WO2012143197A1 - Analyse de l'image numerique de la surface d'un pneumatique - traitement des points de non mesure - Google Patents

Analyse de l'image numerique de la surface d'un pneumatique - traitement des points de non mesure Download PDF

Info

Publication number
WO2012143197A1
WO2012143197A1 PCT/EP2012/055015 EP2012055015W WO2012143197A1 WO 2012143197 A1 WO2012143197 A1 WO 2012143197A1 EP 2012055015 W EP2012055015 W EP 2012055015W WO 2012143197 A1 WO2012143197 A1 WO 2012143197A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixels
gray level
zone
reference segment
line
Prior art date
Application number
PCT/EP2012/055015
Other languages
English (en)
Inventor
Jean-Paul Zanella
Claire Moreau
Guillaume Noyel
Yusi SHEN
Original Assignee
Michelin Recherche Et Technique S.A.
Compagnie Generale Des Etablissements Michelin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michelin Recherche Et Technique S.A., Compagnie Generale Des Etablissements Michelin filed Critical Michelin Recherche Et Technique S.A.
Priority to BR112013023977A priority Critical patent/BR112013023977A2/pt
Priority to JP2014505557A priority patent/JP2014513793A/ja
Priority to CN201280019094.6A priority patent/CN103493095A/zh
Priority to US14/112,452 priority patent/US9224198B2/en
Priority to EP12710714.2A priority patent/EP2700051A1/fr
Publication of WO2012143197A1 publication Critical patent/WO2012143197A1/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/77Retouching; Inpainting; Scratch removal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0008Industrial image inspection checking presence/absence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8914Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the material examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component

Definitions

  • the invention relates to the field of tire manufacturing, and more particularly the field of automatic inspection of the surface of a tire in order to establish a conformity diagnosis with respect to pre-established references.
  • One of the steps of this process consists, in known manner, in acquiring the three-dimensional image of the surface of the tire. [003]
  • the acquisition of this image is done using means based on the principle of optical triangulation, implementing for example a 2D sensor coupled to a laser-type lighting source.
  • the topographic image of the tire surface is in fact a two-dimensional image, called a gray level, in which, at any point, ie at any pixel (x, y) of the image, a value is associated with f (x, y), called gray level, and usually between 0 and 255.
  • This gray level value can usefully be coded on 8, or 16 bits for better dynamics.
  • the gray level represents the altitude of this point relative to the surface. For 8-bit encoding, the value 255 (white) corresponds to the highest altitude, and the value 0 (black) corresponds to the lowest altitude.
  • the pixels of the image are arranged in line and in columns.
  • the method of processing the three-dimensional digital image of the surface The purpose of a pneumatic tire is to detect and eliminate these points of non-measurement in order not to disturb the subsequent digital processing intended for example to identify the anomalies present on the surface of the tire.
  • the image processing method provides the steps in which:
  • areas of the surface to be inspected are searched, comprising pixels whose gray level value is below a given threshold
  • each pixel whose gray level value is less than a given threshold is assigned a gray level value equal to the average gray level value of a set of pixels references located in an area in the immediate vicinity of the pixel in question.
  • the method may provide that the set constituting the reference pixels is formed by a reference matrix comprising an odd number of rows and columns.
  • the reference matrix comprises less than ten rows and less than ten columns.
  • each point of the bounding box is modified by assigning to a given point the average value of gray level of the pixels of the reference matrix centered on said point.
  • the points of the bounding box are successively processed in the increasing order of the rows and columns.
  • the area of the pixel area having a gray level value below the given threshold is determined
  • the zone is oriented in a direction OX extending over the main axis of the zone and originating from the foot of the vent,
  • a reference segment is arranged disposed on the side of the main axis of said zone corresponding to the angular sector forming a positive angle g with the direction of the shadow zone,
  • the average gray level value of the pixels of the reference segment is assigned to all the pixels of the pixel. the line containing said reference segment and lying between the middle of the reference segment and the intersection of said pixel line with the contour of the vent.
  • FIGS. 1 and 2 show a schematic view of a means of capturing the image of the surface of a tire
  • FIG. 3 schematically illustrates the causes causing the appearance of the points of non-measurement
  • FIG. 4 represents the partial image of the surface of a tire having points of non-measurement
  • FIG. 5 illustrates the image treatments used by the method according to the invention
  • FIGS 6 and 7 illustrate the possible configurations of image processing in the vicinity of the vents
  • FIG. 8 represents the image of FIG. 4 after treatment using the method according to the invention.
  • the acquisition of the image of the surface of a tire is illustrated by FIGS. 1 and 2. This acquisition is effected by way of example using a slot light emitted by a laser 1 and a camera 3 capable of capturing the 2D image of the illuminated surface. The camera is positioned so that its aiming direction makes a given angle with the beam emitted by the laser source. By triangulation, it is then possible to determine the coordinates of the relief element 2 relative to the support surface 4.
  • the slot light is directed in an axial or radial direction perpendicular to the circumferential direction corresponding to the direction the rotation imposed on the tire to capture a complete image of its surface.
  • Figure 1 shows a configuration in which the device captures the image of a relief element 2
  • Figure 2 the configuration in which the relief element is a vent.
  • the non-measurement points 6 appear in the shadow areas not illuminated by the laser beam. In the absence of a luminous return, these points are considered as having a zero or very low altitude and appear in black on the image representing the surface.
  • FIG. 3 illustrates the representation, in section, of the relief of FIG. 1 in which the measured relief appears in continuous line, while the real profile appears in dashed line.
  • the location of the non-measurement points can be done simply by looking on the image pixels, whose gray level value, representing the altitude of the corresponding point relative to the surface to be inspected, is below a threshold given or even zero.
  • FIG. 4 is a gray level image of the surface of a tire. which in contrast appear areas comprising non-measurement points, easily identifiable in that their gray level is zero or much lower than a predetermined threshold value. In this case, these points come from the shadow carried by a vent 5 (in the center of the image) or points along a relief (to the right of the image). It is observed that the shape and the area of these zones are different in nature, respectively large and elongated for the shadow of the vent, and small and of granular shape for the edge of a relief.
  • the first step of the treatment after identifying the points of non-measurement, consists in framing the zones containing these points by a bounding box.
  • said box may advantageously be of rectangular shape, and be aligned with the rows and columns of pixels forming the image to be processed.
  • FIG. 5 makes it possible to visualize the zones containing non-measurement points surrounded by a bounding box 6, comprising n lines (h, l 2 , I 3 , U) and p columns (ci, c 2 , ... c p ).
  • the further processing consists in assigning to each of the non-measurement points a gray level value equal to the average of the gray level value of the pixels situated in the immediate vicinity of the pixel in question. It is admitted that the point of no measurement is located at substantially the same altitude as its direct neighbors with whom they are aligned.
  • a first mode of treatment consists in assigning to one pixel the average value of the pixels situated directly around it. This mode of treatment is particularly advantageous for correcting the non-measurement points included in areas of small area as illustrated on the right side of the image of FIG. 5.
  • a set of reference pixels formed by a reference matrix K comprising an odd number of rows and columns, and whose central value is positioned on the pixel to be modified, is determined.
  • the processing then consists in averaging the gray level values of the points of the matrix, including the central value, and replacing the gray level value of the central value with the newly calculated average value.
  • This operation is preferably slippery, starting with the pixel located, for example, at the top left of the bounding box, and treating column by column in the manner indicated above all the points of the upper line. We then go down one line and repeat the same operation on all the pixels of this line up to the pixel of the last line and the last column included in the bounding box. [028] It will be observed that the calculated averages successively replace the pixels whose gray level value is lower than the predetermined threshold and that these averages calculated in turn in the determination of the gray level value of the following pixels, where the recursive nature of this moving average over the entire bounding box. [029] In order to obtain a stable result, the limits of the bounding box will preferably be placed so that the pixels representing the non-measurement points closest to these boundaries are arranged a few pixels apart.
  • the second mode of treatment is of particular interest to the resulting non-measurement points of the shadow carried by a vent on the surface of the tire.
  • the shape of the shadow 6 is generally highly elongated and occupies a relatively large area facing the surface of the previously described areas. This hypothesis is verified by ensuring that the area of the shadow zone is greater than a predetermined threshold, and the center of gravity W of the surface formed by the non-measurement points is located.
  • the following operations are specific to this type of anomaly, while also considering that, in the case of a tire, these areas can not be confused with other types of zones containing points of no measured.
  • the foot of the vent 5 is then searched at one of the two ends of the main axis of the zone containing the non-measurement points. This makes it possible to give an orientation to the main axis in a direction OX extending along the zone and originating from the foot of the vent, as shown in FIG.
  • the next step is to determine the reference pixels that will be used to calculate the average value of gray level to be assigned to the non-measurement points.
  • the reference pixels are constituted, in this second case, by reference segments s, each contained in a line 1, and comprising about twenty pixels.
  • each of the lines I it is then appropriate for each of the lines I, to position said reference segment judiciously. Indeed, preferably, it is arranged for this segment I, is disposed on the side of the main axis 60 corresponding to the angular sector at a positive angle g with the direction OX of the shadow zone 6. In other words, it is preferable to position the reference segments on the opposite side to the general direction of the projection of the vent on the surface, so as to allow, as will be seen later, a complete treatment of all points in the area containing the non-measurement points.
  • the average gray level value of the pixels of the reference segment s is assigned to all the pixels of the line I containing said reference segment and included between the medium m of the reference segment s, and the intersection of said line of pixels with the contour of the vent.
  • the pixel lines intersect the zone of non-measurement points.
  • Each line I intersects said zone 6 at two points.
  • a first point of intersection is located on the edge of said zone 6 on the side where the reference segment s is located.
  • the second point of intersection is located opposite to it on the opposite edge of this area of non-measurement points, and corresponds substantially to the point of intersection of the line comprising said reference segment with the foot of the vent whose presence is at the origin of the shadow zone corresponding to the non-measurement points.
  • the first part contains the lines situated between the center of gravity W and the foot of the vent 5.
  • the average value of gray level of the pixels of the reference segment s is then assigned to all the pixels of line I, containing said reference segment s, and between the middle m of the reference segment and the intersection of said pixel line with the contour of the foot of the vent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

Méthode de traitement de l'image numérique tridimensionnelle de la surface d'un pneumatique dans laquelle, on capture l'image tridimensionnelle de ladite surface en affectant à chaque pixel de l'image acquise une valeur de niveau de gris proportionnelle à l'élévation du point correspondant par rapport à la surface à inspecter, lesdits pixels étant disposés en lignes et en colonnes. Cette méthode comprend les étapes au cours desquelles : on recherche les zones (6) de la surface à inspecter comprenant des pixels dont la valeur de niveau de gris est inférieure à un seuil donné, on détermine les frontières d'une boite englobante (7) comprenant une ou plusieurs zones (6) de pixels dont la valeur de niveau de gris est inférieure à un seuil donné, à l'intérieur de la boite englobante, on affecte à chacun des pixels dont la valeur de niveau de gris est inférieure à un seuil donné, une valeur de niveau de gris égale à la valeur moyenne de niveau de gris d'un ensemble de pixels (Kij, si) de référence placés dans une zone située à proximité immédiate du pixel considéré.

Description

ANALYSE DE L'IMAGE NUMERIQUE DE LA SURFACE D'UN PNEUMATIQUE- TRAITEMENT DES POINTS DE NON MESURE
[001] L'invention concerne le domaine de la fabrication des pneumatiques, et plus particulièrement le domaine de l'inspection automatique de la surface d'un pneumatique en vue d'établir un diagnostic de conformité par rapport à des références préétablies.
[002] Une des étapes de ce processus consiste, de manière connue, à acquérir l'image en trois dimensions de la surface du pneumatique. [003] L'acquisition de cette image se fait à l'aide de moyens basés sur le principe de la triangulation optique, mettant par exemple en œuvre un capteur 2D couplé à une source d'éclairage de type laser.
[004] L'image topographique de la surface du pneumatique est en fait une image bidimensionnelle, dite à niveau de gris, dans laquelle, à tout point, i.e. à tout pixel (x, y) de l'image, est associé une valeur f(x, y), appelée niveau de gris, et généralement comprise entre 0 et 255. Cette valeur de niveau de gris peut utilement être codée sur 8, ou 16 bits pour une meilleure dynamique. Le niveau de gris représente l'altitude de ce point par rapport à la surface. Pour un codage sur 8 bits, la valeur 255 (blanc) correspond à l'altitude la plus haute, et la valeur 0 (noir), correspond à l'altitude la plus basse. En règle générale les pixels de l'image sont disposés en ligne et en colonne.
[005] On observe toutefois que l'image de la surface issue de ces moyens d'acquisition peut présenter des points de non mesure qu'il est nécessaire de repérer et de faire disparaître avant d'entreprendre les traitements numériques ultérieurs. Faute de quoi, les algorithmes d'analyse pourraient considérer à tort ces zones comme des anomalies structurelles du pneumatique à inspecter.
[006] Ces points ont pour caractéristique de présenter une valeur nulle ou très faible. Ils apparaissent principalement dans les zones de fort relief dans lesquelles la caméra ne peut pas voir le trait laser en raison des zones d'ombre engendrées par le profil, ou encore à proximité des évents présents sur les flancs ou sur les sculptures en raison de l'ombre portée par ces protubérances sur la surface du pneumatique immédiatement environnante.
[007] La méthode de traitement de l'image numérique tridimensionnelle de la surface d'un pneumatique a pour objet de détecter et d'éliminer ces points de non mesure dans le but de ne pas perturber les traitements numériques ultérieurs destinés par exemple à identifier les anomalies présentes à la surface du pneumatique.
[008] Selon l'invention, la méthode de traitement de l'image prévoit les étapes au cours desquelles :
on recherche les zones de la surface à inspecter comprenant des pixels dont la valeur de niveau de gris est inférieure à un seuil donné,
on détermine les frontières d'une boite englobante comprenant une ou plusieurs zones de pixels dont la valeur de niveau de gris est inférieure à un seuil donné,
à l'intérieur de la boite englobante, on affecte à chacun des pixels dont la valeur de niveau de gris est inférieure à un seuil donné, une valeur de niveau de gris égale à la valeur moyenne de niveau de gris d'un ensemble de pixels de référence placés dans une zone située à proximité immédiate du pixel considéré. [009] La méthode peut prévoir que l'ensemble constituant les pixels de référence soit formé par une matrice de référence comprenant un nombre impair de lignes et de colonnes. De préférence, la matrice de référence comprend moins de dix lignes et moins de dix colonnes. Dans cette configuration, on modifie chaque point de la boite englobante en affectant à un point donné la valeur moyenne de niveau de gris des pixels de la matrice de référence centrée sur le dit point. Préférentiellement on traite successivement les points de la boite englobante dans l'ordre croissant des lignes et des colonnes.
[010] Ceci s'applique en particulier au cas des zones de faible surface qu'il est possible de réduire simplement en appliquant ce type particulier de moyenne récursive mobile. [011] Lorsque la zone contenant les points de non mesure est plus étendue on choisira alors un ensemble des pixels de référence pour une ligne donnée, comprise dans la boite de référence et sécante de la zone contenant des pixels ayant une valeur de niveau de gris inférieure au seuil donné, qui est formé par les pixels d'un segment de référence appartenant à ladite ligne. De préférence, le segment de référence ne contient pas de pixels ayant une valeur de niveau de gris inférieure au seuil donné, et sa longueur est comprise entre 5 et 30 pixels. Dans cette configuration, on affecte la valeur moyenne de niveau de gris des pixels du segment de référence à l'ensemble des pixels de la ligne contenant ledit segment de référence et ayant une valeur de niveau de gris inférieure au seuil donné. [012] On observe toutefois que ces zones de points de non mesure dont la surface est supérieure à un certain seuil sont en règle générale formées par l'ombre portée d'un évent. Connaissant la forme et la configuration générale des évents on peut alors affiner la méthode en prévoyant des étapes au cour desquelles :
- on détermine l'aire de la zone de pixels ayant une valeur de niveau de gris inférieure au seuil donné,
lorsque l'aire de cette zone dépasse un seuil donné, on détermine l'angle entre l'axe principale de ladite zone et la direction des lignes de pixels,
on détermine le centre de gravité de ladite surface,
- on recherche la position d'un évent à l'une des extrémités de l'axe principal de ladite zone, et on oriente la zone selon une direction OX s'étendant sur l'axe principal de la zone et ayant pour origine le pied de l'évent,
à chacune des lignes sécante de la zone contenant les pixels ayant une valeur de niveau de gris inférieure au seuil donné, on affecte un segment de référence disposé du coté de l'axe principal de ladite zone correspondant au secteur angulaire faisant un angle g positif avec la direction de la zone d'ombre,
[013] Lorsque l'angle entre l'axe principal de ladite surface et la direction des lignes de pixels est inférieur à 5°, on affecte la valeur moyenne de niveau de gris des pixels du segment de référence à l'ensemble des pixels de la ligne contenant ledit segment de référence et compris entre le milieu du segment de référence et l'intersection de ladite ligne de pixels avec le contour de l'évent.
[014] Lorsque l'angle entre l'axe principal de ladite surface et la direction des lignes de pixels est supérieur à 5°, et pour les seules lignes comprises entre le centre de gravité et l'évent, on affecte la valeur moyenne de niveau de gris des pixels du segment de référence à l'ensemble des pixels de la ligne contenant ledit segment de référence, et compris entre le milieu du segment de référence et l'intersection de la ligne avec le contour de l'évent.
[015] Enfin, lorsque l'angle entre l'axe principal de ladite surface et la direction des lignes de pixels est supérieur à 5°, et pour les lignes qui ne sont pas comprises entre le centre de gravité et l'évent, on affecte la valeur moyenne de niveau de gris des pixels du segment de référence à l'ensemble des pixels de la ligne contenant ledit segment de référence et compris entre le milieu du segment de référence et le pixel de ladite ligne dont la valeur de niveau de gris est inférieure à la valeur moyenne de niveau de gris des pixels du segment de référence. [016] La description qui suit a pour objet de décrire en détail les différentes étapes de la méthode selon l'invention en s'appuyant sur les figures 1 à 5 dans lesquelles :
les figures 1 et 2 représentent une vue schématique d'un moyen de capture de l'image de la surface d'un pneumatique,
- la figure 3 illustre de manière schématique les causes provoquant l'apparition des points de non mesure,
la figure 4 représente l'image partielle de la surface d'un pneumatique présentant des points de non mesure,
la figure 5 illustre les traitements de l'image utilisés par la méthode selon l'invention,
les figures 6 et 7 illustrent les configurations possibles de traitement de l'image au voisinage des évents,
la figure 8 représente l'image de la figure 4 après traitement à l'aide de la méthode selon l'invention. [017] L'acquisition de l'image de la surface d'un pneumatique est illustrée par les figures 1 et 2. Cette acquisition s'opère, à titre d'exemple, à l'aide d'une lumière de fente émise par un laser 1 et d'une caméra 3 apte à capter l'image 2D de la surface éclairée. La caméra est positionnée de sorte que sa direction de visée fasse un angle donné a avec le faisceau émis par la source laser. Par triangulation, il est alors possible de déterminer les coordonnées de l'élément de relief 2 par rapport à la surface support 4. En règle générale, la lumière de fente est dirigée selon une direction axiale ou radiale perpendiculairement à la direction circonférentielle correspondant au sens de la rotation imposée au pneumatique pour saisir une image complète de sa surface.
[018] La figure 1 représente une configuration dans laquelle le dispositif capte l'image d'un élément de relief 2, et la figure 2 la configuration dans laquelle l'élément de relief est un évent. Les points de non mesure 6 apparaissent dans les zones d'ombre non éclairées par le faisceau laser. En l'absence de retour lumineux, ces points sont considérés comme ayant une altitude nulle ou très faible et apparaissent en noir sur l'image représentant la surface. La figure 3 illustre la représentation, en coupe, du relief de la figure 1 dans laquelle apparaît en trait continu le relief mesuré, alors que le profil réel apparaît en pointillé. Aussi, la localisation des points de non mesure peut se faire simplement en recherchant sur l'image les pixels, dont la valeur de niveau de gris, représentant l'altitude du point correspondant par rapport à la surface à inspecter, est inférieure à un seuil donné voire nulle.
[019] La figure 4 est une image en niveau de gris de la surface d'un pneumatiq laquelle apparaissent par contraste des zones comprenant des points de non mesure, facilement identifiable en ce que leur niveau de gris est nul ou très inférieur à une valeur de seuil prédéterminée. Dans ce cas d'espèce, ces points proviennent de l'ombre portée par un évent 5 (au centre de l'image) ou des points longeant un relief (à droite de l'image). On observe que la forme et l'aire de ces zones sont de nature différentes, respectivement importante et allongée pour l'ombre de l'évent, et petite et de forme granulaire pour le bord d'un relief.
[020] Le traitement de cette image pour faire disparaître ces points de non mesure répond, dans ses grandes lignes, aux mêmes principes de base, mais cherchera à tirer partie des spécificités de ces deux morphologies particulières pour optimiser la qualité des traitements.
[021] La première étape du traitement, après avoir identifié les points de non mesure, consiste à encadrer les zones contenant ces points par une boite englobante. Par soucis de simplicité dans l'exécution des calculs ladite boite peut avantageusement être de forme rectangulaire, et être alignée sur les lignes et les colonnes de pixels formant l'image à traiter. La figure 5 permet de visualiser les zones contenant des points de non mesure entourées d'une boite englobante 6, comprenant n lignes (h , l2, I3, U ) et p colonnes (ci , c2, ... cp).
[022] La suite du traitement consiste à affecter à chacun des points de non mesure une valeur de niveau de gris égale à la moyenne de la valeur de niveau de gris des pixels situés à proximité immédiate du pixel considéré. On admet en effet que les point de non mesure se situent sensiblement à la même altitude que ses voisins directs avec lesquels ils sont alignés.
[023] Un premier mode de traitement consiste à affecter à un pixel la valeur moyenne des pixels situés directement autour de lui. Ce mode de traitement est particulièrement avantageux pour corriger les points de non mesure compris dans des zones de petite surface comme cela est illustré sur la partie droite de l'image de la figure 5.
[024] A cet effet, on détermine un ensemble de pixels de référence formés par une matrice de référence K comprenant un nombre impair de lignes et de colonnes, et dont la valeur centrale est positionnée sur le pixel à modifier.
[025] Typiquement, compte tenu de la surface relativement faible de ces zones, choisira une matrice de taille 3x3 ou 7x7. [026] Le traitement consiste alors à effectuer la moyenne des valeurs de niveau de gris des points de la matrice, y compris la valeur centrale, et de remplacer la valeur de niveau de gris de la valeur centrale par la valeur moyenne nouvellement calculée.
[027] Cette opération se fait de préférence de manière glissante, en commençant par le pixel situé, par exemple, en haut à gauche de la boite englobante, et en traitant colonne par colonne de la manière indiquée ci-dessus tous les points de la ligne supérieure. On descend alors d'une ligne et on recommence la même opération sur tous les pixels de cette ligne jusqu'au pixel de la dernière ligne et de la dernière colonne inclus dans la boite englobante. [028] On observera que les moyennes calculées remplacent successivement les pixels dont la valeur de niveau de gris est inférieure au seuil prédéterminé et que ces moyennes calculées entrent à leur tour dans la détermination de la valeur de niveau de gris des pixels suivants, d'où le caractère récursif de cette moyenne mobile sur l'ensemble de la boite englobante. [029] De manière à obtenir un résultat stable, on placera de préférence les limites de la boite englobante de sorte que les pixels représentant les points de non mesure les plus proche de ces frontières soient disposés à quelques pixels de distance.
[030] Le deuxième mode de traitement intéresse plus particulièrement les points de non mesure résultants de l'ombre portée par un évent sur la surface du pneumatique. [031] On observe sur l'image de la figure 5 que la forme de cette ombre 6 est en règle générale fortement allongée et occupe une surface relativement importante en regard de la surface des zones décrites précédemment. On vérifie cette hypothèse en s'assurant que l'aire de la zone d'ombre est supérieure à un seuil prédéterminé, et on localise le centre de gravité W de la surface formée par les points de non mesure. [032] Les opérations qui suivent sont donc spécifique à ce type d'anomalie, en considérant par ailleurs que, dans le cas d'un pneumatique, ces zones ne peuvent pas être confondues avec d'autres types de zones contenant des points de non mesure.
[033] Après avoir déterminé les contours de la boite englobante 7, de forme rectangulaire et positionnée de préférence selon l'ordonnancement des lignes et des colonnes de pixels, on recherche l'angle formé par l'axe principal de la zone de points de non mesure avec la direction des lignes. Pour ce faire, on ajuste une ellipse 61 contenant ladite zone d'ombre, et on assimile le grand axe 60 de l'ellipse à la direction de l'axe d'inertie de ladite zone d'ombre, lequel fait un angle g avec la direction des lignes.
[034] On recherche alors le pied de l'évent 5 à l'une des deux extrémités de l'axe principal de la zone contenant les points de non mesure. Ceci permet de donner une orientation à l'axe principal selon une direction OX s'étendant le long de la zone et ayant pour origine le pied de l'évent, comme cela est représenté à la figure 5.
[035] L'étape suivante consiste à déterminer les pixels de référence qui seront utilisés pour calculer la valeur moyenne de niveau de gris à affecter aux points de non mesure.
[036] A la différence du premier mode de traitement les pixels de référence sont constitués, dans ce deuxième cas, par des segments s, de référence contenus chacun dans une ligne l, et comprenant environ une vingtaine de pixels.
[037] Il convient alors pour chacune des lignes I, de positionner ledit segment de référence de manière judicieuse. En effet, de manière préférentielle, on s'arrange pour que ce segment I, soit disposé du coté de l'axe principal 60 correspondant au secteur angulaire faisant un angle g positif avec la direction OX de la zone d'ombre 6. En d'autres termes, il convient de manière préférentielle de positionner les segments de référence du coté opposé à la direction générale de la projection de l'évent sur la surface, de manière à autoriser, comme on le verra par la suite, un traitement complet de tous les points de la zone contenant les points de non mesure.
[038] On s'arrange également pour que le segment soit positionné à proximité du bord de la zone de points de non mesure, et pour qu'il ne contienne pas de points de non mesure.
[039] On calcule ensuite la moyenne des valeurs de niveau de gris des pixels contenus dans le segment de référence. Cette valeur moyenne de niveau de gris est alors attribuée aux pixels de la zone contenant les points de non mesure de la ligne I, correspondant au segment de référence s,.
[040] On observe toutefois que les contours de la zone contenant les points de non mesure peuvent connaître des altérations qu'il est judicieux de corriger lors de la mise en oeuvre de cette étape. Ces altérations se concrétisent sous la forme de valeurs anormales placées au dessus ou au dessous de la valeur moyenne de niveau de gris, i.e. d'altitude des points de la surface comme cela est illustré à la figure 7 par des cercles entourant lesdites zones. Toutefois ce phénomène ne se manifeste pas lorsque la frontière de la zone 6 contenant les points de non mesure est mitoyenne du pied de l'évent 5, comme cela est illustré à la figure 6.
[041] Aussi, selon la position de la ligne on appliquera des stratégies de correction légèrement différentes.
[042] Lorsque l'angle entre l'axe principal 60 de ladite surface et la direction des lignes de pixels est inférieur à 5°, c'est-à-dire lorsque la zone est peu inclinée par rapport aux ligne et que toutes les lignes intersectant la zone d'ombre 6 coupent également le pied de l'évent, on affecte la valeur moyenne de niveau de gris des pixels du segment de référence s, à l'ensemble des pixels de la ligne I, contenant ledit segment de référence et compris entre le milieu m du segment de référence s, et l'intersection de ladite ligne de pixels avec le contour de l'évent.
[043] Pour définir le contour du pied de l'évent on considère que les lignes de pixel intersectent la zone de points de non mesure. Chaque ligne I, intersecte ladite zone 6 en deux points. Un premier point d'intersection est situé sur le bord de ladite zone 6 du coté où est situé le segment de référence s,. Le deuxième point d'intersection est situé quand à lui sur le bord opposé de cette zone de points de non mesure, et correspond sensiblement au point d'intersection de la ligne comprenant ledit segment de référence avec le pied de l'évent dont la présence est à l'origine de la zone d'ombre correspondant aux points de non mesure.
[044] Lorsque l'angle entre l'axe principal 60 de ladite surface et la direction des lignes de pixels est supérieur à 5° on découpe alors la zone contenant les points de non mesure en deux parties.
[045] La première partie contient les lignes situées entre le centre de gravité W et le pied de l'évent 5. On affecte alors la valeur moyenne de niveau de gris des pixels du segment de référence s, à l'ensemble des pixels de la ligne I, contenant ledit segment de référence s, et compris entre le milieu m du segment de référence et l'intersection de ladite ligne de pixels avec le contour du pied de l'évent.
[046] Pour les lignes qui ne sont pas comprises entre le centre de gravité W et le pied de l'évent, on affecte la valeur moyenne de niveau de gris des pixels du segment de référence s, à l'ensemble des pixels de la ligne I, contenant ledit segment de référence s, et compris entre le milieu m du segment de référence et le pixel de ladite ligne dont la valeur de niveau de gris est inférieure à la valeur moyenne de niveau de gris des pixels du segment de référence. [047] Issu de l'expérience, ces traitements différents des lignes placées au-dessus et au dessous du centre de gravité sont propres au problème particulier des évents situés à la surface d'un pneumatique et permettent de résoudre avec peu de temps de calcul la problématique des points de non mesure. [048] La figure 6 représente l'image de la surface du pneumatique après traitement par la méthode selon l'invention. On observe que tous les points de non mesure ont disparus, rendant l'image apte à être traitée pour en extraire des informations susceptibles de décider de l'orientation du pneumatique.

Claims

REVENDICATIONS
1) Méthode de traitement de l'image numérique tridimensionnelle de la surface d'un pneumatique dans laquelle, on capture l'image tridimensionnelle de ladite surface en affectant à chaque pixel de l'image acquise une valeur de niveau de gris proportionnelle à l'élévation du point correspondant par rapport à la surface à inspecter, lesdits pixels étant disposés en lignes et en colonnes, caractérisée en ce que :
on recherche les zones (6) de la surface à inspecter comprenant des pixels dont la valeur de niveau de gris est inférieure à un seuil donné,
- on détermine les frontières d'une boite englobante (7) comprenant une ou plusieurs zones (6) de pixels dont la valeur de niveau de gris est inférieure à un seuil donné,
à l'intérieur de la boite englobante et pour une ligne donnée (li) sécante de la zone (6) contenant des pixels dont la valeur de niveau de gris est inférieure à un seuil donné on affecte à chacun desdits pixels, une valeur de niveau de gris égale à la valeur moyenne de niveau de gris d'un ensemble (K , s,) formé par les pixels d'un segment de référence (s,) appartenant à la ladite ligne (I,) et placé à proximité de la zone (6)considérée.
2) Méthode de traitement selon la revendication 1 dans lequel le segment de référence (s,) ne contient pas de pixels ayant une valeur de niveau de gris inférieure au seuil donné.
3) Méthode de traitement selon l'une des revendications 1 ou 2, dans laquelle la longueur du segment de référence (s,) est comprise entre 5 et 30 pixels.
4) Méthode de traitement selon l'une des revendications 1 à 3, dans laquelle on affecte la valeur moyenne de niveau de gris des pixels du segment de référence (s,) à l'ensemble des pixels de la ligne (I,) contenant ledit segment de référence (s,) et ayant une valeur de niveau de gris inférieure au seuil donné.
5) Méthode de traitement selon l'une des revendications 1 à 4, dans laquelle
on détermine l'aire de la zone de pixels (6) ayant une valeur de niveau de gris inférieure au seuil donné,
lorsque l'aire de cette zone dépasse un seuil donné, on détermine l'angle (g) entre l'axe principal (60) de ladite zone et la direction des lignes de pixels (I,), on détermine le centre de gravité de ladite zone, on recherche la position d'un évent (5) à l'une des extrémités de l'axe principal (60) de ladite zone (6), et on oriente la zone selon une direction OX s'étendant le long de la zone et ayant pour origine le pied de l'évent (5),
à chacune des lignes sécante de la zone contenant les pixels ayant une valeur de niveau de gris inférieure au seuil donné, on affecte un segment de référence (s,) disposé du coté de l'axe principal de ladite zone correspondant au secteur angulaire faisant un angle (+g) positif avec la direction de la zone d'ombre (OX),
6) Méthode de traitement selon la revendication 5, dans laquelle, lorsque l'angle (g) entre l'axe principal (60) de ladite zone (6) et la direction des lignes de pixels (I,) est inférieur à 5°, on affecte la valeur moyenne de niveau de gris des pixels du segment de référence (s,) à l'ensemble des pixels de la ligne (I,) contenant ledit segment de référence (s,) et compris entre le milieu (m) du segment de référence (s,) et l'intersection de ladite ligne de pixels (I,) avec le contour du pied de l'évent.
7) Méthode de traitement selon la revendication 5, dans laquelle, lorsque l'angle (g) entre l'axe principal (60) de ladite zone (6) et la direction des lignes de pixels (I,) est supérieur à 5°, et pour les seules lignes comprises entre le centre de gravité (W) et le pied de l'évent, on affecte la valeur moyenne de niveau de gris des pixels du segment de référence (s,) à l'ensemble des pixels de la ligne (I,) contenant ledit segment de référence, et compris entre le milieu (m) du segment de référence (s,) et l'intersection de la ligne (I,) avec le contour du pied de l'évent.
8) Méthode de traitement selon la revendication 5, dans laquelle, lorsque l'angle entre l'axe principal de ladite zone (6) et la direction des lignes (I,) de pixels est supérieur à 5°, et pour les lignes qui ne sont pas comprises entre le centre de gravité (W) et le pied de l'évent (5) , on affecte la valeur moyenne de niveau de gris des pixels du segment (s,) de référence à l'ensemble des pixels de la ligne (I,) contenant ledit segment de référence et compris entre le milieu (m) du segment de référence (s,) et le pixel de ladite ligne (I,) dont la valeur de niveau de gris est inférieure à la valeur moyenne de niveau de gris des pixels du segment de référence (s,).
PCT/EP2012/055015 2011-04-18 2012-03-21 Analyse de l'image numerique de la surface d'un pneumatique - traitement des points de non mesure WO2012143197A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112013023977A BR112013023977A2 (pt) 2011-04-18 2012-03-21 análise da imagem digital da superfície de um pneu e tratamento de pontos de não medida
JP2014505557A JP2014513793A (ja) 2011-04-18 2012-03-21 タイヤの表面のディジタル画像の分析及び非測定箇所の処理
CN201280019094.6A CN103493095A (zh) 2011-04-18 2012-03-21 轮胎表面的数字图像的分析和非测量点的处理
US14/112,452 US9224198B2 (en) 2011-04-18 2012-03-21 Analysis of the digital image of the surface of a tyre and processing of non-measurement points
EP12710714.2A EP2700051A1 (fr) 2011-04-18 2012-03-21 Analyse de l'image numerique de la surface d'un pneumatique - traitement des points de non mesure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1153343 2011-04-18
FR1153343A FR2974218A1 (fr) 2011-04-18 2011-04-18 Analyse de l'image numerique de la surface d'un pneumatique - traitement des points de non mesure

Publications (1)

Publication Number Publication Date
WO2012143197A1 true WO2012143197A1 (fr) 2012-10-26

Family

ID=45888207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/055015 WO2012143197A1 (fr) 2011-04-18 2012-03-21 Analyse de l'image numerique de la surface d'un pneumatique - traitement des points de non mesure

Country Status (7)

Country Link
US (1) US9224198B2 (fr)
EP (1) EP2700051A1 (fr)
JP (1) JP2014513793A (fr)
CN (1) CN103493095A (fr)
BR (1) BR112013023977A2 (fr)
FR (1) FR2974218A1 (fr)
WO (1) WO2012143197A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015097635A1 (fr) 2013-12-23 2015-07-02 Pirelli Tyre S.P.A. Procédé et appareil pour détecter les défauts sur les pneus dans un processus de production de pneus
WO2017017371A1 (fr) 2015-07-27 2017-02-02 Compagnie Generale Des Etablissements Michelin Procédé optimise d'analyse de la conformité de la surface d'un pneumatique

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3022380A1 (fr) 2014-06-13 2015-12-18 Michelin & Cie Procede de redressement d'image de pneumatiques
CN104316541A (zh) * 2014-11-12 2015-01-28 京东方科技集团股份有限公司 缺陷检测装置及偏光片贴附设备
MX2017016137A (es) * 2015-06-30 2018-06-18 Pirelli Metodo y aparato para analizar una superficie de un neumatico.
CN105067638B (zh) * 2015-07-22 2018-01-09 广东工业大学 基于机器视觉的轮胎胎膜表面字符缺陷检测方法
CN109900707B (zh) * 2019-03-20 2021-07-02 湖南华曙高科技有限责任公司 一种铺粉质量检测方法、设备以及可读存储介质
CN110232709B (zh) * 2019-04-19 2022-07-29 武汉大学 一种变阈值分割的线结构光光条中心提取方法
CN110660049A (zh) * 2019-09-16 2020-01-07 青岛科技大学 一种基于深度学习的轮胎缺陷检测方法
CN111862131B (zh) * 2020-07-31 2021-03-19 易思维(杭州)科技有限公司 胶条边缘检测方法及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030012453A1 (en) * 2001-07-06 2003-01-16 Jasc Software, Inc. Method for removing defects from images
WO2003023699A1 (fr) * 2001-09-05 2003-03-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Procede et dispositif permettant l'examen d'un objet

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713564B2 (ja) * 1988-02-12 1995-02-15 住友ゴム工業株式会社 タイヤのサイドウォールの検査装置
FR2632071B1 (fr) 1988-05-31 1991-03-15 Labo Electronique Physique Echographe ultrasonore a bruit d'interference reduit
US20010013823A1 (en) 1997-04-14 2001-08-16 Takeshi Hatakeyama Network control system, network terminal and control terminal
DE10062251C2 (de) * 2000-12-14 2002-12-12 Fraunhofer Ges Forschung Vorrichtung und Verfahren zur Qualitätsüberprüfung eines Körpers
DE10062254C2 (de) * 2000-12-14 2002-12-19 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Charakterisieren einer Oberfläche und Verfahren und Vorrichtung zur Ermittlung einer Formanomalie einer Oberfläche
JP4679073B2 (ja) * 2004-05-18 2011-04-27 株式会社ブリヂストン タイヤ凹凸図形の検査方法、および、タイヤ凹凸図形検査装置
DE102005017624A1 (de) 2005-04-15 2006-10-19 Robert Bosch Gmbh Verfahren zum Bestimmen der Rad- und/oder Achsgeometrie von Kraftfahrzeugen
JP5046688B2 (ja) * 2007-03-08 2012-10-10 株式会社神戸製鋼所 タイヤ形状検出装置,タイヤ形状検出方法
JP5109598B2 (ja) * 2007-11-02 2012-12-26 住友ゴム工業株式会社 物品検査方法
ATE545917T1 (de) * 2007-12-19 2012-03-15 Michelin Soc Tech Verfahren zur verarbeitung eines dreidimensionalen bildes einer reifenfläche für seine verwendung zur überprüfung dieser fläche
FR2925706B1 (fr) * 2007-12-19 2010-01-15 Soc Tech Michelin Dispositif d'evaluation de la surface d'un pneumatique.
FR2925687B1 (fr) * 2007-12-19 2010-02-12 Soc Tech Michelin Methode d'evaluation par comparaison d'une image acquise avec une image de reference.
US8284393B2 (en) * 2008-06-04 2012-10-09 Kobe Steel, Ltd. Tire shape inspection method and tire shape inspection device
JP5302701B2 (ja) * 2009-02-06 2013-10-02 株式会社神戸製鋼所 タイヤ形状検査方法,タイヤ形状検査装置
JP5378974B2 (ja) * 2009-12-15 2013-12-25 株式会社ブリヂストン タイヤの検査方法及び検査装置
FR2966246B1 (fr) 2010-10-19 2012-12-14 Michelin Soc Tech Methode d'identification et de limitation des motifs de base formant la sculpture de la bande de roulement d'un pneumatique
FR2966245B1 (fr) 2010-10-19 2012-10-19 Michelin Soc Tech Methode d'identification et de limitation des motifs de base formant la sculpture de la bande de roulement d'un pneumatique

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030012453A1 (en) * 2001-07-06 2003-01-16 Jasc Software, Inc. Method for removing defects from images
WO2003023699A1 (fr) * 2001-09-05 2003-03-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Procede et dispositif permettant l'examen d'un objet

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAVIS J ET AL: "Filling holes in complex surfaces using volumetric diffusion", 3D DATA PROCESSING VISUALIZATION AND TRANSMISSION, 2002. PROCEEDINGS. FIRST INTERNATIONAL SYMPOSIUM ON JUNE 19-21, 2002, PISCATAWAY, NJ, USA,IEEE, LOS ALAMITOS, CA, USA, 19 June 2002 (2002-06-19), pages 428 - 859, XP010596689, ISBN: 978-0-7695-1521-2 *
TAUBER Z ET AL: "Review and Preview: Disocclusion by Inpainting for Image-Based Rendering", IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: PART C:APPLICATIONS AND REVIEWS, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 37, no. 4, 1 July 2007 (2007-07-01), pages 527 - 540, XP011186115, ISSN: 1094-6977, DOI: 10.1109/TSMCC.2006.886967 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015097635A1 (fr) 2013-12-23 2015-07-02 Pirelli Tyre S.P.A. Procédé et appareil pour détecter les défauts sur les pneus dans un processus de production de pneus
US10267710B2 (en) 2013-12-23 2019-04-23 Pirelli Tyre S.P.A Method and apparatus for detecting defects on tyres in a tyre production process
WO2017017371A1 (fr) 2015-07-27 2017-02-02 Compagnie Generale Des Etablissements Michelin Procédé optimise d'analyse de la conformité de la surface d'un pneumatique
US10346971B2 (en) 2015-07-27 2019-07-09 Compagnie Generale Des Etablissements Michelin Optimized method for analyzing the conformity of the surface of a tire

Also Published As

Publication number Publication date
BR112013023977A2 (pt) 2016-12-13
FR2974218A1 (fr) 2012-10-19
CN103493095A (zh) 2014-01-01
US20140185883A1 (en) 2014-07-03
US9224198B2 (en) 2015-12-29
EP2700051A1 (fr) 2014-02-26
JP2014513793A (ja) 2014-06-05

Similar Documents

Publication Publication Date Title
WO2012143197A1 (fr) Analyse de l'image numerique de la surface d'un pneumatique - traitement des points de non mesure
WO2012143198A1 (fr) Analyse de l'image numerique de la surface externe d'un pneumatique - traitement des points de fausse mesure
EP2368105B1 (fr) Procede de controle non destructif d'une piece mecanique
EP3329460A1 (fr) Procédé optimisé d'analyse de la conformité de la surface d'un pneumatique
EP2875339B1 (fr) Procede et installation pour la detection notamment de defauts refractants
JP5443435B2 (ja) タイヤの欠陥検出方法
EP2676127B1 (fr) Procede et dispositif pour detecter des defauts de repartition de matiere dans des recipients transparents
EP2710555B1 (fr) Méthode de détermination des éléments en relief présents sur la surface d'un pneumatique
EP2235679A2 (fr) Methode de traitement d'une image tri dimensionnelle de la surface d'un pneumatique en vue de son utilisation pour l'inspection de ladite surface
EP2710552B1 (fr) Methode de determination des marquages en relief presents sur la surface exterieure du flanc d'un pneumatique
EP2856122B1 (fr) Procede optique d'inspection de recipients transparents ou translucides portant des motifs visuels
EP2561479A1 (fr) Methode de controle de l'aspect de la surface d'un pneumatique
EP3008445A1 (fr) Methode de traitement de l'image numerique de la surface d'un pneumatique en vue de la detection d'une anomalie
FR2976090A3 (fr) Procede d'acquisition selective de l'image tridimensionnelle de la surface d'un pneumatique par stereovision active et passive
EP2700052B1 (fr) Analyse de l'image numerique de la surface interne d'un pneumatique - traitement des points de fausse mesure
EP3230713A1 (fr) Procédé d'obtention d'une image d'un échantillon, et système associé d'imagerie sans lentille
EP0559594B1 (fr) Procédé de création de la signature d'un objet représenté sur une image numérique,du type consistant à définir au moins un calibre dimensionnel caractéristique dudit objet, et procédé correspondant de vérification de la signature d'un objet
EP2742320B1 (fr) Procede et appareil optoelectronique pour mesurer le diametre interne d'un corps creux
FR3049709B1 (fr) Procede de detection d'un defaut sur une surface par eclairage multidirectionnel et dispositif associe
FR3037143B1 (fr) Dispositif a camera unique et procede de mesure pour caracteriser des gouttes de pluie
WO2003073367A2 (fr) Procédé de mesure de la localisation d'un objet par détection de phase
WO2023105164A1 (fr) Procédé et dispositif de caractérisation de distorsions dans une caméra plénoptique
TWI590191B (zh) 光學圖像的缺陷補償方法
FR3062224A1 (fr) Detection d'obstacles dans l'environnement d'un vehicule automobile par traitement d'images

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12710714

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012710714

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012710714

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014505557

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14112452

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013023977

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013023977

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130918