WO2012142850A1 - 支持塔顶放大器的基站系统及其实现方法 - Google Patents

支持塔顶放大器的基站系统及其实现方法 Download PDF

Info

Publication number
WO2012142850A1
WO2012142850A1 PCT/CN2011/084937 CN2011084937W WO2012142850A1 WO 2012142850 A1 WO2012142850 A1 WO 2012142850A1 CN 2011084937 W CN2011084937 W CN 2011084937W WO 2012142850 A1 WO2012142850 A1 WO 2012142850A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower
tma
base station
bbu
station system
Prior art date
Application number
PCT/CN2011/084937
Other languages
English (en)
French (fr)
Inventor
杨雪
林志华
封葳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012142850A1 publication Critical patent/WO2012142850A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present invention relates to the field of communications, and in particular, to a base station system supporting a tower amplifier and an implementation method thereof.
  • BACKGROUND OF THE INVENTION The thermal noise caused by the thermal motion of electrons in an active device and a radio frequency conductor of a base station receiving system affects the performance of the base station reception.
  • a tower top amplifier is also required.
  • the Tower Mounted Amplifier (TMA) is used to compensate for the gap between the uplink and downlink coverage, thereby expanding the call range of the base station, reducing the call drop rate, and improving the call quality.
  • the tower is generally used in a base station where the antenna (Antenna, hereinafter referred to as ANT) and the Node B (NodeB) radio unit are relatively far apart and the link loss is relatively large.
  • the tower is connected to the feeder of the ANT.
  • the tower is an active device that is powered by the feeder.
  • the remote control of the tower can be realized through the communication interface of the tower, and can be divided into a standard interface conforming to the Antenna Interface Standards Group (AISG) and a private interface not conforming to the AISG.
  • AISG Antenna Interface Standards Group
  • the AISG protocol allows digital remote control and monitoring of the wireless infrastructure to dynamically optimize the network based on changing coverage needs.
  • the tower that conforms to the AISG protocol can perform remote control of the tower through the AISG interface, that is, the device in the base station system can supply power to the protocol tower through the AISG cable, thereby realizing the function control of the tower (including Gain monitoring, version upgrade, etc.) and alarm detection reporting;
  • the private communication protocol is used to develop the remote control software to achieve the purpose of power supply, detection and control for the tower.
  • the AISG interface can be used for power supply, the AISG protocol cannot be applied.
  • the tower is supported by a device in the base station.
  • This scheme is mainly applicable to AISG towers, but due to the variety of towers, the power supply voltage range, working mode, and alarm range are not the same, and the devices in the base station can only give towers. A single power supply is provided, and the tower state can only be monitored by the AISG protocol. Therefore, the scheme supports limited types of towers and alarms, and the power supply is single.
  • the solution has the following disadvantages: (1) the PDU requires a separate power supply cable; (2) the PDU cost is high; (3) the PDU is a separate device, the configuration is complicated, and the cabinet space needs to be occupied; It is not controllable. It is difficult to adapt the tower equipment of different manufacturers, and it is not easy to push. It needs to be invested in R&D and change hardware and software design. (5) The progress and time of the project are not easy to control.
  • a primary object of the present invention is to provide an implementation scheme of a base station system supporting a tower-top amplifier, so as to at least solve the problem that the existing base station system can only supply power to the tower by the AISG interface or supply power to the tower.
  • a base station system supporting a TMA includes a radio frequency unit RU, a baseband unit BBU, and a TMA
  • the BBU includes: a tower discharge control board coupled to the TMA and configured to provide different voltages for the TMA.
  • the tower discharge control board comprises: a voltage output module, configured to output a variable voltage according to a preset parameter in the main control unit of the BBU; and a monitoring module configured to detect the working state of the TMA and report the alarm information.
  • the tower control panel further comprises: a voltage conversion module configured to adapt the voltage output by the voltage output module according to the voltage of the TMA.
  • the monitoring module is further configured to control the switching state of the channel to provide a multi-channel power output.
  • the RU is used to monitor the TMA via an antenna interface standard group AISG cable.
  • the base station system further comprises: a T-type head, connected to the tower control board and the TMA, configured to transmit signals from the RU and/or the tower control board to the TMA via the feeder.
  • the RU and the BBU are set in the macro base station; or, the BBU is installed separately from the RU.
  • the TMA comprises at least one of the following: a tower amplifier of the AISG protocol, a tower amplifier capable of obtaining an AISG interface of a proprietary protocol, a tower amplifier of an AISG interface not having a proprietary protocol, and a tower amplifier of a non-AISG interface.
  • a tower amplifier of the AISG protocol a tower amplifier capable of obtaining an AISG interface of a proprietary protocol
  • a tower amplifier of an AISG interface not having a proprietary protocol a tower amplifier of a non-AISG interface.
  • an implementation method of a base station system supporting TMA includes a radio frequency unit RU, a baseband unit BBU, and a TMA. The method includes the following steps:: setting a tower control board in the BBU; and the tower control board is coupled to the TMA And provide different voltages for TMA.
  • the tower control board outputs a variable voltage according to a preset parameter in the main control unit of the BBU; and detects the working state of the TMA, and reports the alarm information.
  • a base station system supporting TMA is provided.
  • the base station system supporting the TMA including the radio unit RU, the baseband unit BBU and the TMA
  • the base station system further includes: a tower control board coupled to the TMA and configured to provide different voltages by the TMA.
  • the tower discharge control board comprises: a voltage output module, configured to output a variable voltage according to a preset parameter in the main control unit; and a monitoring module configured to detect the working state of the TMA and report the alarm information.
  • the tower control panel further comprises: a voltage conversion module configured to adapt the voltage output by the voltage output module according to the voltage of the TMA.
  • the monitoring module is further configured to control the switching state of the channel to provide a multi-channel power output.
  • the RU is configured to monitor the TMA through the antenna interface standard group AISG cable; or, it is set to inherit the function of the tower control board, and power and monitor the TMA.
  • the base station system further comprises: a T-type head, connected to the tower control board and the TMA, configured to transmit signals from the RU and/or the tower control board to the TMA via the feeder.
  • the RU and the BBU are set in the macro base station; or, the BBU is installed separately from the RU.
  • the TMA comprises at least one of the following: a tower amplifier of the AISG protocol, a tower amplifier capable of obtaining an AISG interface of a proprietary protocol, a tower amplifier of an AISG interface not having a proprietary protocol, and a tower amplifier of a non-AISG interface. .
  • an implementation method of a base station system supporting TMA is provided.
  • the base station system includes a radio unit RU, a baseband unit BBU, and a TMA, and includes the following steps:: setting a tower control board in the base station system; To TMA, and provide different voltages for TMA.
  • the tower control board outputs a variable voltage according to a preset parameter in the main control unit; and detects the working state of the TMA, and reports the alarm information.
  • the tower control panel in the base station system is used to provide different voltages for the TMA, which solves the problem that the existing base station system can only supply power to the tower by the AISG interface or supply power to the tower.
  • FIG. 1 is a structural block diagram of a base station system supporting a tower amplifier according to an embodiment of the present invention
  • FIG. 2 is a structural block diagram of a base station system supporting a tower amplifier according to a preferred embodiment of the present invention
  • FIG. 4 is a block diagram showing the structure of a base station system supporting a tower amplifier according to another preferred embodiment of the present invention
  • FIG. 4 is a block diagram showing a base station system supporting a tower amplifier according to another preferred embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a system for powering and monitoring a tower by a BBU according to a first embodiment of the present invention
  • FIG. 7 is a schematic diagram of a RU pair according to a second embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of a system for power supply and monitoring of a tower by a BBU in combination with an RU according to a third embodiment of the present invention
  • FIG. 9 is a schematic diagram of a macro station support tower according to a preferred embodiment of the present invention.
  • FIG. 10 Schematic diagram of the system structure of the release; and FIG. 10 is a schematic diagram of the system structure of the BBU independent installation support tower according to a preferred embodiment of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict.
  • a base station system supporting TMA is provided. 1 is a structural block diagram of a base station system supporting a tower-top amplifier according to an embodiment of the present invention. As shown in FIG. 1, the base station system 10 includes a radio unit (Radio Unit, abbreviated as RU) 12.
  • Radio Unit Radio Unit
  • the base station system 10 further includes: a tower control board 18 coupled to the TMA 16, configured to provide different voltages for the TMA 16.
  • the tower control board 18 in the base station system 10 is used to provide different voltages for the TMA 16, which solves the problem that the existing base station system can only supply power to the tower by the AISG interface or supply power to the tower. The problem increases the flexibility of the system and improves the compatibility of the system.
  • the tower control panel 18 may be included in a certain component of the base station system 10. For example, FIG.
  • FIG. 2 is a structural block diagram of a base station system supporting a tower amplifier according to a preferred embodiment of the present invention.
  • the tower control panel 18 is included in the BBU 14.
  • the tower control board 18 can also be used as a single board or integrated on other boards to implement its functions.
  • the tower control board 18 can be integrated into the BBU 14 board structure, and can be flexibly configured in the BBU 14 slot and powered by the BBU 14 backplane.
  • 3 is a structural block diagram of a base station system supporting a tower amplifier according to still another preferred embodiment of the present invention. As shown in FIG.
  • the tower control board 18 includes: a voltage output module 182 coupled to the TMA 16, configured to be The preset parameter in the main control unit outputs a variable voltage; the monitoring module 184 is coupled to the TMA 16, and is configured to detect the working state of the TMA 16, and report the alarm information.
  • the tower top amplifier 18 is monitored by the tower control board 18, so that the system can supply and monitor the tower without supporting the AISG interface or the private communication protocol, thereby improving the adaptability of the system.
  • the voltage output by the tower control panel 18 can vary with configuration parameters (e.g., by software controlling the value of the parameter).
  • the tower control panel 18 further includes: a voltage conversion module 186 coupled to the voltage output module 182, configured to adapt the voltage output by the voltage output module 182 according to the voltage of the TMA.
  • a voltage conversion module 186 coupled to the voltage output module 182, configured to adapt the voltage output by the voltage output module 182 according to the voltage of the TMA.
  • This method can make the tower control board 18 adapt to different specifications or manufacturers' TMA 16, which increases the configurability of the system and saves the cost of system upgrade.
  • the monitoring module 184 is further configured to control the switching state of the channel to provide a multi-channel power output. The method can enable the tower control panel 18 to effectively control the TMA 16, thereby improving the processing capability of the system.
  • the RU 12 is configured to monitor the TMA 16 through the AISG cable; or, it is configured to inherit the function of the tower control board 18 to power and monitor the TMA.
  • the tower control board 18 is used to power the TMA 16, and the RU 12 is used to monitor the TMA 16, so that the RU 12 and the BBU 14 can jointly power and monitor the TMA 16, and the system is enhanced. Flexibility.
  • the base station system 10 further includes: a T-head 18 coupled to the RU 12 and the TMA 16, the tower control board 18 and the TMA 16, connected to the tower control board 18, arranged to be from the RU 12 and/or The signal from the tower control panel 18 is transmitted to the TMA 16 via the feeder.
  • the T-head 18 can be a conventional T-head 18 or an AISG T-head 18, and a conventional T-head 18 can be used during implementation to reduce engineering costs.
  • the T-head 18 can also be an interface with similar functions, and the T-head 18 can be an individual, or its function can be integrated into a certain component of the base station system 10.
  • 4 is a structural block diagram of a base station system supporting a tower amplifier according to another preferred embodiment of the present invention. As shown in FIG. 4, if the tower control board 18 is included in the BBU 14, the voltage output module 182 may be The variable voltage is output according to a preset parameter in the main control unit of the BBU 14. Preferably, the RU 12 and the BBU 14 are disposed in the macro base station; or, the BBU 14 is installed separately from the RU 12. The method is simple and practical, and has high operability.
  • the TMA 16 comprises at least one of the following: a tower amplifier of the AISG protocol, a tower amplifier capable of obtaining an AISG interface of a proprietary protocol, a tower amplifier of an AISG interface that does not have a proprietary protocol, and a tower of a non-AISG interface.
  • Amplifier that is, the embodiment of the present invention provides that the base station system 10 can support various tower top amplifiers, and the type, power supply voltage, working mode, and the like of the tower top amplifier are not limited. This method can effectively improve the compatibility of the system.
  • an embodiment of the present invention further provides an implementation method of a base station system supporting a tower amplifier TMA.
  • the base station system 10 includes an RU 12, a BBU 14, and a TMA 16, and the implementation method of the base station system 10 The following steps may be included: Step S502, the tower control board 18 is set in the base station system 10; in step S504, the tower control board 18 is coupled to the TMA 16, and provides different voltages for the TMA 16.
  • the tower control board 18 in the base station system 10 is used to provide different voltages for the TMA 16, which solves the problem that the existing base station system can only supply power to the tower by the AISG interface or supply power to the tower. , increased system flexibility and improved system compatibility.
  • the tower control board 18 may be included in a certain component of the base station system 10.
  • the tower control board 18 is included in the BBU 14.
  • the tower control board 18 can also be used as a single board or integrated on other boards to implement its functions.
  • the tower control board 18 can output a variable voltage according to a preset parameter in the main control unit; and detect the working state of the TMA 16, and report the alarm information.
  • the voltage output module 182 may output a variable voltage according to a preset parameter in the master unit of the BBU 14.
  • This embodiment provides a system for supporting power transmission and monitoring of a base station, which is applicable to all towers, especially ordinary towers and private protocol towers, and can be supported by software parameter adjustment under the condition that the hardware equipment is unchanged.
  • the tower is easy to operate, which reduces the engineering operation and solves the problems in the prior art that the tower can not be used for the non-AISG interface or the private communication protocol cannot be used, the cost is high, and the adaptation is complicated and inflexible.
  • the system is flexible in configuration and small in size, and is suitable for BBU independent installation, indoor macro station, and outdoor macro station application.
  • the base station system supporting the tower may include: a baseband unit (hereinafter referred to as BBU), a radio frequency unit (hereinafter referred to as RU), a tower (TMA), and an ANT.
  • BBU baseband unit
  • RU radio frequency unit
  • TMA tower
  • ANT an ANT
  • the scheme for supporting the power supply and monitoring of the base station system may be as follows: In the first mode, the power supply and monitoring are performed by the BBU on the tower; and in the second mode, the power supply and monitoring are performed on the tower by the RU; , BBU, RU combined to power and monitor the tower.
  • Embodiment 1 Power supply and monitoring of the tower by the BBU.
  • FIG. 6 is a schematic structural diagram of a system for powering and monitoring the tower by the BBU according to the first embodiment of the present invention.
  • the embodiment provides a BBU.
  • Interpolation tower control board (hereinafter referred to as TAM board) support
  • the base station system can support any type of tower, especially the tower without the private protocol and the tower without the AISG interface.
  • the TAM board is used to power and monitor the tower.
  • the TAM board can be integrated into the BBU board structure.
  • the board can be flexibly configured in the BBU slot and powered by the BBU backplane. , no separate power supply cable is required.
  • the TAM board may include: a variable voltage output module, which may be a master unit (for example,
  • the main control unit of the BBU system controls the output voltage and the power supply is flexible; the amplifying circuit module can be adapted by the main control unit according to the output voltage to the size of the detection circuit (ie, the detection voltage); and the detection control module can be real-time
  • the tower is put into working state, and the alarm information and the control channel switch state are reported in time.
  • the TAM board can use a discrete device to build a DC voltage conversion circuit (SP, DC-DC conversion circuit), and the variable voltage output module controls the DC through the DA chip according to the parameters issued by the CPU main control unit.
  • the feedback of the DC conversion circuit realizes the variable voltage output.
  • the TAM board can also realize the functions of adjustable amplification parameters and analog-to-digital conversion (ADC).
  • ADC analog-to-digital conversion
  • the amplifying circuit module can amplify the detection voltage by using different amplification factors. The detection is more accurate, and it also ensures that the detection voltage does not exceed the detection range of the ADC after amplification.
  • the TAM board adopts the multi-channel power supply output of the common interface, the output of each channel is independently detected and protected, and does not affect each other. Therefore, the board can support towers of different models, different supply voltages, different working modes or different parameters, and has a wide application range.
  • the TAM board can be used to replace different manufacturers' equipment and adapt to other brands of towers, thereby reducing the cost of R&D investment, avoiding hardware and software design changes, simplifying engineering complexity, and improving system flexibility.
  • the TAM board can be connected to the T-head (Bias Tee) through SMA (SMA is a short for Sub-Miniature-A, which is a common antenna interface), and is used to power the tower and power on and off. Control, monitor the working status of the tower and so on.
  • the length of the SMA cable can be flexibly adjusted according to the engineering installation and wiring mode.
  • the RU can also be connected to the Bias Tee via a feeder to transmit RF signals, ie received/transmitted handset signals.
  • the public communication interface (Common Public Radio Interface, CPRI for short) can be communicated between the RU and the BBU.
  • CPRI Common Public Radio Interface
  • the TAM board adopts the common SMA interface output, which can support various towers with the common Bias Tee, especially the tower and non-AISG interface towers that cannot obtain the proprietary protocol.
  • another advantage of using SMA interface output is cost savings. Ordinary T-heads are much cheaper than AISG T-heads, reducing engineering costs.
  • the Bias Tee and the tower, the tower and the antenna can be connected by a feeder; the power supply of the TAM board is coupled to the feeder via the Bias Tee.
  • the base station system in this embodiment can monitor the working state of the tower in real time, report the alarm, and respond quickly, and can well protect the tower from damage; the system uses the TAM board in the BBU to supply power to the tower. And monitoring, which can be applied to site relocation and profitability, and the engineering complexity and cost are low.
  • the system configuration and cable connection are flexible.
  • the system is simple in power supply, flexible in system configuration and cable connection, and small in size, and is suitable for BBU independent installation and macro station application.
  • FIG. 7 is a schematic structural diagram of a system for powering and monitoring the tower by the RU according to the second embodiment of the present invention.
  • the RU and the Bias Tee pass the ASIG cable.
  • the Bias Tee Connected to the feeder or connected through the tower control board, the Bias Tee is connected to the tower, the tower is connected to the antenna through the feeder, and the RU and the BBU are communicated by CPRI.
  • the base station system can support any type of tower. For AISG protocol towers, the system can be remotely controlled via the AISG interface.
  • the RU in the base station system supplies power to the AISG protocol tower through the AISG cable, and implements tower function control (including gain monitoring, version upgrade, etc.) and alarm detection reporting.
  • the system can use the private communication protocol instead of the AISG protocol for remote control. For example, first, get the private communication protocol of this type of tower, and then develop remote control software on the RU to achieve the purpose of power supply, detection and control through the AISG cable.
  • the present embodiment provides a method for supporting the power supply and monitoring of the tower in the RU integrated tower control board (hereinafter referred to as TAM board) .
  • the TAM board can include: a variable voltage output module, which can be controlled by the main control unit (for example, the main control unit of the system), and the power supply is flexible; the amplifying circuit module can be based on the output voltage of the main control unit.
  • the detection circuit ie, the detection voltage
  • the detection control module which can detect the working state of the tower in real time, and report the alarm information and the control channel switching state in time.
  • the TAM board can be used to build a DC-DC conversion circuit with discrete components.
  • the variable voltage output module realizes the variable voltage output by controlling the feedback of the DC-DC conversion circuit through the DA chip according to the parameters issued by the main control unit.
  • the TAM board can also realize the functions of adjustable amplification parameters and analog-to-digital conversion (ADC). For example, corresponding to different voltage outputs, the amplifying circuit module can amplify the detection voltage with different amplification factors to make the detection more accurate and ensure the detection. The detection voltage does not exceed the detection range of the ADC after amplification. In this way, when the TAM board adopts the multi-channel power supply output of the common interface, the output of each channel is independently detected and protected, and does not affect each other. Therefore, the board can support towers of different models, different supply voltages, different working modes or different parameters, and has a wide application range.
  • ADC analog-to-digital conversion
  • the TAM board It can be used to replace different manufacturers' equipment and adapt to other brands of towers, thus reducing the cost of R&D investment, avoiding hardware and software design changes, simplifying engineering complexity, and improving system flexibility.
  • the TAM board can be connected to the T-head (Bias Tee) through an SMA cable for powering the tower, controlling the power-on and power-off, monitoring the working state of the tower, and the like.
  • the length of the SMA cable can be flexibly adjusted according to the engineering installation and wiring mode.
  • the TAM board can be outputted by the common SMA interface, which can support various towers with the common Bias Tee, especially the tower and non-AISG interface towers that cannot obtain the proprietary protocol.
  • Bias Tee is coupled to the feeder. It can be seen that the base station system in this embodiment can monitor the working state of the tower in real time, report the alarm, and respond quickly, and can well protect the tower from damage; the system uses the TAM board integrated in the RU to put the tower on the tower. Power supply and monitoring, which can be applied to site relocation and old-fashioned, and the engineering complexity and cost are low. Moreover, the system has simple power supply, flexible system configuration and cable connection, and small size.
  • the feeder between the RU and the Bias Tee is used to transmit radio frequency signals, ie received/transmitted handset signals.
  • Embodiment 3 The BBU combines the RU to supply power and monitor the tower.
  • the BBU can also supply power and monitor the tower with the RU, for example, TAM in the BBU.
  • the board supplies power to the tower, and the RU monitors the working state of the tower.
  • the base station system is suitable for the case where the protocol can be obtained but the RU supply voltage does not meet the working conditions of the tower (the RU supply voltage is generally 12V or 28V).
  • the TAM board interpolated in the BBU can implement the voltage adjustable function, and the RU supply voltage is relatively simple. Therefore, the voltage parameters that the RU cannot support can be powered by the TAM board.
  • the cable connected to the Bias Tee is divided into two (it can be a self-made cable, that is, the T-type head is an AISG interface, and the T-head is divided into two, and the SMA connector is connected to the TAM single.
  • the board is powered and connected to the AISG connector to the RU.
  • the power cable is connected to the TAM board for power supply.
  • the RS485 signal that communicates with the TMA is connected to the RU to implement the tower function control (including gain monitoring, version upgrade, etc.) and alarm detection reporting.
  • RU and Bias Tee are also connected by a feeder, which is used to transmit radio frequency signals, that is, received/transmitted mobile phone signals.
  • FIG. 9 is a schematic structural diagram of a system for supporting a tower in a macro station according to a preferred embodiment of the present invention
  • FIG. 10 is a schematic structural diagram of a system for independently mounting a support tower of a BBU according to a preferred embodiment of the present invention, as shown in FIG. 9 and As shown in FIG. 10, taking the base station system in the first embodiment as an example, the embodiment of the present invention can be generally applied to a macro station application and a BBU independent installation.
  • the tower control panel in the base station system is used to provide different voltages for the TMA.
  • the method is simple in operation, flexible in parameter setting, and adjustable in parameters, and can solve different models, different power supply voltages, and different types.
  • the adaptation problem of the working mode tower is wide.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices.
  • they may be implemented by program code executable by the computing device so that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or Multiple modules or steps are made into a single integrated circuit module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种支持塔顶放大器(TMA)的基站系统及其实现方法,该基站系统包括射频单元(RU)、基带单元(BBU)以及TMA,还包括:塔放控制单板,耦合至TMA,用于为TMA提供不同电压。通过本发明解决了现有基站系统中只能由AISG接口对塔放进行供电或对塔放供电单一的问题,增加了系统的灵活性,提高了系统的兼容能力。

Description

支持塔顶放大器的基站系统及其实现方法 技术领域 本发明涉及通信领域, 尤其涉及一种支持塔顶放大器的基站系统及其实现方法。 背景技术 基站接收系统的有源器件和射频导体中的电子热运动会引起的热噪声, 影响基站 接收的性能。 为了改善基站接收的性能, 有时在天馈系统中, 还需要安装塔顶放大器。 塔顶放大器 (Tower Mounted Amplifier, 简称为 TMA, 以下简称塔放) 可弥补上下行 覆盖的差距, 从而扩大基站的通话范围, 降低掉话率, 改善通话质量。 塔放一般用在 天线 (Antenna, 以下简称 ANT)和节点 B (NodeB)射频单元距离比较远、 链路损耗 比较大的基站中。为了达到对上行信号的低噪声放大,塔放都是接在 ANT出来的馈线 上。 此外, 塔放是有源器件, 它通过馈线进行供电。 塔放的远程控制可以通过塔放的通信接口来实现, 可以分成符合天线接口标准组 (Antenna Interface Standards Group, 简称为 AISG) 的标准接口和不符合 AISG的私 有接口。 AISG协议允许数字远程控制及监测无线基础设施,可以根据不断变化的覆盖 需求动态优化网络。 在相关技术中, 对于符合 AISG协议的塔放可以通过 AISG接口进行塔放的远程 控制, 即, 可以由基站系统中的装置通过 AISG线缆给协议塔放供电, 实现塔放的功 能控制 (包括增益监控、 版本升级等) 及告警检测上报; 对于不符合 AISG协议但可 以拿到私有通信协议的塔放, 可以用私有通信协议来替代 AISG协议进行远程控制, BP , 可以拿到该类型塔放的私有通信协议来开发远程控制软件, 达到给塔放供电、 检 测、 控制的目的; 对于不符合 AISG协议且拿不到私有通信协议的塔放, 虽然可以通 过 AISG接口供电, 但不能应用 AISG协议来进行监控和告警, 起不到保护塔放、 维 护业务的作用, 并且使用 AISG线缆供电的话, 也仅会使用 AISG线缆中的电源线和 地线, 用不到其他信号线而产生浪费线缆的现象; 对于没有 AISG接口的普通塔放, 绝对是无法支持 AISG协议的, 也无法进行塔放的供电和监控。 目前, 普遍使用的支持塔放的方案有:
1、 由基站内的某装置支持塔放。 该方案主要适用于 AISG塔放, 但是由于塔放样 式繁多, 供电电压范围、 工作模式、 告警范围等不尽相同, 而基站内的装置只能给塔 放提供单一供电, 且只能通过 AISG协议监测塔放状态。 所以, 该方案支持塔放的种 类及告警方式有限、 且供电单一。
2、采用厂家的电源分配单元(Power Distribute Unit,简称为 PDU)支持普通塔放。 但该方案存在如下缺点: (l ) PDU需要单独的供电线缆; (2) PDU成本较高; ( 3 ) PDU 是一个独立的装置, 配置复杂, 需要占用机柜空间; (4) PDU供电单一、 不可调控, 适配不同厂家的塔放设备有一定难度, 且不容易推动, 需要投入研发, 更改硬件及软 件设计; (5 ) 工程进度和时间不容易控制。 可见, 在相关技术中, 对于不支持 AISG接口或者无法拿到私有通信协议的塔放 无法由基站内装置实现塔放的供电和监控, 无法实现重复利用 (即, 利旧)。 而采用厂 家的 PDU方案支持普通塔放或将此种塔放更换掉的话,将增加项目工程的成本、复杂 度, 以及延长工程的进度。 发明内容 本发明的主要目的在于提供一种支持塔顶放大器的基站系统的实现方案, 以至少 解决上述现有基站系统中只能由 AISG接口对塔放进行供电或对塔放供电单一的问题。 为了实现上述目的, 根据本发明的一个方面, 提供了一种支持 TMA的基站系统。 根据本发明的支持 TMA 的基站系统, 包括射频单元 RU、 基带单元 BBU 以及 TMA, 其中, BBU包括: 塔放控制单板, 耦合至 TMA, 设置为为 TMA提供不同电 压。 优选地, 塔放控制单板包括: 电压输出模块, 设置为根据 BBU的主控单元中的预 设参数输出可变电压; 监控模块, 设置为检测 TMA的工作状态, 并上报告警信息。 优选地, 塔放控制单板还包括: 电压转换模块, 设置为根据 TMA的电压适配电 压输出模块输出的电压。 优选地, 监控模块还设置为控制通道的开关状态, 以提供多路供电输出。 优选地, RU用于通过天线接口标准组 AISG线缆对 TMA进行监控。 优选地, 该基站系统还包括: T型头, 与塔放控制单板和 TMA连接, 设置为将来 自 RU和 /或塔放控制单板的信号经过馈线传送给 TMA。 优选地, RU和 BBU设置在宏基站中; 或者, BBU与 RU独立安装。 优选地, TMA包括以下至少之一: AISG协议的塔顶放大器、 能拿到私有协议的 AISG接口的塔顶放大器、 拿不到私有协议的 AISG接口的塔顶放大器、 非 AISG接口 的塔顶放大器。 为了实现上述目的, 根据本发明的另一方面, 提供了一种支持 TMA的基站系统 的实现方法。 根据本发明的支持 TMA的基站系统的实现方法中基站系统包括射频单元 RU、基 带单元 BBU以及 TMA, 该方法包括以下步骤: 在 BBU内设置塔放控制单板; 塔放控 制单板耦合至 TMA, 并为 TMA提供不同电压。 优选地,塔放控制单板根据 BBU的主控单元中的预设参数输出可变电压; 以及对 TMA的工作状态进行检测, 并上报告警信息。 为了实现上述目的, 根据本发明的又一方面, 提供了一种支持 TMA的基站系统。 根据支持 TMA的基站系统, 包括射频单元 RU、 基带单元 BBU以及 TMA, 该基 站系统还包括: 塔放控制单板, 耦合至 TMA, 设置为 TMA提供不同电压。 优选地, 塔放控制单板包括: 电压输出模块, 设置为根据主控单元中的预设参数 输出可变电压; 监控模块, 设置为检测 TMA的工作状态, 并上报告警信息。 优选地, 塔放控制单板还包括: 电压转换模块, 设置为根据 TMA的电压适配电 压输出模块输出的电压。 优选地, 监控模块还设置为控制通道的开关状态, 以提供多路供电输出。 优选地, RU设置为通过天线接口标准组 AISG线缆对 TMA进行监控; 或者, 设 置为继承塔放控制单板的功能, 对 TMA进行供电和监控。 优选地, 基站系统还包括: T型头, 与塔放控制单板和 TMA连接, 设置为将来自 RU和 /或塔放控制单板的信号经过馈线传送给 TMA。 优选地, RU和 BBU设置在宏基站中; 或者, BBU与 RU独立安装。 优选地, TMA包括以下至少之一: AISG协议的塔顶放大器、 能拿到私有协议的 AISG接口的塔顶放大器、 拿不到私有协议的 AISG接口的塔顶放大器、 非 AISG接口 的塔顶放大器。 为了实现上述目的, 根据本发明的再一方面, 提供了一种支持 TMA的基站系统 的实现方法。 根据本发明的支持塔顶放大器 TMA的基站系统的实现方法, 基站系统包括射频 单元 RU、 基带单元 BBU以及 TMA, 包括以下步骤: 在基站系统中设置塔放控制单 板; 塔放控制单板耦合至 TMA, 并为 TMA提供不同电压。 优选地, 塔放控制单板根据主控单元中的预设参数输出可变电压; 以及对 TMA 的工作状态进行检测, 并上报告警信息。 通过本发明, 采用基站系统中的塔放控制单板为 TMA提供不同电压的方式, 解 决了现有基站系统中只能由 AISG接口对塔放进行供电或对塔放供电单一的问题, 增 加了系统的灵活性, 提高了系统的兼容能力。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是根据本发明实施例的支持塔顶放大器的基站系统的结构框图; 图 2是根据本发明优选实施例的支持塔顶放大器的基站系统的结构框图; 图 3是根据本发明再一优选实施例的支持塔顶放大器的基站系统的结构框图; 图 4是根据本发明另一优选实施例的支持塔顶放大器的基站系统的结构框图; 图 5是根据本发明实施例的支持塔顶放大器的基站系统的实现方法的流程图; 图 6是根据本发明实施例一的 BBU对塔放进行供电及监控的系统结构示意图; 图 7是根据本发明实施例二的 RU对塔放进行供电及监控的系统结构示意图; 图 8是根据本发明实施例三的 BBU结合 RU对塔放进行供电及监控的系统结构示 意图; 图 9是根据本发明优选实施例的宏站支持塔放的系统结构示意图; 以及 图 10是根据本发明优选实施例的 BBU独立安装支持塔放的系统结构示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 根据本发明实施例, 提供了一种支持 TMA的基站系统。 图 1是根据本发明实施 例的支持塔顶放大器的基站系统的结构框图, 如图 1所示, 该基站系统 10包括射频单 元 (Radio Unit, 简称为 RU) 12、 基带单元 (Baseband Unit, 简称为 BBU) 14以及 TMA 16, 其中, RU 12与 BBU 14和 TMA 16连接, 基站系统 10还包括: 塔放控制单 板 18, 耦合至 TMA 16, 设置为为 TMA 16提供不同电压。 通过上述基站系统 10, 采用基站系统 10中的塔放控制单板 18为 TMA 16提供不 同电压的方式, 解决了现有基站系统中只能由 AISG接口对塔放进行供电或对塔放供 电单一的问题, 增加了系统的灵活性, 提高了系统的兼容能力。 需要说明的是,在实施过程中,基站系统 10的某个部件中可以包括塔放控制单板 18, 例如, 图 2是根据本发明优选实施例的支持塔顶放大器的基站系统的结构框图, 其中, 在 BBU 14中包括塔放控制单板 18。 当然, 塔放控制单板 18也可以独立作为一 个单板, 或者集成于其他单板上实现其功能。 例如,塔放控制单板 18可以集成为 BBU 14插板结构,灵活配置在 BBU 14槽位, 由 BBU 14背板供电。 图 3是根据本发明再一优选实施例的支持塔顶放大器的基站系统的结构框图, 如 图 3所示, 塔放控制单板 18包括: 电压输出模块 182, 耦合至 TMA 16, 设置为根据 主控单元中的预设参数输出可变电压; 监控模块 184, 耦合至 TMA 16, 设置为检测 TMA 16的工作状态, 并上报告警信息。 这样利用塔放控制单板 18对塔顶放大器进行 监控, 从而使得系统可以为不支持 AISG接口或者无法拿到私有通信协议的塔放进行 供电和监控, 提高了系统的适应能力。 例如,塔放控制单板 18输出的电压可以随配置参数(例如, 由软件控制该参数值) 的不同而变化。 优选地, 塔放控制单板 18还包括: 电压转换模块 186, 耦合至电压输出模块 182, 设置为根据 TMA的电压适配电压输出模块 182输出的电压。 该方法可以使塔放控制 单板 18适配不同规格或厂商的 TMA 16, 增加了系统的可配置性, 节省了系统升级的 费用。 优选地, 监控模块 184还设置为控制通道的开关状态, 以提供多路供电输出。 该 方法可以使得塔放控制单板 18对 TMA 16进行有效的控制, 提高了系统的处理能力。 优选地, RU 12设置为通过 AISG线缆对 TMA 16进行监控; 或者, 设置为继承 塔放控制单板 18的功能, 对 TMA进行供电和监控。 例如, 在基站系统中使用塔放控 制单板 18为 TMA 16供电, 使用 RU 12对 TMA 16进行监监控, 这样可以实现 RU 12 与 BBU 14共同为 TMA 16进行供电和监控的目的, 增强了系统的灵活性。 优选地, 基站系统 10还包括: T型头 18, 耦合至 RU 12和 TMA 16、 塔放控制单 板 18和 TMA 16, 与塔放控制单板 18连接, 设置为将来自 RU 12和 /或塔放控制单板 18的信号经过馈线传送给 TMA 16。 例如, 该 T型头 18可以为普通的 T型头 18或 AISG T型头 18, 在实施过程中可采用普通的 T型头 18, 这样可以降低工程成本。 该 方法简单实用、 可操作性强。 在实施过程中, T型头 18也可以是具有类似功能的接口, 且 T型头 18可以独立 为一个个体, 也可以将其功能集成于基站系统 10的某个部件当中。 图 4是根据本发明另一优选实施例的支持塔顶放大器的基站系统的结构框图, 如 图 4所示, 如果是在 BBU 14中包括塔放控制单板 18, 则电压输出模块 182可以是根 据 BBU 14的主控单元中的预设参数输出可变电压。 优选地, RU 12和 BBU 14设置在宏基站中; 或者, BBU 14与 RU 12独立安装。 该方法简单实用、 可操作性强。 优选地, TMA 16包括以下至少之一: AISG协议的塔顶放大器、 能拿到私有协议 的 AISG接口的塔顶放大器、拿不到私有协议的 AISG接口的塔顶放大器、非 AISG接 口的塔顶放大器。 即, 本发明实施例提供了基站系统 10可以支持各种塔顶放大器, 并 且对塔顶放大器的型号、 供电电压、 工作模式等并不限制。 该方法可以有效地提高系 统的兼容能力。 对应于上述系统, 本发明实施例还提供了一种支持塔顶放大器 TMA的基站系统 的实现方法。 图 5是根据本发明实施例的支持塔顶放大器的基站系统的实现方法的流 程图, 如图 5所示, 该基站系统 10包括 RU 12、 BBU 14以及 TMA 16, 该基站系统 10的实现方法可以包括以下步骤: 步骤 S502, 在基站系统 10中设置塔放控制单板 18; 步骤 S504, 塔放控制单板 18耦合至 TMA 16, 并为 TMA 16提供不同电压。 通过上述步骤, 采用基站系统 10中的塔放控制单板 18为 TMA 16提供不同电压 的方式, 解决了现有基站系统中只能由 AISG接口对塔放进行供电或对塔放供电单一 的问题, 增加了系统的灵活性, 提高了系统的兼容能力。 需要说明的是,在实施过程中,基站系统 10的某个部件中可以包括塔放控制单板 18, 例如, 在 BBU 14中包括塔放控制单板 18。 当然, 塔放控制单板 18也可以独立作 为一个单板, 或者集成于其他单板上实现其功能。 优选地,塔放控制单板 18可以根据主控单元中的预设参数输出可变电压; 以及对 TMA 16 的工作状态进行检测, 并上报告警信息。 在实施过程中, 如果是在 BBU 14 中包括塔放控制单板 18, 则电压输出模块 182可以是根据 BBU 14的主控单元中的预 设参数输出可变电压。 为了帮助理解上述实施例, 下面结合上述多个优选实施对本发明的技术方案进行 描述。 本实施例提供了一种基站支持塔放供电和监控的系统, 适用于所有塔放, 尤其是 普通塔放和私有协议塔放, 在硬件设备不变的情况下通过软件参数调整就可以支持各 种塔放, 操作简便, 减少了工程操作, 解决了现有技术中对于非 AISG接口或者无法 拿到私有通信协议的塔放无法利旧、 利旧成本高, 以及适配复杂、 不灵活等问题, 该 系统配置灵活、 体积小, 适用于 BBU独立安装、 室内宏站、 室外宏站应用。 具体地, 本实施例提供的支持塔放的基站系统可以包括: 基带单元 (以下简称 BBU)、 射频单元 (以下简称 RU)、 塔放 (TMA)、 ANT。 在实施过程中, 该基站系统支持塔放供电和监控的方案可以为以下几种: 方式一, 由 BBU对塔放进行供电及监控; 方式二, 由 RU对塔放进行供电及监控; 方式三, BBU、 RU结合起来对塔放供电和监控。 下面结合优选实施例和附图对上述实施例的实现过程进行详细说明。 实施例一: 由 BBU对塔放进行供电及监控 图 6是根据本发明实施例一的 BBU对塔放进行供电及监控的系统结构示意图,如 图 6所示, 本实施例提供了一种 BBU内插塔放控制单板 (以下简称 TAM单板)支持 塔放供电及监控的方法, 该基站系统可以支持任意类型的塔放, 尤其是拿不到私有协 议的塔放以及非 AISG接口的塔放。 具体地, 采用 TAM单板来给塔放供电和监控, 其 中, TAM单板可以集成为 BBU插板结构, 灵活配置在 BBU槽位, 由 BBU背板供电, 这样体积小, 不另外占用机柜空间, 不需要单独的供电线缆。 在实施过程中, TAM单板可以包括: 可变电压输出模块, 可由主控单元 (例如,
BBU系统的主控单元)控制输出电压大小, 供电灵活; 放大电路模块, 可由主控单元 根据输出电压大小来适配检测电路 (即, 检测电压) 放大倍数的大小; 以及检测控制 模块, 可实时检测塔放工作状态, 及时上报告警信息及控制通道开关状态。 例如, 在 实施过程中, TAM单板可以用分立器件搭建直流电压变换电路 (SP, DC-DC变换电 路),可变电压输出模块根据 CPU主控单元下发的参数,通过 DA芯片控制 DC-DC变 换电路的反馈(feedback)而实现变压输出。 此外, TAM单板还可实现放大参数可调、 模数转换 (Analog-Digital Conversion, 简称为 ADC) 的功能, 例如, 对应于不同电压 输出, 放大电路模块可以采用不同放大倍数放大检测电压, 使检测更精确, 也能确保 检测电压放大后不会超过 ADC的检测范围。 这样, TAM单板采用常用接口多路供电 输出时, 各路输出之间相互独立检测和保护, 互不影响。 所以, 该单板可以支持不同 型号、 不同供电电压、 不同工作模式或不同参数的塔放, 应用范围广。 通过上述方法, TAM单板可以适用于替换不同厂家设备, 适配其他品牌塔放, 从而降低了研发投入的 成本, 避免了更改硬件及软件设计, 化简了工程复杂度, 提高了系统的灵活性。 优选地, TAM单板可以与 T型头(Bias Tee)通过 SMA ( SMA是 Sub-Miniature-A 的简称, 是一种常见的天线接口) 线缆连接, 用来给塔放供电、 进行上下电控制、 监 测塔放工作状态等等。 其中, SMA线缆的长度可以依据工程安装、 走线方式等进行灵 活调整。 此外, RU也可以与 Bias Tee通过馈线连接, 用来传输射频信号, 即接收 /发 射的手机信号。 RU与 BBU之间可以通过通用公共射频接口 (Common Public Radio Interface, 简称为 CPRI) 通信。 需要说明的是, TAM单板采用普通 SMA接口输出, 这样可以配合普通 Bias Tee 支持各种塔放, 尤其是拿不到私有协议的塔放及非 AISG接口塔放。 并且, 使用 SMA 接口输出的另一个优点是节约成本, 普通 T型头比 AISG T型头便宜很多, 降低了工 程成本。 优选地, Bias Tee与塔放、 塔放与天线可以通过馈线连接; TAM单板的供电通过 Bias Tee耦合到馈线上。 可见, 本实施例中的基站系统可以实时监测塔放的工作状态, 上报告警, 且反应 迅速, 能很好地保护塔放不受损坏; 该系统采用 BBU中的 TAM单板对塔放供电及监 控, 从而可以适用站点搬迁及利旧等, 且工程复杂度和成本较低。 并且, 系统配置及 线缆连接灵活等。 并且, 该系统供电简单、 系统配置及线缆连接灵活、 体积小, 适用 于 BBU独立安装和宏站应用。 实施例二: 由 RU对塔放进行供电及监控 图 7是根据本发明实施例二的 RU对塔放进行供电及监控的系统结构示意图, 如 图 7所示, RU与 Bias Tee通过 ASIG线缆和馈线连接或通过塔放控制单板连接, Bias Tee与塔放、 塔放与天线通过馈线连接, RU与 BBU之间通过 CPRI通信, 该基站系 统可以支持任意类型的塔放。 对于 AISG协议塔放, 系统可以通过 AISG接口进行远程控制。 例如, 由基站系 统中的 RU通过 AISG线缆给 AISG协议塔放供电,实现塔放功能控制 (包括增益监控、 版本升级等) 及告警检测上报。 对于不符合 AISG接口协议, 但能拿到私有协议的 AISG接口的塔放, 系统可以 用私有通信协议来替代 AISG协议进行远程控制。 例如, 首先, 拿到该类型塔放的私 有通信协议, 然后, 在 RU上开发远程控制软件, 通过 AISG线缆达到给塔放供电、 检测、 控制的目的。 对于拿不到私有协议的 AISG接口的塔放及非 AISG接口的塔放, 本实施例提供 了一种 RU内集成塔放控制单板 (以下简称 TAM单板) 支持塔放供电及监控的方法。 在实施过程中, TAM单板可以包括: 可变电压输出模块, 可由主控单元 (例如, 系统的主控单元) 控制输出电压大小, 供电灵活; 放大电路模块, 可由主控单元根据 输出电压大小来适配检测电路(即, 检测电压)放大倍数的大小; 以及检测控制模块, 可实时检测塔放工作状态, 及时上报告警信息及控制通道开关状态。 例如, TAM单板 可以用分立器件搭建 DC-DC变换电路, 可变电压输出模块根据主控单元下发的参数, 通过 DA芯片控制 DC-DC变换电路的 feedback而实现变压输出。 此外, TAM单板还 可实现放大参数可调、 模数转换 (ADC) 的功能, 例如, 对应于不同电压输出, 放大 电路模块可以采用不同放大倍数放大检测电压, 使检测更精确, 也能确保检测电压放 大后不会超过 ADC的检测范围。 这样, TAM单板采用常用接口多路供电输出时, 各 路输出之间相互独立检测和保护, 互不影响。 所以, 该单板可以支持不同型号、 不同 供电电压、 不同工作模式或不同参数的塔放, 应用范围广。 通过上述方法, TAM单板 可以适用于替换不同厂家设备, 适配其他品牌塔放, 从而降低了研发投入的成本, 避 免了更改硬件及软件设计, 化简了工程复杂度, 提高了系统的灵活性。 优选地, TAM单板可以与 T型头 (Bias Tee) 通过 SMA线缆连接, 用来给塔放 供电、 进行上下电控制、 监测塔放工作状态等等。 其中, SMA线缆的长度可以依据工 程安装、 走线方式等进行灵活调整。 需要说明的是, TAM单板可以采用普通 SMA接口输出, 这样可以配合普通 Bias Tee支持各种塔放, 尤其是拿不到私有协议的塔放及非 AISG接口塔放。 并且, 使用 SMA接口输出的另一个优点是节约成本, 普通 T型头比 AISG T型头便宜很多, 降低 了工程成本。 优选地, Bias Tee与塔放、 塔放与天线可以通过馈线连接; TAM单板的供电通过
Bias Tee耦合到馈线上。 可见, 本实施例中的基站系统可以实时监测塔放的工作状态, 上报告警, 且反应 迅速, 能很好地保护塔放不受损坏; 该系统采用 RU中集成的 TAM单板对塔放供电及 监控, 从而可以适用站点搬迁及利旧等, 且工程复杂度和成本较低。 并且, 该系统供 电简单、 系统配置及线缆连接灵活、 体积小。 优选地, RU与 Bias Tee之间的馈线用来传输射频信号, 即接收 /发射的手机信号。 实施例三: BBU结合 RU对塔放进行供电及监控。 图 8是根据本发明实施例三的 BBU结合 RU对塔放进行供电及监控的系统结构示 意图, 如图 8所示, BBU还可以结合 RU对塔放进行供电及监控, 例如, BBU中的 TAM单板对塔放进行供电, RU对塔放的工作状态进行监控, 该基站系统适用于能拿 到协议但 RU供电电压不满足塔放工作条件的情况 (RU供电电压一般为 12V或 28V)。 由于内插于 BBU的 TAM单板可以实现电压可调功能, 而 RU的供电电压比较单 一, 所以对于 RU不能支持的电压参数就可以由 TAM单板来进行供电。例如, 将连接 到 Bias Tee的线缆一分为二 (可以为自制线缆, 即, T型头端为 AISG接口, 由 T型 头出来后一分为二, 分别接 SMA接头连接到 TAM单板供电和接 AISG接头到 RU监 控), 电源线连接到 TAM单板用来供电, 与 TMA通信的 RS485信号连接到 RU实现 塔放功能控制 (包括增益监控、 版本升级等) 及告警检测上报。 另外, RU与 Bias Tee还通过馈线连接, 馈线用来传输射频信号, 即接收 /发射的 手机信号。 优选地, Bias Tee与塔放、 塔放与天线也通过馈线连接。 在实施过程中, RU与 BBU之间也可以通过 CPRI通信。 需要说明的是,图 9是根据本发明优选实施例的宏站支持塔放的系统结构示意图, 图 10是根据本发明优选实施例的 BBU独立安装支持塔放的系统结构示意图, 如图 9 和 10所示, 以实施例一中的基站系统为例,本发明实施例可以普遍应用于宏站应用及 BBU独立安装。 综上所述, 通过本发明实施例, 采用基站系统中的塔放控制单板为 TMA提供不 同电压, 该方法操作简便、 参数设置灵活、 参数可调整, 可以解决不同型号、 不同供 电电压、 不同工作模式塔放的适配问题, 应用范围广。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而可以将 它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限 制于任何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种支持塔顶放大器 TMA的基站系统, 包括射频单元 RU、 基带单元 BBU以 及 TMA, 所述 BBU包括:
塔放控制单板, 耦合至所述 TMA, 设置为所述 TMA提供不同电压。
2. 根据权利要求 1所述的系统, 其中, 所述塔放控制单板包括:
电压输出模块, 设置为根据所述 BBU 的主控单元中的预设参数输出可变 电压;
监控模块, 设置为检测所述 TMA的工作状态, 并上报告警信息。
3. 根据权利要求 2所述的系统, 其中, 所述塔放控制单板还包括: 电压转换模块, 设置为根据所述 TMA的电压适配所述电压输出模块输出 的电压。
4. 根据权利要求 2所述的系统, 其中, 所述监控模块还设置为控制通道的开关状 态, 以提供多路供电输出。
5. 根据权利要求 1所述的系统,其中,所述 RU设置为通过天线接口标准组 AISG 线缆对所述 TMA进行监控。
6. 根据权利要求 1至 5中任一项所述的系统, 其中, 所述基站系统还包括:
T型头, 与所述塔放控制单板和所述 TMA连接,设置为将来自所述 RU和 /或所述塔放控制单板的信号经过馈线传送给所述 TMA。
7. 根据权利要求 6所述的系统, 其中,
所述 RU和所述 BBU设置在宏基站中; 或者,
所述 BBU与所述 RU独立安装。
8. 根据权利要求 1所述的系统, 其中, 所述 TMA包括以下至少之一: AISG协议 的塔顶放大器、 能拿到私有协议的 AISG接口的塔顶放大器、 拿不到私有协议 的 AISG接口的塔顶放大器、 非 AISG接口的塔顶放大器。
9. 一种支持塔顶放大器 TMA的基站系统的实现方法, 所述基站系统包括射频单 元 RU、 基带单元 BBU以及 TMA, 包括以下步骤:
在所述 BBU内设置塔放控制单板;
所述塔放控制单板耦合至所述 TMA, 并为所述 TMA提供不同电压。
10. 根据权利要求 9所述的实现方法, 其中, 所述塔放控制单板根据所述 BBU的 主控单元中的预设参数输出可变电压; 以及对所述 TMA的工作状态进行检测, 并上报告警信息。
11. 一种支持塔顶放大器 TMA的基站系统, 包括射频单元 RU、 基带单元 BBU以 及 TMA, 所述基站系统还包括:
塔放控制单板, 耦合至所述 TMA, 设置为所述 TMA提供不同电压。
12. 根据权利要求 11所述的系统, 其中, 所述塔放控制单板包括:
电压输出模块, 设置为根据主控单元中的预设参数输出可变电压; 监控模块, 设置为检测所述 TMA的工作状态, 并上报告警信息。
13. 根据权利要求 12所述的系统, 其中, 所述塔放控制单板还包括:
电压转换模块, 设置为根据所述 TMA的电压适配所述电压输出模块输出 的电压。
14. 根据权利要求 12所述的系统,其中,所述监控模块还设置为控制通道的开关状 态, 以提供多路供电输出。
15. 根据权利要求 11所述的系统,其中,所述 RU设置为通过天线接口标准组 AISG 线缆对所述 TMA进行监控; 或者, 设置为继承所述塔放控制单板的功能, 对 TMA进行供电和监控。
16. 根据权利要求 11至 15中任一项所述的系统, 其中, 所述基站系统还包括:
T型头, 与所述塔放控制单板和所述 TMA连接,设置为将来自所述 RU和 /或所述塔放控制单板的信号经过馈线传送给所述 TMA。
17. 根据权利要求 16所述的系统, 其中,
所述 RU和所述 BBU设置在宏基站中; 或者,
所述 BBU与所述 RU独立安装。
18. 根据权利要求 11所述的系统, 其中, 所述 TMA包括以下至少之一: AISG协 议的塔顶放大器、 能拿到私有协议的 AISG接口的塔顶放大器、 拿不到私有协 议的 AISG接口的塔顶放大器、 非 AISG接口的塔顶放大器。
19. 一种支持塔顶放大器 TMA的基站系统的实现方法, 所述基站系统包括射频单 元 RU、 基带单元 BBU以及 TMA, 包括以下步骤: 在所述基站系统中设置塔放控制单板;
所述塔放控制单板耦合至所述 TMA, 并为所述 TMA提供不同电压。
20. 根据权利要求 19所述的实现方法,其中,所述塔放控制单板根据主控单元中的 预设参数输出可变电压; 以及对所述 TMA的工作状态进行检测, 并上报告警 信息。
PCT/CN2011/084937 2011-04-20 2011-12-29 支持塔顶放大器的基站系统及其实现方法 WO2012142850A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110099589.1A CN102291747B (zh) 2011-04-20 2011-04-20 支持塔顶放大器的基站系统及其实现方法
CN201110099589.1 2011-04-20

Publications (1)

Publication Number Publication Date
WO2012142850A1 true WO2012142850A1 (zh) 2012-10-26

Family

ID=45337800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084937 WO2012142850A1 (zh) 2011-04-20 2011-12-29 支持塔顶放大器的基站系统及其实现方法

Country Status (2)

Country Link
CN (1) CN102291747B (zh)
WO (1) WO2012142850A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291747B (zh) * 2011-04-20 2016-03-30 中兴通讯股份有限公司 支持塔顶放大器的基站系统及其实现方法
WO2014094274A1 (zh) * 2012-12-20 2014-06-26 华为技术有限公司 一种基站
CN106129619B (zh) * 2016-08-24 2021-09-07 广东通宇通讯股份有限公司 集成有塔顶放大器模块的一体化天线

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080014866A1 (en) * 2006-07-12 2008-01-17 Lipowski Joseph T Transceiver architecture and method for wireless base-stations
CN101232123A (zh) * 2008-01-15 2008-07-30 中兴通讯股份有限公司 电调天线下倾角远程控制系统
CN101237242A (zh) * 2008-02-27 2008-08-06 华为技术有限公司 一种天馈适配装置及方法
CN102291747A (zh) * 2011-04-20 2011-12-21 中兴通讯股份有限公司 支持塔顶放大器的基站系统及其实现方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1291618C (zh) * 2004-05-13 2006-12-20 大唐移动通信设备有限公司 一种基站设备结构及备份方法
CN100517995C (zh) * 2006-03-08 2009-07-22 鸿富锦精密工业(深圳)有限公司 无线收发系统
CN201509192U (zh) * 2009-08-11 2010-06-16 武汉凡谷电子技术股份有限公司 塔顶放大器电流窗告警电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080014866A1 (en) * 2006-07-12 2008-01-17 Lipowski Joseph T Transceiver architecture and method for wireless base-stations
CN101232123A (zh) * 2008-01-15 2008-07-30 中兴通讯股份有限公司 电调天线下倾角远程控制系统
CN101237242A (zh) * 2008-02-27 2008-08-06 华为技术有限公司 一种天馈适配装置及方法
CN102291747A (zh) * 2011-04-20 2011-12-21 中兴通讯股份有限公司 支持塔顶放大器的基站系统及其实现方法

Also Published As

Publication number Publication date
CN102291747A (zh) 2011-12-21
CN102291747B (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
US9225410B2 (en) Communication system, apparatus and method
JP5495144B2 (ja) 電力消費を規制する方法、装置、およびシステム
GB2354674A (en) Distributed architecture for a base station transceiver subsystem with remotely programmable radio unit
US10574280B2 (en) Passive intermodulation suppression method and passive intermodulation suppression system
WO2008034330A1 (fr) Procédé de combinaison de signaux de liaison montante en mode de division de secteur et système de station de base associé
CN102904601A (zh) 用于手持电子设备的具有同时接收能力的无线通信电路
CA2662840A1 (en) Distributed antenna communications system and methods of implementing thereof
WO2012092829A1 (zh) 多频段天线自动调谐阻抗匹配的方法及终端设备
WO2021109203A1 (zh) 一种5g信号射频分布系统
US8458502B1 (en) Power management in a wireless local area network
WO2011079598A1 (zh) 用于管理电调天线的操作维护系统、控制器和射频子系统
WO2012142850A1 (zh) 支持塔顶放大器的基站系统及其实现方法
JP2016225921A (ja) 光張出無線装置
WO2016184158A1 (zh) 室分系统及其工作方法
WO2011079597A1 (zh) 电调天线的管理系统和管理方法
US10993285B2 (en) Heterogeneous mobile radio arrangement for supplying at least one mobile radio cell with mobile radio services
CN210093575U (zh) 一种功放模块及射频拉远单元
WO2011144084A2 (zh) 基站设备及基站设备的信号传输方法
CN213960062U (zh) 5G-iLAN天线控制系统
CN215378915U (zh) 有源5G-iLAN智能天线及有源5G-iLAN智能天线系统
JP2001308739A (ja) 無線機
TWI765798B (zh) 電子設備的無線通信方法及電子設備
US20210160773A1 (en) Sleep-mode for ethernet controller
KR101079010B1 (ko) 유무선통신기능을 가진 동축케이블망용 메시방식 셀분할가입자망 접속장치
CN109818665B (zh) 无线信号扩展系统及无线信号扩展头端和终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11863812

Country of ref document: EP

Kind code of ref document: A1