격되게 형성될 수 있다. 따라서, 본 발명에 따른 반도체 소자 제조장치(1)는, 상기 공정유체(100)가 상기 공급기구(32)를 통해 비어있는 수용홈(311)에 공급되는 것과 비교할 때, 상기 공정유체(100)가 비어있는 수용홈(311)에 공급되는 과정에서 상기 지지부(2)에 지지된 웨이퍼(10)에 가하여지는 힘을 줄일 수 있다. 이에 따라, 본 발명에 따른 반도체 소자 제조장치(1)는 비어있는 수용홈(311)에 상기 공정유체(100)가 공급되는 과정에서 웨이퍼(10)가 손상되는 것을 방지할 수 있다. 이 경우, 상기 배출개폐부(90)는 상기 수용홈(311)이 상기 공정유체(100)로 채워지도록 상기 제1배출연결부(70) 및 상기 제2배출연결부(80)를 모두 폐쇄시킬 수 있다.Next, as shown in FIG. 11, the supply opening and closing part 60 opens the second supply connection part 50 and closes the first supply connection part 40. Accordingly, the process fluid 100 stored in the process fluid storage unit 20 is supplied to the supply passage 313 through the second supply connection unit 50, and then the supply passage of the accommodation mechanism 31 is provided. It is supplied to the receiving groove 311 (shown in FIG. 10) through 313. Accordingly, the receiving groove 311 may be filled with the process fluid 100. The process fluid 100 may be supplied to the accommodating groove 311 through the supply passage 313 until the process fluid 100 reaches a position at or near the supply mechanism 32. A portion connected to the receiving groove 311 in the supply passage 313 may be formed between the wafer 10 supported by the support 2 and the supply mechanism 32. That is, the portion of the supply passage 313 connected to the receiving groove 311 is greater than the distance from which the supply mechanism 32 is spaced apart from the wafer 10 supported by the support portion 2. It may be formed to be spaced apart from the wafer 10 supported by a short distance. Therefore, in the semiconductor device manufacturing apparatus 1 according to the present invention, the process fluid 100 is compared with the process fluid 100 supplied to the empty receiving groove 311 through the supply mechanism 32. The force applied to the wafer 10 supported by the support 2 in the process of being supplied to the empty receiving groove 311 can be reduced. Accordingly, the semiconductor device manufacturing apparatus 1 according to the present invention may prevent the wafer 10 from being damaged while the process fluid 100 is supplied to the empty receiving groove 311. In this case, the discharge opening and closing part 90 may close both the first discharge connection part 70 and the second discharge connection part 80 such that the receiving groove 311 is filled with the process fluid 100.
다음, 도 12에 도시된 바와 같이 상기 수용홈(311, 도 10에 도시됨)이 상기 공정유체(100)로 채워지면, 상기 공급개폐부(60)는 상기 제2공급연결부(50)를 폐쇄시키고, 상기 제1공급연결부(40)를 개방시킨다. 이에 따라, 상기 공정유체저장부(20)에 저장된 공정유체(100)는, 상기 제1공급연결부(40)를 통해 상기 제1유로(321)에 공급된 후, 상기 공급공(322)을 통해 상기 수용홈(311)에 공급된다. 이 경우, 상기 배출개폐부(90)는 상기 제1배출연결부(70)를 개방시키고, 상기 제2배출연결부(80)를 폐쇄시킨다. 이에 따라, 상기 수용홈(311)에 수용된 공정유체(100)는 상기 배출공(314)과 상기 배출유로(312)를 통해 상기 수용홈(311)으로부터 배출된 후, 상기 제1배출연결부(70)를 통해 상기 공정유체저장부(20)에 공급될 수 있다. 상기 공정유체저장부(20)에 공급된 공정유체(100)는, 상기 제1공급연결부(40)를 통해 상기 제1유로(321)에 공급된 후, 상기 공급공(322)을 통해 다시 상기 수용홈(311)에 공급된다. 즉, 본 발명에 따른 반도체 소자 제조장치(1)는 도 12에 도시된 바와 같이 상기 제1공급연결부(40), 상기 제1유로(321), 상기 공급공(322), 상기 배출공(314), 상기 배출유로(312) 및 상기 제1배출연결부(70)를 통해 상기 공정유체(100)를 상기 공정유체저장부(20)와 상기 수용홈(311) 간에 순환 이동시킬 수 있다. 이 과정에서, 상기 지지부(2)에 지지된 웨이퍼(10)에는 관통전극을 형성하는 공정이 이루어질 수 있다. 상기 지지부(2)에 지지된 웨이퍼(10)에 대해 관통전극을 형성하는 공정이 이루어질 때, 상기 수용홈(311)에 수용된 공정유체(100)는 상기 제1전극부재(6, 도 8에 도시됨)에 의해 양극으로 되고, 상기 지지부(2)에 지지된 웨이퍼(10)는 상기 제2전극부재(7, 도 8에 도시됨)에 의해 음극이 될 수 있다.Next, as shown in FIG. 12, when the receiving groove 311 (shown in FIG. 10) is filled with the process fluid 100, the supply opening and closing part 60 closes the second supply connection part 50. The first supply connection part 40 is opened. Accordingly, the process fluid 100 stored in the process fluid storage part 20 is supplied to the first flow path 321 through the first supply connection part 40 and then through the supply hole 322. It is supplied to the receiving groove 311. In this case, the discharge opening and closing part 90 opens the first discharge connection part 70 and closes the second discharge connection part 80. Accordingly, the process fluid 100 accommodated in the receiving groove 311 is discharged from the receiving groove 311 through the discharge hole 314 and the discharge passage 312, the first discharge connection portion 70 It may be supplied to the process fluid storage unit 20 through). The process fluid 100 supplied to the process fluid storage 20 is supplied to the first flow path 321 through the first supply connection part 40, and then again through the supply hole 322. It is supplied to the receiving groove 311. That is, in the semiconductor device manufacturing apparatus 1 according to the present invention, as shown in FIG. 12, the first supply connection part 40, the first flow path 321, the supply hole 322, and the discharge hole 314. ), The process fluid 100 may be circulated between the process fluid storage unit 20 and the receiving groove 311 through the discharge passage 312 and the first discharge connection unit 70. In this process, a process of forming a through electrode may be performed on the wafer 10 supported by the support 2. When the through-electrode is formed on the wafer 10 supported by the support 2, the process fluid 100 accommodated in the receiving groove 311 is illustrated in the first electrode member 6 (FIG. 8). The wafer 10 supported by the support 2 may be a cathode by the second electrode member 7 (shown in FIG. 8).
여기서, 상기 수용홈(311, 도 10에 도시됨)에 수용된 공정유체(100)는 상기 공급공(322)으로부터 배출되는 공정유체(100)에 의해 상기 지지부(2)에 지지된 웨이퍼(10)의 중앙(D, 도 12에 도시됨)을 기준으로 회전 이동할 수 있다. 이 경우, 상기 수용홈(311)에 수용된 공정유체(100)가 상기 배출공(314)을 통해 상기 수용홈(311)으로부터 용이하게 배출될 수 있도록, 상기 배출공(314)은 다음과 같이 구현될 수 있다. 도 12 및 도 15를 참고하면, 상기 배출공(314)은 상기 수용홈(311)으로부터 공정유체(100, 도 12에 도시됨)가 유입되기 위한 입구공(3141), 상기 공정유체(100)가 상기 배출유로(312)로 배출되기 위한 출구공(3142), 및 상기 입구공(3141)과 상기 출구공(3142)을 연결하는 연결공(3143)을 포함한다. 상기 출구공(3142)은, 상기 웨이퍼(10)의 중앙(D, 도 15에 도시됨)과 상기 입구공(3141)을 잇는 가상의 직선(P, 도 15에 도시됨)으로부터 상기 수용홈(311)에 수용된 공정유체(100)가 회전 이동하는 방향(E 화살표 방향, 도 15에 도시됨)으로 이격된 위치에 형성될 수 있다. 즉, 상기 배출공(314)은 상기 수용홈(311)에 수용된 공정유체(100)가 회전 이동하는 방향(E 화살표 방향)으로 상기 직선(P)에 대해 기울어지게 형성될 수 있다. 따라서, 상기 수용홈(311)에 수용된 공정유체(100)는, 상기 공급공(322)으로부터 배출되는 공정유체(100)에 의해 상기 지지부(2)에 지지된 웨이퍼(10)의 중앙(D)을 기준으로 회전 이동하면서 상기 배출공(314)을 통해 상기 수용홈(311)으로부터 용이하게 배출될 수 있다. 상기 수용기구(31)에는 상기 배출공(314)이 복수개 형성될 수도 있다. 상기 배출공(314)은 상기 공정유체(100)가 회전 이동하는 방향(E 화살표 방향)으로 서로 소정 각도로 이격되게 상기 수용기구(31)에 형성될 수 있다. 상기 배출유로(312)는 상기 배출공(314)들을 감싸도록 상기 수용기구(31)에 형성될 수 있다. 상기 배출유로(312)는 전체적으로 원형 고리 형태로 형성될 수 있다. 상기 수용기구(31)에는 상기 배출유로(312)와 상기 공급유로(311)가 각각 별도로 형성될 수도 있다. 상기 수용기구(31)에는 하나의 유로가 형성될 수도 있고, 이 경우 해당 유로는 상기 제2공급연결부(50)와 상기 제1배출연결부(70) 중에서 어느 하나가 선택적으로 개폐됨에 따라 상기 배출유로(312)와 상기 공급유로(311) 중 어느 하나로 선택적으로 기능할 수 있다. 상기 배출공(314) 또한 상기 제1공급연결부(50)와 상기 제1배출연결부(70) 중에서 어느 하나가 선택적으로 개폐됨에 따라 상기 수용홈(311)으로부터 상기 공정유체(100)를 배출하기 위한 기능을 수행할 수도 있고, 상기 수용홈(311)에 상기 공정유체(100)를 공급하기 위한 기능을 수행할 수도 있다.Here, the process fluid 100 accommodated in the receiving groove 311 (shown in FIG. 10) is the wafer 10 supported by the support part 2 by the process fluid 100 discharged from the supply hole 322. It can be rotated relative to the center (D, shown in Figure 12) of. In this case, the discharge hole 314 is implemented as follows so that the process fluid 100 accommodated in the receiving groove 311 can be easily discharged from the receiving groove 311 through the discharge hole (314). Can be. 12 and 15, the discharge hole 314 is an inlet hole 3141 for introducing the process fluid 100 (shown in FIG. 12) from the receiving groove 311 and the process fluid 100. An outlet hole (3142) for being discharged to the discharge passage 312, and the connection hole (3143) connecting the inlet hole (3141) and the outlet hole (3142). The outlet hole 3142 is formed in the receiving groove (D, shown in FIG. 15) from an imaginary straight line P (shown in FIG. 15) connecting the center (D, shown in FIG. 15) of the wafer 10 and the inlet hole 3141. The process fluid 100 accommodated in 311 may be formed at positions spaced apart from each other in a direction in which the process fluid is rotated (the direction of the E arrow, shown in FIG. That is, the discharge hole 314 may be formed to be inclined with respect to the straight line P in the direction (E arrow direction) in which the process fluid 100 accommodated in the receiving groove 311 rotates. Therefore, the process fluid 100 accommodated in the receiving groove 311 is the center D of the wafer 10 supported by the support part 2 by the process fluid 100 discharged from the supply hole 322. It can be easily discharged from the receiving groove 311 through the discharge hole 314 while moving relative to the. A plurality of discharge holes 314 may be formed in the accommodation mechanism 31. The discharge hole 314 may be formed in the receiving mechanism 31 to be spaced apart from each other at a predetermined angle in the direction in which the process fluid 100 rotates (E arrow direction). The discharge passage 312 may be formed in the accommodation mechanism 31 to surround the discharge holes 314. The discharge passage 312 may be formed in a circular ring shape as a whole. The discharge passage 312 and the supply passage 311 may be separately formed in the accommodation mechanism 31. A single flow path may be formed in the accommodation mechanism 31, and in this case, the discharge flow path may be formed by selectively opening or closing one of the second supply connection part 50 and the first discharge connection part 70. 312 and the supply passage 311 may selectively function. The discharge hole 314 is also for discharging the process fluid 100 from the receiving groove 311 as any one of the first supply connection portion 50 and the first discharge connection portion 70 is selectively opened and closed. A function may be performed or a function for supplying the process fluid 100 to the receiving groove 311 may be performed.
다음, 상기 지지부(2)에 지지된 웨이퍼(10)에 대해 관통전극을 형성하는 공정이 완료되면, 도 13에 도시된 바와 같이 상기 수용홈(311)에 수용된 공정유체(100)는 상기 배출공(314)과 상기 배출유로(312)를 통해 상기 수용홈(311)으로부터 배출된다. 상기 공정유체(100)는 상기 제1배출연결부(70)를 통해 상기 공정유체저장부(20)로 공급될 수 있다. 이 경우, 상기 공급개폐부(60)는 상기 제1공급연결부(40)와 상기 제2공급연결부(50)를 모두 폐쇄시킨다. 이에 따라, 상기 수용홈(311)에 수용된 공정유체(100)는 상기 배출공(314)과 상기 배출유로(312)를 통해 상기 수용홈(311)으로 배출되면서 수위가 낮아지게 된다.Next, when the process of forming a through electrode for the wafer 10 supported by the support 2 is completed, the process fluid 100 accommodated in the receiving groove 311 is discharged as shown in FIG. It is discharged from the receiving groove 311 through the 314 and the discharge passage 312. The process fluid 100 may be supplied to the process fluid storage unit 20 through the first discharge connection unit 70. In this case, the supply opening and closing part 60 closes both the first supply connection part 40 and the second supply connection part 50. Accordingly, the process fluid 100 accommodated in the accommodating groove 311 is discharged into the accommodating groove 311 through the discharge hole 314 and the discharge passage 312 is lowered.
다음, 상기 수용홈(311)에 수용된 공정유체(100)의 수위가 상기 배출공(314)이 형성된 위치보다 낮아지게 되면, 도 14에 도시된 바와 같이 상기 승강기구(33)는 상기 공급기구(32)가 상기 수용홈(311)에 남아있는 공정유체(100)에 가까워지도록 상기 공급기구(32)를 상기 지지부(2) 쪽으로 하강시킨다. 이에 따라, 상기 수용홈(311)에 남아있는 공정유체(100)는 상기 공급공(322)과 상기 제1유로(321)를 통해 상기 수용홈(311)으로부터 배출될 수 있다. 이 경우, 상기 배출개폐부(90)는 상기 제1배출연결부(70)를 폐쇄시키고, 상기 제2배출연결부(80)를 개방시킨다. 이에 따라, 상기 수용홈(311)에 남아있는 공정유체(100)는 상기 공급공(322)과 상기 제1유로(321)를 통해 상기 수용홈(311)으로부터 배출된 후, 상기 제2배출연결부(80)를 통해 상기 공정유체저장부(20)에 공급될 수 있다.Next, when the level of the process fluid 100 accommodated in the receiving groove 311 is lower than the position where the discharge hole 314 is formed, as shown in Figure 14 the lifting mechanism 33 is the supply mechanism ( The supply mechanism 32 is lowered toward the support part 2 so that 32 is close to the process fluid 100 remaining in the receiving groove 311. Accordingly, the process fluid 100 remaining in the accommodating groove 311 may be discharged from the accommodating groove 311 through the supply hole 322 and the first passage 321. In this case, the discharge opening and closing part 90 closes the first discharge connection part 70 and opens the second discharge connection part 80. Accordingly, the process fluid 100 remaining in the accommodating groove 311 is discharged from the accommodating groove 311 through the supply hole 322 and the first flow passage 321, and then the second discharge connection part. It may be supplied to the process fluid storage unit 20 through 80.
다음, 상기 수용홈(311)으로부터 상기 공정유체(100)가 배출되면, 도 1에 도시된 바와 같이 상기 승강부(5)는 상기 지지부(2)가 상기 제2위치에 위치되게 상기 지지부(2)를 하강시킨다. 상기 지지부(2)가 상기 제2위치에 위치되면, 상기 이송수단(미도시)은 상기 지지부(2)로부터 상기 웨이퍼(10)를 언로딩한 후, 새로운 웨이퍼(10)를 상기 지지부(2)에 로딩할 수 있다. 이러한 공정은, 상기 승강기구(33)가 상기 공급기구(32)를 상승시킨 후에 이루어질 수 있다.Next, when the process fluid 100 is discharged from the accommodating groove 311, as shown in FIG. 1, the elevating part 5 has the support part 2 such that the support part 2 is positioned at the second position. Down). When the support part 2 is located in the second position, the transfer means (not shown) unloads the wafer 10 from the support part 2, and then a new wafer 10 is loaded into the support part 2. Can be loaded on This process may be performed after the elevating mechanism 33 raises the supply mechanism 32.
도 16을 참고하면, 상기 공급기구(32)는 제2유로(323) 및 분사공(324)을 포함할 수 있다.Referring to FIG. 16, the supply mechanism 32 may include a second passage 323 and an injection hole 324.
상기 제2유로(323)는 유체공급부(8)에 연결된다. 상기 유체공급부(8)는 상기 수용기구(31)에서 상기 수용홈(311)이 형성된 측벽(31a)을 세척하기 위한 세척유체 및 상기 측벽(31a)을 건조하기 위한 건조유체 중 적어도 하나를 상기 제2유로(323)에 공급한다. 상기 세척유체는 물, 순수(DI, Disilled Water) 등일 수 있다. 상기 건조유체는 공기, 질소(N2) 등일 수 있다. 상기 제2유로(323)는 상기 공급기구(32)에서 상기 제1유로(321) 외측에 위치되게 형성된다. 상기 제1유로(321)는 원통 형태로 형성된 부분과 원반 형태로 형성된 부분을 포함한다. 상기 제1유로(321)에서 원통 형태로 형성된 부분은 상기 공정유체저장부(20)에 연결되고, 원반형태로 형성된 부분은 상기 공급공(322)들에 연결되게 형성된다. 상기 제2유로(323)는 상기 제1유로(321)를 따라 상기 제1유로(321) 외측에 위치되게 상기 공급기구(32)에 형성된다.The second flow passage 323 is connected to the fluid supply unit (8). The fluid supply unit 8 may include at least one of a cleaning fluid for washing the sidewall 31a on which the accommodation groove 311 is formed and a drying fluid for drying the sidewall 31a at the accommodation mechanism 31. Supply to 2 euros (323). The washing fluid may be water, pure water (DI, Disilled Water) and the like. The dry fluid may be air, nitrogen (N 2 ), or the like. The second flow path 323 is formed to be positioned outside the first flow path 321 in the supply mechanism 32. The first flow passage 321 includes a portion formed in a cylindrical shape and a portion formed in a disk shape. A portion formed in a cylindrical shape in the first flow passage 321 is connected to the process fluid storage portion 20, and a portion formed in a disk shape is connected to the supply holes 322. The second passage 323 is formed in the supply mechanism 32 to be positioned outside the first passage 321 along the first passage 321.
상기 분사공(324)은 상기 제2유로(323)에 연결되게 형성된다. 상기 분사공(324)은 상기 수용기구(31)의 측벽(31a)을 향하는 방향으로 상기 공급기구(32)를 관통하여 형성될 수 있다. 이에 따라, 상기 세척유체와 상기 건조유체는 상기 분사공(324)을 통해 상기 수용기구(31)의 측벽(31a)을 향해 분사될 수 있다. 따라서, 본 발명에 따른 반도체 소자 제조장치(1)는 웨이퍼(10)에 대해 관통전극을 형성하는 공정을 수행한 이후, 상기 세척유체를 이용하여 상기 수용기구(31)의 측벽(31a)을 세척할 수 있다. 또한, 본 발명에 따른 반도체 소자 제조장치(1)는 상기 건조유체를 이용하여 상기 수용기구(31)의 측벽(31a)을 건조시킬 수 있다. 본 발명에 따른 반도체 소자 제조장치(1)는 상기 세척유체를 이용하여 상기 수용기구(31)의 측벽(31a)을 세척한 후에, 상기 건조유체를 이용하여 상기 수용기구(31)의 측벽(31a)을 건조시킬 수도 있다.The injection hole 324 is formed to be connected to the second passage 323. The injection hole 324 may be formed through the supply mechanism 32 in the direction toward the side wall 31a of the accommodation mechanism 31. Accordingly, the washing fluid and the drying fluid may be injected toward the side wall 31a of the receiving device 31 through the injection hole 324. Therefore, after the semiconductor device manufacturing apparatus 1 according to the present invention performs the process of forming a through electrode for the wafer 10, the sidewall 31a of the accommodation mechanism 31 is cleaned using the cleaning fluid. can do. In addition, the semiconductor device manufacturing apparatus 1 according to the present invention may dry the sidewall 31a of the accommodation mechanism 31 by using the drying fluid. In the semiconductor device manufacturing apparatus 1 according to the present invention, after washing the sidewall 31a of the accommodation mechanism 31 using the cleaning fluid, the sidewall 31a of the accommodation mechanism 31 is used using the drying fluid. ) May be dried.
상기 분사공(324)은 상기 공급기구(32)에서 상기 지지부(2) 쪽을 향하는 하측 방향(F 화살표 방향)으로 기울어지게 형성될 수 있다. 이에 따라, 상기 분사공(324)은 상기 세척유체가 상기 하측 방향(F 화살표 방향)으로 경사진 각도로 분사되도록 할 수 있다. 따라서, 본 발명에 따른 반도체 소자 제조장치(1)는 상기 분사공(324)으로부터 분사되는 세척유체를 이용하여 상기 수용기구(31)의 측벽(31a)에 남아있는 공정유체(100), 이물 등을 상기 하측방향(F 화살표 방향)으로 이동시킴으로써, 상기 수용기구(31)의 측벽(31a)을 용이하면서도 효율적으로 세척할 수 있다. 또한, 상기 분사공(324)은 상기 건조유체가 상기 하측 방향(F 화살표 방향)으로 경사진 각도로 분사되도록 할 수 있다. 따라서, 본 발명에 따른 반도체 소자 제조장치(1)는 상기 분사공(324)으로부터 분사되는 건조유체를 이용하여 상기 수용기구(31)의 측벽(31a)에 남아있는 수분 등을 상기 하측방향(F 화살표 방향)으로 이동시킴으로써, 상기 수용기구(31)의 측벽(31a)을 용이하면서도 효율적으로 건조시킬 수 있다. 상기 분사공(324)은 상기 공급기구(32)의 원주방향을 따라 서로 소정 거리 이격되어 복수개가 형성될 수 있다. 상기 분사공(324)들은 상기 제2유로(323)에 연결되게 형성될 수 있다. The injection hole 324 may be formed to be inclined in a downward direction (F arrow direction) from the supply mechanism 32 toward the support 2. Accordingly, the injection hole 324 may allow the cleaning fluid to be injected at an inclined angle in the downward direction (F arrow direction). Therefore, the semiconductor device manufacturing apparatus 1 according to the present invention uses the cleaning fluid injected from the injection hole 324, the process fluid 100, foreign matters, etc. remaining on the side wall 31a of the receiving mechanism 31. By moving in the downward direction (F arrow direction), the side wall 31a of the accommodation mechanism 31 can be washed easily and efficiently. In addition, the injection hole 324 may allow the drying fluid to be injected at an inclined angle in the downward direction (F arrow direction). Accordingly, in the semiconductor device manufacturing apparatus 1 according to the present invention, moisture remaining on the sidewall 31a of the accommodation mechanism 31 is dried in the downward direction (F) using a dry fluid injected from the injection hole 324. By moving in the direction of the arrow), the side wall 31a of the accommodation mechanism 31 can be dried easily and efficiently. The injection holes 324 may be spaced apart from each other by a predetermined distance along the circumferential direction of the supply mechanism 32. The injection holes 324 may be formed to be connected to the second passage 323.
도 16 및 도 17을 참고하면, 상기 제2유로(323)와 상기 분사공(324, 도 16에 도시됨)을 통해 상기 수용기구(31)의 측벽(31a)을 향해 세척유체가 분사될 때, 도 17에 도시된 바와 같이 상기 승강기구(33)는 상기 공급기구(32)를 상기 지지부(2) 쪽으로 하강시킬 수 있다. 따라서, 본 발명에 따른 반도체 소자 제조장치(1)는 상기 분사공(324, 도 16에 도시됨)으로부터 분사되는 세척유체를 이용하여 상기 수용기구(31)의 측벽(31a) 전체를 세척할 수 있다. 상기 제2유로(323)와 상기 분사공(324, 도 16에 도시됨)을 통해 상기 수용기구(31)의 측벽(31a)을 향해 건조유체가 분사될 때, 도 17에 도시된 바와 같이 상기 승강기구(33)는 상기 공급기구(32)를 상기 지지부(2) 쪽으로 하강시킬 수 있다. 따라서, 본 발명에 따른 반도체 소자 제조장치(1)는 상기 분사공(324, 도 16에 도시됨)으로부터 분사되는 건조유체를 이용하여 상기 수용기구(31)의 측벽(31a) 전체를 건조시킬 수 있다.16 and 17, when the cleaning fluid is sprayed toward the side wall 31a of the accommodation mechanism 31 through the second passage 323 and the injection hole 324 (shown in FIG. 16). As illustrated in FIG. 17, the elevating mechanism 33 may lower the supply mechanism 32 toward the support part 2. Therefore, the semiconductor device manufacturing apparatus 1 according to the present invention may clean the entire sidewall 31a of the accommodation mechanism 31 by using a cleaning fluid injected from the injection hole 324 (shown in FIG. 16). have. When a drying fluid is injected toward the side wall 31a of the accommodation mechanism 31 through the second flow path 323 and the injection hole 324 (shown in FIG. 16), as shown in FIG. The lifting mechanism 33 may lower the supply mechanism 32 toward the support part 2. Accordingly, the semiconductor device manufacturing apparatus 1 according to the present invention may dry the entire sidewall 31a of the accommodation mechanism 31 by using a drying fluid injected from the injection hole 324 (shown in FIG. 16). have.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and it is common in the art that various substitutions, modifications, and changes can be made without departing from the technical spirit of the present invention. It will be apparent to those who have knowledge.
Claims (17)
- 관통전극을 갖는 반도체 소자를 제조하기 위한 웨이퍼를 지지하는 지지부; 및A support for supporting a wafer for manufacturing a semiconductor device having a through electrode; And관통전극을 형성하기 위한 공정유체가 공급되는 공급부를 포함하고,A supply unit to which a process fluid for forming a through electrode is supplied;상기 공급부는 공정유체를 수용하기 위한 수용홈이 형성된 수용기구, 및 공정유체가 공급되는 제1유로가 형성된 공급기구를 포함하며;The supply portion includes a receiving mechanism having a receiving groove for receiving the process fluid, and a supply mechanism having a first flow path through which the processing fluid is supplied;상기 공급기구는 상기 제1유로로 공급된 공정유체가 상기 수용홈에 공급되도록 상기 제1유로와 상기 수용홈 각각에 연결되게 형성된 공급공을 포함하되,The supply mechanism includes a supply hole formed to be connected to each of the first flow path and the receiving groove so that the process fluid supplied into the first flow path is supplied to the receiving groove.상기 공급공은 상기 수용홈에 수용된 공정유체가 상기 공급공으로부터 배출되는 공정유체에 의해 이동되도록 상기 공급부에서 상기 지지부를 향하는 수직방향에 대해 기울어지게 형성된 것을 특징으로 하는 반도체 소자 제조장치.And the supply hole is formed to be inclined with respect to the vertical direction from the supply part toward the support part such that the process fluid accommodated in the receiving groove is moved by the process fluid discharged from the supply hole.
- 제1항에 있어서,The method of claim 1,상기 수용홈을 밀폐시키기 위한 밀봉부, 및 상기 지지부를 수직방향으로 승강(昇降)시키는 승강부를 포함하고;A sealing part for sealing the receiving groove, and a lifting part for lifting up and down the support part in a vertical direction;상기 밀봉부는 상기 공급부에 결합되고,The seal is coupled to the supply,상기 승강부는 상기 밀봉부가 상기 지지부에 지지된 웨이퍼에 접촉되는 제1위치 및 상기 밀봉부가 상기 지지부에 지지된 웨이퍼로부터 이격되는 제2위치 간에 상기 지지부를 승강시키는 것을 특징으로 하는 반도체 소자 제조장치.And the elevating portion elevates the support portion between a first position where the seal portion contacts the wafer supported by the support portion and a second position where the seal portion is spaced apart from the wafer supported by the support portion.
- 제1항에 있어서,The method of claim 1,상기 공급기구는 상기 공급공을 복수개 포함하고;The supply mechanism includes a plurality of supply holes;상기 공급공들은 상기 수용홈에 수용된 공정유체가 상기 공급공들로부터 배출되는 공정유체에 의해 회전 이동되도록 상기 지지부에 지지된 웨이퍼의 중앙을 기준으로 서로 다른 직경을 갖는 원주들을 따라 형성된 것을 특징으로 하는 반도체 소자 제조장치.The supply holes are formed along the circumference having a different diameter with respect to the center of the wafer supported on the support so that the process fluid accommodated in the receiving groove is rotated by the process fluid discharged from the supply holes Semiconductor device manufacturing apparatus.
- 제1항에 있어서, The method of claim 1,상기 공급기구는 제1원주를 따라 형성된 복수개의 제1공급공, 및 제2원주를 따라 형성된 복수개의 제2공급공을 포함하되, 상기 제1원주와 상기 제2원주는 상기 지지부에 지지된 웨이퍼의 중앙을 기준으로 서로 다른 직경을 갖는 것을 특징으로 하는 반도체 소자 제조장치.The supply mechanism includes a plurality of first supply holes formed along a first cylinder, and a plurality of second supply holes formed along a second cylinder, wherein the first cylinder and the second cylinder are supported on the support. Semiconductor device manufacturing apparatus, characterized in that having a different diameter with respect to the center of the.
- 제1항에 있어서,The method of claim 1,상기 제1유로는 공정유체가 저장된 공정유체저장부의 일측에 연결되고;The first channel is connected to one side of the process fluid storage unit in which the process fluid is stored;상기 수용기구는 공정유체가 상기 수용홈으로부터 배출되기 위한 배출유로를 포함하되, 상기 배출유로는 상기 공정유체저장부의 타측에 연결되는 것을 특징으로 하는 반도체 소자 제조장치.The accommodation mechanism includes a discharge passage for discharging the process fluid from the receiving groove, wherein the discharge passage is connected to the other side of the process fluid storage unit.
- 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 공급공은 상기 수직방향에 대해 상기 지지부에 지지된 웨이퍼의 중앙을 기준으로 하는 원주방향으로 기울어지게 형성된 것을 특징으로 하는 반도체 소자 제조장치.6. The semiconductor device manufacturing apparatus according to any one of claims 1 to 5, wherein the supply hole is formed to be inclined in a circumferential direction with respect to the center of the wafer supported by the support portion with respect to the vertical direction.
- 제6항에 있어서,The method of claim 6,상기 수용기구는 공정유체저장부에 연결되는 배출유로, 및 상기 수용홈과 상기 배출유로 각각에 연결되게 형성된 배출공을 포함하고;The receiving mechanism includes a discharge passage connected to the process fluid storage, and a discharge hole formed to be connected to each of the receiving groove and the discharge passage;상기 배출공은 상기 수용홈으로부터 공정유체가 유입되기 위한 입구공, 공정유체가 상기 배출유로로 배출되기 위한 출구공, 및 상기 입구공과 상기 출구공을 연결하는 연결공을 포함하되,The discharge hole includes an inlet hole for introducing the process fluid from the receiving groove, an outlet hole for discharging the process fluid into the discharge passage, and a connection hole connecting the inlet hole and the outlet hole,상기 출구공은 웨이퍼의 중앙과 상기 입구공을 잇는 가상의 직선으로부터 상기 수용홈에 수용된 공정유체가 회전 이동하는 방향으로 이격된 위치에 형성된 것을 특징으로 하는 반도체 소자 제조장치.And the outlet hole is formed at a position spaced apart from the virtual straight line connecting the center of the wafer and the inlet hole in a direction in which the process fluid accommodated in the receiving groove rotates.
- 제1항에 있어서,The method of claim 1,공정유체를 저장하기 위한 공정유체저장부와 상기 수용홈 간에 공정유체를 순환 이동시키는 순환이동부를 더 포함하고;And a circulation moving part configured to cyclically move the process fluid between the process fluid storage unit and the receiving groove for storing the process fluid;상기 순환이동부는 공정유체가 상기 공정유체저장부에서 상기 공급기구를 통해 상기 수용홈에 공급된 후 상기 수용기구를 통해 상기 수용홈으로 배출되어 상기 공정유체저장부에 공급되도록 공정유체를 순환 이동시키는 것을 특징으로 하는 반도체 소자 제조장치.The circulation moving unit circulates the process fluid so that the process fluid is supplied to the receiving groove through the supply mechanism from the process fluid storage unit and then discharged into the receiving groove through the receiving mechanism to be supplied to the process fluid storage unit. A semiconductor device manufacturing apparatus characterized in that.
- 제1항에 있어서,The method of claim 1,공정유체를 저장하기 위한 공정유체저장부와 상기 제1유로를 연결하는 제1공급연결부, 상기 공정유체저장부와 상기 수용기구를 연결하는 제2공급연결부, 및 상기 제1공급연결부와 상기 제2공급연결부 중 어느 하나를 선택적으로 개폐시키는 공급개폐부를 더 포함하고;A first supply connector connecting the process fluid storage unit and the first flow path for storing the process fluid, a second supply connection unit connecting the process fluid storage unit and the receiving mechanism, and the first supply connection unit and the second supply unit It further comprises a supply opening and closing portion for selectively opening and closing any one of the supply connection portion;상기 수용기구는 상기 수용홈에 공정유체를 공급하기 위한 공급유로를 포함하되, 상기 공급유로는 일측이 상기 제2공급연결부에 연결되고 타측이 상기 수용홈에 연결되게 형성된 것을 특징으로 하는 반도체 소자 제조장치.The accommodation mechanism includes a supply passage for supplying a process fluid to the receiving groove, wherein the supply passage is formed so that one side is connected to the second supply connection portion and the other side is connected to the receiving groove. Device.
- 제1항에 있어서,The method of claim 1,상기 수용기구에 형성된 배출유로와 상기 공정유체저장부를 연결하는 제1배출연결부;A first discharge connection part connecting the discharge flow path formed in the accommodation mechanism and the process fluid storage part;공정유체를 저장하기 위한 공정유체저장부와 상기 제1유로를 연결하는 제2배출연결부; 및A second discharge connector connecting the first fluid to the process fluid storage unit for storing a process fluid; And상기 제1배출연결부와 상기 제2배출연결부 중 어느 하나를 선택적으로 개폐시키는 배출개폐부를 포함하는 것을 특징으로 하는 반도체 소자 제조장치.And a discharge opening and closing portion for selectively opening and closing any one of the first discharge connection portion and the second discharge connection portion.
- 제10항에 있어서,The method of claim 10,상기 공급부는 상기 공급기구를 승강시키는 승강기구를 포함하고;The supply unit includes a lifting mechanism for lifting the supply mechanism;상기 승강기구는 상기 배출유로를 통해 상기 수용홈에 수용된 공정유체가 배출된 후 상기 수용홈에 남아있는 공정유체가 상기 공급공과 상기 제1유로를 통해 배출되도록 상기 공급기구를 상기 지지부 쪽으로 하강시키는 것을 특징으로 하는 반도체 소자 제조장치.The elevating mechanism lowers the supply mechanism toward the support part such that the process fluid remaining in the receiving groove is discharged through the supply hole and the first channel after the process fluid accommodated in the receiving groove is discharged through the discharge passage. A semiconductor device manufacturing apparatus.
- 제2항에 있어서,The method of claim 2,상기 공급기구에 결합되는 제1전극부재, 및 상기 수용기구에 결합되는 제2전극부재를 더 포함하고;A first electrode member coupled to the supply mechanism, and a second electrode member coupled to the receiving mechanism;상기 지지기구가 상기 제1위치에 위치될 때 상기 제2전극부재는 상기 지지부에 지지된 웨이퍼에 접촉되는 것을 특징으로 하는 반도체 소자 제조장치.And the second electrode member is in contact with the wafer supported by the support when the support mechanism is positioned in the first position.
- 제12항에 있어서, The method of claim 12,상기 제2전극부재는 상기 수용기구에 결합되는 결합부재, 및 상기 결합부재에 결합되는 이동부재를 포함하고;The second electrode member includes a coupling member coupled to the accommodation mechanism, and a moving member coupled to the coupling member;상기 이동부재는 상기 지지부에 지지된 웨이퍼에 접촉되기 위한 접촉면, 및 상기 접촉면이 상기 결합부재에 가까워지거나 멀어지게 이동되기 위한 이격홈을 포함하는 것을 특징으로 하는 반도체 소자 제조장치.And the moving member includes a contact surface for contacting the wafer supported by the support, and a separation groove for moving the contact surface closer or farther from the coupling member.
- 제2항에 있어서, 상기 밀봉부는The method of claim 2, wherein the sealing portion상기 수용기구에 결합되는 고정부재,A fixing member coupled to the receiving mechanism,상기 지지부에 지지된 웨이퍼에 접촉되기 위한 접촉부재, 및A contact member for contacting the wafer supported by the support, and상기 접촉부재가 상기 고정부재에 가까워지거나 멀어지게 이동되기 위한 이동홈을 포함하는 것을 특징으로 하는 반도체 소자 제조장치.And a contact groove for moving the contact member closer to or farther from the fixing member.
- 제1항에 있어서, 상기 공급기구는The method of claim 1, wherein the supply mechanism상기 수용기구에서 상기 수용홈이 형성된 측벽을 세척하기 위한 세척유체 및 상기 측벽을 건조하기 위한 건조유체 중 적어도 하나를 상기 수용홈에 공급하기 위한 제2유로; 및A second flow path for supplying at least one of a cleaning fluid for washing the side wall in which the accommodation groove is formed in the accommodation mechanism and a drying fluid for drying the side wall to the accommodation groove; And세척유체와 건조유체 중 적어도 하나가 상기 측벽을 향해 분사되도록 상기 제2유로에 연결되게 형성된 분사공을 포함하는 것을 특징으로 하는 반도체 소자 제조장치.And an injection hole formed to be connected to the second flow path such that at least one of a cleaning fluid and a drying fluid is injected toward the side wall.
- 제15항에 있어서,The method of claim 15,상기 공급부는 상기 공급기구를 승강시키는 승강기구를 더 포함하고;The supply unit further includes an elevating mechanism for elevating the supply mechanism;상기 공급기구는 상기 분사공을 복수개 포함하되, 상기 분사공들은 상기 공급기구에서 상기 지지부 쪽을 향하는 하측 방향으로 기울어지게 형성된 것을 특징으로 하는 반도체 소자 제조장치.The supply mechanism includes a plurality of injection holes, the injection hole is a semiconductor device manufacturing apparatus, characterized in that formed in the inclined downward direction toward the support portion in the supply mechanism.
- 관통전극을 갖는 반도체 소자를 제조하기 위한 웨이퍼를 지지하는 지지부;A support for supporting a wafer for manufacturing a semiconductor device having a through electrode;관통전극을 형성하기 위한 공정이 이루어지는 수용홈을 포함하고, 상기 수용홈에 관통전극을 형성하기 위한 공정유체를 공급하는 공급부; 및A supply unit including a receiving groove in which a process for forming the through electrode is formed, and supplying a process fluid for forming the through electrode in the receiving groove; And상기 수용홈을 밀폐시키기 위해 상기 공급부에 결합되는 밀봉부를 포함하고,It includes a seal coupled to the supply to seal the receiving groove,상기 공급부는 상기 수용홈에 수용된 공정유체가 상기 지지부에 지지된 웨이퍼의 중앙을 기준으로 회전되도록 상기 수용홈에 공정유체를 공급하기 위한 공급공을 포함하되,The supply unit includes a supply hole for supplying the process fluid to the receiving groove so that the process fluid accommodated in the receiving groove is rotated relative to the center of the wafer supported by the support,상기 공급공은 상기 지지부에 지지된 웨이퍼의 중앙을 기준으로 원주방향으로 기울어지게 형성된 것을 특징으로 하는 반도체 소자 제조장치.The supply hole is a semiconductor device manufacturing apparatus, characterized in that formed inclined in the circumferential direction relative to the center of the wafer supported by the support.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2011-0037578 | 2011-04-22 | ||
KR1020110037578A KR101294812B1 (en) | 2011-04-22 | 2011-04-22 | Apparatus for manufacturing semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012144673A1 true WO2012144673A1 (en) | 2012-10-26 |
Family
ID=47041756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2011/002918 WO2012144673A1 (en) | 2011-04-22 | 2011-04-22 | Apparatus for manufacturing semiconductor device |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101294812B1 (en) |
WO (1) | WO2012144673A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005187321A (en) * | 2003-12-02 | 2005-07-14 | Bondotekku:Kk | Bonding method, device produced by this method, and bonding device |
KR20060096713A (en) * | 2005-03-02 | 2006-09-13 | 삼성전자주식회사 | High density plasma chemical vapor deposition apparatus |
JP2011510498A (en) * | 2008-01-16 | 2011-03-31 | ソースル シーオー エルティディー | Substrate holder, substrate support apparatus, substrate processing treatment, and substrate processing method using the same |
-
2011
- 2011-04-22 WO PCT/KR2011/002918 patent/WO2012144673A1/en active Application Filing
- 2011-04-22 KR KR1020110037578A patent/KR101294812B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005187321A (en) * | 2003-12-02 | 2005-07-14 | Bondotekku:Kk | Bonding method, device produced by this method, and bonding device |
KR20060096713A (en) * | 2005-03-02 | 2006-09-13 | 삼성전자주식회사 | High density plasma chemical vapor deposition apparatus |
JP2011510498A (en) * | 2008-01-16 | 2011-03-31 | ソースル シーオー エルティディー | Substrate holder, substrate support apparatus, substrate processing treatment, and substrate processing method using the same |
Also Published As
Publication number | Publication date |
---|---|
KR20120119564A (en) | 2012-10-31 |
KR101294812B1 (en) | 2013-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI606542B (en) | Process chamber and semiconductor processing apparatus | |
JP6503194B2 (en) | Substrate processing equipment | |
KR100914764B1 (en) | Substrate processing apparatus and substrate processing method | |
WO2009125951A2 (en) | Plasma processing apparatus and method for plasma processing | |
WO2016036039A1 (en) | Purge module and load port comprising same | |
WO2015005607A1 (en) | Substrate processing apparatus | |
CN107665841B (en) | Substrate processing system | |
JP3958594B2 (en) | Substrate processing apparatus and substrate processing method | |
KR101988096B1 (en) | Substrate cleaning device, substrate processing apparatus, substrate cleaning method and substrate processing method | |
US20240047235A1 (en) | Prewet module and prewet method | |
CN110957242A (en) | Substrate processing apparatus | |
WO2013122311A1 (en) | Substrate processing module and substrate processing apparatus including same | |
JP2003282514A (en) | Substrate treatment equipment and substrate treatment method | |
WO2012144673A1 (en) | Apparatus for manufacturing semiconductor device | |
KR19990077634A (en) | Apparatus for heat-treating substrate and method for separating the substrate from the apparatus | |
US20230405648A1 (en) | Moving assembly for recovery guard and substrate processing apparatus | |
KR101503449B1 (en) | Substrate support unit, substrate transffering unit, substrate treating apparatus and substrate treating method | |
KR20200021681A (en) | substrate processing apparatus | |
TW202248461A (en) | Pre-wet module of coating device and pre-wet method of coating treatment wherein the pre-wet module includes a state, a rotation mechanism, a pre-wet chamber, a degas solution supply component, a nozzle and a cleaning solution supply component | |
WO2015163554A1 (en) | Adsorption pad for transfer device and transfer device having same | |
WO2013191520A1 (en) | Apparatus for manufacturing semiconductor wafer | |
KR102175119B1 (en) | Processing fluid supply nozzle and substrate processing apparatus including the same | |
WO2018230806A1 (en) | Substrate treatment device | |
KR102042362B1 (en) | A substrate processing apparatus | |
KR102193031B1 (en) | Apparatus and Method for treating substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11863989 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/02/2014) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11863989 Country of ref document: EP Kind code of ref document: A1 |