WO2012144188A1 - ゴム物品補強用炭化物の製造方法 - Google Patents

ゴム物品補強用炭化物の製造方法 Download PDF

Info

Publication number
WO2012144188A1
WO2012144188A1 PCT/JP2012/002625 JP2012002625W WO2012144188A1 WO 2012144188 A1 WO2012144188 A1 WO 2012144188A1 JP 2012002625 W JP2012002625 W JP 2012002625W WO 2012144188 A1 WO2012144188 A1 WO 2012144188A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbide
carbon black
rubber
reinforcing
producing
Prior art date
Application number
PCT/JP2012/002625
Other languages
English (en)
French (fr)
Inventor
正徳 川村
敬治 朝妻
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to US14/004,538 priority Critical patent/US9358549B2/en
Priority to EP12774350.8A priority patent/EP2700672B1/en
Priority to CN201280019027.4A priority patent/CN103492475B/zh
Publication of WO2012144188A1 publication Critical patent/WO2012144188A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/0056Other disintegrating devices or methods specially adapted for specific materials not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/14Carbides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black

Definitions

  • the present invention relates to a method for producing a carbide for reinforcing a rubber article, and more particularly, to a method for producing a carbide for reinforcing a rubber article capable of effectively using a polymer waste.
  • Patent Document 1 JP-A-8-27394 discloses a method for producing carbon black by thermally decomposing or incompletely burning organic waste such as waste tires.
  • an object of the present invention is to provide a method for producing a carbide for reinforcing rubber articles, which can solve the above-mentioned problems of the prior art and can effectively use polymer waste.
  • the present inventors have adjusted the granulation conditions in the production of carbide for rubber reinforcement containing carbide obtained by thermal decomposition or incomplete combustion of polymer waste.
  • a mixed granulated product of powders which has been conventionally inferior in reinforcing effect, can exhibit an effect comparable to that of pure carbon black or a mixture of granulated products.
  • the present invention has been completed.
  • the method for producing a carbide for reinforcing rubber articles according to the present invention comprises a carbide (A) obtained by thermal decomposition or incomplete combustion of polymer waste and pulverized into powder (A), carbon black (B), And a step of obtaining a mixture of the carbide (A) and the carbon black (B), and a step of granulating the mixture using a granulator having a rotational speed of 70 rpm to 130 rpm. To do.
  • the carbide (A) and the carbon black (B) with specific requirements for the mixing method, mixing means, mixing conditions, etc., the rubber compounding performance when the obtained granulated material is compounded with rubber It can be improved.
  • a mixing mass ratio (A / B) of the carbide (A) and the carbon black (B) is within a range of 1/99 to 50/50. Is preferred.
  • the granulation space can be granulated by suppressing the filling rate (supply amount) of the granulated material to a low level and also reducing the rotational speed in the space.
  • It includes a granulation step of a granulation mixture in which the force required to destroy the material is suppressed to a low level and the mercury porosimeter generates a mercury intrusion phenomenon in a pressure range of 1000 to 10,000 psi.
  • the number of revolutions of the granulator is 110 rpm to 130 rpm in the step of granulating the mixture.
  • the carbon black (B) is a powdered product obtained in the carbon black production process or a pulverized product of the granulated product after the granulation process.
  • the mixed granulated product of powders in which a decrease in tensile stress characteristics is observed can exhibit an effect comparable to that of pure carbon black or a mixture of granulated products.
  • a carbide (A) obtained by thermal decomposition or incomplete combustion of polymer waste and carbon black (B) are both mixed in a powder state, and a carbide ( A step of obtaining a mixture of A) and carbon black (B) is included.
  • a large force is required to destroy the granulated particles, In the mercury porosimeter, there was a phenomenon that almost no mercury was injected in the pressure range of 1000 psi to 10000 psi.
  • the pore size corresponds to a size that allows the rubber molecules of the rubber matrix to be pressed in at 1000 psi to 10,000 psi with a mercury porosimeter, and a composition containing a granulated product with closed pores is blended. Therefore, it is expected that the rubber performance will deteriorate.
  • the mercury porosimeter measured values of various granulated products including the blended granulated product of powder bodies in the conventional method are shown in FIG. 2, and it is confirmed that no indentation is observed in the above pressure range in the measured values of the powder blend. I think that it supports the estimation.
  • the reinforcing effect on the rubber article is improved by controlling the mixing ratio of the carbide (A) and the carbon black (B) to a constant ratio, or the rubber.
  • the physical properties can be ensured to the same extent as in the case of pure carbon black. Further, by controlling the mixing ratio of the carbide (A) and the carbon black (B) to a constant ratio, it is possible to suppress changes in physical properties due to the difference in the mixing ratio.
  • the mixing mass ratio (A / B) with (B) is preferably in the range of 1/99 to 50/50.
  • the carbide for reinforcing rubber articles obtained by the production method of the present invention is usually used after being granulated in the same manner as carbon black by applying the above-mentioned conditions for blending into a rubber composition.
  • carbonized_material for rubber article reinforcement of this invention by granulating the mixture of a carbide
  • the conventional granulation conditions with carbon black are applied, an increase in the breaking strength of the particles and a decrease in the amount of mercury intrusion absorbed by the mercury porosimeter are seen. Necessary.
  • the force applied to the mixture can be reduced by controlling the supply amount of the mixture of the carbide (A) and the carbon black (B) and the rotational speed of the granulator. It becomes possible to suppress the deterioration of the physical properties of the reinforcing carbide and the deterioration of the properties of the rubber article containing the carbide.
  • the rotation speed of the granulator is preferably in the range of 130 rpm or less, more preferably in the range of 70 to 130 rpm, and further preferably in the range of 110 rpm to 130 rpm.
  • the time required for granulation is not particularly limited, but is preferably in the range of 110 to 130 seconds when the supply amount and the number of rotations are set in the above preferred ranges.
  • both the wet method which granulates using water or another liquid, and the dry method which does not use a medium are employable.
  • a drying step is required.
  • granulator and a dryer what is normally used for the granulation and drying of carbon black can be used.
  • granulators such as a rolling granulator, a rotary dryer , Air dryers, fluid dryers, and tunnel dryers.
  • the carbide (A) is not composed of pure carbon, and contains various inorganic substances (ash) resulting from polymer waste that undergoes thermal decomposition. Elution of the water-soluble component contained in the ash to the granulated water occurs with respect to the water added in the wet granulation step, and the water-soluble component contained in the ash covers the surface of the granulated product.
  • mixers such as a mixer, a blender, an air blender, are used for mixing with a carbide
  • the carbide (A) is a carbide obtained by thermal decomposition or incomplete combustion of a polymer waste and pulverized into a powder.
  • This refers to a solid that is generated and left after the gas body and liquid component in the raw material are released by a thermal decomposition reaction or incomplete combustion reaction using the product as a raw material, and may contain an inorganic substance as ash.
  • the thermal decomposition or incomplete combustion of the polymer waste is not particularly limited, and various thermal decomposition methods and incomplete combustion methods can be employed.
  • polymer waste can be stored in a pyrolysis furnace, and the polymer waste can be pyrolyzed in an oxygen-free atmosphere by supplying heated oxygen-free gas into the pyrolysis furnace.
  • the oxygen-free gas is a gas body other than oxygen and oxide, and examples thereof include an inert gas such as nitrogen, argon, and helium, and a combustible gas such as hydrogen, methane, and propane.
  • the pyrolysis furnace is not particularly limited, and for example, a pot-type pyrolysis furnace, a fluidized-bed pyrolysis furnace, a kiln-type pyrolysis furnace, or the like is used.
  • the polymer waste mainly refers to organic waste, and specifically, rubber material waste such as tire waste (for example, spew, buff powder, tires divided into 4 to 32), carbonization Polymer materials obtained by (co) polymerization reaction of hydrogen monomers, such as polyethylene, polypropylene, styrene-butadiene copolymers, etc. Copolymers of hydrocarbon monomers with other monomers, such as ethylene-vinyl acetate copolymers And (co) polymers of halogen derivatives of hydrocarbon monomers, for example, resin material waste such as polyvinyl chloride. Note that steel cords, wires, and the like may be mixed with carbides in the residue after the pyrolysis treatment of tire waste.
  • rubber material waste such as tire waste (for example, spew, buff powder, tires divided into 4 to 32)
  • carbonization Polymer materials obtained by (co) polymerization reaction of hydrogen monomers, such as polyethylene, polypropylene, styrene-butadiene copolymers, etc
  • the treatment temperature in the range of 300 to 600 ° C.
  • the treatment temperature is within the specified range, the polymer waste can be stably and continuously pyrolyzed or incompletely combusted. If the treatment temperature is less than 300 ° C., the thermal decomposition reaction or incomplete combustion reaction does not proceed sufficiently, and there is a possibility that a carbide that does not completely remove the components to be decomposed may be generated, while 600 ° C. If exceeded, an undesirable modification reaction or activation reaction may occur between the generated carbide and other components present in the reaction system, and there is a possibility of generating a carbide that is porous and may adversely affect the reinforcing effect on the rubber. is there.
  • Carbide (A) obtained by thermal decomposition or incomplete combustion of the polymer waste for example, when tire waste is used, because it is mixed with steel cords and wires that are aggregates of tires, It is preferable to separate from a steel cord, a wire, etc. using a magnet, a sieve, etc. Further, as described above, the carbide (A) is granulated in the process of manufacturing the carbide for reinforcing rubber articles, but the carbide obtained by thermal decomposition or incomplete combustion of the polymer waste is not carbonized. It consists of the lump part and the powdery part which were aggregated in the process. Therefore, for example, it is preferable to finely break the carbide by a pulverization process using a pulverizer or the like.
  • the carbon black (B) is obtained by injecting a raw material into a space under a strictly controlled temperature condition and thermally decomposing or incompletely burning the raw material. It is a raw material composed of almost carbon that is industrially important.
  • the method for producing carbon black (B) is not particularly limited, and usual carbon black production methods such as a thermal decomposition method and an incomplete combustion method can be employed.
  • gas or liquid hydrocarbon is usually used, and specifically, hydrocarbons such as ethylene bottom oil, catalytic cracking residue oil, heavy oil, natural gas, acetylene, etc. Can be mentioned.
  • the carbon black (B) commercially available carbon black can be used, and grades such as GPF, FEF, HAF, ISAF, and SAF are particularly preferable from the viewpoint of application to tire members. Moreover, it is desirable that the carbon black (B) is a powdered product obtained in the carbon black production process or a pulverized product of the granulated product after the granulation process.
  • the blend of the carbide (A) and the carbon black (B) obtained by the production method of the present invention includes tires such as beads, treads, sidewalls, bead fillers, inner liners, belts, air springs, It is suitable as a reinforcing material for rubber articles such as rubber hoses and vibration-proof rubber.
  • Carbide (A) was manufactured by throwing tire waste into the pyrolysis furnace and pyrolyzing the tire waste in an oxygen-free atmosphere.
  • the pyrolysis apparatus shown in FIG. 1 is a thermal decomposition apparatus suitable for the production of carbide (A), and contains a heat exchanger 1 for heating oxygen-free gas and a polymer waste 6 inside.
  • a circulation path 4 for supplying the recovered residual gas as an oxygen-free gas to the heat exchanger 1 and an oxygen-free gas supply source 3 for supplying the heat exchanger 1 with the oxygen-free gas are provided. Further, the pyrolysis apparatus shown in FIG.
  • the oil content recovery device 5 shown in FIG. 1 includes a plurality of dry distillation towers 12a and 12b in order to divide the recovered oil content according to the boiling point thereof.
  • each of the carbonization towers 12 is recovered through a pipe at the lower part thereof. It is connected to the tank 13 and can store the recovered oil.
  • surplus gas can be released into the atmosphere after being treated by the exhaust gas treatment device 16 via the exhaust fan 15.
  • the gas temperature was raised to about 500 ° C. by the heat exchanger 1 and this temperature was maintained.
  • the gas flow rate of nitrogen gas introduced into the pyrolysis furnace 2 is set to 0.005m 3 / s [ntp], 0.0045m 3 /s[ntp] ⁇ 0.0055m 3 / s of [ntp]
  • the oxygen concentration in the pyrolyzer system was controlled within a range of 1% by volume or less.
  • a zirconia oxygen sensor was used to measure the oxygen concentration in the thermal decomposition apparatus.
  • the pyrolysis gas started to be accumulated in the dry distillation column 12a, and the distillation stopped about 4 hours after the start of heating by the heat exchanger 1. Stopping the distillation showed that the thermal decomposition reaction was completed, and the heat exchanger 1 was stopped and the system was left to cool for about 12 hours. Thereafter, the carbide was taken out from the pyrolysis furnace 2. Since the carbide includes a steel cord as a tire material, excess tire material was removed with a magnetic separator.
  • Carbide from which excess tire material has been removed is pulverized into a fine powder having a particle size of 1 mm or less with a hammer-type pulverizer, and this pulverized product is classified with an air classifier having rotating blades to obtain a particle size of 50 ⁇ m.
  • the above coarse powder was removed, and a fine carbide (A) having a particle size of 10 ⁇ m or less and a maximum frequency value of 4 ⁇ m was obtained using a classifier.
  • This fine carbide for rubber blending had characteristics of a nitrogen adsorption specific surface area (N 2 SA) of 81.6 m 2 / g and a DBP absorption of 85.2 ml / 100 g.
  • Example 1 500 g of carbide (A) obtained in the above production example and GPF grade carbon black (trade name: Asahi # 55, manufactured by Asahi Carbon Co., Ltd., ungranulated powder product produced and collected in the above production example)
  • B 500 g into a pin type granulator in which pins are implanted in an inner cylinder, and while adding 0.7 L / hr of water, the rotation speed is much lower than the conventional carbon black granulation conditions ( The mixture is mixed by rotating at 80 rpm, which is about 1/4), and granulated under the granulation conditions shown in the column of Example 1 in Table 4-1, to produce wet rubber reinforcing carbide (carbon material) II. went.
  • Example 2 the carbide
  • Example 3 a carbide for reinforcing rubber articles was obtained in the same manner as in Example 1 except that the rotation speed of the pin type granulator was 120 rpm.
  • Example 2 the mixture of (A) and (B) was granulated under the same conditions except that the rotation speed of the pin-type granulator was 160 rpm, and dried to obtain a carbide for reinforcing rubber articles. .
  • Comparative Example 3 In Comparative Example 1, instead of granulating after mixing the carbide (A) and carbon black (B), except for mixing after granulating the carbide (A) and carbon black (B), Comparative Example In the same manner as in No. 1, a carbide for reinforcing rubber articles was obtained.
  • the absorption amount of dibutyl phthalate (DBP) and the amount of mercury intrusion are as follows: It measured by the method of. The results are shown in Table 1 and FIGS. 2 to 3 are diagrams showing the relationship between the mercury intrusion amount and the pressure. Moreover, from the obtained results, it can be seen that the carbide for reinforcing rubber articles of Comparative Example 1 has a lower DBP absorption amount than the carbide (A) and the carbon black (B). Further, the carbide for reinforcing rubber articles of Comparative Example 1 has a markedly reduced mercury intrusion amount as compared with the other examples. This is because the amount of voids in the structure is reduced and the occluded rubber (that is, the adsorption of rubber molecules). This is considered to be due to a decrease in the modulus (Mo).
  • DBP dibutyl phthalate
  • DBP Dibutyl phthalate
  • Tb tensile strength
  • the rubber composition containing only Asahi Carbon Co., Ltd., trade name: Asahi # 55] was indexed with the tensile strength as 100. The larger the index value, the higher the resistance to fracture and the better the reinforcement.
  • Example 2 to 3 the carbides for reinforcing rubber articles of Examples 2 to 3 and Comparative Examples 1 to 3 were obtained in the same manner as in Example 1 except that the granulation conditions shown in Table 4 were changed.
  • the amount of mercury intrusion was measured by the above method. The results are shown in FIG.
  • FIG. 3 is a figure which shows the relationship between mercury intrusion amount and a pressure. From the results of FIG. 3, it can be seen that if both the rotational speed and the supply amount are too high, the mercury intrusion amount of the carbide is remarkably lowered, but the mercury intrusion amount of the carbide can be recovered by reducing the supply amount.
  • Bead hardness was measured according to JIS K 6219-3: 2005.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Glanulating (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

 高分子系廃棄物を有効利用することが可能なゴム物品補強用炭化物の製造方法を提供する。高分子系廃棄物の熱分解又は不完全燃焼により得られ、且つ粉砕により粉末にされた炭化物(A)と、カーボンブラック(B)とを混合し、前記炭化物(A)と前記カーボンブラック(B)との混合物を得る工程と、回転数70rpm~130rpmの造粒機を用いて前記混合物を造粒する工程とを含むことを特徴とする。

Description

ゴム物品補強用炭化物の製造方法
 本発明は、ゴム物品補強用炭化物の製造方法に関し、特には、高分子系廃棄物を有効利用することが可能なゴム物品補強用炭化物の製造方法に関するものである。
 従来、機能性の材料を開発する目的で、ゴム材料や樹脂材料等、様々な高分子系材料の工業化がなされているが、他方で、高分子工業の発展は、汎用材料の大量生産、大量消費をもたらし、高分子系廃棄物の処理は早急に解決すべき重要課題となっている。そして、この課題を解決するためには、高分子系材料の再利用化、リサイクル化等の技術的進展が肝要となる。例えば、ゴム材料であるタイヤは、モータリゼーションの発展と共に自動車必需部材として大量生産、大量消費がなされ、使用済みタイヤの数が膨大になっていることから、使用済みタイヤのリサイクル化・有効利用の研究が進められ、特に有用材料の回収が大きな課題となっている。例えば、特開平8-27394号公報(特許文献1)には、廃タイヤ等の有機系廃棄物を熱分解又は不完全燃焼させることでカーボンブラックを製造する方法が開示されている。
 また、高分子系廃棄物の熱分解又は不完全燃焼により得られる炭化物は、通常、炭化水素以外の物質が含まれているため、炭化水素の熱分解又は不完全燃焼によって得られるほぼ炭素によって構成される炭素材料(つまり、本来の意味でのカーボンブラック)とは異なり、ゴム配合時にゴム組成物に対して、十分な補強効果が発揮できず、高分子系廃棄物が具える価値を回収して有効利用することについては、依然として改良の余地があった。
 そのため、特許文献2では、炭化物とカーボンブラックとを混合することで、従来ではゴムへの補強性能が低いといわれている炭化物が含まれているのにもかかわらず、ゴム成分に配合しても補強効果が十分に発揮できるゴム補強用炭素材料を得る方法が開示されている。
特開平8-27394号公報 特表2010-141099号公報
 しかしながら、特許文献2に記載の方法では、上記炭化物とカーボンブラックとの混合物の混合プロセスにおいて、大きな物性低下が観察される場合も確認された。よって、カーボンブラックの製造上優位である粉末状の構成成分同士の混合物においても、対象とするカーボンブラックと略同等のゴム配合物性を得ることのできる、高分子系廃棄物を有効利用した補強用炭化物の製造方法を見出すことが必要とされていた。
 そこで、本発明の目的は、上記従来技術の問題を解決し、高分子系廃棄物を有効利用することが可能なゴム物品補強用炭化物の製造方法を提供することにある。
 本発明者らは、上記目的を達成するために鋭意検討した結果、高分子系廃棄物の熱分解又は不完全燃焼により得られる炭化物を含有するゴム補強用炭化物の製造に際し、造粒条件の調整により、従来は補強効果に劣るとされていた粉末物同士の混合造粒物が、純カーボンブラックや造粒物同士の混合物と比較しても遜色ない効果を奏することが可能であることを見出し、本発明を完成するに至った。
 即ち、本発明のゴム物品補強用炭化物の製造方法は、高分子系廃棄物の熱分解又は不完全燃焼により得られ、且つ粉砕により粉末にされた炭化物(A)と、カーボンブラック(B)とを混合し、前記炭化物(A)と前記カーボンブラック(B)との混合物を得る工程と、回転数70rpm~130rpmの造粒機を用いて前記混合物を造粒する工程とを含むことを特徴とする。
 前記炭化物(A)と前記カーボンブラック(B)との混合方法、混合手段、混合条件等を特定の要件で行うことにより、得られた造粒体をゴムの配合した場合でのゴム配合性能を改良することができる。
 本発明のゴム物品補強用炭化物の製造方法においては、前記炭化物(A)と前記カーボンブラック(B)との混合質量比(A/B)が1/99~50/50の範囲内であることが好ましい。また、本発明のゴム物品補強用炭化物の製造方法においては、造粒空間に対する被造粒物の充填率(供給量)を低く抑え、かつ空間内での回転数も低くすることによって、造粒物の破壊に要する力を低位に抑え、水銀ポロシメータを1000~10000psiの圧力範囲で水銀圧入現象を発生させるようにした造粒混合物の造粒工程を含む。
 また、本発明のゴム物品補強用炭化物の製造方法においては、前記混合物を造粒する工程において、造粒機の回転数が110rpm~130rpmであることが望ましい。
 また、前記カーボンブラック(B)が、カーボンブラック製造工程で得られた粉末状物又は造粒工程後の造粒物の粉砕物であることが望ましい。
 本発明によれば、高分子系廃棄物の熱分解又は不完全燃焼により得られる炭化物を含有するゴム補強用炭化物の製造に際し、造粒条件の調整により、ゴム配合時での加硫ゴム特性、特に、引張応力特性における低下がみられた粉末物同士の混合造粒物が、純カーボンブラックや造粒物同士の混合物と比較しても遜色ない効果を奏することが可能となる。
炭化物(A)の製造に用いた熱分解装置の概略図である。 炭化物(A)の造粒物(表記:炭化物)、GPF級カーボンブラック(B)(旭カーボン株式会社製)の造粒物(表記:カーボンブラック)、炭化物(A)の造粒物とカーボンブラック(B)の造粒物とのブレンド物(造粒ブレンド)、及び、炭化物(A)とカーボンブラック(B)との粉末体のブレンド物による造粒物(粉末ブレンド)における水銀圧入量と圧力(単位:psi)との関係を示す図である。 水銀圧入量と圧力(単位:psi)との関係を示す図である。
 以下に、本発明を詳細に説明する。本発明のゴム物品補強用炭化物の製造方法は、高分子系廃棄物の熱分解又は不完全燃焼により得られる炭化物(A)と、カーボンブラック(B)といずれも粉末状態で混合し、炭化物(A)とカーボンブラック(B)との混合物を得る工程を含むことを特徴とする。
 炭化物(A)の粉末と、カーボンブラック(B)の粉末とを従来のカーボンブラック造粒工程で適用される条件で造粒した場合には、造粒粒子の破壊に大きな力を要し、また、水銀ポロシメータでは1000psi~10000psiの圧力範囲で圧入される水銀がほとんど見られなくなるという現象が発生していた。この現象は、炭化物(A)とカーボンブラック(B)との従来造粒条件による粉末同士の造粒物が、ゴムへの配合時に粒状物から微細塊状物への破壊過程への進行が困難となり、これによりゴムマトリックス中での均一な分散性が低下するために、この造粒物が本来発揮すべき性能が活かされないという欠陥が発現されていた。この細孔の大きさは水銀ポロシメータでの1000psi~10000psiで圧入されるゴムマトリックスのゴム分子が入り込むことのできる大きさに該当し、この細孔が閉鎖された造粒物が配合された組成物ではゴム性能が低下するものと予想される。
 従来方法での粉末体同士のブレンド造粒物を含む各種造粒物の水銀ポロシメータ測定値が図2に示されており、粉末ブレンドの測定値において上記圧力範囲で圧入が見られないことがこの推定を支持していると考える。
 本発明のゴム物品補強用炭化物の製造方法においては、まず、炭化物(A)とカーボンブラック(B)との混合比を一定比率に制御することで、ゴム物品に対する補強効果を向上させたり、ゴム物性を純カーボンブラックの場合と同程度に確保することができる。また、炭化物(A)とカーボンブラック(B)との混合比を一定比率に制御することで、混合比率の違いによる物性の変化を抑えることも可能となる。本発明者らが炭化物(A)及びカーボンブラック(B)の混合比について最適化を試みたところ、補強効果の向上及びその他のゴム物性低下の軽減の観点から、上記炭化物(A)とカーボンブラック(B)との混合質量比(A/B)は1/99~50/50の範囲内であることが好ましい。
 本発明の製造方法によって得られるゴム物品補強用炭化物は、ゴム組成物中に配合するために前述の条件を適用して、通常、カーボンブラックと同様に造粒してから使用される。ここで、本発明のゴム物品補強用炭化物の製造方法においては、炭化物(A)とカーボンブラック(B)との混合物を造粒することで、即ち、混合工程の後に造粒工程を行うことにより、炭化物(A)とカーボンブラック(B)との造粒を同じ場所で且つ同時に行うことができるため、作業効率を大幅に改善することができる。しかし、前述のように従来のカーボンブラックでの造粒条件を適用した場合には、粒子の破壊強度の増加と水銀ポロシメータでの水銀圧入吸収量の減少が見られるので、これを解消する手段が必要となる。
 即ち、上記造粒工程においては、炭化物(A)とカーボンブラック(B)との混合物の供給量や造粒機の回転数を制御することにより、該混合物にかかる力を低減できるため、ゴム物品補強用炭化物の物性の低下や該炭化物が配合されたゴム物品の性質の低下を抑えることが可能となる。例えば、上記混合物の供給量は、1~2kgの範囲において、造粒機の回転数は、130rpm以下の範囲が好ましく、70~130rpmの範囲がより好ましく、110rpm~130rpmの範囲がさらに好ましい。造粒機の回転数を130rpm以下の好ましい範囲内とすることにより、粉末状態での混合物を造粒する際に、さらに良い物性に到達させることができる。
 なお、造粒に要する時間(造粒時間)は、特に限定されるものではないが、供給量及び回転数を上記好適な範囲に設定した場合、110~130秒間の範囲が好ましい。
 なお、造粒法としては、水又はその他の液体を利用して造粒する湿式法及び媒体を使用しない乾式法のいずれも採用することができる。また、造粒法として湿式法を採用する場合、乾燥工程が必要となる。なお、造粒機及び乾燥機としては、カーボンブラックの造粒及び乾燥に通常使用されるものを用いることができ、具体例としては、転動式造粒機等の造粒機、回転乾燥機、気流乾燥機、流動乾燥機、及び、トンネル乾燥機等の乾燥機が挙げられる。
 このような炭化物(A)とカーボンブラック(B)との粉末状物同士の造粒工程による混合が造粒物の破壊強度の増大と水銀ポロシメータでの水銀圧入吸収量の減少に関与する理由として、次のように推測している。
 炭化物(A)は、純粋な炭素で構成されておらず、熱分解を受ける高分子系廃棄物に起因する種々の無機物(灰分)を含有している。湿式の造粒工程において添加される水に対して灰分中に含まれる水可溶成分の造粒水中への溶出が生じ、灰分中に含まれる水可溶成分が造粒物表面を覆うことにより、造粒物の破壊強度を増加させ、また、炭化物(A)及びカーボンブラック(B)の炭素成分中の細孔を閉塞させるために水銀ポロシメータでの圧入量が減少するものと考えられる。特にせん断強さが大きい通常のカーボンブラック製造条件にて用いられる造粒条件、即ち、混合物の造粒機内への供給量が多く、且つ造粒機の回転数が高い(300~700ppm)造粒条件において、灰分中に含まれる水可溶成分の造粒水中への溶出の影響が顕著となり、これに対してより緩和な条件である本発明の条件では、上述の溶出の影響が少なくなるものと推定される。
 なお、炭化物(A)とカーボンブラック(B)との混合には、例えば、ミキサー、ブレンダー、エアーブレンダー等の混合機が使用される。また、炭化物(A)とカーボンブラック(B)との混合に造粒機を用いてもよい。
 本発明のゴム物品補強用炭化物の製造方法において、炭化物(A)は、高分子系廃棄物の熱分解又は不完全燃焼により得られ、且つ粉砕により粉末にされた炭化物であり、高分子系廃棄物を原料とした熱分解反応又は不完全燃焼反応によって原料中のガス体及び液状成分を放出した後に、生成されて残った固体を指し、灰分として無機物を含むこともある。高分子系廃棄物の熱分解又は不完全燃焼には、特に限定されず、各種熱分解法及び不完全燃焼法を採用することができる。例えば、熱分解炉内に高分子系廃棄物を収容し、該熱分解炉内に加熱された無酸素ガスを供給することで、高分子系廃棄物を無酸素雰囲気下で熱分解させることができる。ここで、無酸素ガスは、酸素及び酸化物以外のガス体であり、例えば、窒素、アルゴン、ヘリウム等の不活性ガスや、水素、メタン、プロパン等の可燃性ガス等が挙げられる。また、熱分解炉は、特に限定されるものではないが、例えば、釜式熱分解炉、流動床式熱分解炉、キルン式熱分解炉等が使用される。
 なお、高分子系廃棄物は、主として有機系廃棄物を指し、具体的には、タイヤ廃棄物(例えば、スピュー、バフ粉、4~32分割されたタイヤ)等のゴム材料廃棄物や、炭化水素モノマーの(共)重合反応により得られた高分子材料、例えばポリエチレン、ポリプロピレン、スチレン-ブタジエン共重合体等、炭化水素モノマーと他のモノマーとの共重合体、例えばエチレン-酢酸ビニル共重合体、炭化水素モノマーのハロゲン誘導体の(共)重合体、例えばポリ塩化ビニル等の樹脂材料廃棄物が挙げられる。なお、タイヤ廃棄物を熱分解処理した後の残渣には、スチールコードやワイヤ等が炭化物と混在している場合もある。
 また、高分子系廃棄物の熱分解又は不完全燃焼においては、処理温度を300~600℃の範囲に制御するのが好ましい。該処理温度が上記特定した範囲内にあれば、高分子系廃棄物が安定で且つ連続的な熱分解又は不完全燃焼を行うことができる。該処理温度が300℃未満では、熱分解反応又は不完全燃焼反応が十分に進行せず、これによって、分解されるべき成分が完全に除去されない炭化物を生成するおそれがあり、他方、600℃を超えると、生成した炭化物と反応系中に存在する他の成分との間で望ましくない改質反応や賦活反応が起こり、多孔性でゴムへの補強効果に悪影響を及ぼし得る炭化物を生成するおそれがある。
 上記高分子系廃棄物の熱分解又は不完全燃焼により得られる炭化物(A)は、例えば、タイヤ廃棄物を用いた場合、タイヤの骨材であるスチールコードやワイヤ等と混在しているため、磁石、ふるい等を用いてスチールコードやワイヤ等と分離させることが好ましい。また、上記炭化物(A)は、上述の通り、ゴム物品補強用炭化物の製造過程で造粒されることになるが、高分子系廃棄物の熱分解又は不完全燃焼により得られる炭化物は、炭化の過程で凝集した塊状部分と粉末状部分とからなる。従って、例えば、粉砕機等を用いた粉砕工程によって炭化物を微細に壊砕することが好ましい。
 本発明のゴム物品補強用炭化物の製造方法において、カーボンブラック(B)は、厳密に制御された温度条件下にある空間内に原料を注入し、この原料の熱分解又は不完全燃焼によって得られる、工業的に重要なほぼ炭素で構成される原材料である。ここで、カーボンブラック(B)の製造方法としては、特に限定されず、熱分解法、不完然燃焼法といった通常のカーボンブラックの製法を採用することができる。また、カーボンブラック(B)の原料としては、通常、ガス又は液状の炭化水素が使用され、具体的には、エチレンボトム油、接触分解残渣油、重油、天然ガス、アセチレン等の炭化水素等が挙げられる。なお、上記該カーボンブラック(B)には、市販のカーボンブラックを使用することができ、タイヤ部材への適用の観点から、GPF、FEF、HAF、ISAF、SAF等のグレードのものが特に好ましい。
 また、前記カーボンブラック(B)が、カーボンブラック製造工程で得られた粉末状物又は造粒工程後の造粒物の粉砕物であることが望ましい。
 なお、本発明の製造方法により得られる炭化物(A)とカーボンブラック(B)とのブレンド物は、ビード、トレッド、サイドウォール、ビードフィラー、インナーライナー等のタイヤ部材の他、ベルト、空気バネ、ゴムホース、防振ゴム等のゴム物品の補強材として好適である。
 以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
(炭化物(A)の製造例)
 熱分解炉内にタイヤ廃棄物を投入し、該タイヤ廃棄物を無酸素雰囲気下で熱分解することで、炭化物(A)を製造した。
 図1に示す熱分解装置を用いて、廃トラック用タイヤから炭化物を回収した。
 なお、図1に示す熱分解装置は、炭化物(A)の製造に好適な熱分解装置であり、無酸素ガスを加熱するための熱交換器1と、内部に高分子系廃棄物6を収容する熱分解炉2及び該熱分解炉2を外部から加熱する外部加熱手段8を有し、該高分子系廃棄物6を熱交換器1で加熱した無酸素ガスと直接接触させることにより熱分解させて熱分解ガスを発生させるための分解装置7と、分解装置7で発生した熱分解ガスを冷却して、凝縮した油分を回収するための油分回収装置5と、油分回収装置5で油分を回収した後の残ガスを、無酸素ガスとして熱交換器1に供給するための循環路4と、熱交換器1に無酸素ガスを供給するための無酸素ガス供給源3とを備える。また、図1に示す熱分解装置は、無酸素ガス供給源3から無酸素ガスを供給するために無酸素ガス供給源3と熱交換器1とを接続する配管中に、流量計9、ダンパ10及び送風機11を備え、油分回収装置5で回収した後の残ガスを無酸素ガスとして熱交換器1に循環させるための循環路4中に、流量計9、ダンパ10、送風機11及び熱風炉14を備える。更に、図1に示す油分回収装置5は、回収される油分をその沸点に応じて分けるため、複数の乾留搭12a,12bを備え、ここで、各乾留塔12は、その下部で配管を通して回収タンク13に接続されており、回収した油分を貯蔵することができる。また更に、図1に示す熱分解装置において、余剰のガスは、排風機15を介して排ガス処理装置16で処理された後、大気中に放出することができる。
 詳細には、熱分解炉2(容量0.5m)内に廃トラック用タイヤの裁断品(高分子系廃棄物6)約100kgを投入し、熱分解炉2内を窒素ガスで置換した後、熱分解装置内の窒素ガスを循環させながら熱交換器1によりガス温度を約500℃まで上昇させて、この温度を保持した。なお、熱分解炉2内に導入される窒素ガスのガス流量は0.005m/s[ntp]に設定され、0.0045m/s[ntp]~0.0055m/s[ntp]の範囲に制御し、熱分解装置系内での酸素濃度は1容量%以下の範囲に制御された。ここで、熱分解装置内の酸素濃度の測定には、ジルコニア式酸素センサーを用いた。熱交換器1による加熱を開始してから1時間で、熱分解ガスが乾留搭12aに溜出し始め、熱交換器1による加熱の開始から約4時間後に溜出が止まった。溜出の停止は熱分解反応が完了したことを示し、熱交換器1を止めて約12時間放置冷却した。その後、熱分解炉2から炭化物を取り出した。該炭化物中には、タイヤ材料であるスチールコード等が含まれるため、余分なタイヤ材料をマグネットセパレーターで除去した。余分なタイヤ材料が除去された炭化物をハンマー式の粉砕機で粒径が1mm以下の細粉に粉砕し、この粉砕物を、回転羽を有する風力分級機により分級することにより、粒径が50μm以上の粗粉を除去し、分級装置を用いて粒径が10μm以下で最頻度値4μmの微細炭化物(A)を得た。
 このゴム配合用微細炭化物は、窒素吸着比表面積(NSA)が81.6m/g、DBP吸収量が85.2ml/100gの特性を有していた。
(カーボンブラック(B)の製造例)
 特開昭61-34071号公報(出願人:旭カーボン株式会社)に開示のソフト系カーボンブラック製造装置を用い、特開昭61-34071号公報の請求項1に記載された製造条件を適用して、GPF級カーボンブラック(B)を製造した。上記製造条件によるGPF級カーボンブラックの生産収率は150kg/hrであった。
 また、市販のカーボンブラックを用いてもよい。
<実施例1>
 上記製造例により得られた炭化物(A)500gと、GPF級カーボンブラック(商品名:旭#55、旭カーボン株式会社製、上記製造例で製造、捕集された未造粒粉末品)(B)500gとを、ピンが内部円筒物に植え込まれたピン式造粒機に投入し、0.7L/hrの水を添加しながら、従来のカーボンブラック造粒条件よりもずっと低い回転数(約1/4)である80rpmで回転させることで混合して、表4-1における実施例1の欄に示す造粒条件で造粒し、湿潤ゴム補強用炭化物(炭素材料)IIの製造を行った。
 上記処理により得られた湿潤ゴム補強用混合炭化物(炭素材料)IIを下部に燃焼バーナーを備えた回転する中心軸を有する円筒状ロータリーキルン方式の乾燥機(内部直径200mm、長さ400mm)を用いて乾燥された混合炭化物(炭素材料)IIを得た。
<実施例2>
 実施例1において、ピン型造粒機の回転数を100rpmとしたこと以外は、実施例1と同様にして、ゴム物品補強用炭化物を得た。
<実施例3>
 実施例1において、ピン型造粒機の回転数を120rpmとしたこと以外は、実施例1と同様にして、ゴム物品補強用炭化物を得た。
<比較例1>
 上記製造例で得られた炭化物(A)100kgを、カーボンブラック製造工程に設置されたピン型造粒装置内の粉体供給口から一定量ずつ定量フィーダーを用いて、上記製造例で得られたGPF級カーボンブラック(B)に添加し、造粒機の回転軸のトルクを検出して添加する水量を制御しながらカーボンブラック造粒時に通常用いられる350rpmで回転させたピン型造粒機を用いて両者を混合し、造粒処理を実施した。生成した混合湿潤造粒物をカーボンブラック製造プロセスの常法に従って乾燥工程に移行させて乾燥を行い、ゴム物品補強用炭化物材料を得た。
<比較例2>
 実施例1において、ピン型造粒機の回転数を160rpmとしたこと以外は、同一条件で(A)と(B)との混合物を造粒し、乾燥してゴム物品補強用炭化物を得た。
<比較例3>
 比較例1において、炭化物(A)とカーボンブラック(B)とを混合した後に造粒する代わりに、炭化物(A)とカーボンブラック(B)とを造粒した後に混合したこと以外は、比較例1と同様にして、ゴム物品補強用炭化物を得た。
 上記製造例から得た炭化物(A)及びカーボンブラック(B)、並びに実施例1~3及び比較例1~3のゴム物品補強用炭化物について、ジブチルフタレート(DBP)吸収量及び水銀圧入量を下記の方法により測定した。結果を表1及び図2~3に示す。なお、図2~3は、水銀圧入量と圧力との関係を示す図である。また、得られた結果から、比較例1のゴム物品補強用炭化物は、炭化物(A)及びカーボンブラック(B)と比べて、DBP吸収量が低いことが分かる。また、比較例1のゴム物品補強用炭化物は、他の例と比べて水銀圧入量が著しく減少しているが、これは、ストラクチャーの空隙量が低減し、吸蔵ゴム(即ち、ゴム分子の吸着量)が減ったためであると考えられ、このために、モジュラス(Mo)の低下が起きたと推察される。
Figure JPOXMLDOC01-appb-T000001
(1)ジブチルフタレート(DBP)吸収量
 JIS K 6217-4:2001に準拠して、ジブチルフタレート(DBP)吸収量を測定した。
(2)水銀圧入量
 JIS R 1655:2003に準拠して、水銀ポロシメーターにより水銀圧入量を測定した。
 上記製造例から得た炭化物(A)及びカーボンブラック(B)、並びに実施例1~3及び比較例1~3のゴム物品補強用炭化物を用いて、表2に示す配合処方のゴム組成物を調製し、該ゴム組成物の加硫後のゴム特性(引張応力、引張強さ)を下記の方法により測定した。
(3)加硫後のゴム特性
(a)引張応力
 140℃で30分間加硫して得た加硫ゴムに対して、JIS K6251:2004に準拠し、室温で300%伸び時における引張応力を測定し、GPF級カーボンブラック[旭カーボン(株)製,商品名:旭#55]のみが配合されたゴム組成物の引張応力を100として指数表示した。指数値が大きい程、引張応力が大きく、弾性率が高いことを示す。
(b)引張強さ
 140℃で30分間加硫して得た加硫ゴムに対して、JIS K6251:2004に準拠し、室温での引張強さ(Tb)を測定し、GPF級カーボンブラック[旭カーボン(株)製,商品名:旭#55]のみが配合されたゴム組成物の引張強さを100として指数表示した。指数値が大きい程、破壊に対する耐性が高く、補強性に優れることを示す。
Figure JPOXMLDOC01-appb-T000002
*1 油展ゴム,ゴム成分100質量部に対して27.3質量部のアロマオイルで油展,JSR(株)製,商品名:SBR 1723.
*2 JSR(株)製,商品名:BROMOBUTYL 2255.
*3 上記製造例から得た炭化物(A)及びカーボンブラック(B)、並びに実施例1~3及び比較例1~3から得たゴム物品補強用炭化物,使用したカーボンブラック又は炭化物の種類を表1に示す。
*4 フレキシス社製,商品名:サントフレックス 6PPD.
*5 大内新興化学工業(株)製,商品名:ノクセラー DM-P.
*6 大内新興化学工業(株)製,商品名:ノクラック 224.
*7 大内新興化学工業(株)製,商品名:ノクセラー D.
*8 大内新興化学工業(株)製,商品名:ノクセラー NS.
Figure JPOXMLDOC01-appb-T000003
 次に、表4に示す造粒条件に変更した以外は、実施例1と同様にして実施例2~3及び比較例1~3のゴム物品補強用炭化物を得、該ゴム物品補強用炭化物の水銀圧入量を上記の方法により測定した。結果を図3に示す。なお、図3は、水銀圧入量と圧力との関係を示す図である。図3の結果から、回転数及び供給量の双方が高すぎると、炭化物の水銀圧入量が著しく低下するものの、供給量を低減することにより、炭化物の水銀圧入量を回復できることが分かる。
 また、上記ゴム物品補強用炭化物のビード硬さを下記の方法により測定した。結果を表4に示す。
(4)ビード硬さ
 JIS K 6219-3:2005に準拠してビード硬さを測定した。
Figure JPOXMLDOC01-appb-T000004
 1  熱交換器
 2  熱分解炉
 3  無酸素ガス供給源
 4  循環路
 5  油分回収装置
 6  高分子系廃棄物
 7  分解装置
 8  外部加熱手段
 9  流量計
 10  ダンパ
 11  送風機
 12  乾留搭
 13  回収タンク
 14  熱風炉
 15  排風機
 16  排ガス処理装置

Claims (3)

  1.  高分子系廃棄物の熱分解又は不完全燃焼により得られ、且つ粉砕により粉末にされた炭化物(A)と、カーボンブラック(B)とを混合し、前記炭化物(A)と前記カーボンブラック(B)との混合物を得る工程と、回転数70rpm~130rpmの造粒機を用いて前記混合物を造粒する工程とを含むことを特徴とするゴム物品補強用炭化物の製造方法。
  2.  前記炭化物(A)と前記カーボンブラック(B)との混合質量比(A/B)が1/99~50/50の範囲内であることを特徴とする請求項1に記載のゴム物品補強用炭化物の製造方法。
  3.  前記カーボンブラック(B)が粉末状物又は造粒物の粉砕物であることを特徴とする請求項1又は2に記載のゴム物品補強用炭化物の製造方法。
PCT/JP2012/002625 2011-04-19 2012-04-16 ゴム物品補強用炭化物の製造方法 WO2012144188A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/004,538 US9358549B2 (en) 2011-04-19 2012-04-16 Method for manufacturing carbide for reinforcing rubber articles
EP12774350.8A EP2700672B1 (en) 2011-04-19 2012-04-16 Method for producing carbide for reinforcing rubber article
CN201280019027.4A CN103492475B (zh) 2011-04-19 2012-04-16 制造补强橡胶制品用碳化物的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011093426A JP5813985B2 (ja) 2011-04-19 2011-04-19 ゴム物品補強用炭化物の製造方法
JP2011-093426 2011-04-19

Publications (1)

Publication Number Publication Date
WO2012144188A1 true WO2012144188A1 (ja) 2012-10-26

Family

ID=47041322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002625 WO2012144188A1 (ja) 2011-04-19 2012-04-16 ゴム物品補強用炭化物の製造方法

Country Status (5)

Country Link
US (1) US9358549B2 (ja)
EP (1) EP2700672B1 (ja)
JP (1) JP5813985B2 (ja)
CN (1) CN103492475B (ja)
WO (1) WO2012144188A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012105796B4 (de) * 2012-06-29 2016-01-21 Pyrolyx Ag Verfahren und Vorrichtung zur Herstellung von Hybrid - Carbon Black - Teilchen
US20140136948A1 (en) * 2012-11-09 2014-05-15 Microsoft Corporation Taxonomy Driven Page Model
CN106279859A (zh) * 2015-06-13 2017-01-04 张家港市铭诺橡塑金属有限公司 橡胶制品补强碳化物的制造方法
CN105001682A (zh) * 2015-07-06 2015-10-28 中橡集团炭黑工业研究设计院 一种提高炭黑分散性的方法
US20170279929A1 (en) * 2016-03-25 2017-09-28 The Trustees Of The Stevens Institute Of Technology High-performance web server, protocol and client
US10675527B2 (en) * 2017-01-25 2020-06-09 Trugrit Traction, Inc. Pipe transporter traction wheel
US10634274B2 (en) * 2017-01-25 2020-04-28 Trugrit Traction, Inc. Pipe transporter traction wheel
WO2020188740A1 (ja) * 2019-03-19 2020-09-24 関西熱化学株式会社 カーボンブラック成形体、及びその製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134071A (ja) 1984-07-26 1986-02-18 Asahi Carbon Kk ソフト系カ−ボンブラツク製造装置
JPH0517704A (ja) * 1991-07-16 1993-01-26 Nippon Steel Chem Co Ltd カーボンブラツク造粒品の製造方法
JPH0827394A (ja) 1994-07-20 1996-01-30 Mitsubishi Heavy Ind Ltd 廃棄物からのカーボンブラック製造方法及び装置
JPH1060301A (ja) * 1996-06-11 1998-03-03 Degussa Ag カーボンブラック粉末の連続的乾式造粒法
JP2010141099A (ja) 2008-12-11 2010-06-24 Shin Etsu Handotai Co Ltd シリコンエピタキシャルウェーハの製造方法
WO2010137352A1 (ja) * 2009-05-29 2010-12-02 株式会社ブリヂストン 高分子系廃棄物の熱分解方法及び熱分解装置、炭化物の回収方法、並びに炭化物、該炭化物を含むゴム組成物及び該ゴム組成物を用いたタイヤ
WO2011161932A1 (ja) * 2010-06-21 2011-12-29 株式会社ブリヂストン ゴム補強用炭素材料及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2271943T3 (es) * 1994-07-20 2007-04-16 Mitsubishi Jukogyo Kabushiki Kaisha Combustion de residuos organicos.
EP1675900B1 (en) 2003-10-20 2016-12-14 Addivant Switzerland GmbH Rubber compositions and methods for decreasing the tangent delta value and abrasion index
KR101274906B1 (ko) * 2005-05-16 2013-06-13 캐보트 코포레이션 카본블랙의 블렌드 및 이것을 함유하는 제품
JP5878275B2 (ja) * 2009-05-29 2016-03-08 株式会社ブリヂストン 高分子系廃棄物の熱分解方法、炭化物の回収方法、並びに炭化物、ゴム組成物及びタイヤ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134071A (ja) 1984-07-26 1986-02-18 Asahi Carbon Kk ソフト系カ−ボンブラツク製造装置
JPH0517704A (ja) * 1991-07-16 1993-01-26 Nippon Steel Chem Co Ltd カーボンブラツク造粒品の製造方法
JPH0827394A (ja) 1994-07-20 1996-01-30 Mitsubishi Heavy Ind Ltd 廃棄物からのカーボンブラック製造方法及び装置
JPH1060301A (ja) * 1996-06-11 1998-03-03 Degussa Ag カーボンブラック粉末の連続的乾式造粒法
JP2010141099A (ja) 2008-12-11 2010-06-24 Shin Etsu Handotai Co Ltd シリコンエピタキシャルウェーハの製造方法
WO2010137352A1 (ja) * 2009-05-29 2010-12-02 株式会社ブリヂストン 高分子系廃棄物の熱分解方法及び熱分解装置、炭化物の回収方法、並びに炭化物、該炭化物を含むゴム組成物及び該ゴム組成物を用いたタイヤ
WO2011161932A1 (ja) * 2010-06-21 2011-12-29 株式会社ブリヂストン ゴム補強用炭素材料及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2700672A4

Also Published As

Publication number Publication date
US9358549B2 (en) 2016-06-07
EP2700672B1 (en) 2016-08-17
JP5813985B2 (ja) 2015-11-17
CN103492475B (zh) 2015-03-11
CN103492475A (zh) 2014-01-01
JP2012224746A (ja) 2012-11-15
EP2700672A1 (en) 2014-02-26
US20140001293A1 (en) 2014-01-02
EP2700672A4 (en) 2014-12-10

Similar Documents

Publication Publication Date Title
JP5813985B2 (ja) ゴム物品補強用炭化物の製造方法
Dwivedi et al. Recycling of waste tire by pyrolysis to recover carbon black: Alternative & environment-friendly reinforcing filler for natural rubber compounds
TWI789597B (zh) 具有彈性體及填料之複合物之製備方法
JP6397021B2 (ja) ゴムマスターバッチの連続的製造方法
Formela et al. The influence of screw configuration and screw speed of co-rotating twin screw extruder on the properties of products obtained by thermomechanical reclaiming of ground tire rubber
CN114599717A (zh) 二氧化硅-石墨烯碳复合颗粒和包含此类颗粒的弹性体材料
JP5878275B2 (ja) 高分子系廃棄物の熱分解方法、炭化物の回収方法、並びに炭化物、ゴム組成物及びタイヤ
JP5632661B2 (ja) ゴム補強用炭素材料及びその製造方法
WO2015162814A1 (ja) カーボンブラックおよびゴム組成物
WO2022125675A1 (en) Methods of preparing a composite having elastomer and filler
Lei et al. In situ growth of ZnO on carbon nanospheres and its properties in natural rubber
JP5693057B2 (ja) 炭化物及びその製造方法、並びにゴム組成物及びタイヤ
WO2015011796A1 (ja) カーボンブラック、カーボンブラックの製造方法およびゴム組成物
WO2010137352A1 (ja) 高分子系廃棄物の熱分解方法及び熱分解装置、炭化物の回収方法、並びに炭化物、該炭化物を含むゴム組成物及び該ゴム組成物を用いたタイヤ
Bijina et al. Tailoring of performance characteristics of green tyre tread formulation using thermally exfoliated graphite/carbon black binary filler system via scalable and competent method
JP5356126B2 (ja) ゴム組成物及び空気入りタイヤ
JPH0588856B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774350

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14004538

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012774350

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012774350

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE