WO2012144025A1 - Automatic inspection device and alignment method for automatic inspection device - Google Patents

Automatic inspection device and alignment method for automatic inspection device Download PDF

Info

Publication number
WO2012144025A1
WO2012144025A1 PCT/JP2011/059696 JP2011059696W WO2012144025A1 WO 2012144025 A1 WO2012144025 A1 WO 2012144025A1 JP 2011059696 W JP2011059696 W JP 2011059696W WO 2012144025 A1 WO2012144025 A1 WO 2012144025A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
region
alignment
luminance
automatic inspection
Prior art date
Application number
PCT/JP2011/059696
Other languages
French (fr)
Japanese (ja)
Inventor
昌年 笹井
Original Assignee
株式会社メガトレード
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メガトレード filed Critical 株式会社メガトレード
Priority to JP2013510772A priority Critical patent/JP5852641B2/en
Priority to PCT/JP2011/059696 priority patent/WO2012144025A1/en
Publication of WO2012144025A1 publication Critical patent/WO2012144025A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95607Inspecting patterns on the surface of objects using a comparative method
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20004Adaptive image processing
    • G06T2207/20012Locally adaptive
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20016Hierarchical, coarse-to-fine, multiscale or multiresolution image processing; Pyramid transform
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20021Dividing image into blocks, subimages or windows
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30141Printed circuit board [PCB]

Definitions

  • the present invention relates to an automatic inspection apparatus that can be inspected in alignment with a reference image when inspecting the quality of an inspection object.
  • an image of the inspection object is acquired, and the quality of the formation state is inspected against a reference image stored in advance.
  • the reference marks can be aligned, but in other areas, they are aligned with the reference image. I do not know if. In particular, if the inspection object is warped or distorted, it will be difficult to perform accurate alignment at the intermediate part between the reference mark and the reference mark. Since it will be inspected at the time, there is a possibility of erroneous determination. In addition, in the latter method, where the resolution of the image of the inspection object is changed and the position is gradually aligned, the calculation amount increases as the resolution increases, and similarly, the inspection object is warped. When distortion or the like occurs, even if alignment is performed in one area, there is a possibility that a positional deviation occurs in another area. For this reason, it is necessary to perform inspection by aligning at a certain resolution.
  • any of the alignment methods alignment is performed using characteristic portions. For example, in a region where there is not much change such as a substrate portion of a printed board or a resist-only portion. It becomes impossible to align with the reference image. For this reason, even if the region where accurate alignment could not be performed is inspected against the reference image, an erroneous determination may occur.
  • the present invention has been made paying attention to the above-mentioned problems, and is inspected by an automatic inspection apparatus and an inspection apparatus that can perform high-precision inspection by accurately aligning an image of an inspection object with a reference image. It is an object of the present invention to provide a method for correcting the position of an image of an inspection object.
  • the present invention provides an automatic inspection apparatus in which an image acquired from an inspection object and a reference image are aligned to determine whether or not the inspection object is good.
  • the first image aligning means for aligning the entire image with the reference image and the entire image aligned by the first position aligning means, and the amount of change in luminance value in the divided area is a predetermined value.
  • a change amount detecting means for determining whether or not the difference is equal to or more than a second alignment means for aligning a corresponding area of the reference image with respect to an area where the change amount of the luminance value is equal to or greater than a predetermined value; It is a thing.
  • the entire image is roughly aligned, and then the region where the luminance value changes frequently (that is, the region where there is a large change in the image) among the finely divided regions is aligned. Therefore, it is possible to reduce the amount of calculation, and it is possible to perform accurate alignment with respect to a region with a large change that requires particularly accurate inspection.
  • the second alignment means a portion where the amount of change in the luminance value is larger than a predetermined value in the region where the luminance value changes frequently is extracted, and the reference image is handled based on the portion. Try to align with the region.
  • the region where the change amount of the luminance value is equal to or less than the predetermined value by the change amount detection unit is aligned based on the position information of the region aligned by the second alignment unit.
  • reference data generating means for calculating a variation of each pixel based on the registered image, determining an allowable luminance width at the position of the pixel from the variation, and storing the allowable luminance width in a polar coordinate system. Make it.
  • the reference data can be generated accurately, and if the allowable luminance width is expressed in a polar coordinate system, Even when only the brightness changes and the ratio of saturation and hue does not change, the reference data can be easily generated.
  • the alignment when aligning the image of the inspection target object with the reference image, after performing the overall rough alignment, the alignment is performed for the region with a large change in luminance value among the finely divided regions. It is possible to reduce the amount of calculation, and it is possible to perform accurate alignment for an area having a large change that requires particularly accurate inspection, thereby enabling accurate inspection.
  • the automatic inspection apparatus 1 can inspect the quality of the formation state of pads, wiring patterns, silk, resist, through holes, etc. formed on a printed circuit board 8, for example.
  • Image acquisition means 2 for acquiring an image of the substrate 8
  • reference image storage means 5 for storing a reference image necessary for inspection in advance
  • alignment for aligning the image acquired by the image acquisition means 2 with the reference image Means 3 are provided.
  • the first alignment means 31 that aligns the entire image with a coarse resolution and the whole that is roughly aligned by the first alignment means 31.
  • a second alignment means 32 that divides an image into small areas and performs alignment only for areas where the luminance change is large among the divided areas, and a vicinity of an area where the luminance change is small among the divided areas
  • a third alignment means 33 for performing alignment based on the correction information of the region aligned in step (b). Then, by performing alignment in this way, reference data is generated by the reference data generation means 7, and the quality of the printed circuit board 8 is determined by the determination means 6 using the reference data.
  • the automatic inspection apparatus 1 according to the present embodiment will be described in detail.
  • the image acquisition means 2 acquires the surface image from the printed circuit board 8 which is an inspection object.
  • the surface image may be acquired by a gray scale, but if it is a gray scale, a pad area where metal is exposed, an area where a resist is applied on the pad, Luminance changes such as areas where resist is directly applied on the substrate are not clear.
  • the surface image of the printed circuit board 8 is preferably acquired by RGB.
  • the image acquisition means 2 When the surface image of the printed circuit board 8 is acquired by the image acquisition means 2, light is emitted from an illumination device arranged obliquely above the printed circuit board 8, and the reflected light is reflected on the line sensor or the The image is acquired by the area sensor, and the image is temporarily stored in the image memory. Then, the difference between the image stored in the image memory and the image when the printed board 8 is not placed (for example, the image of the stage) is taken, and the image of only the printed board 8 is extracted.
  • the reference image storage means 5 stores an RGB image of the printed circuit board 8 serving as a reference in advance.
  • the “reference image” means an image of an inspection object that has been determined as a non-defective product by visual inspection or another inspection device in advance, or image data created from CAD data or the like.
  • the reference image is stored in the reference image storage unit 5, at least an image having a resolution higher than the resolution used in the first alignment unit 31 and the second alignment unit 32 described later is stored. To.
  • the positioning means 3 includes a first positioning means 31, a second positioning means 32, and a third positioning means 33.
  • the first alignment means 31 aligns the entire image of the printed circuit board 8 acquired by the image acquisition means 2 in a rough state as shown in FIG. Specifically, the entire image of the printed circuit board 8 is made to correspond to the first resolution, which is a low resolution, while being shifted in the vertical direction, the horizontal direction, and the rotation direction, and the position where the degree of coincidence with the reference image becomes the maximum is correlated. (Fig. 2 (a)). Then, the entire image of the printed circuit board 8 is corrected in the vertical direction, the horizontal direction, and the rotation direction based on the position where the degree of coincidence is greatest.
  • an image of the printed circuit board 8 is extracted at a second resolution, which is higher than the first resolution, and the position in each of the vertical direction, the horizontal direction, and the rotation direction is similarly based on the image.
  • the position where the degree of coincidence is maximized is calculated by cross-correlation.
  • the image of the second resolution is corrected in the vertical direction, the horizontal direction, and the rotation direction (FIG. 2B).
  • the first and second resolutions are roughly aligned.
  • the overall alignment may be performed with a higher resolution image, or the first The entire alignment may be performed with only the resolution. In this way, the entire image is aligned with a relatively low resolution.
  • the second alignment means 32 divides the image of the printed circuit board 8 aligned in a rough state into small areas (FIG. 3), and extracts only areas where the luminance change amount is large among the areas. Then, the areas are aligned independently.
  • a region with little luminance change such as a resist-only portion (A1 in FIG. 3) and a region (A2) consisting only of a wiring pattern and a pad portion occupies most of the region.
  • the luminance information of each pixel in the divided area is output to the luminance change detecting means 4, where the luminance change amount is a predetermined threshold value. Is detected.
  • the luminance change amount is a predetermined threshold value.
  • the luminance for each RGB of each pixel in the region is extracted, and the variance value is calculated. At this time, if the variance value is larger than a predetermined threshold value, it is determined that the region has a large change amount. Conversely, if the variance value of luminance in the region is smaller than the predetermined threshold value, Judged as “small area”.
  • region with a large amount of change for example, a region (A3) including an edge of a pad or a wiring pattern can be considered, and as the “region with a small amount of change”, for example, a resist-only region, a substrate Only the central region of the pad and the wiring pattern can be considered (A1, A2).
  • the variation in luminance is detected using the variance value, the width of the maximum luminance value and the minimum luminance value, or the number of pixels having a luminance value equal to or higher than the predetermined luminance value and the predetermined luminance value.
  • the number of pixels having a luminance value equal to or lower than the luminance value may be used.
  • the second alignment means 32 extracts only the region determined as “a region with a large change amount” in this way, and aligns it with the region of the reference image corresponding to the region.
  • a portion with a large luminance change for example, an edge portion of a pad
  • the portion is aligned with a small region of the reference image using that portion as a reference.
  • a color (RGB) or luminance area excluding silk is extracted, and the pixels in the extracted area are expanded by several pixels vertically and horizontally, An inflated edge region (A4) as shown in FIG. 4 is extracted.
  • contour regions that have been inflated by the same method are extracted, and the position having the highest matching rate is cross-correlated while shifting in the vertical direction, the horizontal direction, and the rotational direction. calculate. Then, alignment in the vertical direction, the horizontal direction, and the rotation direction is performed from the position with the highest matching rate.
  • the third alignment means 33 performs an alignment process for an area determined as “an area with a small change amount”.
  • the region determined to be the “region with a small amount of change” does not have a characteristic portion, and therefore cannot be aligned by the method such as the second alignment unit 32. Therefore, here, correction is performed using the position information corrected by the second alignment means 32. Specifically, if the region to be noticed is a “region with a small amount of change”, the closest “region with a large amount of change” is searched for, and correction information for the region (vertical correction, horizontal direction) And correction of the rotation direction). Then, the correction information is used to correct the area in the vertical direction, the horizontal direction, and the rotation direction.
  • the determination unit 6 determines whether each area aligned in this way is compared with the area of the reference image, and determines whether the area is defective.
  • the area that is being processed is output.
  • Various methods can be used for this pass / fail judgment. For example, with reference to the position of the pixel of the aligned image, the luminance within a certain range from the luminance value of the pixel within a predetermined search distance in the reference image. If such a pixel exists, it is determined as “excellent pixel”, and if such a pixel does not exist, it is determined as “defective pixel”. Then, the same processing is performed for all the pixels, and when a predetermined number or more of defective pixels are continuous, the region is output as a “defective portion”.
  • the reference data generation means 7 acquires images from a plurality of inspection objects determined as non-defective products, aligns the respective images, and generates reference data necessary for inspection.
  • reference data an allowable luminance width at the pixel position, a search distance for searching for a pixel corresponding to the pixel of the inspection object, and the like are generated and stored from the variation of the aligned pixels. I shall let you.
  • the reference image is generated first.
  • the printed circuit board 8 that is a non-defective inspection object is placed on the stage.
  • the image acquisition means 2 acquires the image.
  • an image of a stage for placing the printed circuit board 8 is acquired in advance, and an image consisting only of the printed circuit board 8 is acquired by taking a difference from the image of the stage (step S1).
  • the acquired image is converted into a first resolution image having a low resolution, a reference image corresponding to the converted low resolution image is read out, and overall alignment is performed.
  • the vertical cross-correlation is used to detect the vertical shift
  • the horizontal cross-correlation is used to detect the horizontal shift
  • the image is rotated to rotate.
  • the image corrected at the first resolution is aligned at a second resolution that is relatively higher than the first resolution (step S4: No).
  • a reference image corresponding to the second resolution is read, and a vertical shift amount, a horizontal shift amount, and a rotational shift amount are detected by cross-correlation. (Step S2).
  • the deviation amount of the image of the printed circuit board 8 as the inspection object is corrected (step S3).
  • step S5 division processing is performed on the image of the inspection object aligned with such a rough image (step S5). Then, a luminance change amount indicating how much the luminance change of each pixel is in the area is obtained (step S6).
  • step S6 a luminance change amount indicating how much the luminance change of each pixel is in the area.
  • the variance value of the luminance of each pixel in that region is obtained. If the variance value is equal to or greater than a predetermined threshold, it is determined that the region has a large amount of change, and on the contrary If the value is less than the predetermined threshold value, it is determined as “a region with a small amount of change” (step S7).
  • an area determined to be the “region with a large amount of change” is extracted (step S7: Yes), and a portion with a large amount of change, such as an edge portion of the pad, is extracted from the region and inflated. (Steps S8 and S9).
  • the portion with a large amount of change is extracted and inflated, cross-correlation is performed for each image, and the degree of coincidence calculated by the cross-correlation is calculated.
  • the amount of deviation is detected from the information of the high position (step S10), and the region of the inspection object is independently corrected (step S11).
  • step S7 when it is determined that the region is a region with a small amount of change (step S7: No), the closest region with a large amount of variation and the next region with a large amount of variation are extracted ( Step S12), the deviation amounts in the vertical direction, the horizontal direction, and the rotation direction in each region are extracted. Then, the position of the region is corrected from the average value of the respective shift amounts (step S13).
  • the same processing is performed on the plurality of printed circuit boards 8, and the luminance for each RGB is extracted for each pixel of the aligned image (step T1 in FIG. 7), and allowed for each pixel position.
  • the brightness range to be determined is determined.
  • a dispersion value or standard deviation that is a variation in RGB luminance of pixels of the printed circuit board 8 that has read a plurality of sheets is obtained (step T2).
  • the allowable range from the luminance is set large and stored as reference data for the pixel.
  • the RGB luminance is converted into a polar coordinate system so that each luminance can be expressed by a distance r from the origin and an angle ⁇ formed with a straight line passing through the origin (step T3).
  • the allowable luminance width is set by changing the distance r and the angle ⁇ (step T4). If the allowable luminance width is set using the distance r and the angle ⁇ in this way, the parameters are reduced and the hue (ratio of RGB luminance) is changed as compared with the case where the allowable luminance width is set in the orthogonal coordinate system. There is an advantage that only brightness and saturation can be changed without any change.
  • the search distance of the corresponding pixel of the printed circuit board 8 in the inspection object is stored as a table (step T5), and the pixel having the luminance within the allowable luminance width within the search distance from the position of the pixel. It is possible to check whether or not exists.
  • Step S1 In the case of inspecting the printed circuit board 8 to be inspected, similarly, the printed circuit board 8 is placed on the stage, and the image acquisition unit 2 acquires an image composed only of the printed circuit board 8. (Step S1).
  • the acquired image is converted into an image of a first resolution which is a low resolution, and a reference image corresponding to the converted low resolution image is read out to cross-correlate in the vertical, horizontal and rotational directions.
  • a reference image corresponding to the converted low resolution image is read out to cross-correlate in the vertical, horizontal and rotational directions.
  • the image corrected at the first resolution is aligned at a second resolution that is relatively higher than the first resolution (step S4, steps S2 to S3).
  • step S5 the image of the inspection object aligned with such a rough image is divided (step S5), and the luminance change amount in the region is obtained to obtain “region with large change amount” and “change amount”. Are divided into “small regions” (steps S6 and S7).
  • an area determined as “an area having a large change amount” is extracted (step S8), an area excluding silk color and luminance is extracted for the area, and the change amount of the pixel in the extracted area is extracted.
  • a large portion is extracted and inflated (step S9), and a reference image corresponding to the region is also extracted for a portion with a large amount of change, inflated, and the amount of deviation is obtained by cross-correlating each image. Is detected (step S10).
  • the region of the inspection object is independently corrected from the position information with the highest degree of coincidence calculated by the cross-correlation (step S11), and the region is inspected using the reference image and the reference data (FIG. 8).
  • the allowable luminance width and the search distance stored in advance are extracted from the position of the reference image corresponding to the position of each pixel of the inspection object (step U1), and the search distance of the reference image is extracted. It is checked whether or not there is a pixel having a luminance (luminance for each RGB) within the allowable luminance width (step U2). If such a pixel exists, it is determined as “good pixel” (step U3), and if such a pixel does not exist, it is determined as “defective pixel” (step U4). If a predetermined number or more of defective pixels are continuously present, a defective area is output (step U5).
  • step S12 an area determined to be a “region with a small amount of change” is extracted (step S12), and the “region with a large amount of change” closest to the region and the “region with a large amount of change” next to each other are extracted. Then, the shift amounts in the vertical direction, the horizontal direction, and the rotation direction in each region are extracted. Then, the position of the region is corrected from the average value of the respective shift amounts (step S13). Similarly, this region is inspected using the reference image and the reference data (step U1). Even when the inspection is performed for each region, the permissible luminance width and the search distance are extracted from the position of the reference image corresponding to the position of each pixel of the inspection target (step U1), and the permissible within the search distance of the reference image.
  • step U2 It is checked whether or not there is a pixel within the luminance width (step U2). When such a pixel exists, it is determined as “good pixel” (step U3), and when such a pixel does not exist, it is determined as “defective pixel” (step U4). If a predetermined number or more of defective pixels are continuously present, a defective area is output (step U5).
  • the automatic inspection apparatus 1 that determines the quality of the inspection object by aligning the image acquired from the inspection object and the reference image, the entire image is obtained with a predetermined resolution.
  • First alignment means 31 for alignment with the reference image, and a partial area of the entire image aligned by the first alignment means 31 are extracted, and the amount of change in luminance value in the area is a predetermined value
  • a change amount detecting means for determining whether or not the difference is present, and a second alignment for aligning the corresponding area of the reference image with respect to an area where the change amount of the luminance value is equal to or greater than a predetermined value by the change amount detecting means.
  • the region where the change amount of the luminance value is equal to or less than a predetermined value by the means 32 and the change amount detection unit is determined based on the region aligned by the second alignment unit 32. Since so and a third positioning means 33 for performing combined, it is possible to perform accurate alignment with less calculation amount. In addition, even when there is almost no change in luminance in the divided area, accurate alignment can be performed based on the position information of the area aligned in the vicinity thereof.
  • the region determined to be “the region with small change amount” is aligned based on the information of the two adjacent regions.
  • the shift amount of the region with a small change amount” based on the shift amounts of the plurality of regions in this way, the “region with the large change amount” closest to one direction and a direction different from the direction ( For example, the closest “region with a large change amount” in the orthogonal direction may be extracted, and the shift amount of the region may be calculated using these shift amounts. In this way, there is an advantage that it is possible to accurately correct the shift amount and rotation amount between the vertical direction and the horizontal direction.
  • each of the “region with a large amount of change” and the “region with a small amount of change” is inspected, but only the “region with a large amount of change” is extracted and inspected. May be.
  • the region is extracted from a predetermined RGB luminance value, and the average luminance value of the region is the luminance. If it is included in the value range, the area may not be inspected.
  • two types of images of the first resolution and the second resolution are stored as the reference image, but a high-resolution image is stored and lower than that.
  • the high resolution image may be converted into a low resolution and used.
  • the second alignment unit 32 when the second alignment unit 32 performs alignment, a characteristic part of the region is extracted and aligned. You may make it align by taking a correlation.
  • an area excluding silk color and luminance is extracted, and a portion with a large luminance change near the contour is generated by expansion / contraction processing and synthesis thereof.
  • a difference between the RGB luminance values of adjacent pixels may be obtained, and the same processing may be performed while leaving pixels whose difference is equal to or greater than a predetermined value.
  • the present invention is used in the field of an automatic inspection device that inspects the formation state of a printed board, a liquid crystal substrate, a pattern or a character formed on the surface of an object.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Quality & Reliability (AREA)
  • Analytical Chemistry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

[Problem] To provide an automatic inspection device with which a highly precise inspection can be performed by accurately aligning the image of the object to be inspected and a reference image, and to provide a method for correcting the position of the image of the object being inspected with that inspection device. [Solution] When an image obtained from the object to be inspected is aligned with a reference image, first, the entire image is aligned with the reference image at a relatively low resolution. Next, this aligned image is divided, and a determination is made regarding whether the variance of the luminance values of the resulting divided regions is at or greater than a prescribed threshold value. A region for which the variance is at or greater than the threshold value is aligned with the corresponding region of the reference image on the basis of the portion within that region for which there is a large change in luminance. On the other hand, a divided region for which the variance is less than the threshold value is aligned on the basis of the aligned position information for an adjacent region for which there is a large change in luminance.

Description

自動検査装置および自動検査装置における位置合わせ方法Automatic inspection device and alignment method in automatic inspection device
 本発明は、検査対象物の良否を検査する際に、基準画像と位置合わせして検査できるようにした自動検査装置に関するものである。 The present invention relates to an automatic inspection apparatus that can be inspected in alignment with a reference image when inspecting the quality of an inspection object.
 一般に、検査対象物の形成状態を検査する場合、その検査対象物の画像を取得するとともに、あらかじめ記憶させておいた基準画像と照らし合わせ、その形成状態の良否を検査する。 Generally, when inspecting the formation state of an inspection object, an image of the inspection object is acquired, and the quality of the formation state is inspected against a reference image stored in advance.
 ところで、このような検査対象物の形成状態を検査する場合、取得された検査対象物の画像を基準画像と正確に位置合わせしなければならないが、従来では、このような位置合わせを行う場合、あらかじめ検査対象物の複数の基準マーク(例えば、パッドなど)の位置を探索し、その位置と基準画像の基準マークと位置合わせしていく方法や(特許文献1、特許文献2など)、検査対象物の画像を解像度を変えて徐々に全体を位置合わせしていく方法(特許文献3など)などが採用されている。 By the way, when inspecting the formation state of such an inspection object, it is necessary to accurately align the acquired image of the inspection object with the reference image, but conventionally, when performing such alignment, A method of searching for the positions of a plurality of reference marks (for example, pads) of the inspection object in advance and aligning the positions with the reference marks of the reference image (Patent Document 1, Patent Document 2, etc.) A method (for example, Patent Document 3) of gradually aligning the entire image of an object by changing the resolution is adopted.
特開2007-333664号公報JP 2007-333664 A 特開2003-086919号公報JP 2003-086919 A 特開2009-162718号公報JP 2009-162718 A
 しかしながら、上述のような位置合わせをする方法では、次のような問題を生ずる。 However, the method of aligning as described above causes the following problems.
 すなわち、前者のように複数の基準マークの位置を探索して位置合わせしていく方法では、その基準マークについては位置合わせを行うことができるものの、それ以外の領域では基準画像と位置合わせされているかどうか判らない。特に、検査対象物に反りや歪みを生じている場合は、基準マークと基準マークの中間部分では正確な位置合わせを行うことが困難になり、その部分を検査する場合、位置合わせされていない状態で検査することになるため誤判定を生じる可能性がある。また、後者のように検査対象物の画像について解像度を変えて徐々に位置合わせしていく方法では、解像度が高くなればなるほど計算量が多くなり、また、同様に、その検査対象物に反りや歪みなどを生じている場合は、一の領域で位置合わせを行ったとしても他の領域で位置ずれを生じてしまう可能性がある。このため、ある程度の解像度のところで位置合わせして検査しなければならない。 That is, in the method of searching for and aligning the positions of a plurality of reference marks as in the former, the reference marks can be aligned, but in other areas, they are aligned with the reference image. I do not know if. In particular, if the inspection object is warped or distorted, it will be difficult to perform accurate alignment at the intermediate part between the reference mark and the reference mark. Since it will be inspected at the time, there is a possibility of erroneous determination. In addition, in the latter method, where the resolution of the image of the inspection object is changed and the position is gradually aligned, the calculation amount increases as the resolution increases, and similarly, the inspection object is warped. When distortion or the like occurs, even if alignment is performed in one area, there is a possibility that a positional deviation occurs in another area. For this reason, it is necessary to perform inspection by aligning at a certain resolution.
 さらに、いずれの方法で位置合わせを行う場合においても、特徴となる部分を用いて位置合わせしていくが、例えば、プリント基板の基板部分やレジストのみの部分などのようにあまり変化がない領域では基準画像と位置合わせすることができなくなってしまう。このため、このように正確な位置合わせを行うことができなかった領域について基準画像と照らし合わせて検査したとしても、誤った判断を生じてしまう可能性がある。 In addition, in any of the alignment methods, alignment is performed using characteristic portions. For example, in a region where there is not much change such as a substrate portion of a printed board or a resist-only portion. It becomes impossible to align with the reference image. For this reason, even if the region where accurate alignment could not be performed is inspected against the reference image, an erroneous determination may occur.
 そこで、本発明は上記課題に着目してなされたもので、検査対象物の画像を基準画像と正確に位置合わせして精度の高い検査を行えるようにした自動検査装置およびその検査装置で検査される検査対象物の画像の位置を補正する方法を提供することを目的とする。 Therefore, the present invention has been made paying attention to the above-mentioned problems, and is inspected by an automatic inspection apparatus and an inspection apparatus that can perform high-precision inspection by accurately aligning an image of an inspection object with a reference image. It is an object of the present invention to provide a method for correcting the position of an image of an inspection object.
 すなわち、本発明は上記課題を解決するために、検査対象物から取得された画像と基準画像とを位置合わせして、検査対象物の良否を判定できるようにした自動検査装置において、所定の解像度で全体画像を基準画像に位置合わせする第一の位置合わせ手段と、当該第一の位置合わせ手段によって位置合わせされた全体画像を分割し、当該分割された領域における輝度値の変化量が所定値以上であるかどうかを判断する変化量検出手段と、当該輝度値の変化量が所定値以上であった領域について、基準画像の対応領域と位置合わせを行う第二の位置合わせ手段とを備えるようにしたものである。 That is, in order to solve the above-described problems, the present invention provides an automatic inspection apparatus in which an image acquired from an inspection object and a reference image are aligned to determine whether or not the inspection object is good. The first image aligning means for aligning the entire image with the reference image and the entire image aligned by the first position aligning means, and the amount of change in luminance value in the divided area is a predetermined value. A change amount detecting means for determining whether or not the difference is equal to or more than a second alignment means for aligning a corresponding area of the reference image with respect to an area where the change amount of the luminance value is equal to or greater than a predetermined value; It is a thing.
 このように構成すれば、まず、全体を粗く位置合わせをした後、細かく分割された領域のうち輝度値の変化の多い領域(すなわち、画像に変化の多い領域)について位置合わせを行うようにしているため、計算量を少なくすることができるとともに、特に正確な検査が必要な変化の多い領域について正確な位置合わせを行うことができる。 With such a configuration, first, the entire image is roughly aligned, and then the region where the luminance value changes frequently (that is, the region where there is a large change in the image) among the finely divided regions is aligned. Therefore, it is possible to reduce the amount of calculation, and it is possible to perform accurate alignment with respect to a region with a large change that requires particularly accurate inspection.
 また、このような発明において、第二の位置合わせ手段として、前記輝度値の変化の多い領域内において輝度値の変化量が所定値以上大きな部分を抽出し、当該部分に基づいて基準画像の対応領域と位置合わせを行うようにする。 Further, in such an invention, as the second alignment means, a portion where the amount of change in the luminance value is larger than a predetermined value in the region where the luminance value changes frequently is extracted, and the reference image is handled based on the portion. Try to align with the region.
 このようにすれば、分割された領域について位置合わせを行う際、最も特徴が現れる輝度の変化量の大きな部分を基準として位置合わせするため、正確な位置合わせを行うことができるようになる。 In this way, when performing alignment for the divided areas, alignment is performed with reference to a portion with a large amount of change in luminance where the feature appears most, so that accurate alignment can be performed.
 さらには、変化量検出手段によって輝度値の変化量が所定値以下であった領域について、前記第二の位置合わせ手段によって位置合わせされた領域の位置情報に基づいて位置合わせを行うようにする。 Further, the region where the change amount of the luminance value is equal to or less than the predetermined value by the change amount detection unit is aligned based on the position information of the region aligned by the second alignment unit.
 このようにすれば、分割された領域に輝度変化がほとんどない場合であっても、その近傍で位置合わせされた領域の位置情報に基づいて正確な位置合わせを行うことができるようになる。 In this way, even when there is almost no change in luminance in the divided area, accurate alignment can be performed based on the position information of the area aligned in the vicinity thereof.
 また、記位置合わせされた画像に基づいて各画素のばらつきを算出し、当該ばらつきから当該画素の位置における許容輝度幅を決定するとともに、当該許容輝度幅を極座標系で記憶させる基準データ生成手段を設けるようにする。 Further, reference data generating means for calculating a variation of each pixel based on the registered image, determining an allowable luminance width at the position of the pixel from the variation, and storing the allowable luminance width in a polar coordinate system. Make it.
 このようにすれば、検査対象物を検査する場合に限らず、基準データを生成する場合においても、正確に基準データを生成することができるとともに、その許容輝度幅を極座標系で表現すれば、明度のみが変化して彩度や色相などの割合が変化していない場合であっても、簡単に基準データを生成することができるようになる。 In this way, not only when inspecting the inspection object, but also when generating the reference data, the reference data can be generated accurately, and if the allowable luminance width is expressed in a polar coordinate system, Even when only the brightness changes and the ratio of saturation and hue does not change, the reference data can be easily generated.
 本発明によれば、検査対象物の画像を基準画像と位置合わせする際、全体の粗く位置合わせをした後、細かく分割された領域のうち輝度値の変化の多い領域について位置合わせを行うため、計算量を少なくすることができるとともに、特に正確な検査が必要な変化の多い領域について正確な位置合わせを行うことができ、これによって、正確な検査を行うことができるようになる。 According to the present invention, when aligning the image of the inspection target object with the reference image, after performing the overall rough alignment, the alignment is performed for the region with a large change in luminance value among the finely divided regions. It is possible to reduce the amount of calculation, and it is possible to perform accurate alignment for an area having a large change that requires particularly accurate inspection, thereby enabling accurate inspection.
本発明の一実施の形態における自動検査装置の機能ブロック図Functional block diagram of an automatic inspection apparatus according to an embodiment of the present invention 同形態における第一の位置合わせ手段によって位置合わせする状態を示す図The figure which shows the state aligned by the 1st position alignment means in the form 同形態における輝度値の変化量が所定値以上である領域と所定値以下の領域を示す図The figure which shows the area | region where the variation | change_quantity of the luminance value in the same form is more than predetermined value, and an area below predetermined value 同形態における輝度値の変化量が所定値以上の領域を位置合わせする状態を示す図The figure which shows the state which aligns the area | region where the variation | change_quantity of the luminance value in the same form is more than predetermined value 同形態における輝度値の変化量が所定値以下の領域を位置合わせする状態を示す図The figure which shows the state which aligns the area | region where the variation | change_quantity of the luminance value in the same form is below a predetermined value 同形態における自動検査装置の位置補正の処理を示すフローチャートThe flowchart which shows the process of position correction of the automatic inspection apparatus in the same form 同形態における自動検査装置で基準データを生成する場合のフローチャートFlowchart for generating reference data by automatic inspection device in the same form 同形態における自動検査装置で検査を行う場合の処理を示すフローチャートThe flowchart which shows the process in the case of test | inspecting with the automatic test | inspection apparatus in the form
 以下、本発明の一実施の形態について図面を参照しながら説明する。この実施の形態における自動検査装置1は、例えば、プリント基板8に形成されたパッドや配線パターン、シルク、レジスト、スルーホールなどの形成状態の良否を検査できるようにしたものであって、そのプリント基板8の画像を取得する画像取得手段2と、あらかじめ検査に必要な基準画像を記憶させた基準画像記憶手段5と、当該画像取得手段2によって取得された画像を基準画像と位置合わせする位置合わせ手段3とを備えている。そして、特徴的には、その位置合わせ手段3について、全体画像を粗い解像度で全体的に位置合わせする第一の位置合わせ手段31と、この第一の位置合わせ手段31によって粗く位置合わせされた全体画像を小さな領域に分割し、当該分割された領域のうち輝度変化が大きい領域についてのみ位置合わせを行う第二の位置合わせ手段32と、前記分割された領域のうち輝度変化が小さい領域について、近傍で位置合わせされた領域の補正情報に基づいて位置合わせを行う第三の位置合わせ手段33とを備えるようにしたものである。そして、このように位置合わせを行うことによって、基準データ生成手段7で基準データを生成するとともに、その基準データを用いて判定手段6でプリント基板8の良否を判定するようにしている。以下、本実施の形態における自動検査装置1について詳細に説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The automatic inspection apparatus 1 according to this embodiment can inspect the quality of the formation state of pads, wiring patterns, silk, resist, through holes, etc. formed on a printed circuit board 8, for example. Image acquisition means 2 for acquiring an image of the substrate 8, reference image storage means 5 for storing a reference image necessary for inspection in advance, and alignment for aligning the image acquired by the image acquisition means 2 with the reference image Means 3 are provided. Characteristically, with respect to the alignment means 3, the first alignment means 31 that aligns the entire image with a coarse resolution and the whole that is roughly aligned by the first alignment means 31. A second alignment means 32 that divides an image into small areas and performs alignment only for areas where the luminance change is large among the divided areas, and a vicinity of an area where the luminance change is small among the divided areas And a third alignment means 33 for performing alignment based on the correction information of the region aligned in step (b). Then, by performing alignment in this way, reference data is generated by the reference data generation means 7, and the quality of the printed circuit board 8 is determined by the determination means 6 using the reference data. Hereinafter, the automatic inspection apparatus 1 according to the present embodiment will be described in detail.
 まず、画像取得手段2は、検査対象物であるプリント基板8からその表面画像を取得する。プリント基板8から表面画像を取得する場合、グレースケールによって表面画像を取得してもよいが、グレースケールであると、金属が露出したパッド領域や、そのパッド上にレジストが塗布されている領域、基板上に直接レジストが塗布されている領域などの輝度変化が明確にならない。このため、好ましくは、RGBによってプリント基板8の表面画像を取得する。この画像取得手段2でプリント基板8の表面画像を取得する場合は、プリント基板8の斜め上方に配列された照明装置から光を照射し、その反射光をプリント基板8の真上のラインセンサやエリアセンサで取得し、その画像を一旦画像メモリに蓄積する。そして、その画像メモリに蓄積された画像と、プリント基板8が載置されていないときの画像(例えば、ステージの画像)との差分をとり、プリント基板8のみの画像を抽出する。 First, the image acquisition means 2 acquires the surface image from the printed circuit board 8 which is an inspection object. When acquiring a surface image from the printed circuit board 8, the surface image may be acquired by a gray scale, but if it is a gray scale, a pad area where metal is exposed, an area where a resist is applied on the pad, Luminance changes such as areas where resist is directly applied on the substrate are not clear. For this reason, the surface image of the printed circuit board 8 is preferably acquired by RGB. When the surface image of the printed circuit board 8 is acquired by the image acquisition means 2, light is emitted from an illumination device arranged obliquely above the printed circuit board 8, and the reflected light is reflected on the line sensor or the The image is acquired by the area sensor, and the image is temporarily stored in the image memory. Then, the difference between the image stored in the image memory and the image when the printed board 8 is not placed (for example, the image of the stage) is taken, and the image of only the printed board 8 is extracted.
 一方、基準画像記憶手段5には、あらかじめ基準となるプリント基板8のRGB画像を記憶させておく。ここで「基準画像」とは、あらかじめ目視検査や他の検査装置によって良品と判断された検査対象物の画像、もしくは、CADデータなどから作成された画像のデータを意味するものである。基準画像を基準画像記憶手段5に記憶させておく場合は、少なくとも後述する第一の位置合わせ手段31や第二の位置合わせ手段32で使用される解像度以上の解像度の画像を記憶させておくようにする。 On the other hand, the reference image storage means 5 stores an RGB image of the printed circuit board 8 serving as a reference in advance. Here, the “reference image” means an image of an inspection object that has been determined as a non-defective product by visual inspection or another inspection device in advance, or image data created from CAD data or the like. When the reference image is stored in the reference image storage unit 5, at least an image having a resolution higher than the resolution used in the first alignment unit 31 and the second alignment unit 32 described later is stored. To.
 位置合わせ手段3は、第一の位置合わせ手段31、第二の位置合わせ手段32、第三の位置合わせ手段33から構成されている。 The positioning means 3 includes a first positioning means 31, a second positioning means 32, and a third positioning means 33.
 このうち第一の位置合わせ手段31は、図2に示すように、画像取得手段2によって取得されたプリント基板8の全体画像を粗い状態で位置合わせを行う。具体的には、低解像度である第一の解像度でプリント基板8の全体画像について縦方向、横方向、回転方向にそれぞれずらしながら対応させ、基準画像との一致度が最も大きくなる位置を相互相関によって算出する(図2(a))。そして、その一致度が最も大きくなる位置に基づいてプリント基板8の全体画像を縦方向、横方向、回転方向に補正していく。次に、今度は第一の解像度よりも高解像度である第二の解像度でプリント基板8の画像を抽出し、その画像に基づいても同様に、縦方向、横方向、回転方向のそれぞれについて位置をずらしながら対応させていき、相互相関をとって一致度が最も大きくなる位置を計算する。そして、その位置に基づいて第二の解像度の画像を縦方向、横方向、回転方向に補正していく(図2(b))。なお、本実施の形態では、第一の解像度および第二の解像度で粗く位置合わせするようにしているが、より高解像度の画像で全体の位置合わせを行うようにしてもよく、あるいは、第一の解像度だけで全体の位置合わせを行うようにしてもよい。そして、このように比較的低い解像度で全体の画像を粗い状態で位置合わせする。 Among these, the first alignment means 31 aligns the entire image of the printed circuit board 8 acquired by the image acquisition means 2 in a rough state as shown in FIG. Specifically, the entire image of the printed circuit board 8 is made to correspond to the first resolution, which is a low resolution, while being shifted in the vertical direction, the horizontal direction, and the rotation direction, and the position where the degree of coincidence with the reference image becomes the maximum is correlated. (Fig. 2 (a)). Then, the entire image of the printed circuit board 8 is corrected in the vertical direction, the horizontal direction, and the rotation direction based on the position where the degree of coincidence is greatest. Next, an image of the printed circuit board 8 is extracted at a second resolution, which is higher than the first resolution, and the position in each of the vertical direction, the horizontal direction, and the rotation direction is similarly based on the image. The position where the degree of coincidence is maximized is calculated by cross-correlation. Then, based on the position, the image of the second resolution is corrected in the vertical direction, the horizontal direction, and the rotation direction (FIG. 2B). In the present embodiment, the first and second resolutions are roughly aligned. However, the overall alignment may be performed with a higher resolution image, or the first The entire alignment may be performed with only the resolution. In this way, the entire image is aligned with a relatively low resolution.
 次に、第二の位置合わせ手段32は、粗い状態で位置合わせされたプリント基板8の画像を小さな領域に分割し(図3)、それぞれの領域のうち、輝度変化量が大きい領域のみを抽出して、その領域を独立して位置合わせする。一般に、プリント基板8のうち、レジストのみの部分(図3のA1)、配線パターンやパッド部分のみからなる領域(A2)のように輝度変化の少ない領域が大部分を占めており、輝度変化の大きな配線パターンのエッジやパッドのエッジ(A3)からなる領域については非常に少ない。このため、この割合の小さな領域についてのみ位置合わせを行うことによって全体の計算量を小さくできるようにする。 Next, the second alignment means 32 divides the image of the printed circuit board 8 aligned in a rough state into small areas (FIG. 3), and extracts only areas where the luminance change amount is large among the areas. Then, the areas are aligned independently. In general, in the printed circuit board 8, a region with little luminance change such as a resist-only portion (A1 in FIG. 3) and a region (A2) consisting only of a wiring pattern and a pad portion occupies most of the region. There is very little about the area | region which consists of the edge of a big wiring pattern, and the edge (A3) of a pad. For this reason, the entire calculation amount can be reduced by performing the alignment only for the region having a small ratio.
 この分割された領域のそれぞれについて輝度変化が大きいか否かを検出する場合、分割された領域の各画素の輝度情報を輝度変化検出手段4に出力し、そこで、輝度の変化量が所定の閾値よりも大きいか否かを検出する。輝度の変化量を検出する場合は、第一の方法として、その領域の各画素のRGB毎の輝度を抽出し、その分散値を計算する。このとき、その分散値が所定の閾値よりも大きい場合は、「変化量の大きい領域」と判断し、逆に、その領域の輝度の分散値が所定の閾値よりも小さい場合は「変化量の小さい領域」と判断する。この「変化量の大きい領域」としては、例えば、パッドや配線パターンのエッジを含む領域(A3)などが考えられ、また、「変化量の小さい領域」としては、例えば、レジストのみの領域、基板のみの領域、パッドや配線パターンの中央領域などが考えられる(A1、A2)。なお、ここでは分散値を用いて輝度の変化量を検出するようにしているが、最大輝度値と最小輝度値の幅、もしくは、所定の輝度値以上の輝度値を有する画素の個数および所定の輝度値以下の輝度値を有する画素の個数などを用いるようにしてもよい。 When it is detected whether or not the luminance change is large for each of the divided areas, the luminance information of each pixel in the divided area is output to the luminance change detecting means 4, where the luminance change amount is a predetermined threshold value. Is detected. When detecting the amount of change in luminance, as a first method, the luminance for each RGB of each pixel in the region is extracted, and the variance value is calculated. At this time, if the variance value is larger than a predetermined threshold value, it is determined that the region has a large change amount. Conversely, if the variance value of luminance in the region is smaller than the predetermined threshold value, Judged as “small area”. As this “region with a large amount of change”, for example, a region (A3) including an edge of a pad or a wiring pattern can be considered, and as the “region with a small amount of change”, for example, a resist-only region, a substrate Only the central region of the pad and the wiring pattern can be considered (A1, A2). Here, although the variation in luminance is detected using the variance value, the width of the maximum luminance value and the minimum luminance value, or the number of pixels having a luminance value equal to or higher than the predetermined luminance value and the predetermined luminance value. The number of pixels having a luminance value equal to or lower than the luminance value may be used.
 第二の位置合わせ手段32では、このように「変化量の大きい領域」と判断された領域のみを抽出し、その領域に対応する基準画像の領域に位置合わせする。この位置合わせにおいては、抽出された領域のうち、輝度変化の大きい部分(例えば、パッドのエッジ部分など)を抽出し、その部分を基準として基準画像の小さな領域と位置合わせする。具体的には、一般的にシルクは位置ズレが大きいため、シルクを除く色(RGB)や輝度の領域を抽出し、その抽出された領域の画素について上下左右に数画素ずつ膨らまし処理を行い、図4に示すような膨らまされたエッジ領域(A4)を抽出する。一方、基準画像の該当領域についても、同様の方法で膨らまし処理された輪郭領域を抽出し、これらの輪郭領域について縦方向、横方向、回転方向にずらしながら一致率が最も高い位置を相互相関で算出する。そして、一致率が最も高い位置から縦方向、横方向、回転方向の位置合わせを行う。これらの処理は、「変化量の大きい領域」と判断された領域についてのみ独立して行い、「変化量の小さい領域」と判断された領域についてこれらの処理を行わないようにする。 The second alignment means 32 extracts only the region determined as “a region with a large change amount” in this way, and aligns it with the region of the reference image corresponding to the region. In this alignment, a portion with a large luminance change (for example, an edge portion of a pad) is extracted from the extracted region, and the portion is aligned with a small region of the reference image using that portion as a reference. Specifically, since silk generally has a large positional misalignment, a color (RGB) or luminance area excluding silk is extracted, and the pixels in the extracted area are expanded by several pixels vertically and horizontally, An inflated edge region (A4) as shown in FIG. 4 is extracted. On the other hand, for the corresponding region of the reference image, contour regions that have been inflated by the same method are extracted, and the position having the highest matching rate is cross-correlated while shifting in the vertical direction, the horizontal direction, and the rotational direction. calculate. Then, alignment in the vertical direction, the horizontal direction, and the rotation direction is performed from the position with the highest matching rate. These processes are performed independently only for the areas determined as “regions with a large amount of change”, and these processes are not performed for the areas determined as “regions with a small amount of change”.
 次に、第三の位置合わせ手段33では、「変化量の小さい領域」と判断された領域の位置合わせ処理を行う。この「変化量の小さい領域」と判断された領域については、特徴となる部分が存在しないため、第二の位置合わせ手段32のような方法で位置合わせすることができない。そこで、ここでは第二の位置合わせ手段32で補正された位置情報を用いて補正を行うようにする。具体的には、注目すべき領域が「変化量の小さい領域」であった場合、そこから最も近い「変化量の大きい領域」を探索し、その領域の補正情報(縦方向の補正、横方向の補正、回転方向の補正)を抽出する。そして、その補正情報を用いてその領域を縦方向、横方向、回転方向に補正する。このとき、最も近い変化量の大きい一つの領域の補正情報を用いる場合は、その領域の補正情報をそのまま用い、あるいは、最も近い領域とその次に近い領域の補正情報を用いる場合は、それぞれの補正情報の平均値を用いて補正するようにしてもよい。なお、図5では、補正すべき領域に対して方向の異なる2つの「変化量の大きい領域」を探索し(太い実線で囲まれた領域)、その領域の補正情報に基づいて縦方向の補正、横方向の補正、回転方向の補正を行うようにしている。 Next, the third alignment means 33 performs an alignment process for an area determined as “an area with a small change amount”. The region determined to be the “region with a small amount of change” does not have a characteristic portion, and therefore cannot be aligned by the method such as the second alignment unit 32. Therefore, here, correction is performed using the position information corrected by the second alignment means 32. Specifically, if the region to be noticed is a “region with a small amount of change”, the closest “region with a large amount of change” is searched for, and correction information for the region (vertical correction, horizontal direction) And correction of the rotation direction). Then, the correction information is used to correct the area in the vertical direction, the horizontal direction, and the rotation direction. At this time, when using the correction information of one area having the largest change amount, the correction information of the area is used as it is, or when the correction information of the closest area and the next closest area is used, You may make it correct | amend using the average value of correction information. In FIG. 5, two “regions with a large amount of change” having different directions with respect to the region to be corrected are searched (regions surrounded by thick solid lines), and the vertical correction is performed based on the correction information of the regions. The correction in the horizontal direction and the correction in the rotation direction are performed.
 判定手段6は、検査対象物を検査する場合、このように位置合わせされた各領域ごとに基準画像の領域と照らし合わして良否を判定し、その領域における不良画素、あるいは、不良画素が複数連続している領域などを出力する。この良否判定においては種々の方法を用いることができ、例えば、位置合わせされた画像の画素の位置を基準として、基準画像内における所定の探索距離内にその画素の輝度値から一定範囲内の輝度を有する画素が存在するか否かを判断し、そのような画素が存在する場合は「優良画素」と判断し、そのような画素が存在しない場合は「不良画素」であると判断する。そして、すべての画素について同様の処理を行い、不良画素が所定個以上連続している場合は、その領域を「不良箇所」として出力する。 When inspecting the inspection object, the determination unit 6 determines whether each area aligned in this way is compared with the area of the reference image, and determines whether the area is defective. The area that is being processed is output. Various methods can be used for this pass / fail judgment. For example, with reference to the position of the pixel of the aligned image, the luminance within a certain range from the luminance value of the pixel within a predetermined search distance in the reference image. If such a pixel exists, it is determined as “excellent pixel”, and if such a pixel does not exist, it is determined as “defective pixel”. Then, the same processing is performed for all the pixels, and when a predetermined number or more of defective pixels are continuous, the region is output as a “defective portion”.
 また、基準データ生成手段7は、複数の良品と判断された検査対象物から画像を取得し、それぞれの位置合わせを行った上で、検査のために必要な基準データを生成する。この実施の形態では、基準データとして、位置合わせされた各画素のばらつきから、その画素位置における許容輝度幅、検査対象物の画素に対応する画素を探索するための探索距離などを生成して記憶させておくものとする。 Also, the reference data generation means 7 acquires images from a plurality of inspection objects determined as non-defective products, aligns the respective images, and generates reference data necessary for inspection. In this embodiment, as reference data, an allowable luminance width at the pixel position, a search distance for searching for a pixel corresponding to the pixel of the inspection object, and the like are generated and stored from the variation of the aligned pixels. I shall let you.
 次に、このように構成された自動検査装置1における検査対象物の位置合わせ方法について図6のフローチャートを用いて説明する。 Next, a method for aligning the inspection object in the automatic inspection apparatus 1 configured as described above will be described with reference to the flowchart of FIG.
 まず、検査対象物であるプリント基板8を検査するに際して、先に基準画像の生成を行う場合について説明すると、基準画像を生成する場合、良品である検査対象物であるプリント基板8をステージの上に載置し、画像取得手段2によってその画像を取得する。このとき、あらかじめそのプリント基板8を載置するためのステージの画像を取得しておき、そのステージの画像との差分をとることによってプリント基板8のみからなる画像を取得する(ステップS1)。 First, when inspecting the printed circuit board 8 that is the inspection object, a case where the reference image is generated first will be described. When the reference image is generated, the printed circuit board 8 that is a non-defective inspection object is placed on the stage. The image acquisition means 2 acquires the image. At this time, an image of a stage for placing the printed circuit board 8 is acquired in advance, and an image consisting only of the printed circuit board 8 is acquired by taking a difference from the image of the stage (step S1).
 次に、この取得された画像を低解像度である第一の解像度の画像に変換し、その変換された低解像度の画像に対応する基準画像を読み出して、全体的な位置合わせを行う。この位置合わせにおいては、縦方向の相互相関をとって縦方向のずれ量を検出するとともに、横方向の相互相関もとって横方向のずれ量を検出し、また、その画像を回転させて回転方向の相互相関によっても回転方向のずれ量を検出する(ステップS2におけるn=1の場合)。そして、これらのずれ量に基づいて検査対象物であるプリント基板8の画像のずれを補正する(ステップS3)。 Next, the acquired image is converted into a first resolution image having a low resolution, a reference image corresponding to the converted low resolution image is read out, and overall alignment is performed. In this alignment, the vertical cross-correlation is used to detect the vertical shift, the horizontal cross-correlation is used to detect the horizontal shift, and the image is rotated to rotate. The amount of deviation in the rotational direction is also detected by the cross-correlation of directions (when n = 1 in step S2). Then, based on these deviation amounts, the deviation of the image of the printed circuit board 8 as the inspection object is corrected (step S3).
 次に、この第一の解像度で補正された画像について、第一の解像度よりも比較的高解像度である第二の解像度で位置合わせを行う(ステップS4:No)。この第二の解像度での位置合わせにおいても同様に、その第二の解像度に対応する基準画像を読み出し、相互相関によって縦方向のずれ量や横方向のずれ量、回転方向のずれ量を検出する(ステップS2)。そして、その検出されたずれ量に基づいて検査対象物であるプリント基板8の画像のずれ量を補正する(ステップS3)。 Next, the image corrected at the first resolution is aligned at a second resolution that is relatively higher than the first resolution (step S4: No). Similarly, in the alignment at the second resolution, a reference image corresponding to the second resolution is read, and a vertical shift amount, a horizontal shift amount, and a rotational shift amount are detected by cross-correlation. (Step S2). Then, based on the detected deviation amount, the deviation amount of the image of the printed circuit board 8 as the inspection object is corrected (step S3).
 次に、このような粗い画像で位置合わせされた検査対象物の画像について、分割処理を行う(ステップS5)。そして、その領域内にどれくらい各画素の輝度変化があるかを示す輝度変化量を求める(ステップS6)。この輝度変化量を求める場合は、その領域における各画素の輝度の分散値を求め、その分散値が所定の閾値以上である場合は、「変化量の大きい領域」と判断し、逆に、分散値が所定の閾値未満である場合は「変化量の小さい領域」と判断する(ステップS7)。 Next, division processing is performed on the image of the inspection object aligned with such a rough image (step S5). Then, a luminance change amount indicating how much the luminance change of each pixel is in the area is obtained (step S6). When calculating this amount of change in luminance, the variance value of the luminance of each pixel in that region is obtained. If the variance value is equal to or greater than a predetermined threshold, it is determined that the region has a large amount of change, and on the contrary If the value is less than the predetermined threshold value, it is determined as “a region with a small amount of change” (step S7).
 次に、この「変化量の大きい領域」と判断された領域を抽出し(ステップS7:Yes)、その領域について、例えば、パッドのエッジ部分のように変化量の大きな部分を抽出して膨らまし処理を行う(ステップS8、S9)。一方、これと同様に、その領域に対応する基準画像についても、変化量の大きな部分について抽出して膨らまし処理を行い、それぞれの画像について相互相関をとり、その相互相関によって算出された最も一致度の高い位置の情報からずれ量を検出し(ステップS10)、検査対象物の領域を独立して補正する(ステップS11)。 Next, an area determined to be the “region with a large amount of change” is extracted (step S7: Yes), and a portion with a large amount of change, such as an edge portion of the pad, is extracted from the region and inflated. (Steps S8 and S9). On the other hand, for the reference image corresponding to the region, the portion with a large amount of change is extracted and inflated, cross-correlation is performed for each image, and the degree of coincidence calculated by the cross-correlation is calculated. The amount of deviation is detected from the information of the high position (step S10), and the region of the inspection object is independently corrected (step S11).
 一方、「変化量の小さい領域」と判断された場合は(ステップS7:No)、その領域から最も近い「変化量の大きい領域」および次に近い「変化量の大きい領域」を抽出して(ステップS12)、それぞれの領域における縦方向、横方向、回転方向のずれ量を抽出する。そして、それぞれのずれ量の平均値からその領域の位置を補正する(ステップS13)。 On the other hand, when it is determined that the region is a region with a small amount of change (step S7: No), the closest region with a large amount of variation and the next region with a large amount of variation are extracted ( Step S12), the deviation amounts in the vertical direction, the horizontal direction, and the rotation direction in each region are extracted. Then, the position of the region is corrected from the average value of the respective shift amounts (step S13).
 そして、同様の処理を複数枚のプリント基板8について行い、それぞれを位置合わせされた画像の各画素ごとにRGBごとの輝度を抽出して(図7におけるステップT1)、各画素の位置ごとに許容される輝度幅を決定する。この輝度幅を決定する場合は、複数枚読み込んだプリント基板8の画素のRGB輝度のばらつきである分散値や標準偏差を求め(ステップT2)、その分散値や標準偏差の値が大きい場合、平均輝度からの許容幅を大きく設定してその画素に対する基準データとして記憶させる。この許容輝度幅を設定する場合、RGB輝度を極座標系に変換し、それぞれの輝度を、原点からの距離r、原点を通る直線とのなす角度θで表現できるようにしておく(ステップT3)。そして、距離rや角度θの大きさを変えることによって許容輝度幅を設定する(ステップT4)。このように距離rや角度θを用いて許容輝度幅を設定すれば、直交座標系で許容輝度幅を設定する場合に比べてパラメータが少なくなるとともに、色相(RGBの輝度の割合)を変更することなく明度や彩度のみを変更することができるというメリットがある。 Then, the same processing is performed on the plurality of printed circuit boards 8, and the luminance for each RGB is extracted for each pixel of the aligned image (step T1 in FIG. 7), and allowed for each pixel position. The brightness range to be determined is determined. When determining the luminance width, a dispersion value or standard deviation that is a variation in RGB luminance of pixels of the printed circuit board 8 that has read a plurality of sheets is obtained (step T2). The allowable range from the luminance is set large and stored as reference data for the pixel. When setting the permissible luminance width, the RGB luminance is converted into a polar coordinate system so that each luminance can be expressed by a distance r from the origin and an angle θ formed with a straight line passing through the origin (step T3). Then, the allowable luminance width is set by changing the distance r and the angle θ (step T4). If the allowable luminance width is set using the distance r and the angle θ in this way, the parameters are reduced and the hue (ratio of RGB luminance) is changed as compared with the case where the allowable luminance width is set in the orthogonal coordinate system. There is an advantage that only brightness and saturation can be changed without any change.
 一方、その画素に対応して、検査対象物におけるプリント基板8の対応画素の探索距離をテーブルとして記憶させ(ステップT5)、その画素の位置からその探索距離内に許容輝度幅の輝度を有する画素が存在するかどうかを検査できるようにしておく。 On the other hand, corresponding to the pixel, the search distance of the corresponding pixel of the printed circuit board 8 in the inspection object is stored as a table (step T5), and the pixel having the luminance within the allowable luminance width within the search distance from the position of the pixel. It is possible to check whether or not exists.
 次に、このように基準画像や基準データを記憶させておいた状態において、検査対象となるプリント基板8を検査する場合の処理を図6および図8を用いて説明する。 Next, processing in the case of inspecting the printed circuit board 8 to be inspected in a state where the reference image and the reference data are stored in this way will be described with reference to FIGS.
 検査対象物となるプリント基板8を検査する場合は、同様に、プリント基板8をステージの上に載置し、画像取得手段2によってそのプリント基板8のみからなる画像を取得する。(ステップS1)。 In the case of inspecting the printed circuit board 8 to be inspected, similarly, the printed circuit board 8 is placed on the stage, and the image acquisition unit 2 acquires an image composed only of the printed circuit board 8. (Step S1).
 次に、この取得された画像を低解像度である第一の解像度の画像に変換し、その変換された低解像度の画像に対応する基準画像を読み出して縦方向、横方向、回転方向の相互相関をとって各方向のずれ量を補正する(ステップS2~ステップS3)。同様にして、この第一の解像度で補正された画像について、第一の解像度よりも比較的高解像度である第二の解像度で位置合わせを行う(ステップS4、ステップS2~ステップS3)。 Next, the acquired image is converted into an image of a first resolution which is a low resolution, and a reference image corresponding to the converted low resolution image is read out to cross-correlate in the vertical, horizontal and rotational directions. To correct the amount of deviation in each direction (steps S2 to S3). Similarly, the image corrected at the first resolution is aligned at a second resolution that is relatively higher than the first resolution (step S4, steps S2 to S3).
 次に、このような粗い画像で位置合わせされた検査対象物の画像について、分割処理を行い(ステップS5)、その領域内の輝度変化量を求めて「変化量の大きい領域」と「変化量の小さい領域」に分ける(ステップS6、ステップS7)。 Next, the image of the inspection object aligned with such a rough image is divided (step S5), and the luminance change amount in the region is obtained to obtain “region with large change amount” and “change amount”. Are divided into “small regions” (steps S6 and S7).
 そして、「変化量の大きい領域」と判断された領域を抽出し(ステップS8)、その領域について、シルクの色や輝度を除く領域を抽出し、その抽出された領域の画素について、変化量の大きな部分を抽出して膨らまし処理を行うとともに(ステップS9)、その領域に対応する基準画像についても、変化量の大きな部分について抽出し、膨らまし処理し、それぞれの画像について相互相関をとってずれ量を検出する(ステップS10)。そして、その相互相関によって算出された最も一致度の高い位置の情報から、検査対象物の領域を独立して補正し(ステップS11)、その領域について基準画像および基準データを用いて検査する(図8)。この領域毎に検査を行う場合、検査対象物の各画素の位置に対応する基準画像の位置から、あらかじめ記憶されていた許容輝度幅および探索距離を抽出し(ステップU1)、基準画像の探索距離内にその許容輝度幅内の輝度(RGB毎の輝度)の画素が存在するかどうかを検査する(ステップU2)。そして、そのような画素が存在する場合は「良画素」と判断し(ステップU3)、そような画素が存在しない場合は「不良画素」と判断する(ステップU4)。そして、不良画素が所定個数以上連続して存在する場合は、不良領域として出力する(ステップU5)。 Then, an area determined as “an area having a large change amount” is extracted (step S8), an area excluding silk color and luminance is extracted for the area, and the change amount of the pixel in the extracted area is extracted. A large portion is extracted and inflated (step S9), and a reference image corresponding to the region is also extracted for a portion with a large amount of change, inflated, and the amount of deviation is obtained by cross-correlating each image. Is detected (step S10). Then, the region of the inspection object is independently corrected from the position information with the highest degree of coincidence calculated by the cross-correlation (step S11), and the region is inspected using the reference image and the reference data (FIG. 8). When the inspection is performed for each region, the allowable luminance width and the search distance stored in advance are extracted from the position of the reference image corresponding to the position of each pixel of the inspection object (step U1), and the search distance of the reference image is extracted. It is checked whether or not there is a pixel having a luminance (luminance for each RGB) within the allowable luminance width (step U2). If such a pixel exists, it is determined as “good pixel” (step U3), and if such a pixel does not exist, it is determined as “defective pixel” (step U4). If a predetermined number or more of defective pixels are continuously present, a defective area is output (step U5).
 次に、「変化量の小さい領域」と判断された領域を抽出し(ステップS12)、その領域から最も近い「変化量の大きい領域」および次に近い「変化量の大きい領域」を抽出して、それぞれの領域における縦方向、横方向、回転方向のずれ量を抽出する。そして、それぞれのずれ量の平均値からその領域の位置を補正する(ステップS13)。そして、この領域についても同様に、基準画像および基準データを用いて検査する(ステップU1)。この領域毎に検査を行う場合も、検査対象物の各画素の位置に対応する基準画像の位置から、許容輝度幅および探索距離を抽出し(ステップU1)、基準画像の探索距離内にその許容輝度幅内の画素が存在するかどうかを検査する(ステップU2)。そして、そのような画素が存在する場合は「良画素」と判断し(ステップU3)、そのような画素が存在しない場合は「不良画素」と判断する(ステップU4)。そして、不良画素が所定個数以上連続して存在する場合は、不良領域として出力する(ステップU5)。 Next, an area determined to be a “region with a small amount of change” is extracted (step S12), and the “region with a large amount of change” closest to the region and the “region with a large amount of change” next to each other are extracted. Then, the shift amounts in the vertical direction, the horizontal direction, and the rotation direction in each region are extracted. Then, the position of the region is corrected from the average value of the respective shift amounts (step S13). Similarly, this region is inspected using the reference image and the reference data (step U1). Even when the inspection is performed for each region, the permissible luminance width and the search distance are extracted from the position of the reference image corresponding to the position of each pixel of the inspection target (step U1), and the permissible within the search distance of the reference image. It is checked whether or not there is a pixel within the luminance width (step U2). When such a pixel exists, it is determined as “good pixel” (step U3), and when such a pixel does not exist, it is determined as “defective pixel” (step U4). If a predetermined number or more of defective pixels are continuously present, a defective area is output (step U5).
 このように上記実施の形態によれば、検査対象物から取得された画像と基準画像とを位置合わせして、検査対象物の良否を判定する自動検査装置1において、所定の解像度で全体画像を基準画像に位置合わせする第一の位置合わせ手段31と、当該第一の位置合わせ手段31によって位置合わせされた全体画像の一部の領域を抽出し、当該領域における輝度値の変化量が所定値以上であるかどうかを判断する変化量検出手段と、当該変化量検出手段によって輝度値の変化量が所定値以上であった領域について、基準画像の対応領域と位置合わせを行う第二の位置合わせ手段32と、前記変化量検出手段によって輝度値の変化量が所定値以下であった領域について、前記第二の位置合わせ手段32によって位置合わせされた領域に基づいて位置合わせを行う第三の位置合わせ手段33とを備えるようにしたので、計算量を少なくして正確な位置合わせを行うことができるようになる。しかも、分割された領域について輝度変化がほとんどない場合であっても、その近傍で位置合わせされた領域の位置情報に基づいて正確な位置合わせを行うことができるようになる。 As described above, according to the above embodiment, in the automatic inspection apparatus 1 that determines the quality of the inspection object by aligning the image acquired from the inspection object and the reference image, the entire image is obtained with a predetermined resolution. First alignment means 31 for alignment with the reference image, and a partial area of the entire image aligned by the first alignment means 31 are extracted, and the amount of change in luminance value in the area is a predetermined value A change amount detecting means for determining whether or not the difference is present, and a second alignment for aligning the corresponding area of the reference image with respect to an area where the change amount of the luminance value is equal to or greater than a predetermined value by the change amount detecting means. The region where the change amount of the luminance value is equal to or less than a predetermined value by the means 32 and the change amount detection unit is determined based on the region aligned by the second alignment unit 32. Since so and a third positioning means 33 for performing combined, it is possible to perform accurate alignment with less calculation amount. In addition, even when there is almost no change in luminance in the divided area, accurate alignment can be performed based on the position information of the area aligned in the vicinity thereof.
 なお、本発明は上記実施の形態に限定されることなく、種々の態様で実施することができる。 Note that the present invention is not limited to the above-described embodiment, and can be implemented in various modes.
 例えば、上記実施の形態において「変化量の小さい領域」と判断された領域について近傍の2つの領域の情報に基づいて位置合わせを行うようにしたが、この際、それぞれの位置の距離に応じて縦方向、横方向、回転方向のずれ量を修正するようにしてもよい。すなわち、「変化量の大きい領域」までの距離が長い場合は、その領域におけるずれ量の影響が少なくなる可能性があるため、その距離に反比例して変化量を補正するようにしてもよい。 For example, in the above embodiment, the region determined to be “the region with small change amount” is aligned based on the information of the two adjacent regions. At this time, depending on the distance between the respective regions You may make it correct the deviation | shift amount of a vertical direction, a horizontal direction, and a rotation direction. That is, when the distance to the “region with a large amount of change” is long, there is a possibility that the influence of the shift amount in that region may be reduced, so the amount of change may be corrected in inverse proportion to the distance.
 また、このように複数の領域のずれ量に基づいて「変化量の小さい領域」のずれ量を計算する場合、一の方向に最も近い「変化量の大きい領域」と、その方向と異なる方向(例えば、直交する方向)において最も近い「変化量の大きい領域」を抽出し、これらのずれ量を用いてその領域のずれ量を計算するようにしてもよい。このようにすれば、縦方向と横方向のずれ量や回転量を正確に補正することができるようになるというメリットがある。 In addition, when calculating the shift amount of the “region with a small change amount” based on the shift amounts of the plurality of regions in this way, the “region with the large change amount” closest to one direction and a direction different from the direction ( For example, the closest “region with a large change amount” in the orthogonal direction may be extracted, and the shift amount of the region may be calculated using these shift amounts. In this way, there is an advantage that it is possible to accurately correct the shift amount and rotation amount between the vertical direction and the horizontal direction.
 さらには、上記実施の形態では、「変化量の大きい領域」と「変化量の小さい領域」のそれぞれを検査するようにしたが、「変化量の大きい領域」のみを抽出して検査するようにしてもよい。もしくは、「変化量の小さい領域」のうち、レジストのみからなる領域のように比較的重要でない部分については、所定のRGBの輝度値からその領域を抽出し、その領域の平均輝度値がその輝度値範囲内に含まれている場合は、その領域を検査しないようにしてもよい。 Furthermore, in the above embodiment, each of the “region with a large amount of change” and the “region with a small amount of change” is inspected, but only the “region with a large amount of change” is extracted and inspected. May be. Alternatively, in a “region with a small amount of change”, for a relatively unimportant portion such as a region consisting only of resist, the region is extracted from a predetermined RGB luminance value, and the average luminance value of the region is the luminance. If it is included in the value range, the area may not be inspected.
 加えて、上記実施の形態では、基準画像として第一の解像度と第二の解像度の二種類の画像を記憶しておくようにしたが、高解像度の画像を記憶しておき、それよりも低解像度の画像で位置合わせする場合は、その高解像度の画像を低解像度に変換して使用するようにしてもよい。 In addition, in the above embodiment, two types of images of the first resolution and the second resolution are stored as the reference image, but a high-resolution image is stored and lower than that. When positioning with a resolution image, the high resolution image may be converted into a low resolution and used.
 また、上記実施の形態では、第二の位置合わせ手段32において位置合わせをする場合、その領域のうち特徴的な部分を抽出して位置合わせするようにしたが、その領域と基準画像との相互相関をとって位置合わせするようにしてもよい。 In the above embodiment, when the second alignment unit 32 performs alignment, a characteristic part of the region is extracted and aligned. You may make it align by taking a correlation.
 また、上記実施の形態で第二の位置合わせを行う場合、シルクの色や輝度を除く領域を抽出し、膨張収縮処理やその合成によって輪郭付近の輝度変化の大きい部分を生成するようにしたが、隣接する画素のRGBの輝度値との差を求め、その差が所定値以上である画素を残して同様の処理を行ってもよい。 In addition, when performing the second alignment in the above embodiment, an area excluding silk color and luminance is extracted, and a portion with a large luminance change near the contour is generated by expansion / contraction processing and synthesis thereof. Alternatively, a difference between the RGB luminance values of adjacent pixels may be obtained, and the same processing may be performed while leaving pixels whose difference is equal to or greater than a predetermined value.
 本発明は、プリント基板や液晶基板、物体の表面に形成された模様や文字などの形成状態を検査する自動検査装置の分野で利用される。 The present invention is used in the field of an automatic inspection device that inspects the formation state of a printed board, a liquid crystal substrate, a pattern or a character formed on the surface of an object.
1・・・自動検査装置
2・・・画像取得手段
3・・・位置合わせ手段
31・・・第一の位置合わせ手段
32・・・第二の位置合わせ手段
33・・・第三の位置合わせ手段
4・・・輝度変化算出手段
5・・・基準画像記憶手段
6・・・判定手段
7・・・基準データ生成手段
8・・・プリント基板
DESCRIPTION OF SYMBOLS 1 ... Automatic inspection apparatus 2 ... Image acquisition means 3 ... Positioning means 31 ... 1st positioning means 32 ... 2nd positioning means 33 ... 3rd positioning Means 4 ... Brightness change calculation means 5 ... Reference image storage means 6 ... Determination means 7 ... Reference data generation means 8 ... Printed circuit board

Claims (8)

  1. 検査対象物から取得された画像と基準画像とを位置合わせして、検査対象物の良否を判定できるようにした自動検査装置において、
    所定の解像度で全体画像を基準画像に位置合わせする第一の位置合わせ手段と、
    当該第一の位置合わせ手段によって位置合わせされた全体画像を分割し、当該分割された領域における輝度値の変化量が所定値以上であるかどうかを判断する変化量検出手段と、
    当該輝度値の変化量が所定値以上であった領域について、基準画像の対応領域と位置合わせを行う第二の位置合わせ手段と、
    を備えたことを特徴とする自動検査装置。
    In the automatic inspection device that can determine the quality of the inspection object by aligning the image acquired from the inspection object and the reference image,
    First alignment means for aligning the entire image with a reference image at a predetermined resolution;
    A change amount detection unit that divides the entire image aligned by the first alignment unit and determines whether or not the change amount of the luminance value in the divided region is equal to or greater than a predetermined value;
    A second alignment means for aligning the corresponding area of the reference image with respect to the area where the amount of change in the luminance value is equal to or greater than a predetermined value;
    An automatic inspection device characterized by comprising:
  2. 前記第二の位置合わせ手段が、前記領域内で輝度値の変化量が所定値以上大きい部分を検出し、当該部分に基づいて基準画像の対応領域と位置合わせを行うようにしたものである請求項1に記載の自動検査装置。 The second alignment means detects a portion where the amount of change in luminance value is larger than a predetermined value in the region, and performs alignment with the corresponding region of the reference image based on the portion. Item 2. The automatic inspection apparatus according to Item 1.
  3. 請求項1の自動検査装置において、
    前記変化量検出手段によって輝度値の変化量が所定値以下であった領域について、前記第二の位置合わせ手段によって位置合わせされた領域の位置情報に基づいて位置合わせを行う第三の位置合わせ手段を設けたことを特徴とする自動検査装置。
    The automatic inspection apparatus according to claim 1, wherein
    Third alignment means for performing alignment based on the position information of the area aligned by the second alignment means for the area where the change amount of the luminance value by the change amount detection means is equal to or less than a predetermined value. An automatic inspection device characterized in that
  4. 請求項1の自動検査装置において、さらに、
    前記位置合わせされた画像に基づいて各画素のばらつきを算出し、当該ばらつきから当該画素の位置における許容輝度幅を決定するとともに、当該許容輝度幅を極座標系で記憶させる基準データ生成手段を設けたことを特徴とする自動検査装置。
    The automatic inspection apparatus according to claim 1, further comprising:
    A variation of each pixel is calculated based on the aligned image, a permissible luminance width at the position of the pixel is determined from the variation, and reference data generating means for storing the permissible luminance width in a polar coordinate system is provided. An automatic inspection device characterized by that.
  5. 検査対象物から取得された画像と基準画像とを位置合わせして、検査対象物の良否を判定する自動検査装置における位置合わせ方法において、
    所定の解像度で全体画像を基準画像に位置合わせするステップと、
    当該ステップによって位置合わせされた全体画像の一部の領域を抽出し、当該領域について輝度値の変化量が所定値以上あるかどうかを判断するステップと、
    当該判断によって輝度値の変化量が所定値以上あった領域について、基準画像の対応領域と位置合わせを行うステップと、
    を備えたことを特徴とする自動検査装置における位置合わせ方法。
    In the alignment method in the automatic inspection apparatus that aligns the image acquired from the inspection object and the reference image and determines the quality of the inspection object,
    Aligning the entire image with a reference image at a predetermined resolution;
    Extracting a partial region of the entire image aligned by the step, and determining whether or not the amount of change in luminance value for the region is equal to or greater than a predetermined value;
    Aligning the corresponding region of the reference image with respect to the region where the amount of change in the luminance value is equal to or greater than a predetermined value by the determination;
    An alignment method in an automatic inspection apparatus, comprising:
  6. 前記領域内で輝度値の変化量が所定値以上大きい部分を検出し、当該部分に基づいて基準画像の対応領域と位置合わせを行うようにしたものである請求項5に記載の自動検査装置における位置合わせ方法。 The automatic inspection apparatus according to claim 5, wherein a portion in which the amount of change in luminance value is greater than a predetermined value in the region is detected, and alignment with a corresponding region of the reference image is performed based on the portion. Alignment method.
  7. 請求項5の自動検査装置における位置合わせ方法において、
    輝度値の変化量が所定値以下であった領域について、前記位置合わせされた領域の位置情報に基づいて位置合わせを行うステップを設けたことを特徴とする自動検査装置における位置合わせ方法。
    In the alignment method in the automatic inspection apparatus of Claim 5,
    An alignment method in an automatic inspection apparatus, comprising: a step of performing alignment on an area whose luminance value change amount is equal to or less than a predetermined value based on position information on the aligned area.
  8. 請求項5の自動検査装置における位置合わせ方法において、さらに、
    前記位置合わせされた画像に基づいて各画素のばらつきを算出し、当該ばらつきから当該画素の位置における許容輝度幅を決定するとともに、当該許容輝度幅を極座標系で記憶させるステップを設けたことを特徴とする自動検査装置における位置合わせ方法。
    The alignment method in the automatic inspection apparatus according to claim 5, further comprising:
    A step of calculating variation of each pixel based on the aligned image, determining an allowable luminance width at the position of the pixel from the variation, and storing the allowable luminance width in a polar coordinate system is provided. An alignment method in an automatic inspection apparatus.
PCT/JP2011/059696 2011-04-20 2011-04-20 Automatic inspection device and alignment method for automatic inspection device WO2012144025A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013510772A JP5852641B2 (en) 2011-04-20 2011-04-20 Automatic inspection device and alignment method in automatic inspection device
PCT/JP2011/059696 WO2012144025A1 (en) 2011-04-20 2011-04-20 Automatic inspection device and alignment method for automatic inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/059696 WO2012144025A1 (en) 2011-04-20 2011-04-20 Automatic inspection device and alignment method for automatic inspection device

Publications (1)

Publication Number Publication Date
WO2012144025A1 true WO2012144025A1 (en) 2012-10-26

Family

ID=47041175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059696 WO2012144025A1 (en) 2011-04-20 2011-04-20 Automatic inspection device and alignment method for automatic inspection device

Country Status (2)

Country Link
JP (1) JP5852641B2 (en)
WO (1) WO2012144025A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105427278A (en) * 2015-10-29 2016-03-23 广州视源电子科技股份有限公司 PCB positioning point determination method and PCB positioning point determination system
JP2018048968A (en) * 2016-09-23 2018-03-29 株式会社Screenホールディングス Inspection device and inspection method
WO2018135112A1 (en) * 2017-01-20 2018-07-26 株式会社Screenホールディングス Positional-deviation-amount acquisition device, inspection device, positional-deviation-amount acquisition method, and inspection method
JP2020085678A (en) * 2018-11-27 2020-06-04 オムロン株式会社 Inspection system, inspection method, and program
JP2021500740A (en) * 2017-10-20 2021-01-07 ケーエルエー コーポレイション Multi-step image alignment method for large offset die / die inspection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08103439A (en) * 1994-10-04 1996-04-23 Konica Corp Alignment processor for image and inter-image processor
JP2003223630A (en) * 2002-01-30 2003-08-08 Hitachi Ltd Method and device for pattern inspection
JP2007309703A (en) * 2006-05-16 2007-11-29 Mega Trade:Kk Inspection method of pixel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08103439A (en) * 1994-10-04 1996-04-23 Konica Corp Alignment processor for image and inter-image processor
JP2003223630A (en) * 2002-01-30 2003-08-08 Hitachi Ltd Method and device for pattern inspection
JP2007309703A (en) * 2006-05-16 2007-11-29 Mega Trade:Kk Inspection method of pixel

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105427278A (en) * 2015-10-29 2016-03-23 广州视源电子科技股份有限公司 PCB positioning point determination method and PCB positioning point determination system
JP2018048968A (en) * 2016-09-23 2018-03-29 株式会社Screenホールディングス Inspection device and inspection method
WO2018135112A1 (en) * 2017-01-20 2018-07-26 株式会社Screenホールディングス Positional-deviation-amount acquisition device, inspection device, positional-deviation-amount acquisition method, and inspection method
CN110199173A (en) * 2017-01-20 2019-09-03 株式会社斯库林集团 Position offset acquisition device, check device, position offset acquisition methods and inspection method
TWI674048B (en) * 2017-01-20 2019-10-01 日商斯庫林集團股份有限公司 Displacement amount acquisition apparatus, inspection apparatus, displacement amount acquisition method, and inspection method
CN110199173B (en) * 2017-01-20 2021-08-06 株式会社斯库林集团 Position deviation amount acquisition device, inspection device, position deviation amount acquisition method, and inspection method
JP2021500740A (en) * 2017-10-20 2021-01-07 ケーエルエー コーポレイション Multi-step image alignment method for large offset die / die inspection
JP7170037B2 (en) 2017-10-20 2022-11-11 ケーエルエー コーポレイション Multi-Step Image Alignment Method for Large Offset Die Inspection
JP2020085678A (en) * 2018-11-27 2020-06-04 オムロン株式会社 Inspection system, inspection method, and program
WO2020110711A1 (en) * 2018-11-27 2020-06-04 オムロン株式会社 Inspection system, inspection method, and program
JP7047725B2 (en) 2018-11-27 2022-04-05 オムロン株式会社 Inspection system, inspection method and program

Also Published As

Publication number Publication date
JP5852641B2 (en) 2016-02-03
JPWO2012144025A1 (en) 2014-07-28

Similar Documents

Publication Publication Date Title
JP5852641B2 (en) Automatic inspection device and alignment method in automatic inspection device
JP4907725B2 (en) Calibration device, defect detection device, defect repair device, display panel, display device, calibration method
KR100846633B1 (en) Method and apparatus for detecting defects of patterns
JP5084911B2 (en) Appearance inspection device
CN106017313B (en) Edge detection deviation correction value calculation method, edge detection deviation correction method and device
WO2017177717A1 (en) Element positioning method and system based on color and gradient
WO1998059213A1 (en) Pattern inspecting method and pattern inspecting device
JP2008185514A (en) Substrate visual inspection apparatus
EP3264181B1 (en) Substrate pre-alignment method
JP2007078533A (en) Method of inspecting substrate
CN104331695A (en) Robust round identifier shape quality detection method
WO2012067041A1 (en) Method for inspecting foreign material on substrate and apparatus for inspecting foreign material on substratrate
JP2022094791A5 (en)
JP2008209354A (en) Calibration method and device, and automatic detection device
JPH1096613A (en) Defect detection method and device thereof
US11967058B2 (en) Semiconductor overlay measurements using machine learning
JP5949214B2 (en) Quality inspection method
CN111007086A (en) Defect detection method and device and storage medium
WO2012164654A1 (en) Automatic inspection device and automatic inspection method for inspecting silk backing
JP2015219141A (en) Printed substrate inspection device and inspection method of the same
JP2007309703A (en) Inspection method of pixel
JP2006190844A (en) Method for discriminating common defect among substrates
JP4130848B2 (en) Pixel inspection method and pixel inspection apparatus
CN111837137B (en) Distance measuring element
JP2019067373A (en) Feature image generation device, inspection equipment, feature image generation method and feature image generation program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864017

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013510772

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864017

Country of ref document: EP

Kind code of ref document: A1