WO2012143893A2 - Aparato generador de haces de electrones y fotones-x convergentes - Google Patents

Aparato generador de haces de electrones y fotones-x convergentes Download PDF

Info

Publication number
WO2012143893A2
WO2012143893A2 PCT/IB2012/051983 IB2012051983W WO2012143893A2 WO 2012143893 A2 WO2012143893 A2 WO 2012143893A2 IB 2012051983 W IB2012051983 W IB 2012051983W WO 2012143893 A2 WO2012143893 A2 WO 2012143893A2
Authority
WO
WIPO (PCT)
Prior art keywords
collimator
electrons
conical
electron
rays
Prior art date
Application number
PCT/IB2012/051983
Other languages
English (en)
French (fr)
Other versions
WO2012143893A3 (es
WO2012143893A4 (es
Inventor
Rodolfo FIGUEROA SAAVEDRA
Mauro VALENTE
Original Assignee
Universidad De La Frontera
Universidad Nacional De Córdoba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De La Frontera, Universidad Nacional De Córdoba filed Critical Universidad De La Frontera
Priority to ES12774012T priority Critical patent/ES2812563T3/es
Priority to EP12774012.4A priority patent/EP2711048B1/en
Priority to BR112013027007-1A priority patent/BR112013027007B1/pt
Priority to US14/112,429 priority patent/US9583302B2/en
Publication of WO2012143893A2 publication Critical patent/WO2012143893A2/es
Publication of WO2012143893A3 publication Critical patent/WO2012143893A3/es
Publication of WO2012143893A4 publication Critical patent/WO2012143893A4/es

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/14Arrangements for concentrating, focusing, or directing the cathode ray
    • H01J35/147Spot size control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1084Beam delivery systems for delivering multiple intersecting beams at the same time, e.g. gamma knives
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/025Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using multiple collimators, e.g. Bucky screens; other devices for eliminating undesired or dispersed radiation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/08Deviation, concentration or focusing of the beam by electric or magnetic means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/02Constructional details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/58Switching arrangements for changing-over from one mode of operation to another, e.g. from radioscopy to radiography, from radioscopy to irradiation or from one tube voltage to another
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1089Electrons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1091Kilovoltage or orthovoltage range photons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1095Elements inserted into the radiation path within the system, e.g. filters or wedges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/112Non-rotating anodes
    • H01J35/116Transmissive anodes

Definitions

  • the emission of the radiation beam in any energy range, is essentially divergent and the intensity is a function of the distance to the emitting source (law of the inverse of the square of the distance), due to the X-ray production mechanism: electrons that impact a target.
  • the X-ray beams that are used are divergent.
  • the goal that is intended to be achieved in radiotherapy is, through the application of X-rays, to achieve a high flow area of X-rays within a certain volume, which will deposit their energy.
  • the energy deposited per unit mass is known in radiation therapy as a dose.
  • the beam used is remarkably divergent, it is necessary to use several directed beams (fields) towards the volume of interest.
  • the depth dose for an X-ray beam is given by an exponential curve decreasing with depth, with a maximum value close to the surface.
  • IMRT modulated intensity radiotherapy
  • arc therapy it is possible to improve and shape the volume of maximum X-ray flux thus decreasing dose levels in nearby tissues and organs, but not significantly.
  • IMRT modulated intensity radiotherapy
  • arc therapy it has been achieved that the dose values in tissues and organs near the area of interest, can be reduced by up to 80% with respect to the dose in the area of interest.
  • treatment planning remains complex and attempts are always made to reduce the side effects generated by radiation, but it is impossible to completely rule them out.
  • the cost of this technique is much higher than that of conventional techniques with photons or electrons. This makes it impossible to use a large number of patients and is scarcely available from hospitals and health and treatment centers.
  • Figure 1 shows a comparative graph of relative dose in depth of the various techniques of radiotherapy more widespread.
  • This invention proposes the use of an apparatus capable of generating a convergent photon beam, the advantages of which are significantly greater than the conventional external radiotherapy technique with photons and the techniques of hadron therapy, the latter cataloged as those that provide better results.
  • the convergent method presents: lower surface dose, low dose in healthy organs, high dose in the tumor that does not require fractionation, simpler planning system, shorter treatments (one or two sessions), greater effectiveness and accessibility to the vast majority of tumors, system of Simpler cooling, no high energy is required and therefore bunker with less shielding requirements.
  • a smaller treated volume makes it necessary to scan the tumor and a more precise positioning system.
  • the only method with external photons that could be comparable in quality with the convergent technique of the present invention is the technique of arc therapy, or I take photon therapy using LINAC.
  • Arc therapy emulates convergence by using an angular sweep around the isocenter (tumor area), but with longer sessions and equally complex schedules, however, each beam remains essentially divergent and doses in healthy organs are not negligible, and at Like other conventional techniques with LINAC, several sessions are required. Something similar is achieved through the use of a robotic device called "cyberknife".
  • the hadron therapy method presents: low surface dose and is highly effective since it deposits a high dose in depth in a very small area (Bragg peak, see Figure 1).
  • Hadrons and ions have high radiobiological effectiveness, protons 5 times more than photons, and complex positioning systems; however, a very complex installation is required that includes a synchrotron that can accelerate the particles to energies from several hundred MeV to several GeV, high vacuum, and electrical and magnetic guidance systems.
  • the cost of a hadronrick facility exceeds $ 100 M USD (there are 28 hadron therapy facilities in the world in the most developed countries and despite the high cost it is a technique that is still expanding). In Chile it is unthinkable so far and Spain is evaluating the possibility of having one of these facilities in the coming years. It provides excellent results in complex cancer patients, since it allows treating tumors that cannot be treated with photons, however the cost of a treatment is only available to a few.
  • the convergent method used by the invention proposed here provides a low surface dose and is highly effective since it deposits a high dose in depth in a very small area ("peak-focus").
  • the photons present a Less radiobiological effectiveness, however, the dose deposited in the area of the peak-focus may become 100 times higher than the dose on the surface, despite the attenuation effect.
  • This compensates for the lower radiobiological effectiveness of the photons and generates a relative dose on the surface and in the healthy organs even lower than that obtained in hadrontherapy, however the positioning system must be more precise than that of conventional techniques. This would allow to treat complex cancers as in hadronbib, but with a less complex installation.
  • the cost of a LINAC plus control building bunker is of the order of $ 2 to 3 M USD, while a convergence system adaptable to a LINAC could have a cost of the order of about $ 0.5 M USD or less, which is a notable advantage over the cost of a hadrontherapy facility, which is almost two orders of magnitude greater. In this sense, a convergent system would behave in a similar way to a hadron therapy system but at a significantly lower cost.
  • Figure 1 shows a relative dose in depth for the different techniques used in radiotherapy.
  • Figure 2a shows a scheme of a traditional X-ray radiation therapy system.
  • Figure 2b shows a scheme of a convergent X-ray radiation therapy system.
  • Figure 3 shows an in-depth dose for a beam of converging photons with 0.4 MeV in water phantom, compared to theoretical and SMC results.
  • Figure 4 shows a comparison of two dose profiles for converging photons of two SMCs for foci located 2 and 10 cm from the surface of the phantom.
  • Figure 5 shows a sectional view of depth dose achieved by SMC for converging photons, for an "uncured" case.
  • Figure 6 shows a sectional view of depth dose achieved by SMC for converging photons generated by electrons that hit an anodic cap and then pass through a hole-like collimator similar to those proposed in the present invention.
  • Figure 9 shows a diagram of the converging electron beam generator element, which may be formed by more than one magnetic lens.
  • Figure 10 shows a diagram of an alternative configuration of the converging electron beam generator element, which could be formed by an electrostatic element similar to the cylinder lenses.
  • Figure 1 1 shows a scheme describing how the beam of converging photons is generated.
  • Figure 12 shows a schematic of the essential parts of the present invention.
  • FIG. 13 shows a complete scheme of the invention with each of its parts.
  • Figures 14a and 14b show a cross-sectional view and a front view respectively of a front unit.
  • Figures 15a and 15b show a cross-sectional view and a front view respectively of an alternative configuration of a front unit.
  • Figure 16 shows a configuration of the present invention where it is adapted to a typical LINAC.
  • Figure 17 shows a configuration of the present invention where it is adapted to a cyberknife.
  • Figure 18 shows a configuration of the present invention where it is adapted to a therapy unit.
  • Figure 19 shows an alternative configuration of the present invention, where it is used for low energy applications.
  • Figure 20 shows an alternative configuration in which a flat collimator with parallel beam output is used.
  • Figure 21 shows an exchange of photon output cone for an electron cone.
  • the present invention consists of a device that allows to generate a beam of electrons and convergent X-rays.
  • an electron beam from an electron gun is initially considered, which are accelerated by a succession of stages in a linear radiation therapy LINAC accelerator, until an electron flow with energy of the order of MeV is achieved.
  • it can also be considered for intermediate energy cases, known as ortho voltage (hundreds of keV), generated only by an electron gun.
  • the relatively collimated electron beam from the LINAC is first expanded by an electron disperser, which is then focused by the action of a properly arranged magnetic (2) or electrostatic lens.
  • the emerging electrons of the lens intercept the surface of an anode (3) in the form of a spherical (or aspherical, paraboloid) cap, which we will call “anodic cap”, whose radius of curvature defines the focal (spherical) distance of the convergent system.
  • the magnetic lens has an input lens body c, a field concentrator housing d and electric conductors with solenoid winding type e.
  • the converging electron beam generator element may be formed by an electrostatic element similar to the cylinder lenses, which is at the same time formed by three cylinders: the first connected to ground ( f), the second negatively polarized cylinder (g) and the third also grounded (h). As shown in Figure 10.
  • Electronic lenses should be adjusted so that the electron beam strikes the entire anode surface perpendicularly.
  • braking radiation known as bremsstrahlung
  • X-rays is generated in the material. Since the incidence of electrons occurs over the entire surface of the anodic cap / ' (see Figure 1 1), the phenomenon of X-ray emission by bremsstrahlung will occur isotropically throughout the cap (3). Saying bremsstrahlung is generated at each point of the cap.
  • the X-rays that pass through the cap have a non-isotropic angular distribution, with a greater intensity in the direction of incidence of the electrons k and an angular divergence inversely proportional to the energy of the incident electron, then the X-rays are collimated by a poly-collimator (5) of a spherical cap shape similar to that of the anodic cap with tens, hundreds or thousands of small holes (millimeter or sub-millimeter) that cross it in the direction of the focus.
  • the X-rays that manage to pass through these holes will come out with a much smaller angular dispersion than they had at the exit of the anodic cap (3), and the rest is absorbed into the material, thus generating a convergent photon beam whose Maximum intensity is concentrated in the focus.
  • the focus definition of this convergent photon beam can be improved by introducing a second poly collimator cap (7).
  • This global effect generates a volume of radiation that mainly points to the focus of the system with a significant higher intensity of X-rays in the area of the focus, peak-focus, whose magnitude will depend on the energy of the electrons, the radius of curvature of the anodic cap (3), its surface and the opening of a field diaphragm shown below.
  • FIG 12 the essential parts of the invention are shown, where the electrons coming from the source, in case they come from a LINAC or an electron gun, are dispersed by a small sheet (1), to generate a divergent flow of electrons, which are diverted towards the axis by a magnetic (2) (or electrostatic) lens, generating a convergent electron flow (i) that is intercepted perpendicularly (j) by a thin cap-shaped anode (anode-cap) or spherical, aspherical or parabolic (3), and a side beam brake (4).
  • a magnetic (2) or electrostatic
  • the X-rays generated that manage to pass the thickness of the anode (k) are collimated by a collimator cap (5) bored throughout its surface by small holes (6) that point in the direction of the focus, the X-ray beam convergent (I), it can be collimated again (m) by a second collimator (7) smaller and similar to the first one, this collimator is surrounded by a conical inner conical ring (8), which allows to absorb X-rays out of focus and decrease the lateral penumbra of the beam.
  • the invention can be seen in detail as an apparatus, which has a coupler to the electron source (9), which allows the device proposed herein to adhere to a specific LINAC or to a specific electron gun, throughout
  • the case is a piece that must be adapted to the different devices existing in the market or another that can be built only for the purpose of convergent device.
  • the central part there is a hole or window that allows the entry of electrons (10), electrons from a LINAC can impact the disperser (1) described above, and in the case they come from a cannon of electrons is not necessary, because they already leave it with a certain angular opening.
  • the electron beam enters a vacuum space contained by a conical shield (1 1), with vacuum connection (12), and that in the part of the base of the cone there is a ring-shaped support (13), which it is fixed to the cylindrical outer casing (14).
  • a stage coupler (15) which separates the part of the electrons from that of the photons.
  • the part of the photons of the device is formed by an external housing in the form of a truncated cone (16), which has an internal shield (17) with supports for the parts (4) and (8), and also with connection for empty (18), if required.
  • Figures 14a and 14b show two views of the front unit, which has several diaphragms (20), one above the other, which allow the size of the output radiation field to be regulated.
  • a low Z material such as acrylic
  • the device Since in this convergent radiotherapy technique the machine-patient positioning can become a factor Critically, the device has sub-millimeter precision positioning sensors and / or reflectors on the same front part (23). Finally, to locate the axis of the isocentro focus cone, it has a small removable central laser guide (24).
  • FIGS 15a and 15b two views of an alternative front unit are shown where the diaphragms are replaced by a solid interchangeable conical ring (25) with a predefined field size.
  • the surrounding laser guides can be incorporated in the front of the ring and the position sensors and the central laser guide located in an acrylic cap or equivalent (under Z) similar to the one in the previous figure.
  • Figures 16 to 18 it is presented how this invention would adapt to the current current devices that are used in external radiotherapy with photons.
  • Figure 16 shows the present invention adapted to a LINAC, where the accelerator (26), the deflector magnet (27) and the invention proposed here (28) can be seen. It can also be seen how the gantry is replaced by the convergence device. System for positioning and sweeping the stretcher and turning the head with high-precision position sensors on the contour of the device's field opening diaphragm and on the patient's skin.
  • Figure 17 shows a configuration of the present invention where it is adapted to a cyberknife: robotic system (29), small linear accelerator (30) and then the invention (28). This already has a high precision positioning, movement and sensors system.
  • Figure 18 shows a configuration of the present invention where it is adapted to a tomo-therapy equipment.
  • the device is constructed of such a size, that it fits the size of the device to which it adapts, under the condition that its inlet diameter is equal to the outlet diameter of the device to be adapted (Gantry or outlet cannon of the beam).
  • Figure 19 shows a prototype for intermediate energies, in the ortho-voltage range.
  • This prototype is formed by the integration of an electron cannon (32) for energy levels of several hundred keV and the X-ray convergence device presented here (28).
  • the electron gun is constituted by a filament (33), a concentrating cathode (34), and an accelerating and dispersing anode (35). It also has the sensor systems for feedback positioning using the devices already described above and sensors attached to the patient's skin (patch type) (36).
  • the additional advantages, which a unit like this would present, would be in its notable lower cost, reduced size and lower shielding requirements, making external radiotherapy with photons an effective and low cost technique, also allowing radiotherapy to reach A greater number of people.
  • Figure 20 is an alternative of the invention proposed here and corresponds to the particular case when the radius of curvature of the anode and collimators tends to infinity, but maintaining the condition of normal incidence of electrons on The anode, that is to say by placing a flat collimator (37) like the one seen there, will have a parallel and homogeneous X-ray beam as its output.
  • a flat collimator (37) like the one seen there, will have a parallel and homogeneous X-ray beam as its output.
  • beam convergence is not required, for example in images.
  • Figure 21 presents how the unit proposed here of a converging beam of photons can be converted into a unit with output of a converging beam of electrons, by exchanging the cone of photon output for an output cone for electrons (38), as shown there.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiation-Therapy Devices (AREA)
  • Particle Accelerators (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • X-Ray Techniques (AREA)
  • Electron Beam Exposure (AREA)

Abstract

Se presenta un equipamiento científico/tecnológico destinado a la generación de un haz de fotones convergentes para usos en radioterapia u otras aplicaciones. Este equipamiento consiste de conformar adecuadamente, por medio de la aplicación de campos magnéticos y/o eléctricos, un haz de electrones provenientes de un acelerador lineal (LINAC), los cuales interceptan perpendicularmente la superficie de un material curvo de cierto radio de curvatura (ánodo), generando así rayos-X. La interacción de los electrones con los átomos del material del ánodo genera rayos-X con una distribución angular-espacial no isotrópica, con una mayor concentración en la dirección focal, definida por la geometría del ánodo. Por la parte posterior del ánodo, se coloca un colimador curvo, con un radio de curvatura adecuado, constituido por un arreglo de un gran número de pequeños orificios los cuales apuntan hacia el punto focal. Este dispositivo permite la transmisión de los rayos-X en la dirección focal únicamente. En la Figura resumen se presenta un esquema típico de la invención aquí presentada.

Description

APARATO GENERADOR DE HACES DE
ELECTRONES Y FOTONES-X CONVERGENTES
MEMORIA DESCRIPTIVA
Desde el descubrimiento de los rayos-X en 1895 a la fecha, la emisión del haz de radiación, en cualquier rango de energía, es esencialmente divergente y la intensidad es función de la distancia a la fuente emisora (ley del inverso del cuadrado de la distancia), debido al mecanismo de producción de rayos-X: electrones que impactan un blanco. En la actualidad, existen variadas formas de generar un haz de rayos-X, cada una de ellas con un tamaño de fuente determinado y una divergencia específica, la cual es siempre positiva. En radioterapia los haces de rayos-X que se utilizan son divergentes.
El objetivo que se pretende alcanzar en radioterapia es, por medio de la aplicación de rayos-X, lograr una zona de alto flujo de rayos-X dentro de un determinado volumen, los cuales depositarán su energía. La energía depositada por unidad de masa es conocida en radioterapia como dosis. Como el haz utilizado es notablemente divergente es necesaria la utilización de varios haces direccionados (campos) hacia el volumen de interés. Como es sabido, la dosis en profundidad para un haz de rayos-X está dada por una curva exponencial decreciente con la profundidad, con un valor máximo cercano a la superficie. Una aplicación con varios campos logra un máximo de dosis en el volumen de interés (zona del tumor), a pesar de que los valores de dosis en las zonas circundantes son menores a la zona del tumor, éstos son considerablemente significativos, con valores por sobre lo tolerable en algunos casos, que pueden impedir el uso de una dosis efectiva en el tumor.
Con técnicas más depuradas como lo son las técnicas de radioterapia por intensidad modulada (IMRT), o terapia de arco, es posible mejorar y conformar el volumen de máximo flujo de rayos-X disminuyendo así los niveles de dosis en los tejidos y órganos cercanos, pero no significativamente. En la actualidad, se ha logrado que los valores de dosis en tejidos y órganos cercanos a la zona de interés, puedan reducirse hasta en un 80% respecto de la dosis en la zona de interés. Sin embargo, la planificación de los tratamientos sigue siendo compleja y siempre se intenta disminuir los efectos colaterales generados por la radiación, pero resulta imposible descartarlos completamente.
Una técnica de radioterapia cuyos efectos colaterales son más reducidos y su efectividad radiobiológicas en la zona del tumor mayor, es la técnica de hadrónterapia, la cual utilizando hadrones (protones o núcleos más pesados), se logra depositar altas dosis en la zona del tumor de un modo muy conformado, es decir limitado a esa zona. Sin embargo, el costo de esta técnica es mucho más elevado que el de las técnicas convencionales con fotones o electrones. Esto imposibilita su utilización a un gran número de pacientes y está escasamente disponible de los hospitales y centros de salud y tratamiento. En la Figura 1 se puede apreciar un gráfico comparativo de dosis relativa en profundidad de las diversas técnicas de radioterapias más difundidas.
Esta invención propone el uso de un aparato capaz de generar un haz de fotones convergente, cuyas ventajas son significativamente mayores que la técnica de radioterapia externa convencional con fotones y las técnicas de hadrónterapia, estas últimas catalogadas como las que brindan mejores resultados.
Desde un punto de vista comparativo, los métodos convencionales de radioterapia conformal o de intensidad modulada IMRT, aunque esta última es mejor, presenta mayor dosis en superficial, mayor riesgo de órganos sanos, requiere de fraccionamiento y de sistema de planificación más complejo, se requiere de energía más altas y por ende bunker más costosos y no hay accesibilidad a todos los tumores, menor efectividad. Como ventajas presentan mayor volumen tratado y un sistema de posicionamiento más simple. La Figura 2 evidencia la diferencia fundamental entre el método convencional, a y el convergente b.
Por su parte el método convergente presenta: menor dosis en la superficie, baja dosis en órganos sanos, alta dosis en el tumor que no requiere de fraccionamiento, sistema de planificación más simple, tratamientos más cortos (una o dos sesiones), mayor efectividad y accesibilidad a la gran mayoría de los tumores, sistema de refrigeración más simple, no se requiere de energías altas y por ende bunker con menos requerimientos de blindaje. Como desventaja se tiene que un menor volumen tratado hace necesario el barrido del tumor y un sistema de posicionamiento más preciso.
El único método con fotones externos que podría ser comparable en calidad con la técnica convergente de la presente invención, es la técnica de arco terapia, o tomo terapia con fotones mediante LINAC. Arco terapia emula convergencia al usar un barrido angular en torno al isocentro (zona del tumor), pero con sesiones más largas y planificaciones igualmente complejas, sin embargo, cada haz sigue siendo esencialmente divergente y las dosis en órganos sanos no son despreciables, y al igual que las demás técnicas convencionales con LINAC, se requiere de varias sesiones. Algo similar se logra mediante el uso de un aparato robótico denominado "cyberknife".
El método de hadrónterapia presenta: baja dosis en superficie y es altamente efectivo ya que deposita una alta dosis en profundidad en una zona muy reducida (pico de Bragg, ver Figura 1 ). Los hadrones y los iones presentan alta efectividad radiobiológica, los protones 5 veces más que los fotones, y sistemas de posicionamiento complejo; sin embargo, se requiere de una instalación muy compleja que incluye un sincrotrón que pueda acelerar a las partículas a energías desde varias centenas de MeV hasta varios GeV, alto vacío, y sistemas de guías eléctricas y magnéticas. Además, el costo de una instalación para hadrónterapia supera los $ 100 M USD (existen 28 instalaciones de hadrónterapia en el mundo en los países más desarrollados y a pesar del alto costo es una técnica que sigue en expansión). En Chile es impensable hasta ahora y España está evaluando la posibilidad de disponer de una de estas instalaciones en los próximos años. Brinda excelentes resultados en pacientes con cáncer complejos, ya que permite tratar los tumores que no pueden ser tratados con fotones, sin embargo el costo de un tratamiento está al alcance sólo de unos pocos.
El método convergente que utiliza la invención que aquí se propone brinda una baja dosis en superficie y es altamente efectivo ya que deposita una alta dosis en profundidad en una zona muy reducida ("pico-foco"). Los fotones presentan una menor efectividad radiobiológica, sin embargo la dosis depositada en la zona del pico-foco puede llegar a ser 100 veces mayor que la dosis en la superficie, a pesar del efecto de atenuación. Esto compensa la menor efectividad radiobiológica de los fotones y genera una dosis relativa en la superficie y en los órganos sanos aun más baja que la que se obtiene en hadrónterapia, sin embargo el sistema de posicionamiento debe ser más preciso que el de las técnicas convencionales. Lo anterior permitiría tratar cánceres complejos como en hadrónterapia, pero con una instalación menos compleja.
Por otro lado, el costo de un LINAC más bunker de edificio de control es del orden de $2 a 3 M USD, mientras que un sistema de convergencia adaptable a un LINAC podría tener un costo del orden de unos $ 0.5 M USD o menos, lo cual es una notable ventaja respecto del costo de una instalación de hadrónterapia, que es casi dos órdenes de magnitud mayor. En este sentido, un sistema convergente se comportaría de un modo similar a un sistema de hadrónterapia pero a un costo significativamente menor.
Como primer paso previo al desarrollo de esta invención, fue el estudio de los efectos de la convergencia de un haz de fotones en un determinado material, realizado por medio de Simulaciones Monte Cario (SMC) y cálculos teóricos. Como resultado de estos estudios, en la Figura 3 se presentan las curvas de dosis en profundidad correspondientes a SMC y a los resultados teóricos.
Existen en la actualidad dispositivos que logran, a partir de un haz de rayos-X divergentes, convergencia de un haz, basados en el principio de reflexión total. Los rayos-X divergentes ingresan en un capilar de sección cónica, por reflexión total en el interior del capilar los haces viajan a lo largo hasta alcanzar la salida cuya sección es menor que la sección de entrada, logrando una intensidad por unidad de área mayor. Para lograr un aumento significativo de intensidad, se utiliza un conjunto de estos capilares cónicos ubicados en paralelos conformando, lo que se conoce como un poli capilar, esto permite que se incremente el área de entrada. Sin embargo, debido que estos dispositivos utilizan el principio de reflexión total, resulta provechosa su utilización solamente para rayos-X cuyas energías son menores a 50 keV, limitando así su aplicación en equipamiento de radioterapia, en los cuales la energía de los rayos-X son mucho mayores que el valor señalado. Existen en la actualidad una gran diversidad de dispositivos focalizadores de rayos-X, utilizando no sólo el principio de reflexión total sino también la difracción y/o refracción, pero todos son utilizables para rayos-X de baja energía (< 50 keV). Por ejemplo, para uso astronómico, un telescopio de rayos-X (Chandra y equivalentes) obtiene imágenes del Universo en rayos-X, permitiendo ver las fuentes emisoras incluidos los agujeros negros. Este es un dispositivo de gran tamaño (varios metros) que se basa en el mismo principio de reflexión total, que utiliza placas reflectoras y otros materiales.
Teniendo en consideración los dispositivos existentes, limitados a baja energía, y los resultados obtenidos en los estudios realizados, surgió esta idea innovadora de un equipamiento generador de electrones y rayos-X convergentes para energías bajas, intermedias y altas (< 0,1 MeV, 0,1 -1 ,0 MeV y 1 >MeV respectivamente), siendo además la única alternativa de lograr convergencia de un haz de rayos-X de energías en el rango de la aplicación en técnicas de radioterapia.
Cuando este haz es apuntado virtualmente hacia un fantoma de agua o agua equivalente se puede obtener un perfil de dosis en profundidad como el mostrado en la Figura 4 para dos energías diferentes, estos perfiles fueron logrados a través de un código de simulación Monte Cario (SMC). A modo de ejemplo, en las figuras 5 a 8 se puede apreciar otros resultados mediante SMC. Todas las SMC llevadas a cabo demuestran que la técnica de radioterapia convergente RTC, como se propone en la presente invención, es notablemente mejor que las técnicas convencionales utilizadas hasta ahora.
En la presente descripción de la invención solo se describe muy brevemente el sistema de posicionamiento para los diferentes casos y se muestra flechas direccionales sin dar mayores detalles, ya que esto se escapa de la esencia de invención, y además, sistemas de posicionamiento existen actualmente en el mercado. En todo caso, se reivindican las diferentes maneras en que debe ser adaptado en cada caso. BREVE DESCRIPCIÓN DE LAS FIGURAS
La Figura 1 muestra una dosis relativa en profundidad para las diferentes técnicas utilizadas en radioterapia.
La Figura 2a muestra un esquema de un sistema tradicional de radioterapia con rayos-X.
La Figura 2b muestra un esquema de un sistema convergente de radioterapia con rayos-X.
La Figura 3 muestra una dosis en profundidad para un haz de fotones convergentes con 0,4 MeV en fantoma de agua, en comparación de resultados teóricos y de SMC.
La Figura 4 muestra una comparación de dos perfiles de dosis para fotones convergentes de dos SMC para focos ubicados a 2 y 10 cm de la superficie del fantoma.
La Figura 5 muestra una vista en corte de dosis en profundidad lograda por SMC para fotones convergentes, para un caso "no depurado".
La Figura 6 muestra una vista en corte de dosis en profundidad lograda por SMC para fotones convergentes generados por los electrones que inciden sobre un casquete anódico y luego pasan a través de un colimador tipo casquete agujerado similar a los propuestos en la presente invención.
La Figura 7 muestra un perfil de energía depositada a baja energía (por unidad de voxel) (Z=0, Y=0) con aceptación angular de colimadores: polar 2 grados y acimutal: 2 grados. E=0,4 MeV.
La Figura 8 muestra un perfil de energía depositada a alta energía (por unidad de voxel) (Z=0, Y=0) con aceptación angular de colimadores: polar 2 grados y acimutal: 2 grados. E=4 MeV.
La Figura 9 muestra un esquema del elemento generador del haz de electrones convergentes, el cual puede estar formado por más de una lente magnética. La Figura 10 muestra un esquema de una configuración alternativa del elemento generador del haz de electrones convergentes, el cual podría estar formado por un elemento electrostático similar a las lentes de cilindro.
La Figura 1 1 muestra un esquema en que se describe cómo se genera el haz de fotones convergentes.
La Figura 12 muestra un esquema de las partes esenciales de la presente invención.
La Figura 13 muestra un esquema completo de la invención con cada una de sus partes.
Las Figuras 14a y 14b muestran una vista en corte transversal y una vista frontal respectivamente de una unidad frontal.
Las Figuras 15a y 15b muestran una vista en corte transversal y una vista frontal respectivamente de una configuración alternativa de una unidad frontal.
La Figura 16 muestra una configuración de la presente invención en donde esta es adaptada a un LINAC típico.
La Figura 17 muestra una configuración de la presente invención en donde esta es adaptada a un cyberknife.
La Figura 18 muestra una configuración de la presente invención en donde esta es adaptada a un equipo de tomo terapia.
La Figura 19 muestra una configuración alternativa de la presente invención, en donde esta es utilizada para aplicaciones de baja energía.
La Figura 20 muestra una configuración alternativa en la cual se utiliza un colimador plano con salida de haz paralelo.
La Figura 21 muestra un intercambio de cono de salida de fotones por un cono para electrones. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La presente invención consiste en un dispositivo que permite generar un haz de electrones y rayos-X convergente. Para esto se considera inicialmente un haz de electrones proveniente de un cañón de electrones, los cuales son acelerados por una sucesión de etapas en un acelerador lineal LINAC de radioterapia, hasta lograr un flujo de electrones con energía del orden de los MeV. En forma alternativa, también se puede considerar para casos de energías intermedias, conocidas como de orto voltaje (centenares de keV), generados sólo por un cañón de electrones.
Tal como se puede apreciar en la figura 12, el haz de electrones relativamente colimado y proveniente del LINAC, es primeramente expandido mediante un dispersor de electrones, los cuales luego son focalizados por la acción de un lente magnético (2) o electrostático apropiadamente dispuesto. Los electrones emergentes del lente interceptan la superficie de un ánodo (3) con forma de casquete esférico (o asférico, paraboloídico), que llamaremos "casquete anódico", cuyo radio de curvatura define la distancia focal (esférico) del sistema convergente.
Como se muestra en la Figura 9, el lente magnético posee un cuerpo de lente de entrada c, una carcasa concentradora de campo d y conductores eléctricos con enrollamiento tipo solenoide e.
Además, en una configuración alternativa de la invención, el elemento generador del haz de electrones convergentes, puede estar formado por un elemento electrostático similar a las lentes de cilindro, el cual está a la vez formado por tres cilindros: el primero conectado a tierra (f), el segundo cilindro polarizado negativamente (g) y el tercero también conectado a tierra (h). Tal como se muestra en la Figura 10.
Se deben ajustar los lentes electrónicos de modo que el haz de electrones incida sobre toda la superficie del ánodo perpendicularmente. Así, como resultado de la interacción de los electrones con los átomos que constituyen el material del ánodo, se genera radiación de frenando (conocida como bremsstrahlung) o rayos-X en el material. Como la incidencia de los electrones ocurre en toda la superficie del casquete anódico /' (ver Figura 1 1 ), el fenómeno de emisión de rayos-X por bremsstrahlung ocurrirá isotrópicamente en todo el casquete (3). Dicho bremsstrahlung es generado en cada punto del casquete. De acuerdo a la misma figura anterior, los rayos-X que atraviesan el casquete presentan una distribución angular no isotrópica, con una mayor intensidad en la dirección de incidencia de los electrones k y una divergencia angular inversamente proporcional a la energía del electrón incidente, luego los rayos-X son colimados por un poli-colimador (5) de forma de casquete esférico similar al del casquete anódico con decenas, centenares o miles de pequeños agujeros (milimétricos o sub-milimétricos) que lo atraviesan en dirección del foco /. Los rayos-X que logran pasar a través de estos agujeros saldrán con una dispersión angular mucho menor que la que tenían a la salida del casquete anódico (3), y el resto es absorbido en el material, generándose así un haz de fotones convergente cuya intensidad máxima se concentra en el foco. La definición del foco de este haz de fotones convergente puede ser mejorada introduciendo un segundo casquete poli colimador (7). Este efecto a nivel global genera un volumen de radiación que apunta principalmente hacia el foco del sistema con una significativa mayor intensidad de rayos-X en la zona del foco, pico-foco, cuya magnitud dependerá de la energía de los electrones, del radio de curvatura del casquete anódico (3), la superficie de este y la apertura de un diafragma de campo que se muestra más adelante.
De esta manera, en la Figura 12 se muestra las partes esenciales de la invención, en donde los electrones provenientes de la fuente, en caso de venir de un LINAC o de un cañón de electrones, son dispersados por una pequeña lámina (1 ), para generar un flujo divergente de electrones, los cuales son desviados hacia el eje por un lente magnético (2) (o electrostático) generándose un flujo de electrones convergente (i) que es interceptado perpendicularmente (j) por un ánodo delgado con forma de casquete (ánodo-casquete) o esférico, asférico o parabólico (3), y un frenador de haz lateral (4). Los rayos-X generados que logran pasar el espesor del ánodo (k) son colimados por un casquete de colimador (5) agujereado en toda su superficie por pequeños orificios (6) que apuntan en la dirección del foco, el haz de rayos-X convergente (I), puede ser nuevamente colimando (m) por un segundo colimador (7) más pequeño y similar al primero, este colimador está circundado por un anillo concéntrico de interior cónico (8), el cual permite absorber a los rayos-X fuera de foco y disminuir la penumbra lateral del haz. En la Figura 13 se puede ver detalladamente la invención como aparato, el cual posee un acoplador a la fuente de electrones (9), el cual permite que el dispositivo aquí propuesto pueda adherirse a un LINAC específico o a un cañón de electrones determinado, en todo los caso se trata de una pieza que debe adaptarse a los diferentes dispositivos existentes en el mercado u otro que pueda ser construido solo para el propósito de dispositivo convergente. Arriba, en la parte central, hay un orificio o ventana que permite el ingreso de los electrones (10), los electrones provenientes de un LINAC pueden impactar en el dispersor (1 ) descrito anteriormente, y para el caso en que provienen de un cañón de electrones no hace falta, porque ya salen de éste con cierta apertura angular. El haz de electrones ingresa a un espacio al vacío contenido por un blindaje cónico (1 1 ), con conexión para vacío (12), y que en la parte de la base del cono hay un soporte con forma de argolla (13), que se fija a la carcasa externa cilindrica (14). Más abajo hay un acoplador de etapas (15), el cual separa la parte de los electrones de la de los fotones. La parte de los fotones del dispositivo está formada por una carcasa externa con forma de un cono truncado (16), el cual posee un blindaje interno (17) con soportes para las piezas (4) y (8), y también con conexión para vacío (18), si se requiere. Finalmente en la salida del haz convergente, en el extremo inferior del cono truncado, va una unidad frontal (19) con: sensores de posición, luces láser de ubicación y un mecanismo que regula el tamaño del campo, lo que en consecuencia permite regular la intensidad en el pico-foco. Sus detalles y versiones se describen a continuación.
Las Figuras 14a y 14b muestran dos vistas de la unidad frontal, la cual posee varios diafragmas (20), unos sobre otros, que permiten regular el tamaño del campo de radiación de salida. Además, y con el propósito de marcar el campo de entrada en la superficie del paciente, posee una tapa frontal (21 ) de un material de bajo Z (número atómico), como el acrílico, con agujeros en donde se posicionan pequeñas guías láser o diodos láser (22) que apuntan en la dirección del foco, ubicadas a lo largo de una circunferencia en el borde del diafragma de campo, de modo que permiten ver el campo de entrada en la piel de un paciente sometido a un tratamiento con este dispositivo. Dado a que en esta técnica de radioterapia convergente el posicionamiento máquina-paciente puede llegar a ser un factor crítico, el dispositivo posee en la misma parte frontal sensores y/o reflectores de posicionamiento de precisión sub-milimétrica (23). Finalmente, para ubicar el eje del cono de enfoque del isocentro, posee una pequeña guía láser central removible (24).
En las Figuras 15a y 15b se muestran dos vistas de una unidad frontal alternativa en donde los diafragmas son remplazados por un anillo cónico intercambiable macizo (25) con un tamaño de campo predefinido. En este las guías láser circundantes pueden estar incorporadas en el frontis del anillo y los sensores de posición y la guía láser central ubicados en una tapa de acrílico o equivalentes (bajo Z) similar a la de figura anterior.
En las Figuras 16 a 18 se presenta cómo se adaptaría esta invención a los actuales aparatos de hoy en día vigentes que se utilizan en radioterapia externa con fotones. En la Figura 16 se muestra la presente invención adaptada a un LINAC, en donde se puede apreciar el acelerador (26), el imán deflector (27) y la invención aquí propuesta (28). También puede verse como se reemplaza el gantry por el dispositivo de convergencia. Sistema de posicionamiento y barrido en camilla y giro del cabezal con sensores de posición de alta precisión en el contorno del diafragma de abertura de campo del aparato y en la piel del paciente.
La Figura 17 muestra una configuración de la presente invención en donde esta es adaptada a un cyberknife: sistema robótico (29), acelerador lineal pequeño (30) y a continuación la invención (28). Este ya posee un sistema de posicionamiento, movimientos y sensores de alta precisión.
La Figura 18 muestra una configuración de la presente invención en donde esta es adaptada a un equipo de tomo-terapia. Sistema de giro (31 ), acelerador lineal (30) pequeño y la presente invención (28). Sistema de posicionamiento y barrido en camilla (x) y giro del cabezal con desplazamiento radial del aparato que originalmente trae el aparato, se le agregan los sensores de posición en el contorno del diafragma de abertura de campo del aparato y otros pegados en la piel del paciente. Esto permite generar señales retroalimentadas para que el sistema de posicionamiento y de barrido sea más preciso. Lo anterior significa que el dispositivo se construye de un tamaño tal, que se ajusta al tamaño del dispositivo al cual se adapta, bajo la condición de que su diámetro de entrada sea igual al diámetro de salida del dispositivo a adaptar (Gantry o cañón de salida del haz).
Finalmente, en la Figura 19 se presenta un prototipo para energías intermedias, en el rango de orto-voltaje. Este prototipo está formado por la integración de un cañón de electrones (32) para niveles de energía de varios cientos de keV y el dispositivo de convergencia de rayos-X aquí presentado (28). El cañón de electrones está constituido por un filamento (33), un cátodo concentrador (34), y un ánodo acelerador y dispersor (35). También posee los sistemas de sensores para el posicionamiento retroalimentado mediante los dispositivos ya descritos arriba y sensores pegados en la piel del paciente (tipo parche) (36). Las ventajas adicionales, que presentaría una unidad como ésta, estarían en su notable más bajo costo, reducido tamaño y menores requerimientos de blindaje, convirtiendo a la radioterapia externa con fotones en una técnica efectiva y de bajo costo, permitiendo además que la radioterapia llegue a un mayor número de personas.
Otras aplicación se presenta en la Figura 20, la cual se trata de una alternativa de la invención aquí propuesta y corresponde al caso particular cuando el radio de curvatura del ánodo y colimadores tiende a infinito, pero manteniendo la condición de incidencia normal de los electrones sobre el ánodo, es decir colocando un colimador plano (37) como el que allí se aprecia, se tendrá como salida un haz de rayos-X paralelo y homogéneo. Sin embargo, esto es para otras aplicaciones en donde no se requiera la convergencia del haz, por ejemplo en imágenes.
Para concluir, la descripción en la Figura 21 presenta cómo la unidad aquí propuesta de haz convergente de fotones puede ser convertida en una unidad con salida de un haz convergente de electrones, mediante el intercambio del cono de salida de fotones por un cono de salida para electrones (38), tal como allí se muestra.

Claims

REIVINDICACIONES
1 . Un dispositivo para generar un haz convergente de electrones y rayos-X, CARACTERIZADO porque comprende uno o más lentes magnéticos y/o eléctricos que permiten focalizar un haz de electrones provenientes de una fuente, de modo tal que el haz emergente impacta perpendicularmente sobre una superficie de un casquete anódico de un espesor tal que parte la radiación generada es emitida hacia adelante, ésta luego es colimada por un colimador cónico coaxial con la misma forma del casquete anódico por cuyos orificios que apuntan hacia un punto de intersección o foco puede emerger un haz de rayos-X convergente.
2. Un dispositivo de acuerdo a la reivindicación 1 , CARACTERIZADO porque el haz de electrones puede ser proporcionado por un acelerador lineal LINAC para alta energía o por un cañón de electrones (más conocido como electron-gun) para energía intermedia y baja.
3. Un dispositivo de acuerdo a la reivindicación 1 , CARACTERIZADO porque el sistema de lente de electrones está formado por campos magnéticos y eléctricos controlables que conforman el haz de electrones a su paso, está constituido por bobinas magnéticas y/o condensadores.
4. Un dispositivo de acuerdo a la reivindicación 1 , CARACTERIZADO porque el casquete anódico puede poseer forma esférica, asférica, paraboloídica u otra cuya geometría presente un foco.
5. Un dispositivo de acuerdo a la reivindicación 1 , CARACTERIZADO porque el colimador cónico posee decenas, centenares o miles de agujeros que apuntan en la dirección del foco.
6. Un dispositivo de acuerdo a las reivindicaciones 1 y 5, CARACTERIZADO porque el colimador puede ir pegado con la parte cóncava del casquete anódico o estar separado.
7. Un dispositivo de acuerdo a las reivindicaciones 1 y 5, CARACTERIZADO porque el material que constituye el colimador es de una composición y espesor tal que puede atenuar completamente a los rayos-X que inciden fuera de los orificios de éste y que estos orificios pueden ser cilindricos o cónicos.
8. Un dispositivo de acuerdo a las reivindicaciones 1 y 5, CARACTERIZADO porque el colimador posee un patrón de agujeros de dimensiones específicas, el cual puede ser con simetría circular, cuadricular, hexagonal o aleatoria.
9. Un dispositivo de acuerdo a las reivindicaciones 1 y 5, CARACTERIZADO porque el haz emergente del colimador puede ser re-colimado por un segundo colimador cónico, similar y más pequeño y con el mismo patrón de agujeros que el primero, que se ubica coaxialmente delante del éste.
10. Un dispositivo de acuerdo a las reivindicaciones 1 , 5 y 9, CARACTERIZADO porque el haz cónico emergente del primer colimador puede limpiado externamente de la penumbra y haces fuera de foco, mediante un anillo cónico que rodea concéntricamente al segundo colimador o se ubica adelante de estos coaxialmente alineado.
1 1 . Un dispositivo de acuerdo a la reivindicación 1 , CARACTERIZADO porque posee una unidad frontal con uno o más dispositivos tipo diafragma, similar a los usados en óptica, que permiten regular y tamaño del campo de radiación de salida.
12. Un dispositivo de acuerdo a las reivindicaciones 1 y 1 1 , CARACTERIZADO porque en el frente de la unidad frontal puede ubicarse un disco removible de un material de bajo Z (acrílico o similar) en donde pueden fijarse pequeños diodos láser guías y sensores de posición.
13. Un dispositivo de acuerdo a la reivindicación 1 , CARACTERIZADO porque puede adatarse a un LINAC convencional, ya que puede poseer dimensiones y una pieza de acople similar a la del cabezal del éste, que le permite fijarse allí en reemplazo del cabezal tradicional, de tal modo que todo el conjunto puede convertirse en un dispositivo de haz convergente.
14. Un dispositivo de acuerdo a la reivindicación 1 , CARACTERIZADO porque puede construirse de un tamaño adecuado a éstos con una pieza de acople que le permite fijarse en la parte delantera de un LINAC pequeño de un cyberknife o de tomo terapia en reemplazo de la parte de rayos-X de estos, de tal modo que todo el conjunto puede convertirse en un dispositivo de haz convergente.
15. Un dispositivo de acuerdo a las reivindicaciones 1 y 2, CARACTERIZADO porque puede construirse de un tamaño reducido de modo que se puede acoplar en su parte posterior a un cañón de electrones de tal modo que el conjunto se convierte un dispositivo de haz convergente completo desde la generación de los electrones.
16. Un dispositivo de acuerdo a las reivindicaciones 1 y 12, CARACTERIZADO porque los sensores de posición de la unidad frontal en cada una de las adaptaciones de este dispositivo, pueden acoplarse a pequeños sensores de posición u equivalentes ubicados en la piel del paciente y las señales generadas pueden ser usadas para controlar motores paso-paso de camillas, cabezales, brazos robóticos u otros medios de posicionamiento, compensación o barrido.
17. Un dispositivo de acuerdo a la reivindicación 1 , CARACTERIZADO porque basado en el mismo principio de funcionamiento, puede convertirse para obtener un haz plano paralelo de fotones, cambiando el casquete anódico por una lámina plana y remplazando los colimadores cónicos por colimadores planos con los respectivos accesorios y ajustando las lentes de los electrones de modo de mantener la condición de incidencia perpendicular de los electrones sobre el plano del ánodo.
18. Un dispositivo de acuerdo a la reivindicación 1 , CARACTERIZADO porque para obtener un haz convergente de electrones basta con retirar la parte cónica delantera que genera los fotones convergentes.
19. Un dispositivo de acuerdo a las reivindicaciones 1 , 1 1 , 12 y 18, CARACTERIZADO porque el cono delantero para fotones puede ser reemplazado por otro cono similar vacío para electrones, en cuya salida pueden fijarse una unidad frontal equivalente con, los mismos sistemas de luces guías laterales y sensores de posición señalados en la reivindicación.
PCT/IB2012/051983 2011-04-20 2012-04-19 Aparato generador de haces de electrones y fotones-x convergentes WO2012143893A2 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES12774012T ES2812563T3 (es) 2011-04-20 2012-04-19 Dispositivo para generar haces de fotones x convergentes
EP12774012.4A EP2711048B1 (en) 2011-04-20 2012-04-19 Device for generating beams of converging x-photons
BR112013027007-1A BR112013027007B1 (pt) 2011-04-20 2012-04-19 Dispositivo para gerar um feixe convergente de raios-x convergente
US14/112,429 US9583302B2 (en) 2011-04-20 2012-04-19 Convergent photon and electron beam generator device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2011000898A CL2011000898A1 (es) 2011-04-20 2011-04-20 Dispositivo para generar un haz convergente de electrones y rayos-x que comprende uno o mas lentes magneticos y/o electricos que permiten focalizar un haz de electrones provenientes de una fuente, impactar el haz en un casquete anodico y generar un haz de rayos-x colimado convergente.
CL898-2011 2011-04-20

Publications (3)

Publication Number Publication Date
WO2012143893A2 true WO2012143893A2 (es) 2012-10-26
WO2012143893A3 WO2012143893A3 (es) 2013-01-17
WO2012143893A4 WO2012143893A4 (es) 2013-03-07

Family

ID=50190925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2012/051983 WO2012143893A2 (es) 2011-04-20 2012-04-19 Aparato generador de haces de electrones y fotones-x convergentes

Country Status (7)

Country Link
US (1) US9583302B2 (es)
EP (1) EP2711048B1 (es)
AR (1) AR086472A1 (es)
BR (1) BR112013027007B1 (es)
CL (1) CL2011000898A1 (es)
ES (1) ES2812563T3 (es)
WO (1) WO2012143893A2 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109243946A (zh) * 2018-09-18 2019-01-18 广州市凌特电子有限公司 X光出光口角度调整装置

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013020130A1 (en) 2011-08-04 2013-02-07 John Lewellen Bremstrahlung target for intensity modulated x-ray radiation therapy and stereotactic x-ray therapy
US10839973B2 (en) 2016-02-25 2020-11-17 Illinois Tool Works Inc. X-ray tube and gamma source focal spot tuning apparatus and method
US9855445B2 (en) 2016-04-01 2018-01-02 Varian Medical Systems, Inc. Radiation therapy systems and methods for delivering doses to a target volume
US11058893B2 (en) * 2017-06-02 2021-07-13 Precision Rt Inc. Kilovoltage radiation therapy
US11590364B2 (en) 2017-07-21 2023-02-28 Varian Medical Systems International Ag Material inserts for radiation therapy
US11712579B2 (en) 2017-07-21 2023-08-01 Varian Medical Systems, Inc. Range compensators for radiation therapy
US10092774B1 (en) 2017-07-21 2018-10-09 Varian Medical Systems International, AG Dose aspects of radiation therapy planning and treatment
US10183179B1 (en) 2017-07-21 2019-01-22 Varian Medical Systems, Inc. Triggered treatment systems and methods
US10843011B2 (en) 2017-07-21 2020-11-24 Varian Medical Systems, Inc. Particle beam gun control systems and methods
US10549117B2 (en) 2017-07-21 2020-02-04 Varian Medical Systems, Inc Geometric aspects of radiation therapy planning and treatment
US10946219B2 (en) * 2017-09-05 2021-03-16 The Trustees Of Columbia University In The City Of New York Fixed field alternating gradient ion accelerator for variable energy extraction
EP3967367A1 (en) 2017-11-16 2022-03-16 Varian Medical Systems Inc Increased beam output and dynamic field shaping for radiotherapy system
US10910188B2 (en) 2018-07-25 2021-02-02 Varian Medical Systems, Inc. Radiation anode target systems and methods
WO2020021315A1 (es) * 2018-07-27 2020-01-30 Universidad De La Frontera Dispositivo adaptable a equipos de radioterapia externa que concentra la dosis en el blanco con foco variable
WO2020097800A1 (zh) * 2018-11-13 2020-05-22 西安大医集团有限公司 滤光器、放射线扫描装置及放射线扫描方法
US10814144B2 (en) 2019-03-06 2020-10-27 Varian Medical Systems, Inc. Radiation treatment based on dose rate
US10974071B2 (en) 2019-04-30 2021-04-13 Varian Medical Systems, Inc. Multileaf collimator cone enabling stereotactic radiosurgery
US10918886B2 (en) 2019-06-10 2021-02-16 Varian Medical Systems, Inc. Flash therapy treatment planning and oncology information system having dose rate prescription and dose rate mapping
EP4023036A4 (en) * 2019-08-30 2023-09-27 TAE Technologies, Inc. HIGH QUALITY ION BEAM FORMING SYSTEMS, DEVICES AND METHODS
US11865361B2 (en) 2020-04-03 2024-01-09 Varian Medical Systems, Inc. System and method for scanning pattern optimization for flash therapy treatment planning
US11541252B2 (en) 2020-06-23 2023-01-03 Varian Medical Systems, Inc. Defining dose rate for pencil beam scanning
US11957934B2 (en) 2020-07-01 2024-04-16 Siemens Healthineers International Ag Methods and systems using modeling of crystalline materials for spot placement for radiation therapy

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE921707C (de) * 1940-10-29 1954-12-23 Koch & Sterzel Ag Einrichtung zur Erzeugung von Roentgenstrahlen
US3969629A (en) * 1975-03-14 1976-07-13 Varian Associates X-ray treatment machine having means for reducing secondary electron skin dose
JPH07119837B2 (ja) * 1990-05-30 1995-12-20 株式会社日立製作所 Ct装置及び透過装置並びにx線発生装置
GB9815968D0 (en) * 1998-07-23 1998-09-23 Bede Scient Instr Ltd X-ray focusing apparatus
AU2002246736A1 (en) 2000-10-24 2002-08-06 The Johns Hopkins University Method and apparatus for multiple-projection, dual-energy x-ray absorptiometry scanning
SE522709C2 (sv) 2002-07-05 2004-03-02 Elekta Ab Strålterapiapparat med flera uppsättningar hål i kollimatorhjälmen där förskjutbara plattor bestämmer vilka håluppsättningar som strålkällorna ska använda, samt metod att variera strålfältet
FR2844916A1 (fr) * 2002-09-25 2004-03-26 Jacques Jean Joseph Gaudel Source de rayonnement x a foyer virtuel ou fictif
US7496174B2 (en) * 2006-10-16 2009-02-24 Oraya Therapeutics, Inc. Portable orthovoltage radiotherapy
SE532723C2 (sv) * 2007-05-03 2010-03-23 Lars Lantto Anordning för alstring av röntgenstrålning med stort reellt fokus och behovsanpassat virtuellt fokus
US8093564B2 (en) * 2008-05-22 2012-01-10 Vladimir Balakin Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109243946A (zh) * 2018-09-18 2019-01-18 广州市凌特电子有限公司 X光出光口角度调整装置
CN109243946B (zh) * 2018-09-18 2024-02-02 广州市凌特电子有限公司 X光出光口角度调整装置

Also Published As

Publication number Publication date
BR112013027007A2 (pt) 2016-12-27
AR086472A1 (es) 2013-12-18
ES2812563T3 (es) 2021-03-17
BR112013027007B1 (pt) 2022-02-22
US20140112451A1 (en) 2014-04-24
EP2711048B1 (en) 2020-05-27
EP2711048A4 (en) 2014-08-20
EP2711048A2 (en) 2014-03-26
US9583302B2 (en) 2017-02-28
CL2011000898A1 (es) 2011-06-24
WO2012143893A3 (es) 2013-01-17
WO2012143893A4 (es) 2013-03-07

Similar Documents

Publication Publication Date Title
WO2012143893A2 (es) Aparato generador de haces de electrones y fotones-x convergentes
US11260246B2 (en) Apparatus and methods for magnetic control of radiation electron beam
US10576303B2 (en) Methods and systems for beam intensity-modulation to facilitate rapid radiation therapies
JP6424198B2 (ja) 回転可能な構台の上のエネルギー選択によるコンパクト陽子治療システム
US11521820B2 (en) Three-dimensional beam forming x-ray source
US7826593B2 (en) Collimator
US7816657B2 (en) Particle therapy system
US20060133575A1 (en) X-ray needle apparatus and method for radiation treatment
WO2019196137A1 (zh) 放射治疗头及放射治疗装置
Figueroa et al. Physical characterization of single convergent beam device for teletherapy: theoretical and Monte Carlo approach
Woods et al. Beam conditioning system for laser driven hadron therapy
JP2024075614A (ja) 3次元ビームを形成するx線源
CN112439131A (zh) X-射线笔形束扫描调强治疗直线加速器装置
JP2009109207A (ja) X線発生装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012774012

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14112429

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013027007

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013027007

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131018