WO2012164654A1 - Automatic inspection device and automatic inspection method for inspecting silk backing - Google Patents

Automatic inspection device and automatic inspection method for inspecting silk backing Download PDF

Info

Publication number
WO2012164654A1
WO2012164654A1 PCT/JP2011/062300 JP2011062300W WO2012164654A1 WO 2012164654 A1 WO2012164654 A1 WO 2012164654A1 JP 2011062300 W JP2011062300 W JP 2011062300W WO 2012164654 A1 WO2012164654 A1 WO 2012164654A1
Authority
WO
WIPO (PCT)
Prior art keywords
silk
inspection
area
image
region
Prior art date
Application number
PCT/JP2011/062300
Other languages
French (fr)
Japanese (ja)
Inventor
昌年 笹井
Original Assignee
株式会社メガトレード
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メガトレード filed Critical 株式会社メガトレード
Priority to PCT/JP2011/062300 priority Critical patent/WO2012164654A1/en
Priority to JP2013517718A priority patent/JPWO2012164654A1/en
Publication of WO2012164654A1 publication Critical patent/WO2012164654A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95607Inspecting patterns on the surface of objects using a comparative method
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N2021/95638Inspecting patterns on the surface of objects for PCB's
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30141Printed circuit board [PCB]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0266Marks, test patterns or identification means
    • H05K1/0269Marks, test patterns or identification means for visual or optical inspection

Definitions

  • the present invention relates to an automatic inspection apparatus that inspects the formation state of a printed circuit board.
  • pads, patterns, resists, silk, etc. on printed circuit boards are inspected by an automatic inspection device.
  • an image is acquired from a printed circuit board that is an object to be inspected, and areas such as pads, patterns, resists, and silk are extracted from the brightness of the image.
  • Each region is inspected using a unique inspection method or threshold value.
  • a method of inspecting with a low threshold value is used for silk because the positional deviation is large, while a method of inspecting with a strict threshold value is used for pads and patterns (Patent Document 1, etc.). ).
  • an object of the present invention is to provide an automatic inspection apparatus that can inspect even the base in the area where the silk originated even when the silk is misaligned.
  • the present invention provides an image acquisition unit that acquires an image of a printed circuit board that is an inspection object, a reference image storage unit that stores a reference image, and an image acquired by the image acquisition unit.
  • a silk area detecting means for detecting a silk area in the first embodiment a first inspection means for inspecting a silk area detected by the silk area detecting means by a first inspection method, and a silk area detected by the silk area detecting means
  • a second inspection means for inspecting a silk area in the reference image by a second inspection method, and an area other than the area to be inspected by the first inspection means and the second inspection means.
  • a third inspection means for inspecting by a third inspection method different from the first inspection method and the second inspection method is provided.
  • the inspection is performed based on whether or not the pixel is configured within a predetermined luminance width of the luminance of the resist or the substrate.
  • the inspection can be performed based on the brightness of the area around the area where the silk is originally formed.
  • the brightness around the silk also becomes RGB brightness in which the color of the pattern and the resist are mixed.
  • the inspection is performed based on the luminance of the surrounding area, it is possible to inspect the area where the silk is originally from with high accuracy.
  • an image acquisition unit that acquires an image of a printed circuit board that is an inspection object, a reference image storage unit that stores a reference image, and a silk that detects a silk region in the image acquired by the image acquisition unit.
  • An area detection means a first inspection means for inspecting a silk area detected by the silk area detection means by a first inspection method, and an area other than the silk area detected by the silk area detection means, Second inspection means for inspecting a silk area in an image by the second inspection method, and areas other than the areas to be inspected by the first inspection means and the second inspection means, the first inspection method and the second Since the third inspection means for inspecting by the third inspection method different from the above inspection method is provided, it is possible to perform inspection with good inspection even for the area where the silk was originally formed.
  • the automatic inspection apparatus 1 can inspect the quality of the formation state of pads, wiring patterns, silk 81, resists, through holes, etc. formed on a printed circuit board 8.
  • Image acquisition means 2 for acquiring eight images, reference image storage means 5 in which a reference image necessary for examination is stored in advance, and images acquired by the image acquisition means 2 among the images excluding silk.
  • positioning means 3 for positioning. Characteristically, after the registration of the image other than the silk with respect to the positioning means 3, the silk 81 area in the acquired image is extracted to detect the shift amount or area of the silk 81.
  • a second inspection means 72 for inspecting the ground is also provided.
  • the image acquisition means 2 acquires the surface image from the printed circuit board 8 which is an inspection object.
  • the surface image may be acquired by a gray scale, but if it is a gray scale, a pad area where metal is exposed, an area where a resist is applied on the pad, Luminance changes such as areas where resist is directly applied on the substrate are not clear.
  • the surface image of the printed circuit board 8 is preferably acquired by RGB.
  • the image acquisition means 2 When the surface image of the printed circuit board 8 is acquired by the image acquisition means 2, light is emitted from an illumination device arranged obliquely above the printed circuit board 8, and the reflected light is reflected on the line sensor or the The image is acquired by the area sensor, and the image is temporarily stored in the image memory. Then, the difference between the image stored in the image memory and the image when the printed board 8 is not placed (for example, the image of the stage) is taken, and the image of only the printed board 8 is extracted.
  • the reference image storage means 5 stores an RGB image of the printed circuit board 8 serving as a reference in advance.
  • the “reference image” means an image of an inspection object that has been determined as a non-defective product by visual inspection or another inspection device in advance, or image data created from CAD data or the like.
  • the reference image is stored in the reference image storage unit 5, at least an image having a resolution higher than the resolution used in the first alignment unit 31 and the second alignment unit 32 described later is stored. It is also preferable to store an image excluding the silk 81.
  • the alignment unit 3 includes a first alignment unit 31, a second alignment unit 32, and a third alignment unit 33. In addition to aligning the entire image of the printed circuit board 8, the printed circuit board 8 The silk 81 extracted from is aligned.
  • the first alignment means 31 aligns the image of the printed circuit board 8 acquired by the image acquisition means 2 in a rough state as shown in FIG. Specifically, the entire image of the printed circuit board 8 is made to correspond to the first resolution, which is a low resolution, while being shifted in the vertical direction, the horizontal direction, and the rotation direction, and the position where the degree of coincidence with the reference image becomes the maximum is correlated. (Fig. 2 (a)).
  • the case where the entire image of the printed circuit board 8 is aligned is illustrated, but when the alignment of the silk 81 is performed, an image corresponding to the luminance of the silk 81 is acquired and the same processing is performed. .
  • the image on the printed circuit board 8 is corrected in the vertical direction, the horizontal direction, and the rotation direction based on the position where the degree of coincidence is greatest.
  • an image of the printed circuit board 8 is extracted at a second resolution, which is higher than the first resolution, and the position in each of the vertical direction, the horizontal direction, and the rotation direction is similarly based on the image.
  • the position where the degree of coincidence is maximized is calculated by cross-correlation.
  • the image of the second resolution is corrected in the vertical direction, the horizontal direction, and the rotation direction (FIG. 2B).
  • the first and second resolutions are roughly aligned.
  • the overall alignment may be performed with a higher resolution image, or the first The entire alignment may be performed with only the resolution. In this way, the entire image is aligned with a relatively low resolution.
  • the second alignment means 32 divides the image of the printed circuit board 8 aligned in a rough state into small regions (FIG. 3), and changes in luminance in the designated luminance region among the respective regions. Only a region with a large amount is extracted, and the regions are aligned independently.
  • the printed circuit board 8 has a large luminance change region such as a resist-only portion (A1) and a region (A2) consisting only of a wiring pattern and a pad portion, and the wiring pattern having a large luminance change. There is very little about the area
  • the wiring pattern and the pad portion of the printed circuit board 8 are also illustrated, but the present invention is also applied to the case where the silk 81 is aligned.
  • the luminance information of each pixel in the divided area is output to the luminance change detecting means 4, where the luminance change amount is a predetermined threshold value. Is detected.
  • the luminance change amount is a predetermined threshold value.
  • the luminance for each RGB of each pixel in the region is extracted, and the variance value is calculated. At this time, if the variance value is larger than a predetermined threshold value, it is determined that the region has a large change amount. Conversely, if the variance value of luminance in the region is smaller than the predetermined threshold value, Judged as “small area”.
  • region with a large amount of change for example, a region including a pad, a wiring pattern, or an edge of the silk 81 (A3) can be considered.
  • region with a small amount of change for example, a resist only A region, a substrate-only region, a central region of a pad or a wiring pattern, etc. can be considered (A1, A2).
  • the variation in luminance is detected using the variance value, the width of the maximum luminance value and the minimum luminance value, or the number of pixels having a luminance value equal to or higher than the predetermined luminance value and the predetermined luminance value.
  • the number of pixels having a luminance value equal to or lower than the luminance value may be used.
  • the second alignment means 32 extracts only the region determined as “a region having a large change amount” in this way, and performs alignment with the region of the reference image corresponding to the region.
  • a portion having a specified luminance and a large luminance change (for example, an edge portion of a pad) is extracted from the extracted region, and a small region and a position of the reference image are extracted based on that portion.
  • Match since the silk 81 generally has a large positional shift (see FIG. 6), a color (RGB) or luminance area excluding the silk is extracted, and the pixels of the extracted area are numbered vertically and horizontally. Inflating processing is performed for each pixel, and the inflated edge region (A4) as shown in FIG. 4 is extracted.
  • contour regions that have been inflated by the same method are extracted, and the position having the highest matching rate is cross-correlated while shifting in the vertical direction, the horizontal direction, and the rotational direction. calculate. Then, alignment in the vertical direction, the horizontal direction, and the rotation direction is performed from the position with the highest matching rate.
  • the third alignment means 33 performs an alignment process for an area determined as “an area with a small change amount”.
  • the region determined to be the “region with a small amount of change” does not have a characteristic portion, and therefore cannot be aligned by the method such as the second alignment unit 32. Therefore, here, correction is performed using the position information corrected by the second alignment means 32. Specifically, if the region to be noticed is a “region with a small amount of change”, the closest “region with a large amount of change” is searched for, and correction information for the region (vertical correction, horizontal direction) And correction of the rotation direction). Then, the correction information is used to correct the area in the vertical direction, the horizontal direction, and the rotation direction.
  • the silk region detection means 6 first performs alignment for the entire image excluding the silk 81, and then the silk 81 region (that is, the region of the silk 81 that has been displaced, the upper diagram in FIG. 6) in the inspection object, The corresponding area of the silk 81 in the reference image (that is, the silk area before being displaced, the lower figure in FIG. 6) is detected, and the respective deviation amounts are detected. Specifically, first, the entire image excluding the silk 81 is aligned as described above, and then the image based on the luminance of the silk 81 is roughly aligned by the first alignment means 31. In addition, in the case of such rough alignment, alignment may be performed using a deviation amount that has already been calculated with a brightness other than the silk 81.
  • the image at the luminance of the silk 81 is divided into small rectangular areas by the second alignment means 32, and alignment is performed using an area having a large luminance change amount with the designated luminance (here, the luminance of the silk 81). .
  • the third alignment means 33 performs alignment of a rectangular area where the silk 81 does not exist with reference to the luminance of the silk 81.
  • the third alignment means 33 is used to align a rectangular area that does not include the silk 81, but the second alignment means 32 has a silk just outside the small rectangular area.
  • the silk 81 may enter inside the rectangular area depending on how the brightness of the silk 81 is taken. For this reason, alignment is also performed for a rectangular region that does not include the silk 81.
  • the silk 81 aligns with the 3rd alignment means 33 from the 1st alignment means 31, and the vertical direction of the silk 81, a horizontal direction, The shift amount in the rotation direction is calculated, and the post-movement area and the original area of the silk 81 are detected.
  • the area of the silk 81 that is displaced in the inspection object is referred to as a post-movement area
  • the area of the silk 81 in the reference image of the silk 81 corresponding thereto is referred to as the original area. .
  • the inspection means 7 determines whether each area aligned in this way is compared with the area of the reference image, and determines whether or not there are a plurality of defective pixels or a plurality of defective pixels in the area.
  • the area that is being processed is output.
  • the first inspection means 71 when the area after the silk 81 is inspected is inspected by the first inspection means 71.
  • a luminance width corresponding to silk RGB luminance is stored in advance, and it is determined whether or not the pixel in the post-movement area is included in the luminance width. If the pixel in the post-movement area is not included in the luminance width, it is determined to be a “defective pixel”, and if the predetermined number of defective pixels are continuous, the area is determined as a defective location. Output as.
  • the quality of the silk 81 can be judged by comparing with the original area in the reference image. Specifically, when the movement amount of the silk 81 can be detected by cross-correlating the post-movement area and the original area, the pixel of the silk 81 in the inspection image is moved by the movement amount, and after the movement Whether or not there is a pixel having a luminance within a certain range from the luminance value of the pixel within a predetermined search distance in the reference image is determined with reference to the coordinates. When such a pixel exists, it is determined as a “good pixel”, and when such a pixel does not exist, it is determined as a “defective pixel”. Then, the same processing is performed for all the pixels, and when a predetermined number or more of defective pixels are continuous, the region is output as a “defective portion”.
  • the second inspection means 72 inspects it.
  • the brightness of the resist or the base material is stored in advance, and it is determined whether or not the pixels of the original region are included within a predetermined brightness width in the brightness. Then, when the pixel of the original region in the inspection object is included in the luminance width, it is determined as “good pixel”, and when it is not included, it is determined as “defective pixel”. If a predetermined number or more of the defective pixels are continuous, the area is output as a “defective portion”.
  • the second inspection means 72 can also inspect based on luminance information around the original area. For example, the original area is inflated and the difference between the original areas is taken through to acquire an image around the original area. Then, the average luminance (RGB luminance) of the surrounding image is calculated, and when the pixels of the original area are included within a certain luminance width with respect to the average luminance, it is not included as “good pixel”. In this case, it is determined as “defective pixel”. When the predetermined number of defective pixels are continuous, the area can be output as a “defective location”.
  • RGB luminance RGB luminance
  • the areas other than the moved area and the original area of the silk 81 are different from the first inspection means 71 and the second inspection means 72. Inspection is performed by the third inspection means 73.
  • the third inspection means for example, as shown in FIG. 6, the pixel value of the pixel within the predetermined search distance in the reference image with the position of the pixel of the aligned image as the reference (x, y) is used. From the above, it is determined whether or not there is a pixel having a luminance within a certain range. If such a pixel exists, it is determined as “good pixel”, and if such a pixel does not exist, “bad pixel” is determined. Judge that there is.
  • the same processing is performed for all the pixels, and when a predetermined number or more of defective pixels are continuous, the region is output as a “defective portion”.
  • the quality of each pixel is judged, but of course, areas such as pads, wiring patterns, and resists are extracted, and each area is inspected using its own inspection method and threshold. It may be.
  • the reference image is generated first.
  • the printed circuit board 8 that is a non-defective inspection object is placed on the stage.
  • the image acquisition means 2 acquires the image.
  • an image of a stage for placing the printed circuit board 8 is acquired in advance, and an image consisting only of the printed circuit board 8 is acquired by taking a difference from the image of the stage (step S1).
  • the acquired image is converted into a first resolution image having a low resolution, a reference image corresponding to the converted low resolution image is read out, and overall alignment is performed.
  • the vertical cross-correlation is used to detect the vertical shift
  • the horizontal cross-correlation is used to detect the horizontal shift
  • the image is rotated to rotate.
  • the image corrected at the first resolution is aligned at a second resolution that is relatively higher than the first resolution (step S4: No).
  • a reference image corresponding to the second resolution is read, and a vertical shift amount, a horizontal shift amount, and a rotational shift amount are detected by cross-correlation. (Step S2).
  • the deviation amount of the image of the printed circuit board 8 as the inspection object is corrected (step S3).
  • step S5 a division process is performed on the image of the inspection object aligned at the second resolution (step S5). Then, a luminance change amount indicating how much the luminance change of each pixel is in the area is obtained (step S6).
  • step S6 a luminance change amount indicating how much the luminance change of each pixel is in the area.
  • the variance value of the luminance of each pixel in that region is obtained. If the variance value is equal to or greater than a predetermined threshold, it is determined that the region has a large amount of change, and on the contrary If the value is less than the predetermined threshold value, it is determined as “a region with a small amount of change” (step S7).
  • an area determined to be the “region with a large amount of change” is extracted (step S7: Yes), and a portion with a large amount of change, such as an edge portion of the pad, is extracted from the region and inflated. (Steps S8 and S9).
  • the portion with a large amount of change is extracted and inflated, cross-correlation is performed for each image, and the degree of coincidence calculated by the cross-correlation is calculated.
  • the amount of deviation is detected from the information of the high position (step S10), and the region of the inspection object is independently corrected (step S11).
  • step S7 when it is determined that the region is a region with a small amount of change (step S7: No), the closest region with a large amount of variation and the next region with a large amount of variation are extracted ( Step S13), the shift amounts in the vertical direction, the horizontal direction, and the rotation direction in each region are extracted. Then, the position of the region is corrected from the average value of the respective shift amounts (step S14).
  • the same processing is performed on the plurality of printed circuit boards 8, and the luminance for each RGB is extracted for each pixel of the aligned image (step T1 in FIG. 8), and allowed for each pixel position.
  • the brightness range to be determined is determined.
  • a dispersion value or standard deviation that is a variation in RGB luminance of pixels of the printed circuit board 8 that has read a plurality of sheets is obtained (step T2).
  • the allowable range from the luminance is set large and stored as reference data for the pixel.
  • the RGB luminance is converted into a polar coordinate system so that each luminance can be expressed by a distance r from the origin and an angle ⁇ formed with a straight line passing through the origin (step T3).
  • the allowable luminance width is set by changing the distance r and the angle ⁇ (step T4). If the allowable luminance width is set using the distance r and the angle ⁇ in this way, the parameters are reduced and the hue (ratio of RGB luminance) is changed as compared with the case where the allowable luminance width is set in the orthogonal coordinate system. There is an advantage that only brightness and saturation can be changed without any change.
  • the search distance of the corresponding pixel of the printed circuit board 8 in the inspection object is stored as a table (step T5), and the pixel having the luminance within the allowable luminance width within the search distance from the position of the pixel. It is possible to check whether or not exists.
  • Step S1 In the case of inspecting the printed circuit board 8 to be inspected, similarly, the printed circuit board 8 is placed on the stage, and the image acquisition unit 2 acquires an image composed only of the printed circuit board 8. (Step S1).
  • the acquired image is converted into an image of a first resolution which is a low resolution, and a reference image corresponding to the converted low resolution image is read out to cross-correlate in the vertical, horizontal and rotational directions.
  • a reference image corresponding to the converted low resolution image is read out to cross-correlate in the vertical, horizontal and rotational directions.
  • the image corrected at the first resolution is aligned at a second resolution that is relatively higher than the first resolution (step S4, steps S2 to S3).
  • step S5 the image of the inspection object aligned with such a rough image is divided (step S5), and the luminance change amount in the region is obtained to obtain “region with large change amount” and “change amount”. Are divided into “small regions” (steps S6 and S7).
  • an area determined as “an area having a large change amount” is extracted (step S8), an area excluding silk color and luminance is extracted for the area, and the change amount of the pixel in the extracted area is extracted.
  • a large portion is extracted and inflated (step S9), and a reference image corresponding to the region is also extracted for a portion with a large amount of change, inflated, and the amount of deviation is obtained by cross-correlating each image. Is detected (step S10).
  • region of a test target object is correct
  • an image corresponding to the brightness of the silk is extracted from the inspection image, and is aligned using the first alignment means 31 to the third alignment means 33 as in steps S1 to S11.
  • the shift amount is calculated by comparing with the reference image, and the post-movement area and the original area are extracted based on the shift amount (step S12).
  • the correction information of the “region with a large amount of change” in the vicinity is extracted, and the position of the “region with a small amount of change” is corrected based on the correction information (step S13, S14).
  • the post-movement area and the original area are inspected (step U1).
  • the post-movement area is inspected, as a first inspection method, it is determined whether or not the pixels in the post-movement area are configured with a luminance within a predetermined width of the silk (step U2), and the luminance within the predetermined width is determined. If it is configured, it is determined as “good pixel” (step U3), and if it is not configured, it is determined as “bad pixel” (step U4). If defective pixels are continuously present for a predetermined pixel or more, the region is output as a defective portion (step U5).
  • step U6 it is determined whether or not the pixels in that area are included in the brightness within the predetermined width of the resist stored in advance.
  • Step U7 it is determined that the pixel is “good pixel” (step U8) if it is configured with a luminance within a predetermined width, and “bad pixel” if it is not configured (step U9). If defective pixels are continuously present for a predetermined pixel or more, the region is output as a defective portion (step U10).
  • step U11 the allowable luminance stored in advance from the position of the reference image corresponding to the position of each pixel of the inspection object.
  • the width and the search distance are extracted (step U12), and it is checked whether or not there is a pixel having a luminance (luminance for each RGB) within the allowable luminance width within the search distance of the reference image (step U13). If such a pixel exists, it is determined as a “good pixel” (step U14), and if such a pixel does not exist, it is determined as a “defective pixel” (step U15). If a predetermined number or more of defective pixels are continuously present, a defective area is output (step U16).
  • the image acquisition unit 2 that acquires an image of the printed circuit board 8 that is the inspection target, the reference image storage unit 5 that stores the reference image, and the image acquisition unit 2 acquire the image. From the image and the reference image, a silk area detecting means 6 for detecting a silk area in the acquired image, and for the detected silk area, a first inspection means 71 for inspecting by a first inspection method, Since the area where the silk originated is provided with the second inspection means 71 for inspecting by the second inspection method, the area where the silk originated can also be inspected. The accuracy can be improved.
  • the second inspection means 72 is configured to inspect depending on whether or not it is composed of pixels having a luminance within a predetermined luminance width with respect to the luminance of the resist or the base material, If inspection is performed based on the color of the substrate, it is possible to detect defects in the resist and the substrate.
  • the second inspection means when inspecting with the second inspection means, if the inspection is performed based on the brightness of the area around the area where the silk originated, the image is estimated from the surrounding area where the silk originated. Inspection accuracy can be improved.
  • the shift amount of the silk 81 is detected after the alignment is performed using the first alignment unit 31 to the third alignment unit 33.
  • the displacement amount of the silk 81 may be roughly calculated by the displacement.
  • the inspection is performed based on the color of the resist and the base material.
  • the wiring pattern is A virtual region to be connected may be formed, and the virtual region may be inspected as a region where a resist is applied on the wiring pattern.
  • a change point where the luminance changes at the outer edge of the silk 81 is detected, and a straight line or a curve connecting the change point and the change point is formed. Then, the inspection is performed by regarding the one of the straight line or the curve where the surrounding luminance is changing as the region constituted by the luminance.
  • the post-movement area and the original area can be inspected by other methods.
  • the center line of the silk 81 is extracted by thinning the silk 81, and the distance is calculated by comparing with the pixels of the center line of the silk 81 similarly thinned in the reference image. Based on this, a method for inspecting the post-movement area and the original area can be considered.
  • the amount of displacement of the silk 81 is calculated by performing alignment using the first alignment unit 31 to the third alignment unit 33 and comparing with the reference image. Difference between images is performed. Then, by calculating the area of the portion where the difference is large, a method of inspecting the shift amount, the post-movement area, the original area, or the like can be used.
  • the present invention is used in the field of an automatic inspection device that inspects the formation state of a printed board, a liquid crystal substrate, a pattern or a character formed on the surface of an object.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Quality & Reliability (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Processing (AREA)

Abstract

[Problem] The objective of the present invention is to provide an automatic inspection device that is such that even if silk has a deviated position, the silk can be inspected with respect to the backing at which the silk was originally located. [Solution] An image is acquired of a printed substrate (8) that is the subject of inspection, and alignment is performed with respect to an image that eliminates silk (81) from a pre-recorded reference image. Also, the region of the silk (81) is extracted, and the post-moving region and original region of the silk are extracted. Also, the shape state of the silk (81) is inspected by means of a first inspection method for the post-moving region after position deviation, and is inspected by means of a second inspection method for the silk backing, which is the original region. Meanwhile, inspection is performed by means of a third inspection method for regions such as pads and wiring patterns. Also, at this time, inspection is performed on the basis of the color of the silk in the first inspection method, and on the basis of the color of a resist and substrate in the second inspection method.

Description

自動検査装置およびシルクの下地を検査する自動検査方法Automatic inspection device and automatic inspection method for inspecting silk substrate
 本発明は、プリント基板の形成状態を検査する自動検査装置に関するものである。 The present invention relates to an automatic inspection apparatus that inspects the formation state of a printed circuit board.
 一般に、プリント基板のパッドやパターン、レジスト、シルクなどは、自動検査装置によって検査される。これらのパッドやパターンなどを検査する場合、一般的に、検査対象物であるプリント基板から画像を取得し、その画像の輝度などからパッドやパターン、レジスト、シルクなどの領域を抽出する。そして、それぞれの領域ごとに独自の検査方法や閾値などを用いて検査する。このとき、例えば、シルクについては位置ずれが大きいために閾値を緩めて検査する方法などを用い、一方、パッドやパターンについては閾値を厳しくして検査する方法などを用いている(特許文献1など)。 Generally, pads, patterns, resists, silk, etc. on printed circuit boards are inspected by an automatic inspection device. When inspecting these pads, patterns, and the like, generally, an image is acquired from a printed circuit board that is an object to be inspected, and areas such as pads, patterns, resists, and silk are extracted from the brightness of the image. Each region is inspected using a unique inspection method or threshold value. At this time, for example, a method of inspecting with a low threshold value is used for silk because the positional deviation is large, while a method of inspecting with a strict threshold value is used for pads and patterns (Patent Document 1, etc.). ).
 ところで、このようなシルクの下地についてはカメラでその画像を取得することができないため、そのシルクの下に形成されたレジストやパッドなどについては検査をすることができない。このため、従来では、その下地については検査を行わず、また、そのシルクが位置ずれしている場合においては、そのシルクが元あった領域についても、そのシルクの下地の基準画像がないために検査を行わないようにしていた。 By the way, since the image of such a silk base cannot be obtained by a camera, it is impossible to inspect a resist or a pad formed under the silk. For this reason, conventionally, the base is not inspected, and when the silk is misaligned, there is no reference image for the base of the silk even in the area where the silk is based. I tried not to do the inspection.
特開2003-086919号公報JP 2003-086919 A
 しかしながら、このようにシルクが元あった領域についても検査しないようにすると、その領域におけるレジストの塗布状態などを検査することができず、検査の精度が悪くなるという問題があった。 However, if the area where the silk was originally made is not inspected, there is a problem that the resist application state in the area cannot be inspected and the accuracy of the inspection is deteriorated.
 そこで、本発明は、シルクが位置ずれを起こしている場合であっても、そのシルクが元あった領域における下地についても検査できるようにした自動検査装置を提供することを目的とする。 Therefore, an object of the present invention is to provide an automatic inspection apparatus that can inspect even the base in the area where the silk originated even when the silk is misaligned.
 すなわち、本発明は上記課題を解決するために、検査対象物であるプリント基板の画像を取得する画像取得手段と、基準画像を記憶する基準画像記憶手段と、前記画像取得手段で取得された画像におけるシルク領域を検出するシルク領域検出手段と、当該シルク領域検出手段で検出されたシルク領域を第一の検査方法で検査する第一の検査手段と、前記シルク領域検出手段で検出されたシルク領域以外の領域であって基準画像におけるシルク領域を第二の検査方法で検査する第二の検査手段と、前記第一の検査手段および第二の検査手段で検査する領域以外の領域を、前記第一の検査方法および第二の検査方法とは異なる第三の検査方法で検査する第三の検査手段とを備えるようにしたものである。 That is, in order to solve the above-described problem, the present invention provides an image acquisition unit that acquires an image of a printed circuit board that is an inspection object, a reference image storage unit that stores a reference image, and an image acquired by the image acquisition unit. A silk area detecting means for detecting a silk area in the first embodiment, a first inspection means for inspecting a silk area detected by the silk area detecting means by a first inspection method, and a silk area detected by the silk area detecting means A second inspection means for inspecting a silk area in the reference image by a second inspection method, and an area other than the area to be inspected by the first inspection means and the second inspection means. A third inspection means for inspecting by a third inspection method different from the first inspection method and the second inspection method is provided.
 このように構成すれば、シルクが元あった領域についても検査を行うことができるため、精度良い検査を行うことができる。 If configured in this way, it is possible to inspect even the area where the silk was originally made, so that it is possible to inspect with high accuracy.
 また、このような発明において、第二の検査方法として、レジストもしくは基材の輝度の所定の輝度幅内で画素が構成されているか否かによって検査する。 In such an invention, as a second inspection method, the inspection is performed based on whether or not the pixel is configured within a predetermined luminance width of the luminance of the resist or the substrate.
 このようにすれば、一般にシルクはレジストや基材の上に印刷されているため、そのレジストや基材の色に基づいて検査すれば、レジストや基材の不良を検出することができるようになる。 In this way, since silk is generally printed on a resist or base material, if inspection is performed based on the color of the resist or base material, it is possible to detect defects in the resist or base material. Become.
 さらに、第二の検査方法で検査する場合、シルクが元あった領域の周囲の領域の輝度に基づいて検査を行うようにすることもできる。 Furthermore, when the inspection is performed by the second inspection method, the inspection can be performed based on the brightness of the area around the area where the silk is originally formed.
 このようにすれば、例えば、パターンの上にレジストが塗布されて、そのレジストの上にシルクが印刷されているような場合、シルクの周囲もパターンとレジストの色が混ざったRGB輝度になるが、このように周囲の領域の輝度に基づいて検査すれば、シルクが元あった領域を精度を良く検査することができるようになる。 In this way, for example, when a resist is applied on a pattern and silk is printed on the resist, the brightness around the silk also becomes RGB brightness in which the color of the pattern and the resist are mixed. Thus, if the inspection is performed based on the luminance of the surrounding area, it is possible to inspect the area where the silk is originally from with high accuracy.
 本発明によれば、検査対象物であるプリント基板の画像を取得する画像取得手段と、基準画像を記憶する基準画像記憶手段と、前記画像取得手段で取得された画像におけるシルク領域を検出するシルク領域検出手段と、当該シルク領域検出手段で検出されたシルク領域を第一の検査方法で検査する第一の検査手段と、前記シルク領域検出手段で検出されたシルク領域以外の領域であって基準画像におけるシルク領域を第二の検査方法で検査する第二の検査手段と、前記第一の検査手段および第二の検査手段で検査する領域以外の領域を、前記第一の検査方法および第二の検査方法とは異なる第三の検査方法で検査する第三の検査手段とを備えるようにしたので、シルクが元あった領域についても検査良い検査をすることができる。 According to the present invention, an image acquisition unit that acquires an image of a printed circuit board that is an inspection object, a reference image storage unit that stores a reference image, and a silk that detects a silk region in the image acquired by the image acquisition unit. An area detection means, a first inspection means for inspecting a silk area detected by the silk area detection means by a first inspection method, and an area other than the silk area detected by the silk area detection means, Second inspection means for inspecting a silk area in an image by the second inspection method, and areas other than the areas to be inspected by the first inspection means and the second inspection means, the first inspection method and the second Since the third inspection means for inspecting by the third inspection method different from the above inspection method is provided, it is possible to perform inspection with good inspection even for the area where the silk was originally formed.
本発明の一実施の形態における自動検査装置の機能ブロック図Functional block diagram of an automatic inspection apparatus according to an embodiment of the present invention 同形態における第一の位置合わせ手段によって位置合わせする状態を示す図The figure which shows the state aligned by the 1st position alignment means in the form 同形態における輝度値の変化量が所定値以上である領域A3と所定値以下の領域A1、A2を示す図The figure which shows area | region A3 in which the variation | change_quantity of the luminance value in the same form is more than predetermined value, and area | region A1, A2 below predetermined value 同形態における輝度値の変化量が所定値以上の領域A3を位置合わせする状態を示す図The figure which shows the state which aligns area | region A3 in which the variation | change_quantity of the luminance value in the same form is more than predetermined value 同形態における輝度値の変化量が所定値以下の領域A1を位置合わせする状態を示す図The figure which shows the state which aligns area | region A1 in which the variation | change_quantity of the luminance value in the same form is below a predetermined value 同形態におけるシルクの移動後領域と元領域の検査を示す図The figure which shows the test | inspection of the area | region after movement of the silk in the same form, and an original area 自動検査装置の位置補正の処理を示すフローチャートFlow chart showing position correction processing of automatic inspection device 同形態における自動検査装置で基準データを生成する場合のフローチャートFlowchart for generating reference data by automatic inspection device in the same form 同形態における自動検査装置で検査を行う場合の処理を示すフローチャートThe flowchart which shows the process in the case of test | inspecting with the automatic test | inspection apparatus in the form
 以下、本発明の一実施の形態について図面を参照しながら説明する。この実施の形態における自動検査装置1は、プリント基板8に形成されたパッドや配線パターン、シルク81、レジスト、スルーホールなどの形成状態の良否を検査できるようにしたものであって、そのプリント基板8の画像を取得する画像取得手段2と、あらかじめ検査に必要な基準画像を記憶させた基準画像記憶手段5と、画像取得手段2によって取得された画像をのうち、シルクを除く画像について基準画像と位置合わせする位置合わせ手段3とを備えている。そして、特徴的には、その位置合わせ手段3について、シルク以外の画像について位置合わせをした後、取得された画像におけるシルク81の領域を抽出してシルク81のずれ量や領域などを検出するシルク領域検出手段6と、そのずれたシルク81(図6の移動後領域)の形成状態を検査する第一の検査手段71と、そのシルク81の元の領域(図6上図における元領域)の下地についても検査する第二の検査手段72とを備えるようにしたものである。以下、本実施の形態における自動検査装置1について詳細に説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The automatic inspection apparatus 1 according to this embodiment can inspect the quality of the formation state of pads, wiring patterns, silk 81, resists, through holes, etc. formed on a printed circuit board 8. Image acquisition means 2 for acquiring eight images, reference image storage means 5 in which a reference image necessary for examination is stored in advance, and images acquired by the image acquisition means 2 among the images excluding silk. And positioning means 3 for positioning. Characteristically, after the registration of the image other than the silk with respect to the positioning means 3, the silk 81 area in the acquired image is extracted to detect the shift amount or area of the silk 81. The area detection means 6, the first inspection means 71 for inspecting the formation state of the shifted silk 81 (the area after movement in FIG. 6), and the original area of the silk 81 (the original area in the upper diagram of FIG. 6) A second inspection means 72 for inspecting the ground is also provided. Hereinafter, the automatic inspection apparatus 1 according to the present embodiment will be described in detail.
 まず、画像取得手段2は、検査対象物であるプリント基板8からその表面画像を取得する。プリント基板8から表面画像を取得する場合、グレースケールによって表面画像を取得してもよいが、グレースケールであると、金属が露出したパッド領域や、そのパッド上にレジストが塗布されている領域、基板上に直接レジストが塗布されている領域などの輝度変化が明確にならない。このため、好ましくは、RGBによってプリント基板8の表面画像を取得する。この画像取得手段2でプリント基板8の表面画像を取得する場合は、プリント基板8の斜め上方に配列された照明装置から光を照射し、その反射光をプリント基板8の真上のラインセンサやエリアセンサで取得し、その画像を一旦画像メモリに蓄積する。そして、その画像メモリに蓄積された画像と、プリント基板8が載置されていないときの画像(例えば、ステージの画像)との差分をとり、プリント基板8のみの画像を抽出する。 First, the image acquisition means 2 acquires the surface image from the printed circuit board 8 which is an inspection object. When acquiring a surface image from the printed circuit board 8, the surface image may be acquired by a gray scale, but if it is a gray scale, a pad area where metal is exposed, an area where a resist is applied on the pad, Luminance changes such as areas where resist is directly applied on the substrate are not clear. For this reason, the surface image of the printed circuit board 8 is preferably acquired by RGB. When the surface image of the printed circuit board 8 is acquired by the image acquisition means 2, light is emitted from an illumination device arranged obliquely above the printed circuit board 8, and the reflected light is reflected on the line sensor or the The image is acquired by the area sensor, and the image is temporarily stored in the image memory. Then, the difference between the image stored in the image memory and the image when the printed board 8 is not placed (for example, the image of the stage) is taken, and the image of only the printed board 8 is extracted.
 一方、基準画像記憶手段5には、あらかじめ基準となるプリント基板8のRGB画像を記憶させておく。ここで「基準画像」とは、あらかじめ目視検査や他の検査装置によって良品と判断された検査対象物の画像や、CADデータなどから作成された画像のデータを意味するものである。基準画像を基準画像記憶手段5に記憶させておく場合は、少なくとも後述する第一の位置合わせ手段31や第二の位置合わせ手段32で使用される解像度以上の解像度の画像を記憶させておき、また、シルク81を除いた画像も記憶させておくようにするとよい。 On the other hand, the reference image storage means 5 stores an RGB image of the printed circuit board 8 serving as a reference in advance. Here, the “reference image” means an image of an inspection object that has been determined as a non-defective product by visual inspection or another inspection device in advance, or image data created from CAD data or the like. In the case where the reference image is stored in the reference image storage unit 5, at least an image having a resolution higher than the resolution used in the first alignment unit 31 and the second alignment unit 32 described later is stored. It is also preferable to store an image excluding the silk 81.
 位置合わせ手段3は、第一の位置合わせ手段31、第二の位置合わせ手段32、第三の位置合わせ手段33から構成されており、プリント基板8の全体画像を位置合わせする他、プリント基板8から抽出されたシルク81の位置合わせを行う。 The alignment unit 3 includes a first alignment unit 31, a second alignment unit 32, and a third alignment unit 33. In addition to aligning the entire image of the printed circuit board 8, the printed circuit board 8 The silk 81 extracted from is aligned.
 このうち第一の位置合わせ手段31は、図2に示すように、画像取得手段2によって取得されたプリント基板8の画像を粗い状態で位置合わせを行う。具体的には、低解像度である第一の解像度でプリント基板8の全体画像について縦方向、横方向、回転方向にそれぞれずらしながら対応させ、基準画像との一致度が最も大きくなる位置を相互相関によって算出する(図2(a))。なお、ここでは、プリント基板8の全体画像を位置合わせする場合について図示しているが、シルク81の位置合わせをする場合は、シルク81の輝度に対応した画像を取得して同様の処理を行う。そして、その一致度が最も大きくなる位置に基づいてプリント基板8の画像を縦方向、横方向、回転方向に補正していく。次に、今度は第一の解像度よりも高解像度である第二の解像度でプリント基板8の画像を抽出し、その画像に基づいても同様に、縦方向、横方向、回転方向のそれぞれについて位置をずらしながら対応させていき、相互相関をとって一致度が最も大きくなる位置を計算する。そして、その位置に基づいて第二の解像度の画像を縦方向、横方向、回転方向に補正していく(図2(b))。なお、本実施の形態では、第一の解像度および第二の解像度で粗く位置合わせするようにしているが、より高解像度の画像で全体の位置合わせを行うようにしてもよく、あるいは、第一の解像度だけで全体の位置合わせを行うようにしてもよい。そして、このように比較的低い解像度で全体の画像を粗い状態で位置合わせする。 Among these, the first alignment means 31 aligns the image of the printed circuit board 8 acquired by the image acquisition means 2 in a rough state as shown in FIG. Specifically, the entire image of the printed circuit board 8 is made to correspond to the first resolution, which is a low resolution, while being shifted in the vertical direction, the horizontal direction, and the rotation direction, and the position where the degree of coincidence with the reference image becomes the maximum is correlated. (Fig. 2 (a)). Here, the case where the entire image of the printed circuit board 8 is aligned is illustrated, but when the alignment of the silk 81 is performed, an image corresponding to the luminance of the silk 81 is acquired and the same processing is performed. . Then, the image on the printed circuit board 8 is corrected in the vertical direction, the horizontal direction, and the rotation direction based on the position where the degree of coincidence is greatest. Next, an image of the printed circuit board 8 is extracted at a second resolution, which is higher than the first resolution, and the position in each of the vertical direction, the horizontal direction, and the rotation direction is similarly based on the image. The position where the degree of coincidence is maximized is calculated by cross-correlation. Then, based on the position, the image of the second resolution is corrected in the vertical direction, the horizontal direction, and the rotation direction (FIG. 2B). In the present embodiment, the first and second resolutions are roughly aligned. However, the overall alignment may be performed with a higher resolution image, or the first The entire alignment may be performed with only the resolution. In this way, the entire image is aligned with a relatively low resolution.
 次に、第二の位置合わせ手段32は、粗い状態で位置合わせされたプリント基板8の画像を小さな領域に分割し(図3)、それぞれの領域のうち、指定された輝度の領域で輝度変化量が大きい領域のみを抽出して、その領域を独立して位置合わせを行う。一般に、プリント基板8のうち、レジストのみの部分(A1)、配線パターンやパッド部分のみからなる領域(A2)のように輝度変化の少ない領域が大部分を占めており、輝度変化の大きな配線パターンのエッジやパッドのエッジ(A3)からなる領域については非常に少ない。このため、この割合の小さな領域についてのみ位置合わせを行うことによって全体の計算量を小さくできるようにする。なお、ここでも、プリント基板8の配線パターンやパッド部分について図示しているが、同様にシルク81の位置合わせをする場合にも適用される。 Next, the second alignment means 32 divides the image of the printed circuit board 8 aligned in a rough state into small regions (FIG. 3), and changes in luminance in the designated luminance region among the respective regions. Only a region with a large amount is extracted, and the regions are aligned independently. In general, the printed circuit board 8 has a large luminance change region such as a resist-only portion (A1) and a region (A2) consisting only of a wiring pattern and a pad portion, and the wiring pattern having a large luminance change. There is very little about the area | region which consists of the edge of this and the edge (A3) of a pad. For this reason, the entire calculation amount can be reduced by performing the alignment only for the region having a small ratio. Here, the wiring pattern and the pad portion of the printed circuit board 8 are also illustrated, but the present invention is also applied to the case where the silk 81 is aligned.
 この分割された領域のそれぞれについて輝度変化が大きいか否かを検出する場合、分割された領域の各画素の輝度情報を輝度変化検出手段4に出力し、そこで、輝度の変化量が所定の閾値よりも大きいか否かを検出する。輝度の変化量を検出する場合は、第一の方法として、その領域の各画素のRGB毎の輝度を抽出し、その分散値を計算する。このとき、その分散値が所定の閾値よりも大きい場合は、「変化量の大きい領域」と判断し、逆に、その領域の輝度の分散値が所定の閾値よりも小さい場合は「変化量の小さい領域」と判断する。この「変化量の大きい領域」としては、例えば、パッドや配線パターン、シルク81のエッジを含む領域(A3)などが考えられ、また、「変化量の小さい領域」としては、例えば、レジストのみの領域、基板のみの領域、パッドや配線パターンの中央領域などが考えられる(A1、A2)。なお、ここでは分散値を用いて輝度の変化量を検出するようにしているが、最大輝度値と最小輝度値の幅、もしくは、所定の輝度値以上の輝度値を有する画素の個数および所定の輝度値以下の輝度値を有する画素の個数などを用いるようにしてもよい。 When it is detected whether or not the luminance change is large for each of the divided areas, the luminance information of each pixel in the divided area is output to the luminance change detecting means 4, where the luminance change amount is a predetermined threshold value. Is detected. When detecting the amount of change in luminance, as a first method, the luminance for each RGB of each pixel in the region is extracted, and the variance value is calculated. At this time, if the variance value is larger than a predetermined threshold value, it is determined that the region has a large change amount. Conversely, if the variance value of luminance in the region is smaller than the predetermined threshold value, Judged as “small area”. As the “region with a large amount of change”, for example, a region including a pad, a wiring pattern, or an edge of the silk 81 (A3) can be considered. As the “region with a small amount of change”, for example, a resist only A region, a substrate-only region, a central region of a pad or a wiring pattern, etc. can be considered (A1, A2). Here, although the variation in luminance is detected using the variance value, the width of the maximum luminance value and the minimum luminance value, or the number of pixels having a luminance value equal to or higher than the predetermined luminance value and the predetermined luminance value. The number of pixels having a luminance value equal to or lower than the luminance value may be used.
 第二の位置合わせ手段32では、このように「変化量の大きい領域」と判断された領域のみを抽出し、その領域に対応する基準画像の領域と位置合わせを行う。この位置合わせにおいては、抽出された領域のうち、指定された輝度であって輝度変化の大きい部分(例えば、パッドのエッジ部分など)を抽出し、その部分を基準として基準画像の小さな領域と位置合わせする。具体的には、一般的にシルク81は位置ずれが大きいため(図6参照)、シルクを除外した色(RGB)や輝度の領域を抽出し、その抽出された領域の画素について上下左右に数画素ずつ膨らまし処理を行い、図4に示すような膨らまされたエッジ領域(A4)を抽出する。一方、基準画像の該当領域についても、同様の方法で膨らまし処理された輪郭領域を抽出し、これらの輪郭領域について縦方向、横方向、回転方向にずらしながら一致率が最も高い位置を相互相関で算出する。そして、一致率が最も高い位置から縦方向、横方向、回転方向の位置合わせを行う。これらの処理は、「変化量の大きい領域」と判断された領域についてのみ独立して行い、「変化量の小さい領域」と判断された領域についてこれらの処理を行わないようにする。 The second alignment means 32 extracts only the region determined as “a region having a large change amount” in this way, and performs alignment with the region of the reference image corresponding to the region. In this alignment, a portion having a specified luminance and a large luminance change (for example, an edge portion of a pad) is extracted from the extracted region, and a small region and a position of the reference image are extracted based on that portion. Match. Specifically, since the silk 81 generally has a large positional shift (see FIG. 6), a color (RGB) or luminance area excluding the silk is extracted, and the pixels of the extracted area are numbered vertically and horizontally. Inflating processing is performed for each pixel, and the inflated edge region (A4) as shown in FIG. 4 is extracted. On the other hand, for the corresponding region of the reference image, contour regions that have been inflated by the same method are extracted, and the position having the highest matching rate is cross-correlated while shifting in the vertical direction, the horizontal direction, and the rotational direction. calculate. Then, alignment in the vertical direction, the horizontal direction, and the rotation direction is performed from the position with the highest matching rate. These processes are performed independently only for the areas determined as “regions with a large amount of change”, and these processes are not performed for the areas determined as “regions with a small amount of change”.
 次に、第三の位置合わせ手段33では、「変化量の小さい領域」と判断された領域の位置合わせ処理を行う。この「変化量の小さい領域」と判断された領域については、特徴となる部分が存在しないため、第二の位置合わせ手段32のような方法で位置合わせすることができない。そこで、ここでは第二の位置合わせ手段32で補正された位置情報を用いて補正を行うようにする。具体的には、注目すべき領域が「変化量の小さい領域」であった場合、そこから最も近い「変化量の大きい領域」を探索し、その領域の補正情報(縦方向の補正、横方向の補正、回転方向の補正)を抽出する。そして、その補正情報を用いてその領域を縦方向、横方向、回転方向に補正する。このとき、最も近い変化量の大きい一つの領域の補正情報を用いる場合は、その領域の補正情報をそのまま用い、あるいは、最も近い領域とその次に近い領域の補正情報を用いる場合は、それぞれの補正情報の平均値を用いて補正するようにしてもよい。なお、図5では、補正すべき領域に対して方向の異なる2つの「変化量の大きい領域」を探索し(太い実線で囲まれた領域)、その領域の補正情報に基づいて縦方向の補正、横方向の補正、回転方向の補正を行うようにしている。 Next, the third alignment means 33 performs an alignment process for an area determined as “an area with a small change amount”. The region determined to be the “region with a small amount of change” does not have a characteristic portion, and therefore cannot be aligned by the method such as the second alignment unit 32. Therefore, here, correction is performed using the position information corrected by the second alignment means 32. Specifically, if the region to be noticed is a “region with a small amount of change”, the closest “region with a large amount of change” is searched for, and correction information for the region (vertical correction, horizontal direction) And correction of the rotation direction). Then, the correction information is used to correct the area in the vertical direction, the horizontal direction, and the rotation direction. At this time, when using the correction information of one area having the largest change amount, the correction information of the area is used as it is, or when the correction information of the closest area and the next closest area is used, You may make it correct | amend using the average value of correction information. In FIG. 5, two “regions with a large amount of change” having different directions with respect to the region to be corrected are searched (regions surrounded by thick solid lines), and the vertical correction is performed based on the correction information of the regions. The correction in the horizontal direction and the correction in the rotation direction are performed.
 シルク領域検出手段6は、まず、シルク81を除く全体画像について位置合わせを行った後、検査対象物におけるシルク81の領域(すなわち、位置ずれしたシルク81の領域、図6上図)と、それに対応するシルク81の基準画像における領域(すなわち、位置ずれする前のシルクの領域、図6下図)を検出し、それぞれのずれ量を検出する。具体的には、まず、シルク81を除く全体画像について前述のように位置合わせを行った後、シルク81の輝度による画像を第一の位置合わせ手段31によって粗く位置合わせする。なお、このように粗く位置合わせする場合については、シルク81以外の輝度ですでに計算されているずれ量を用いて位置合わせしてもよい。次に、第二の位置合わせ手段32によってシルク81の輝度における画像を小さな矩形領域に分割し、指定した輝度(ここではシルク81の輝度)で輝度変化量が大きい領域を用いて位置合わせを行う。そして、第三の位置合わせ手段33で、シルク81の存在しない矩形領域の位置合わせをシルク81の輝度を基準として行う。なお、ここでは第三の位置合わせ手段33を用いてシルク81が含まれていない矩形領域の位置合わせを行うようにしているが、第二の位置合わせ手段32における小さな矩形領域のぎりぎり外側にシルク81が存在している場合、シルク81の輝度のとり方によっては、その矩形領域の内側にシルク81が入ってしまう可能性がある。このため、シルク81が含まれていない矩形領域についても位置合わせを行うようにする。そして、このようにシルク81の輝度の画像に基づいて第一の位置合わせ手段31から第三の位置合わせ手段33で位置合わせし、基準画像との比較によって、シルク81の縦方向、横方向、回転方向のずれ量を計算してシルク81の移動後領域と元領域を検出する。なお、ここでは説明の関係上、検査対象物における位置ずれしたシルク81の領域を移動後領域と称し、また、それに対応したシルク81の基準画像におけるシルク81の領域を元領域と称することとする。 The silk region detection means 6 first performs alignment for the entire image excluding the silk 81, and then the silk 81 region (that is, the region of the silk 81 that has been displaced, the upper diagram in FIG. 6) in the inspection object, The corresponding area of the silk 81 in the reference image (that is, the silk area before being displaced, the lower figure in FIG. 6) is detected, and the respective deviation amounts are detected. Specifically, first, the entire image excluding the silk 81 is aligned as described above, and then the image based on the luminance of the silk 81 is roughly aligned by the first alignment means 31. In addition, in the case of such rough alignment, alignment may be performed using a deviation amount that has already been calculated with a brightness other than the silk 81. Next, the image at the luminance of the silk 81 is divided into small rectangular areas by the second alignment means 32, and alignment is performed using an area having a large luminance change amount with the designated luminance (here, the luminance of the silk 81). . Then, the third alignment means 33 performs alignment of a rectangular area where the silk 81 does not exist with reference to the luminance of the silk 81. Here, the third alignment means 33 is used to align a rectangular area that does not include the silk 81, but the second alignment means 32 has a silk just outside the small rectangular area. When 81 exists, the silk 81 may enter inside the rectangular area depending on how the brightness of the silk 81 is taken. For this reason, alignment is also performed for a rectangular region that does not include the silk 81. And based on the brightness | luminance image of the silk 81 in this way, it aligns with the 3rd alignment means 33 from the 1st alignment means 31, and the vertical direction of the silk 81, a horizontal direction, The shift amount in the rotation direction is calculated, and the post-movement area and the original area of the silk 81 are detected. Here, for the sake of explanation, the area of the silk 81 that is displaced in the inspection object is referred to as a post-movement area, and the area of the silk 81 in the reference image of the silk 81 corresponding thereto is referred to as the original area. .
 検査手段7は、検査対象物を検査する際、このように位置合わせされた各領域ごとに基準画像の領域と照らし合わして良否を判定し、その領域における不良画素、あるいは、不良画素が複数連続している領域などを出力する。 When inspecting the inspection object, the inspection means 7 determines whether each area aligned in this way is compared with the area of the reference image, and determines whether or not there are a plurality of defective pixels or a plurality of defective pixels in the area. The area that is being processed is output.
 ここで、シルク81の移動後領域について検査する場合、第一の検査手段71で検査する。この第一の検査手段71では、例えば、あらかじめシルクのRGB輝度に対応した輝度幅を記憶させておき、移動後領域の画素がその輝度幅内に含まれているかどうかを判断する。そして、移動後領域の画素がその輝度幅内に含まれていない場合は「不良画素」であると判断し、かつ、その不良画素が所定個以上連続している場合は、その領域を不良箇所として出力する。 Here, when the area after the silk 81 is inspected is inspected by the first inspection means 71. In the first inspection means 71, for example, a luminance width corresponding to silk RGB luminance is stored in advance, and it is determined whether or not the pixel in the post-movement area is included in the luminance width. If the pixel in the post-movement area is not included in the luminance width, it is determined to be a “defective pixel”, and if the predetermined number of defective pixels are continuous, the area is determined as a defective location. Output as.
 また、他の第一の検査手段71では、基準画像における元領域と比較することによってシルク81の良否を判断することもできる。具体的には、移動後領域と元領域の相互相関をとることによってシルク81の移動量を検出することができた場合、検査画像におけるシルク81の画素をその移動量だけ移動させ、その移動後の座標を基準として、基準画像内における所定の探索距離内にその画素の輝度値から一定範囲内の輝度を有する画素が存在するか否かを判断する。そして、そのような画素が存在する場合は「良画素」と判断し、そのような画素が存在しない場合は「不良画素」であると判断する。そして、すべての画素について同様の処理を行い、不良画素が所定個以上連続している場合は、その領域を「不良箇所」として出力する。 Further, in the other first inspection means 71, the quality of the silk 81 can be judged by comparing with the original area in the reference image. Specifically, when the movement amount of the silk 81 can be detected by cross-correlating the post-movement area and the original area, the pixel of the silk 81 in the inspection image is moved by the movement amount, and after the movement Whether or not there is a pixel having a luminance within a certain range from the luminance value of the pixel within a predetermined search distance in the reference image is determined with reference to the coordinates. When such a pixel exists, it is determined as a “good pixel”, and when such a pixel does not exist, it is determined as a “defective pixel”. Then, the same processing is performed for all the pixels, and when a predetermined number or more of defective pixels are continuous, the region is output as a “defective portion”.
 一方、移動後領域とオーバーラップしないシルク81の元領域については下地が現れているため、基準画像におけるシルク81の領域である元領域と比較することができない。そこで、元領域を検査する場合は、第二の検査手段72で検査する。この第二の検査手段72では、例えば、あらかじめレジストや基材の輝度を記憶させておき、その輝度における所定の輝度幅内に元領域の画素が含まれているかどうかを判断する。そして、その輝度幅内に検査対象物における元領域の画素が含まれている場合は「良画素」と判断し、含まれていない場合は「不良画素」と判断する。そして、その不良画素が所定個以上連続している場合は、その領域を「不良箇所」として出力する。 On the other hand, since the base appears in the original area of the silk 81 that does not overlap with the post-movement area, it cannot be compared with the original area that is the area of the silk 81 in the reference image. Therefore, when the original area is inspected, the second inspection means 72 inspects it. In the second inspection unit 72, for example, the brightness of the resist or the base material is stored in advance, and it is determined whether or not the pixels of the original region are included within a predetermined brightness width in the brightness. Then, when the pixel of the original region in the inspection object is included in the luminance width, it is determined as “good pixel”, and when it is not included, it is determined as “defective pixel”. If a predetermined number or more of the defective pixels are continuous, the area is output as a “defective portion”.
 また、この第二の検査手段72では、元領域の周囲の輝度情報に基づいて検査することもできる。例えば、この元領域を膨らまし処理するとともに元領域の差分をとることによって刳り貫き、元領域の周囲の画像を取得する。そして、その周囲の画像の平均輝度(RGB輝度)を算出し、その平均輝度に対して一定の輝度幅内に元領域の画素が含まれている場合は「良画素」と、含まれていない場合は「不良画素」と判断する。そして、その不良画素が所定個以上連続している場合は、その領域を「不良箇所」として出力するようにすることもできる。 The second inspection means 72 can also inspect based on luminance information around the original area. For example, the original area is inflated and the difference between the original areas is taken through to acquire an image around the original area. Then, the average luminance (RGB luminance) of the surrounding image is calculated, and when the pixels of the original area are included within a certain luminance width with respect to the average luminance, it is not included as “good pixel”. In this case, it is determined as “defective pixel”. When the predetermined number of defective pixels are continuous, the area can be output as a “defective location”.
 さらに、このようなシルク81の移動後領域や元領域以外の領域(すなわち、パッドや配線パターン、レジストなどの領域)については、第一の検査手段71や第二の検査手段72とは異なる第三の検査手段73で検査を行う。この第三の検査手段では、例えば、図6に示すように、位置合わせされた画像の画素の位置を基準(x,y)として、基準画像内における所定の探索距離内にその画素の輝度値から一定範囲内の輝度を有する画素が存在するか否かを判断し、そのような画素が存在する場合は「良画素」と判断し、そのような画素が存在しない場合は「不良画素」であると判断する。そして、すべての画素について同様の処理を行い、不良画素が所定個以上連続している場合は、その領域を「不良箇所」として出力する。なお、ここでは画素ごとの良否の判断を行うようにしているが、もちろんパッドや配線パターン、レジストなどの領域を抽出し、それぞれの領域ごとに独自の検査方法や閾値を用いて検査を行うようにしてもよい。 Further, the areas other than the moved area and the original area of the silk 81 (that is, areas such as pads, wiring patterns, and resists) are different from the first inspection means 71 and the second inspection means 72. Inspection is performed by the third inspection means 73. In the third inspection means, for example, as shown in FIG. 6, the pixel value of the pixel within the predetermined search distance in the reference image with the position of the pixel of the aligned image as the reference (x, y) is used. From the above, it is determined whether or not there is a pixel having a luminance within a certain range. If such a pixel exists, it is determined as “good pixel”, and if such a pixel does not exist, “bad pixel” is determined. Judge that there is. Then, the same processing is performed for all the pixels, and when a predetermined number or more of defective pixels are continuous, the region is output as a “defective portion”. Here, the quality of each pixel is judged, but of course, areas such as pads, wiring patterns, and resists are extracted, and each area is inspected using its own inspection method and threshold. It may be.
 次に、このように構成された自動検査装置1における検査対象物の位置合わせ方法について図7のフローチャートを用いて説明する。 Next, a method of aligning the inspection object in the automatic inspection apparatus 1 configured as described above will be described with reference to the flowchart of FIG.
 まず、検査対象物であるプリント基板8を検査するに際して、先に基準画像の生成を行う場合について説明すると、基準画像を生成する場合、良品である検査対象物であるプリント基板8をステージの上に載置し、画像取得手段2によってその画像を取得する。このとき、あらかじめそのプリント基板8を載置するためのステージの画像を取得しておき、そのステージの画像との差分をとることによってプリント基板8のみからなる画像を取得する(ステップS1)。 First, when inspecting the printed circuit board 8 that is the inspection object, a case where the reference image is generated first will be described. When the reference image is generated, the printed circuit board 8 that is a non-defective inspection object is placed on the stage. The image acquisition means 2 acquires the image. At this time, an image of a stage for placing the printed circuit board 8 is acquired in advance, and an image consisting only of the printed circuit board 8 is acquired by taking a difference from the image of the stage (step S1).
 次に、この取得された画像を低解像度である第一の解像度の画像に変換し、その変換された低解像度の画像に対応する基準画像を読み出して、全体的な位置合わせを行う。この位置合わせにおいては、縦方向の相互相関をとって縦方向のずれ量を検出するとともに、横方向の相互相関もとって横方向のずれ量を検出し、また、その画像を回転させて回転方向の相互相関によっても回転方向のずれ量を検出する(ステップS2におけるn=1の場合)。そして、これらのずれ量に基づいて検査対象物であるプリント基板8の画像のずれを補正する(ステップS3)。 Next, the acquired image is converted into a first resolution image having a low resolution, a reference image corresponding to the converted low resolution image is read out, and overall alignment is performed. In this alignment, the vertical cross-correlation is used to detect the vertical shift, the horizontal cross-correlation is used to detect the horizontal shift, and the image is rotated to rotate. The amount of deviation in the rotational direction is also detected by the cross-correlation of directions (when n = 1 in step S2). Then, based on these deviation amounts, the deviation of the image of the printed circuit board 8 as the inspection object is corrected (step S3).
 次に、この第一の解像度で補正された画像について、第一の解像度よりも比較的高解像度である第二の解像度で位置合わせを行う(ステップS4:No)。この第二の解像度での位置合わせにおいても同様に、その第二の解像度に対応する基準画像を読み出し、相互相関によって縦方向のずれ量や横方向のずれ量、回転方向のずれ量を検出する(ステップS2)。そして、その検出されたずれ量に基づいて検査対象物であるプリント基板8の画像のずれ量を補正する(ステップS3)。 Next, the image corrected at the first resolution is aligned at a second resolution that is relatively higher than the first resolution (step S4: No). Similarly, in the alignment at the second resolution, a reference image corresponding to the second resolution is read, and a vertical shift amount, a horizontal shift amount, and a rotational shift amount are detected by cross-correlation. (Step S2). Then, based on the detected deviation amount, the deviation amount of the image of the printed circuit board 8 as the inspection object is corrected (step S3).
 次に、このような第二の解像度で位置合わせされた検査対象物の画像について、分割処理を行う(ステップS5)。そして、その領域内にどれくらい各画素の輝度変化があるかを示す輝度変化量を求める(ステップS6)。この輝度変化量を求める場合は、その領域における各画素の輝度の分散値を求め、その分散値が所定の閾値以上である場合は、「変化量の大きい領域」と判断し、逆に、分散値が所定の閾値未満である場合は「変化量の小さい領域」と判断する(ステップS7)。 Next, a division process is performed on the image of the inspection object aligned at the second resolution (step S5). Then, a luminance change amount indicating how much the luminance change of each pixel is in the area is obtained (step S6). When calculating this amount of change in luminance, the variance value of the luminance of each pixel in that region is obtained. If the variance value is equal to or greater than a predetermined threshold, it is determined that the region has a large amount of change, and on the contrary If the value is less than the predetermined threshold value, it is determined as “a region with a small amount of change” (step S7).
 次に、この「変化量の大きい領域」と判断された領域を抽出し(ステップS7:Yes)、その領域について、例えば、パッドのエッジ部分のように変化量の大きな部分を抽出して膨らまし処理を行う(ステップS8、S9)。一方、これと同様に、その領域に対応する基準画像についても、変化量の大きな部分について抽出して膨らまし処理を行い、それぞれの画像について相互相関をとり、その相互相関によって算出された最も一致度の高い位置の情報からずれ量を検出し(ステップS10)、検査対象物の領域を独立して補正する(ステップS11)。 Next, an area determined to be the “region with a large amount of change” is extracted (step S7: Yes), and a portion with a large amount of change, such as an edge portion of the pad, is extracted from the region and inflated. (Steps S8 and S9). On the other hand, for the reference image corresponding to the region, the portion with a large amount of change is extracted and inflated, cross-correlation is performed for each image, and the degree of coincidence calculated by the cross-correlation is calculated. The amount of deviation is detected from the information of the high position (step S10), and the region of the inspection object is independently corrected (step S11).
 一方、「変化量の小さい領域」と判断された場合は(ステップS7:No)、その領域から最も近い「変化量の大きい領域」および次に近い「変化量の大きい領域」を抽出して(ステップS13)、それぞれの領域における縦方向、横方向、回転方向のずれ量を抽出する。そして、それぞれのずれ量の平均値からその領域の位置を補正する(ステップS14)。 On the other hand, when it is determined that the region is a region with a small amount of change (step S7: No), the closest region with a large amount of variation and the next region with a large amount of variation are extracted ( Step S13), the shift amounts in the vertical direction, the horizontal direction, and the rotation direction in each region are extracted. Then, the position of the region is corrected from the average value of the respective shift amounts (step S14).
 そして、同様の処理を複数枚のプリント基板8について行い、それぞれを位置合わせされた画像の各画素ごとにRGBごとの輝度を抽出して(図8におけるステップT1)、各画素の位置ごとに許容される輝度幅を決定する。この輝度幅を決定する場合は、複数枚読み込んだプリント基板8の画素のRGB輝度のばらつきである分散値や標準偏差を求め(ステップT2)、その分散値や標準偏差の値が大きい場合、平均輝度からの許容幅を大きく設定してその画素に対する基準データとして記憶させる。この許容輝度幅を設定する場合、RGB輝度を極座標系に変換し、それぞれの輝度を、原点からの距離r、原点を通る直線とのなす角度θで表現できるようにしておく(ステップT3)。そして、距離rや角度θの大きさを変えることによって許容輝度幅を設定する(ステップT4)。このように距離rや角度θを用いて許容輝度幅を設定すれば、直交座標系で許容輝度幅を設定する場合に比べてパラメータが少なくなるとともに、色相(RGBの輝度の割合)を変更することなく明度や彩度のみを変更することができるというメリットがある。 Then, the same processing is performed on the plurality of printed circuit boards 8, and the luminance for each RGB is extracted for each pixel of the aligned image (step T1 in FIG. 8), and allowed for each pixel position. The brightness range to be determined is determined. When determining the luminance width, a dispersion value or standard deviation that is a variation in RGB luminance of pixels of the printed circuit board 8 that has read a plurality of sheets is obtained (step T2). The allowable range from the luminance is set large and stored as reference data for the pixel. When setting the permissible luminance width, the RGB luminance is converted into a polar coordinate system so that each luminance can be expressed by a distance r from the origin and an angle θ formed with a straight line passing through the origin (step T3). Then, the allowable luminance width is set by changing the distance r and the angle θ (step T4). If the allowable luminance width is set using the distance r and the angle θ in this way, the parameters are reduced and the hue (ratio of RGB luminance) is changed as compared with the case where the allowable luminance width is set in the orthogonal coordinate system. There is an advantage that only brightness and saturation can be changed without any change.
 一方、その画素に対応して、検査対象物におけるプリント基板8の対応画素の探索距離をテーブルとして記憶させ(ステップT5)、その画素の位置からその探索距離内に許容輝度幅の輝度を有する画素が存在するかどうかを検査できるようにしておく。 On the other hand, corresponding to the pixel, the search distance of the corresponding pixel of the printed circuit board 8 in the inspection object is stored as a table (step T5), and the pixel having the luminance within the allowable luminance width within the search distance from the position of the pixel. It is possible to check whether or not exists.
 次に、このように基準画像や基準データを記憶させておいた状態において、検査対象となるプリント基板8を検査する場合の処理を図7および図9を用いて説明する。 Next, processing in the case of inspecting the printed circuit board 8 to be inspected in a state where the reference image and the reference data are stored in this manner will be described with reference to FIGS.
 検査対象物となるプリント基板8を検査する場合は、同様に、プリント基板8をステージの上に載置し、画像取得手段2によってそのプリント基板8のみからなる画像を取得する。(ステップS1)。 In the case of inspecting the printed circuit board 8 to be inspected, similarly, the printed circuit board 8 is placed on the stage, and the image acquisition unit 2 acquires an image composed only of the printed circuit board 8. (Step S1).
 次に、この取得された画像を低解像度である第一の解像度の画像に変換し、その変換された低解像度の画像に対応する基準画像を読み出して縦方向、横方向、回転方向の相互相関をとって各方向のずれ量を補正する(ステップS2~ステップS3)。同様にして、この第一の解像度で補正された画像について、第一の解像度よりも比較的高解像度である第二の解像度で位置合わせを行う(ステップS4、ステップS2~ステップS3)。 Next, the acquired image is converted into an image of a first resolution which is a low resolution, and a reference image corresponding to the converted low resolution image is read out to cross-correlate in the vertical, horizontal and rotational directions. To correct the amount of deviation in each direction (steps S2 to S3). Similarly, the image corrected at the first resolution is aligned at a second resolution that is relatively higher than the first resolution (step S4, steps S2 to S3).
 次に、このような粗い画像で位置合わせされた検査対象物の画像について、分割処理を行い(ステップS5)、その領域内の輝度変化量を求めて「変化量の大きい領域」と「変化量の小さい領域」に分ける(ステップS6、ステップS7)。 Next, the image of the inspection object aligned with such a rough image is divided (step S5), and the luminance change amount in the region is obtained to obtain “region with large change amount” and “change amount”. Are divided into “small regions” (steps S6 and S7).
 そして、「変化量の大きい領域」と判断された領域を抽出し(ステップS8)、その領域について、シルクの色や輝度を除く領域を抽出し、その抽出された領域の画素について、変化量の大きな部分を抽出して膨らまし処理を行うとともに(ステップS9)、その領域に対応する基準画像についても、変化量の大きな部分について抽出し、膨らまし処理し、それぞれの画像について相互相関をとってずれ量を検出する(ステップS10)。そして、その相互相関によって算出された最も一致度の高い位置の情報から、検査対象物の領域を独立して補正する(ステップS11)。また、シルクについては、検査画像からシルクの輝度に対応する画像を抽出して、ステップS1~ステップS11と同様に第一の位置合わせ手段31から第三の位置合わせ手段33を用いて位置合わせし、基準画像と比較することによってずれ量を計算するとともに、そのずれ量によって移動後領域と元領域を抽出する(ステップS12)。 Then, an area determined as “an area having a large change amount” is extracted (step S8), an area excluding silk color and luminance is extracted for the area, and the change amount of the pixel in the extracted area is extracted. A large portion is extracted and inflated (step S9), and a reference image corresponding to the region is also extracted for a portion with a large amount of change, inflated, and the amount of deviation is obtained by cross-correlating each image. Is detected (step S10). And the area | region of a test target object is correct | amended independently from the information of the position with the highest coincidence calculated by the cross correlation (step S11). For silk, an image corresponding to the brightness of the silk is extracted from the inspection image, and is aligned using the first alignment means 31 to the third alignment means 33 as in steps S1 to S11. The shift amount is calculated by comparing with the reference image, and the post-movement area and the original area are extracted based on the shift amount (step S12).
 一方、「変化量の小さい領域」については、近傍の「変化量の大きい領域」の補正情報を抽出し、その補正情報に基づいて「変化量の小さい領域」の位置を補正していく(ステップS13、S14)。 On the other hand, for the “region with a small amount of change”, the correction information of the “region with a large amount of change” in the vicinity is extracted, and the position of the “region with a small amount of change” is corrected based on the correction information (step S13, S14).
 次に、このように位置合わせやシルクの移動後領域や元領域を抽出した後、まず、その移動後領域や元領域について検査を行う(ステップU1)。移動後領域を検査する場合は、第一の検査方法として、その移動後領域の画素がシルクの所定幅内の輝度で構成されているかどうかを判断し(ステップU2)、所定幅内の輝度で構成されている場合は「良画素」(ステップU3)、構成されていない場合は「不良画素」と判断する(ステップU4)。そして、所定画素以上連続して不良画素が存在する場合は、その領域を不良箇所として出力する(ステップU5)。 Next, after extracting the area and the original area after alignment and silk movement in this way, first, the post-movement area and the original area are inspected (step U1). When the post-movement area is inspected, as a first inspection method, it is determined whether or not the pixels in the post-movement area are configured with a luminance within a predetermined width of the silk (step U2), and the luminance within the predetermined width is determined. If it is configured, it is determined as “good pixel” (step U3), and if it is not configured, it is determined as “bad pixel” (step U4). If defective pixels are continuously present for a predetermined pixel or more, the region is output as a defective portion (step U5).
 一方、移動後領域とオーバーラップしない元領域については、第二の検査方法として(ステップU6)、その領域の画素が、あらかじめ記憶されたレジストの所定幅内の輝度に含まれているかどうかを判断し(ステップU7)、所定幅内の輝度で構成されている場合は「良画素」(ステップU8)、構成されていない場合は「不良画素」と判断する(ステップU9)。そして、所定画素以上連続して不良画素が存在する場合は、その領域を不良箇所として出力する(ステップU10)。 On the other hand, for the original area that does not overlap the post-movement area, as a second inspection method (step U6), it is determined whether or not the pixels in that area are included in the brightness within the predetermined width of the resist stored in advance. (Step U7), it is determined that the pixel is “good pixel” (step U8) if it is configured with a luminance within a predetermined width, and “bad pixel” if it is not configured (step U9). If defective pixels are continuously present for a predetermined pixel or more, the region is output as a defective portion (step U10).
 次に、移動後領域や元領域以外の領域については、第三の検査方法として(ステップU11)、検査対象物の各画素の位置に対応する基準画像の位置から、あらかじめ記憶されていた許容輝度幅および探索距離を抽出し(ステップU12)、基準画像の探索距離内にその許容輝度幅内の輝度(RGB毎の輝度)の画素が存在するかどうかを検査する(ステップU13)。そして、そのような画素が存在する場合は「良画素」と判断し(ステップU14)、そのような画素が存在しない場合は「不良画素」と判断する(ステップU15)。そして、不良画素が所定個数以上連続して存在する場合は、不良領域として出力する(ステップU16)。 Next, for the areas other than the moved area and the original area, as the third inspection method (step U11), the allowable luminance stored in advance from the position of the reference image corresponding to the position of each pixel of the inspection object. The width and the search distance are extracted (step U12), and it is checked whether or not there is a pixel having a luminance (luminance for each RGB) within the allowable luminance width within the search distance of the reference image (step U13). If such a pixel exists, it is determined as a “good pixel” (step U14), and if such a pixel does not exist, it is determined as a “defective pixel” (step U15). If a predetermined number or more of defective pixels are continuously present, a defective area is output (step U16).
 このように上記実施の形態によれば、検査対象物であるプリント基板8の画像を取得する画像取得手段2と、基準画像を記憶する基準画像記憶手段5と、画像取得手段2で取得された画像と基準画像とから、取得された画像におけるシルク領域を検出するシルク領域検出手段6と、当該検出されたシルク領域については、第一の検査方法で検査を行う第一の検査手段71と、当該シルクが元あった領域については、第二の検査方法で検査を行う第二の検査手段71とを備えるようにしたので、シルクが元あった領域についても検査を行うことができ、検査の精度を良くすることができる。 As described above, according to the embodiment, the image acquisition unit 2 that acquires an image of the printed circuit board 8 that is the inspection target, the reference image storage unit 5 that stores the reference image, and the image acquisition unit 2 acquire the image. From the image and the reference image, a silk area detecting means 6 for detecting a silk area in the acquired image, and for the detected silk area, a first inspection means 71 for inspecting by a first inspection method, Since the area where the silk originated is provided with the second inspection means 71 for inspecting by the second inspection method, the area where the silk originated can also be inspected. The accuracy can be improved.
 また、第二の検査手段72として、レジストもしくは基材の輝度に対して所定の輝度幅内の輝度の画素で構成されているか否かによって検査するように構成するようにしたので、そのレジストや基材の色に基づいて検査すれば、レジストや基材の不良を検出することができるようになる。 In addition, since the second inspection means 72 is configured to inspect depending on whether or not it is composed of pixels having a luminance within a predetermined luminance width with respect to the luminance of the resist or the base material, If inspection is performed based on the color of the substrate, it is possible to detect defects in the resist and the substrate.
 さらに、第二の検査手段で検査する場合、シルクが元あった領域の周囲の領域の輝度に基づいて検査を行うようにした場合は、シルクが元あった領域における周囲から画像を推定して検査の精度を良くすることができるようになる。 In addition, when inspecting with the second inspection means, if the inspection is performed based on the brightness of the area around the area where the silk originated, the image is estimated from the surrounding area where the silk originated. Inspection accuracy can be improved.
 なお、本発明は上記実施の形態に限定されることなく種々の態様で実施することができる。 Note that the present invention is not limited to the above-described embodiment, and can be implemented in various modes.
 例えば、上記実施の形態では、第一の位置合わせ手段31から第三の位置合わせ手段33を用いて位置合わせした後にシルク81のずれ量を検出するようにしたが、基準画像の外枠とのずれによってシルク81のずれ量を大まかに計算するようにしてもよい。 For example, in the above-described embodiment, the shift amount of the silk 81 is detected after the alignment is performed using the first alignment unit 31 to the third alignment unit 33. The displacement amount of the silk 81 may be roughly calculated by the displacement.
 さらに、上記実施の形態で、元領域を検査する場合、レジストや基材の色に基づいて検査するようにしたが、シルク81の左右に配線パターンが存在している場合は、その配線パターンを結ぶ仮想領域を形成し、その仮想領域では配線パターン上にレジストが塗布された領域とみなして検査を行うようにしてもよい。このような仮想領域を形成する場合としては、例えば、シルク81の外縁で輝度が変化する変化点を検出し、その変化点と変化点を結ぶ直線あるいは曲線を形成する。そして、その直線あるいは曲線のうち、いずれか一方の領域について周囲の輝度が変化している側を、その輝度で構成された領域とみなして検査を行うようにする。 Furthermore, in the above embodiment, when the original area is inspected, the inspection is performed based on the color of the resist and the base material. However, when the wiring patterns exist on the left and right of the silk 81, the wiring pattern is A virtual region to be connected may be formed, and the virtual region may be inspected as a region where a resist is applied on the wiring pattern. In the case of forming such a virtual region, for example, a change point where the luminance changes at the outer edge of the silk 81 is detected, and a straight line or a curve connecting the change point and the change point is formed. Then, the inspection is performed by regarding the one of the straight line or the curve where the surrounding luminance is changing as the region constituted by the luminance.
 また、上記実施の形態でシルク81の移動後領域を検査する場合、移動後領域の画素がシルクのRGB輝度に対応した輝度幅内に含まれているかどうかを検査し、また、元領域を検査する場合、レジストや基材の所定の輝度幅内に元領域の画素が含まれているかどうかを判断するようにしたが、これ以外の方法によって移動後領域や元領域の検査をすることもできる。この具体例としては、シルク81を細線化してシルク81の中心線を抽出し、基準画像で同様に細線化されたシルク81の中心線のピクセルと比較して距離を計算し、そのずれ量に基づいて移動後領域や元領域を検査する方法などが考えられる。また、他の方法としては、上記第一の位置合わせ手段31から第三の位置合わせ手段33を用いて位置合わせをして基準画像と比較することによりシルク81のずれ量を計算し、それぞれの画像同士の差分を行う。そして、その差が大きい部分の面積を計算することでずれ量や移動後領域、元領域を検査する方法などを用いることもできる。 Further, when inspecting the moved area of the silk 81 in the above embodiment, it is checked whether or not the pixels in the moved area are included in the luminance width corresponding to the RGB luminance of the silk, and the original area is inspected. In this case, it is determined whether or not the pixel of the original area is included within the predetermined luminance width of the resist or the base material, but the post-movement area and the original area can be inspected by other methods. . As a specific example, the center line of the silk 81 is extracted by thinning the silk 81, and the distance is calculated by comparing with the pixels of the center line of the silk 81 similarly thinned in the reference image. Based on this, a method for inspecting the post-movement area and the original area can be considered. In addition, as another method, the amount of displacement of the silk 81 is calculated by performing alignment using the first alignment unit 31 to the third alignment unit 33 and comparing with the reference image. Difference between images is performed. Then, by calculating the area of the portion where the difference is large, a method of inspecting the shift amount, the post-movement area, the original area, or the like can be used.
 本発明は、プリント基板や液晶基板、物体の表面に形成された模様や文字などの形成状態を検査する自動検査装置の分野で利用される。 The present invention is used in the field of an automatic inspection device that inspects the formation state of a printed board, a liquid crystal substrate, a pattern or a character formed on the surface of an object.
1・・・自動検査装置
2・・・画像取得手段
3・・・位置合わせ手段(31第一の位置合わせ手段、32第二の位置合わせ手段、33第三の位置合わせ手段)
4・・・輝度変化算出手段
5・・・基準画像記憶手段
6・・・シルク領域検出手段
7・・・検査手段
8・・・プリント基板
81・・・シルク
DESCRIPTION OF SYMBOLS 1 ... Automatic inspection apparatus 2 ... Image acquisition means 3 ... Positioning means (31 1st positioning means, 32 2nd positioning means, 33 3rd positioning means)
4 ... Brightness change calculating means 5 ... Reference image storage means 6 ... Silk region detecting means 7 ... Inspection means 8 ... Printed circuit board 81 ... Silk

Claims (6)

  1. 検査対象物であるプリント基板の画像を取得する画像取得手段と、
    基準画像を記憶する基準画像記憶手段と、
    前記画像取得手段で取得された画像におけるシルク領域を検出するシルク領域検出手段と、
    当該シルク領域検出手段で検出されたシルク領域を第一の検査方法で検査する第一の検査手段と、
    前記シルク領域検出手段で検出されたシルク領域以外の領域であって基準画像におけるシルク領域を第二の検査方法で検査する第二の検査手段と、
    前記第一の検査手段および第二の検査手段で検査する領域以外の領域を、前記第一の検査方法および第二の検査方法とは異なる第三の検査方法で検査する第三の検査手段と、
    を備えたことを特徴とする自動検査装置。
    Image acquisition means for acquiring an image of a printed circuit board that is an inspection object;
    Reference image storage means for storing a reference image;
    A silk area detecting means for detecting a silk area in the image obtained by the image obtaining means;
    A first inspection means for inspecting a silk area detected by the silk area detection means by a first inspection method;
    A second inspection means for inspecting a silk area in a reference image by a second inspection method, other than the silk area detected by the silk area detection means;
    Third inspection means for inspecting an area other than the area to be inspected by the first inspection means and the second inspection means by a third inspection method different from the first inspection method and the second inspection method; ,
    An automatic inspection device characterized by comprising:
  2. 前記第二の検査手段が、レジストもしくは基材の輝度に対して所定の輝度幅内の輝度の画素で構成されているか否かによって検査するようにしたものである請求項1に記載の自動検査装置。 2. The automatic inspection according to claim 1, wherein the second inspection unit inspects whether or not the second inspection unit includes pixels having a luminance within a predetermined luminance width with respect to the luminance of the resist or the substrate. apparatus.
  3. 前記第二の検査手段が、シルクが元あった領域の周囲の領域の輝度に基づいて検査を行うようにしたものである請求項1に記載の自動検査装置。 2. The automatic inspection apparatus according to claim 1, wherein the second inspection means performs an inspection based on the brightness of an area around the area where the silk was originally formed.
  4. 検査対象物であるプリント基板の画像を取得するステップと、
    前記取得された画像におけるシルク領域を検出するステップと、
    当該検出されたシルク領域を第一の検査方法で検査するステップと、
    前記検出されたシルク領域以外の領域であって基準画像におけるシルク領域を第二の検査方法で検査するステップと、
    前記第一の検査方法および第二の検査方法で検査する領域以外の領域を、前記第一の検査方法および第二の検査方法とは異なる第三の検査方法で検査するステップと、
    を備えるようにしたことを特徴とする自動検査方法。
    Obtaining an image of a printed circuit board that is an inspection object;
    Detecting a silk region in the acquired image;
    Inspecting the detected silk region with a first inspection method;
    A step of inspecting a silk region in a reference image in a region other than the detected silk region by a second inspection method;
    Inspecting a region other than the region to be inspected by the first inspection method and the second inspection method by a third inspection method different from the first inspection method and the second inspection method;
    An automatic inspection method characterized by comprising:
  5. 前記第二の検査方法が、レジストもしくは基材の輝度に対して所定の輝度幅内の輝度の画素で構成されているか否かによって検査するようにしたものである請求項4に記載の自動検査方法。 5. The automatic inspection according to claim 4, wherein the second inspection method is configured to inspect whether or not a pixel having a luminance within a predetermined luminance width with respect to a luminance of a resist or a substrate is configured. Method.
  6. 前記第二の検査手段が、シルクが元あった領域の周囲の領域の輝度に基づいて検査を行うようにしたものである請求項4に記載の自動検査方法。 5. The automatic inspection method according to claim 4, wherein the second inspection means performs an inspection based on a luminance of an area around the area where the silk is originally formed.
PCT/JP2011/062300 2011-05-28 2011-05-28 Automatic inspection device and automatic inspection method for inspecting silk backing WO2012164654A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/062300 WO2012164654A1 (en) 2011-05-28 2011-05-28 Automatic inspection device and automatic inspection method for inspecting silk backing
JP2013517718A JPWO2012164654A1 (en) 2011-05-28 2011-05-28 Automatic inspection device and automatic inspection method for inspecting silk substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/062300 WO2012164654A1 (en) 2011-05-28 2011-05-28 Automatic inspection device and automatic inspection method for inspecting silk backing

Publications (1)

Publication Number Publication Date
WO2012164654A1 true WO2012164654A1 (en) 2012-12-06

Family

ID=47258540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062300 WO2012164654A1 (en) 2011-05-28 2011-05-28 Automatic inspection device and automatic inspection method for inspecting silk backing

Country Status (2)

Country Link
JP (1) JPWO2012164654A1 (en)
WO (1) WO2012164654A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023022130A (en) * 2018-06-26 2023-02-14 公益財団法人鉄道総合技術研究所 High accuracy position correction method and system of waveform data

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1173513A (en) * 1997-06-25 1999-03-16 Matsushita Electric Works Ltd Device and method for pattern inspection
JP2006078300A (en) * 2004-09-09 2006-03-23 Dainippon Screen Mfg Co Ltd Flaw detection method of object by color image of the object
JP2008298436A (en) * 2007-05-29 2008-12-11 Mega Trade:Kk Visual examination method and visual examination device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1173513A (en) * 1997-06-25 1999-03-16 Matsushita Electric Works Ltd Device and method for pattern inspection
JP2006078300A (en) * 2004-09-09 2006-03-23 Dainippon Screen Mfg Co Ltd Flaw detection method of object by color image of the object
JP2008298436A (en) * 2007-05-29 2008-12-11 Mega Trade:Kk Visual examination method and visual examination device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023022130A (en) * 2018-06-26 2023-02-14 公益財団法人鉄道総合技術研究所 High accuracy position correction method and system of waveform data
JP7423180B2 (en) 2018-06-26 2024-01-29 公益財団法人鉄道総合技術研究所 High-precision position correction method and system for waveform data
JP7446698B2 (en) 2018-06-26 2024-03-11 公益財団法人鉄道総合技術研究所 High-precision position correction method and system for waveform data

Also Published As

Publication number Publication date
JPWO2012164654A1 (en) 2014-07-31

Similar Documents

Publication Publication Date Title
US8452072B2 (en) Method and apparatus for inspecting tire shape
WO2016039041A1 (en) Overlay measurement method, device and display device
JP4907725B2 (en) Calibration device, defect detection device, defect repair device, display panel, display device, calibration method
CN105976354B (en) Color and gradient based component positioning method and system
KR101794964B1 (en) Inspection system and inspection method
KR20100053442A (en) Defect inspection device and defect inspection method
JP2007303853A (en) End inspection device
WO2010029932A1 (en) Visual examination apparatus
EP3264181B1 (en) Substrate pre-alignment method
JP5852641B2 (en) Automatic inspection device and alignment method in automatic inspection device
CN105184739A (en) Printed circuit board AOI detection image stitching method
KR101689980B1 (en) Pattern inspection apparatus and pattern inspection method
JP2008209354A (en) Calibration method and device, and automatic detection device
CN111007086A (en) Defect detection method and device and storage medium
KR100719712B1 (en) Bump checking apparatus and method
WO2012164654A1 (en) Automatic inspection device and automatic inspection method for inspecting silk backing
JP5832167B2 (en) Component presence / absence determination apparatus and component presence / absence determination method
JP2007212939A (en) Inspection method of positional deviation, program and inspection device of positional deviation
JP2007024747A (en) Panel inspecting apparatus
JP2011252886A (en) Inspection method for printed matter and inspection device therefor
WO2018135112A1 (en) Positional-deviation-amount acquisition device, inspection device, positional-deviation-amount acquisition method, and inspection method
JP2007309703A (en) Inspection method of pixel
JP2011112593A (en) Inspection method and inspection device of printed matter
JP2009079934A (en) Three-dimensional measuring method
JP2008275392A (en) Three-dimensional shape measurement method and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867001

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013517718

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11867001

Country of ref document: EP

Kind code of ref document: A1