WO2011144084A2 - 基站设备及基站设备的信号传输方法 - Google Patents

基站设备及基站设备的信号传输方法 Download PDF

Info

Publication number
WO2011144084A2
WO2011144084A2 PCT/CN2011/074676 CN2011074676W WO2011144084A2 WO 2011144084 A2 WO2011144084 A2 WO 2011144084A2 CN 2011074676 W CN2011074676 W CN 2011074676W WO 2011144084 A2 WO2011144084 A2 WO 2011144084A2
Authority
WO
WIPO (PCT)
Prior art keywords
tma
voltage signal
rfu
remote module
base station
Prior art date
Application number
PCT/CN2011/074676
Other languages
English (en)
French (fr)
Other versions
WO2011144084A3 (zh
Inventor
傅强
杨芳梁
李挺钊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP11783001.8A priority Critical patent/EP2713527B1/en
Priority to CN2011800006318A priority patent/CN102204402B/zh
Priority to PCT/CN2011/074676 priority patent/WO2011144084A2/zh
Publication of WO2011144084A2 publication Critical patent/WO2011144084A2/zh
Publication of WO2011144084A3 publication Critical patent/WO2011144084A3/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Base station device and base station device signal transmission method
  • the embodiments of the present invention relate to communication technologies, and in particular, to a signal transmission method of a base station device and a base station device. Background technique
  • the indoor base station may include an indoor baseband processing unit (BBU), a radio frequency unit (RFU), and an antenna.
  • BBU indoor baseband processing unit
  • RFU radio frequency unit
  • the RFU is connected to the antenna by using a feeder, and the feeder is used for transmitting signals such as radio frequency signals.
  • the embodiments of the present invention provide a signal transmission method for a base station device and a base station device, which are used to reduce the complexity and installation cost of the wiring.
  • An aspect of the present invention provides a base station device, where the base station device includes a BBU, an RFU, a first antenna connected to the RFU, a remote module, and a second antenna connected to the remote module, and connects the RFU.
  • the base station device includes a BBU, an RFU, a first antenna connected to the RFU, a remote module, and a second antenna connected to the remote module, and connects the RFU.
  • the second converter box is configured to receive the remote module DC voltage signal and the radio frequency signal from the first converter box through the feeder, and transmit the remote module DC voltage signal to the far And a terminal module, configured to supply power to the
  • An aspect of the present invention provides a signal transmission method of a base station device, where the base station device includes
  • a BBU BBU
  • RFU RFU
  • first antenna connected to the RFU
  • remote module a remote module
  • second antenna connected to the remote module
  • a feeder connected to the RFU and the first antenna receives a remote module DC voltage signal from the first power module and a radio frequency signal from the RFU;
  • the feeder transmits the remote module DC voltage signal to the remote module for powering the remote module and transmitting the radio frequency signal to the first antenna for radiating to the space.
  • An aspect of the present invention provides another base station device, where the base station device includes a BBU, an RFU, a first antenna connected to the RFU, a remote module, and a second antenna connected to the remote module, and the connection is performed.
  • a first conversion box and a second conversion box are disposed on the RFU and the feed line of the first antenna; wherein the first conversion box is configured to penetrate an optical fiber through an outer conductor of the feed line and an inner conductor of the feed line The inner conductor of the feed line;
  • the second conversion box is configured to pass an optical fiber in the inner conductor of the feed line out of the outer conductor of the feed line and the inner conductor of the feed line;
  • the BBU is connected to the remote module through the optical fiber.
  • An aspect of the present invention provides a signal transmission method of another base station device, where the base station device includes a BBU, an RFU, a first antenna connected to the RFU, a remote module, and a second antenna connected to the remote module. And an optical fiber penetrates an inner conductor of the feed line through an outer conductor connecting the RFU with a feed line of the first antenna and an inner conductor of the feed line, and the optical fiber in an inner conductor of the feed line passes through the optical fiber An outer conductor of the feeder and an inner conductor of the feeder; the method comprising:
  • the embodiments of the present invention can reduce the complexity of the wiring traces and the installation cost.
  • FIG. 1 is a schematic structural diagram of a base station device according to an embodiment of the present invention.
  • FIG. 2A is a schematic structural diagram of a base station device according to another embodiment of the present invention
  • FIG. 2B is a schematic diagram showing a state of an optical fiber in a third conversion box and a fourth conversion box in the base station device shown in FIG. 2A;
  • FIG. 3 is a schematic structural diagram of a base station device according to another embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a base station device according to another embodiment of the present disclosure.
  • FIG. 5A is a schematic structural diagram of another base station device according to another embodiment of the present invention
  • FIG. 5B is a schematic diagram of a state of an optical fiber in a first conversion box and a second conversion box in the base station device shown in FIG. 5A;
  • FIG. 6 is a schematic structural diagram of another base station device according to another embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of another base station device according to another embodiment of the present invention
  • FIG. 9 is a schematic flowchart of a signal transmission method of a base station device according to another embodiment of the present invention.
  • FIG. 10 is a schematic flowchart diagram of a signal transmission method of another base station device according to another embodiment of the present invention. detailed description
  • FIG. 1 is a schematic structural diagram of a base station device according to an embodiment of the present invention.
  • the base station device in this embodiment may include a BBU 11, an RFU 12, and a first antenna 14 and an RRU 13 connected to the RFU 12. And a second antenna 15 connected to the RRU 13.
  • the first converter box 17 and the second converter box 18 are disposed on the feeder 16 connecting the RFU 12 and the first antenna 14.
  • the first converter box 17 can be configured to receive the RRU DC voltage signal from the first power module and the RF signal from the RFU 12, and transmit the RRU DC voltage signal to the second converter box 18 through the feeder 16, and pass
  • the feed line 16 transmits the radio frequency signal to the second converter box 18
  • the second converter box 18 can be configured to receive the RRU DC voltage signal from the first converter box 17 and the radio frequency signal through the feed line 16, and the RRU DC voltage signal
  • the transmission to the RRU 13 is for supplying power to the RRU 13, and transmitting the radio frequency signal to the first antenna 14 for radiating into space.
  • the voltage value of the RRU DC voltage signal may include, but is not limited to, -48V.
  • the first converter box 17 may be specifically disposed adjacent to the RFU 12, and the second converter box 18 may be disposed adjacent to the first antenna 14.
  • the RRU DC voltage signal is received through the first converter box (the RRU DC voltage signal is fed and merged in the antenna feed port), and then the RRU DC voltage signal received by the first converter box is transmitted to the second by the feeder. Converting the box, and transmitting, by the second converter box, the received RRU DC voltage signal to the RRU (separating the RRU DC voltage signal at the antenna port), and receiving the RF signal through the first converter box, and receiving by the second converter box
  • the transmitted RF signal is transmitted to the first antenna, so that the RRU can transmit the RRU DC voltage signal through the feeder of the indoor base station without affecting
  • the RF signal transmitted on the feeder avoids the transmission of the RRU DC voltage signal by a separate power line, thereby reducing the complexity and installation cost of the wiring trace.
  • FIG. 2A is a schematic structural diagram of a base station device according to another embodiment of the present invention.
  • a third conversion box 21 may be further disposed on the feeder 16 of the embodiment.
  • the fourth conversion box 22 can be used to pass the optical fiber through the outer conductor 162 of the feed line 16 and the inner conductor 161 of the feed line 16 into the inner conductor 161 of the feed line 16;
  • the fourth converter box 22 can be used to connect the inner conductor of the feed line 16
  • the fiber in 161 passes through the outer conductor 162 of the feed line 16 and the inner conductor 161 of the feed line 16; wherein the BBU 11 is connected to the RRU 13 through the above-mentioned optical fiber.
  • the form of the optical fiber in the third conversion box 21 and the fourth conversion box 22 can be seen in Fig. 2B.
  • the RRU can transmit the high-speed data signal through the feeder of the indoor base station, and does not affect the RF signal transmitted on the feeder, thereby avoiding the transmission of the optical signal by the separate optical fiber, thereby further reducing the complexity and installation of the wiring. cost.
  • the third converter box 21 is disposed adjacent to the RFU 12, and the fourth converter box 22 is disposed adjacent to the RRU 13.
  • the third conversion box 21 may be a conversion box separately provided on the feeder line 16, or may be a conversion box that is integrally provided with the first conversion box 17; similarly, the fourth conversion box 22 may be the feeder 16
  • the conversion box separately provided may also be a conversion combination with the second conversion box 18.
  • FIG. 3 and FIG. 4 are schematic diagrams showing the structure of a base station device according to another embodiment of the present invention.
  • the embodiment is A tower top amplifier (TMA) 19 is also disposed on the feed line 16, that is, a tower amplifier TMA 19 is further disposed between the RFU 12 and the first antenna 14.
  • the second converter box 18 can be further configured to convert the RRU DC voltage signal into a TMA DC voltage signal, and transmit the TMA DC voltage signal to the TMA 19 for supplying power to the TMA 19.
  • the voltage value of the TMA DC voltage signal may include, but is not limited to, 12V or 24V.
  • the first conversion box 17 in this embodiment may be further configured to receive the second power The source module's above TMA DC voltage signal and simulates the load of the TMA 19. In this way, the RFU 12 can be caused to perform an alarm according to the TMA load value corresponding to the load of the TMA 19 simulated by the first converter box 17, for example, overcurrent or undercurrent.
  • the first converter box 17 in this embodiment can further communicate with the second converter box 18 for performing corresponding analog operations and conversion operations.
  • the first converter box 17 may further send the first indication information to the second converter box 18 to indicate the TM A DC voltage value, so that the second converter box 18 converts the received RRU DC voltage signal into the above.
  • the second conversion box 18 can further receive the first indication information from the first conversion box 17 and send the second indication information to the first conversion box 17.
  • an alarm path can be established.
  • the communication between the first conversion box 17 and the second conversion box 18 in this embodiment can establish the first conversion box 17 and the second by using the Antenna Interface Standards Group (AISG) communication interface technology.
  • AISG Antenna Interface Standards Group
  • the channel between the first converter box 17 and the second converter box 18 can also be used to transmit other control information, which may not be limited in the embodiment of the present invention.
  • the first conversion box 17 can also transmit the gain information of the TMA received through the BBU 1 1 and the RFU 12 to the second conversion box 18 through the channel, so as to be sent to the TMA, so that the TMA can be based on the TMA.
  • the gain information sets the corresponding gain; for example: the second converter box 18 can also send the fault information of the TMA obtained from the TM A to the first converter box 17 through the channel, so as to be sent to the BBU 11 through the RFU 12, so that BBU 1 1 can be processed according to the fault information of the TMA.
  • the second conversion box 18 in this embodiment may also report the TMA load value to the RFU 12.
  • the RFU 12 can be caused to perform an alarm according to the TMA load value reported by the second converter box 18, for example: overcurrent or undercurrent.
  • the second conversion box 18 in this embodiment may further communicate with the RFU 12 for performing a corresponding reporting operation.
  • the second converter box 18 sends third indication information to the RFU 12 to indicate the TMA load value.
  • the RFU 12 uses the Antenna Interface Standards Group (AISG) communication interface technology to establish a channel for information (third indication information) interaction between the second conversion box 18 and the RFU 12.
  • AISG Antenna Interface Standards Group
  • the RRU DC voltage signal is received through the first converter box (the RRU DC voltage signal is fed and merged in the antenna feed port), and then the RRU DC voltage signal received by the first converter box is transmitted to the second by the feeder. Converting the box, and transmitting the received RRU DC voltage signal to the RRU by the second converter box (separating the RRU DC voltage signal at the antenna port), and converting the received RRU DC voltage signal into TMA through the second converter box.
  • the DC voltage signal is transmitted to the TMA, which enables the RRU to transmit the RRU DC voltage signal through the feeder of the indoor base station and supply power to the TMA without affecting the RF signal transmitted on the feeder, thereby avoiding the transmission of the RRU DC voltage signal by a separate power line. , which reduces the complexity of wiring routing and installation costs.
  • the first antenna 14 and the second antenna 15 may be the same physical entity.
  • FIG. 5A is a schematic structural diagram of another base station device according to another embodiment of the present invention.
  • the base station device in this embodiment may include a BBU 31, an RFU 32, and a first antenna 34 connected to the RFU 32.
  • the RRU 33 and a second antenna 35 connected to the RRU 33.
  • the first conversion box 37 and the second conversion box 38 are disposed on the feeder 36 connecting the RFU 32 and the first antenna 34.
  • the first converter box 37 is used to pass the optical fiber through the outer conductor 362 of the feed line 36 and the inner conductor 361 of the feed line 36 into the inner conductor 161 of the feed line 16, and the second converter box 38 is used to place the inner conductor 361 of the feed line 36.
  • the fiber passes through the outer conductor 362 of the feed line 36 and the inner conductor 361 of the feed line 36, wherein the BBU 31 is connected to the RRU 33 through the above-mentioned optical fiber.
  • the form of the optical fiber in the first conversion box 37 and the second conversion box 38 can be seen in Fig. 5B.
  • the RRU can transmit high-speed data signals through the feeder of the indoor base station, and does not affect the RF signal transmitted on the feeder, thereby avoiding the optical fiber transmission signal by the separate fiber. This reduces the complexity of wiring routing and installation costs.
  • FIG. 6 is a schematic structural diagram of another base station device according to another embodiment of the present invention.
  • a third conversion box may be further disposed on the feeder 36 of the embodiment. 41 and fourth converter box 42.
  • the third converter box 41 can be configured to receive the RRU DC voltage signal from the first power module and the RF signal from the RFU 32, and transmit the RRU DC voltage signal to the fourth converter box 42 through the feeder 36, and through The feed line 36 transmits the radio frequency signal to the fourth converter box 42.
  • the fourth converter box 42 can be configured to receive the RRU DC voltage signal from the third converter box 41 and the radio frequency signal through the feeder 36, and the RRU DC voltage signal. It is transmitted to the RRU 33 for supplying power to the RRU 33, and transmitting the above radio frequency signal to the first antenna 34 for radiating to the space.
  • the voltage value of the RRU DC voltage signal may include, but is not limited to, -48V.
  • the third converter box 41 may be specifically disposed adjacent to the RFU 32, and the fourth converter box 42 may be disposed adjacent to the first antenna 34.
  • the RRU DC voltage signal is received through the third converter box (the RRU DC voltage signal is fed and merged in the antenna feed port), and then the RRU DC voltage signal received by the third converter box is transmitted to the fourth by the feeder. Converting the box, and transmitting, by the fourth converter box, the received RRU DC voltage signal to the RRU (the separation of the RRU DC voltage signal is implemented at the antenna port), and receiving the RF signal through the third converter box, which is received by the fourth converter box
  • the transmitted RF signal is transmitted to the first antenna, so that the RRU can transmit the RRU DC voltage signal through the feeder of the indoor base station, and does not affect the RF signal transmitted on the feeder, thereby avoiding the transmission of the RRU DC voltage signal by the separate power line, thereby reducing the The complexity of wiring routing and installation costs.
  • the third conversion box 41 may be a conversion box separately provided on the feeder line 36, or may be a conversion box integrally provided with the first conversion box 37; similarly, the fourth conversion box 42 may be the feeder line 36.
  • the conversion box separately provided may also be a conversion set with the second conversion box 38.
  • FIG. 7 and FIG. 8 are schematic diagrams showing another structure of a base station device according to another embodiment of the present invention.
  • the TMA 39 is further disposed on the feeder line 36 of the embodiment, that is, the TMA 39 is further disposed between the RFU 32 and the first antenna 34.
  • the fourth converter box 42 can be further configured to convert the RRU DC voltage signal into a TMA DC voltage signal, and transmit the TMA DC voltage signal to the TMA 39 for supplying power to the TMA 39.
  • the voltage value of the TMA DC voltage signal may include, but is not limited to, 12V or 24V.
  • the third converter box 41 in this embodiment may be further configured to receive the TMA DC voltage signal from the second power module and simulate the load of the TMA 39.
  • the RFU 32 can be configured to perform an alarm according to the TMA load value corresponding to the load of the TMA 39 simulated by the third converter box 41, for example: overcurrent or undercurrent.
  • the third conversion box 41 in this embodiment may further communicate with the fourth conversion box 42 for performing corresponding analog operations and conversion operations.
  • the third conversion box 41 may further send first indication information to the fourth conversion box 42 for indicating the TMA DC voltage value, so that the fourth conversion box 42 converts the received RRU DC voltage signal into the TMA.
  • a TMA DC voltage signal corresponding to the DC voltage value and receiving the second indication information from the fourth converter box 42 for indicating the TMA load value, so that the third converter box 41 simulates the load of the TMA corresponding to the TMA load value;
  • the fourth conversion box 42 can further receive the first indication information from the third conversion box 41 and transmit the second indication information to the third conversion box 41.
  • the communication between the third converter box 41 and the fourth converter box 42 can establish information between the third conversion box 41 and the fourth conversion box 42 by using the AISG communication interface technology (first indication information and Second indication information) The channel of interaction.
  • the channel between the third converter box 41 and the fourth converter box 42 can also be used to transmit other control information, which may not be limited in the embodiment of the present invention.
  • the third conversion box 41 can also transmit the gain information of the TMA received through the BBU 31 and the RFU 32 to the fourth conversion box 42 through the channel, so as to be sent to the TMA, so that the TMA can be based on the TMA.
  • the gain information sets a corresponding gain; for example: the fourth conversion box 42 further
  • the fault information of the TMA obtained from the TMA can be sent to the third converter box 41 through the channel to be transmitted to the BBU 31 through the RFU 32, so that the BBU 31 can perform corresponding processing according to the fault information of the TMA.
  • the fourth conversion box 42 in this embodiment may also report the TMA load value to the RFU 32.
  • the RFU 32 can be configured to perform an alarm according to the TMA load value reported by the fourth conversion box 42, for example, overcurrent or undercurrent.
  • the fourth conversion box 42 in this embodiment may further communicate with the RFU 32 for performing a corresponding reporting operation.
  • the fourth conversion box 42 transmits third indication information to the RFU 32 to indicate the TMA load value.
  • the AISG communication interface technology is used by the RFU 12 to establish a channel for the interaction between the fourth conversion box 42 and the RFU 32 (the third indication information).
  • the RRU DC voltage signal is received through the third converter box (the RRU DC voltage signal is fed and merged in the antenna feed port), and then the RRU DC voltage signal received by the third converter box is transmitted to the fourth by the feeder. Converting the box, and transmitting the received RRU DC voltage signal to the RRU by the fourth converter box (separating the RRU DC voltage signal at the antenna port), and converting the received RRU DC voltage signal into TMA through the fourth converter box.
  • the DC voltage signal is transmitted to the TMA, which enables the RRU to transmit the RRU DC voltage signal through the feeder of the indoor base station and supply power to the TMA without affecting the RF signal transmitted on the feeder, thereby avoiding the transmission of the RRU DC voltage signal by a separate power line. , which reduces the complexity of wiring routing and installation costs.
  • first antenna 34 and the second antenna 35 in the embodiment corresponding to FIG. 5A, FIG. 6, FIG. 7, and FIG. 8 may be the same physical entity.
  • FIG. 9 is a schematic flowchart of a method for transmitting a signal of a base station device according to another embodiment of the present invention.
  • the base station device includes a BBU, an RFU, a first antenna connected to the RFU, an RRU, and a second antenna connected to the RRU.
  • the signal transmission method of the base station device in this embodiment may include:
  • the executors of 901 and 902 may be base station devices.
  • the base station device receives the RRU DC voltage signal through the feeder (implemented in the antenna feed port)
  • the RRU DC voltage signal is fed and combined, and then transmitted to the RRU (the RRU DC voltage signal is separated at the antenna port), and the RF signal is received through the feeder, and then transmitted to the first antenna, thereby realizing the RRU can pass through the indoor base station.
  • the feeder transmits the RRU DC voltage signal without affecting the RF signal transmitted on the feeder, which avoids the transmission of the RRU DC voltage signal by a separate power line, thereby reducing the complexity and installation cost of the wiring.
  • the optical fiber may pass through the outer conductor of the feed line and the inner conductor of the feed line into the upper outer conductor and the inner conductor of the feed line; accordingly, the base station device may receive the optical signal from the BBU through the optical fiber in the feed line; The optical signal is transmitted to the RRU through an optical fiber in the feeder for transmitting to the second antenna.
  • the RRU can transmit the high-speed data signal through the feeder of the indoor base station, and does not affect the RF signal transmitted on the feeder, thereby avoiding the transmission of the optical signal by the separate optical fiber, thereby further reducing the complexity and installation of the wiring. cost.
  • the base station device in this embodiment may further convert the RRU DC voltage signal into a TMA DC voltage signal through a feeder, and transmit the TMA DC voltage signal to the foregoing. TMA for supplying power to the above TMA.
  • the base station device may further receive the foregoing TMA DC voltage signal from the second power module through the feeder, and simulate the load of the TMA through the feeder.
  • the RFU can be alerted based on the TMA load value, such as: overcurrent or undercurrent.
  • the base station device receives the RRU DC voltage signal through the feeder (implemented in the antenna feed port)
  • RRU DC voltage signal feed and merge The DC voltage signal is separated, and the received RRU DC voltage signal is converted into a TMA DC voltage signal through the feeder, and transmitted to the TMA, so that the RRU can transmit the RRU DC voltage signal through the feeder of the indoor base station, and supply power to the TMA. At the same time, it does not affect the RF signal transmitted on the feeder, which avoids the transmission of the RRU DC voltage signal by a separate power line, thereby reducing the complexity of the wiring and the installation cost.
  • FIG. 10 is a schematic flowchart of a signal transmission method of another base station device according to another embodiment of the present invention.
  • the base station device includes a BBU, an RFU, a first antenna connected to the RFU, an RRU, and a second antenna connected to the RRU.
  • the optical fiber penetrates the inner conductor of the feed line through the outer conductor connecting the RFU and the feed line of the first antenna and the inner conductor of the feed line, and the outer fiber of the inner conductor of the feed line passes through the outer conductor of the feed line and the above The inner conductor of the feeder.
  • the signal transmission method of the base station device in this embodiment may include:
  • the optical signal is transmitted to the RRU through the optical fiber in the feed line to transmit to the second antenna.
  • the execution bodies of 1001 and 1002 may be base station devices.
  • the RRU can transmit high-speed data signals through the feeder of the indoor base station, and does not affect the RF signal transmitted on the feeder, thereby avoiding the optical fiber transmission signal by the separate fiber, thereby reducing the complexity and installation of the wiring. cost.
  • the base station device in this embodiment may further receive the RRU DC voltage signal from the first power module and the RF signal from the RFU through the feeder; and transmit the RRU DC voltage signal to the RRU through the feeder.
  • the RRU is powered, and the radio frequency signal is transmitted to the first antenna through a feeder to radiate into space.
  • the base station device receives the RRU DC voltage signal through the feeder (the RSU DC voltage signal is fed and merged in the antenna feed port), and then transmits to the RRU (the RRU DC voltage signal is separated at the antenna port), and passes The feeder receives the RF signal and transmits it to the first antenna, so that the RRU can transmit the RRU DC voltage signal through the feeder of the indoor base station without affecting The RF signal transmitted on the feeder avoids the transmission of the RRU DC voltage signal by a separate power line, thereby reducing the complexity and installation cost of the wiring trace.
  • the base station device in this embodiment may further convert the RRU DC voltage signal into a TMA DC voltage signal through a feeder, and transmit the TMA DC voltage signal through the feeder. To the above TMA, to supply power to the above TMA.
  • the base station device in this embodiment may further receive the TMA DC voltage signal from the second power module through the feeder, and simulate the load of the TMA through the feeder.
  • the RFU can be alerted according to the TMA load value, for example: overcurrent or undercurrent.
  • the base station device receives the RRU DC voltage signal through the feeder (implemented in the antenna feed port)
  • the RRU DC voltage signal is fed and combined, and then transmitted to the RRU (the RRU DC voltage signal is separated at the antenna port), and the received RRU DC voltage signal is converted into a TMA DC voltage signal through the feeder and transmitted to the TMA.
  • the RRU can transmit the RRU DC voltage signal through the feeder of the indoor base station and supply power to the TMA without affecting the RF signal transmitted on the feeder, thereby avoiding the transmission of the RRU DC voltage signal by the separate power line, thereby reducing the wiring routing. Complexity and installation costs.
  • the embodiment of the present invention is not limited to the RRU, and the active antenna system (Active Antenna System) disposed near the antenna on the tower, the radio frequency unit (AIR) of the built-in antenna, and the base transceiver station (Base) Transceiver Station (BTS), transmit booster (TX booster), Receiver (RXU), and other remote modules that require additional high-power power and high-speed data interfaces can be used in this application.
  • the active antenna system Active Antenna System
  • AIR radio frequency unit
  • BTS Base Transceiver Station
  • TX booster transmit booster
  • RXU Receiver
  • other remote modules that require additional high-power power and high-speed data interfaces

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种基站设备及基站设备的信号传输方法,其中一种基站设备包括BBU、RFU、与RFU连接的第一天线、远端模块、与远端模块连接的第二天线、连接RFU与第一天线的馈线上设置的第一转换盒和第二转换盒;其中,第一转换盒用于接收来自第一电源模块的远端模块直流电压信号和来自RFU的射频信号,并通过馈线将远端模块直流电压信号传输到第二转换盒,以及通过馈线将射频信号传输到第二转换盒;第二转换盒用于通过馈线接收来自第一转换盒的远端模块直流电压信号和射频信号,并将远端模块直流电压信号传输到远端模块,用以向远端模块供电,以及将射频信号传输到第一天线,用以向空间辐射。本发明实施例能够降低布线走线的复杂性和安装成本。

Description

基站设备及基站设备的信号传输方法
技术领域
本发明实施例涉及通信技术, 尤其涉及基站设备及基站设备的信号传输 方法。 背景技术
一般来说, 室内基站可以包括室内基带处理单元(Building Base band Unit, 简称 BBU )、 射频单元( Radio Frequency Unit, 简称 RFU )和天线。 其中, RFU与天线之间使用馈线进行连接,该馈线用于传输射频信号等信号。
若在现有的室内基站上引入分布式基站架构, 射频拉远单元 (Remote Radio Unit, 简称 RRU )与 BBU之间需要使用单独的光纤进行连接, 同时还 需要单独的电源线传输 RRU直流电压信号,增加了布线走线的复杂性和安装 成本。 发明内容
本发明实施例提供一种基站设备及基站设备的信号传输方法, 用以降低 布线走线的复杂性和安装成本。
本发明一方面提供了一种基站设备, 所述基站设备包括 BBU、 RFU、 与 所述 RFU连接的第一天线、 远端模块、 与所述远端模块连接的第二天线, 连 接所述 RFU与所述第一天线的馈线上设置第一转换盒和第二转换盒; 其中, 所述第一转换盒用于接收来自第一电源模块的远端模块直流电压信号和 来自所述 RFU的射频信号,并通过所述馈线将所述远端模块直流电压信号传 输到所述第二转换盒, 以及通过所述馈线将所述射频信号传输到所述第二转 换盒; 所述第二转换盒用于通过所述馈线接收来自所述第一转换盒的所述远端 模块直流电压信号和所述射频信号, 并将所述远端模块直流电压信号传输到 所述远端模块, 用以向所述远端模块供电, 以及将所述射频信号传输到所述 第一天线, 用以向空间辐射。
本发明一方面提供了一种基站设备的信号传输方法, 所述基站设备包括
BBU、 RFU、 与所述 RFU连接的第一天线、 远端模块、 与所述远端模块连接 的第二天线, 所述方法包括:
连接所述 RFU 与所述第一天线的馈线接收来自第一电源模块的远端模 块直流电压信号和来自所述 RFU的射频信号;
所述馈线将所述远端模块直流电压信号传输到所述远端模块, 用以向所 述远端模块供电, 以及将所述射频信号传输到所述第一天线, 用以向空间辐 射。
本发明一方面提供了另一种基站设备, 所述基站设备包括 BBU、 RFU、 与所述 RFU连接的第一天线、 远端模块、 与所述远端模块连接的第二天线, 连接所述 RFU与所述第一天线的馈线上设置第一转换盒和第二转换盒;其中, 所述第一转换盒用于将光纤通过所述馈线的外导体和所述馈线的内导体 穿入所述馈线的内导体;
所述第二转换盒用于将所述馈线的内导体中的光纤穿出所述馈线的外导 体和所述馈线的内导体; 其中,
所述 BBU通过所述光纤与所述远端模块连接。
本发明一方面提供了另一种基站设备的信号传输方法, 所述基站设备包 括 BBU、 RFU、 与所述 RFU连接的第一天线、 远端模块、 与所述远端模块 连接的第二天线,光纤通过连接所述 RFU与所述第一天线的馈线的外导体和 所述馈线的内导体穿入所述馈线的内导体, 以及所述馈线的内导体中的所述 光纤穿出所述馈线的外导体和所述馈线的内导体; 所述方法包括:
通过所述馈线中的光纤接收来自所述 BBU的光信号; 通过所述馈线中的光纤将所述光信号传输到所述远端模块, 用以向所述 第二天线发送。
由上述技术方案可知, 本发明实施例能够降低布线走线的复杂性和安装 成本。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明一实施例提供的一种基站设备的结构示意图;
图 2A为本发明另一实施例提供的一种基站设备的结构示意图; 图 2B为图 2A所示的基站设备中光纤在第三转换盒和第四转换盒中的形 态示意图;
图 3为本发明另一实施例提供的一种基站设备的结构示意图;
图 4为本发明另一实施例提供的一种基站设备的结构示意图;
图 5A为本发明另一实施例提供的另一种基站设备的结构示意图; 图 5B为图 5A所示的基站设备中光纤在第一转换盒和第二转换盒中的形 态示意图;
图 6为本发明另一实施例提供的另一种基站设备的结构示意图; 图 7为本发明另一实施例提供的另一种基站设备的结构示意图; 图 8为本发明另一实施例提供的另一种基站设备的结构示意图
图 9为本发明另一实施例提供的一种基站设备的信号传输方法的流程示 意图;
图 10 为本发明另一实施例提供的另一种基站设备的信号传输方法的流 程示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
图 1为本发明一实施例提供的一种基站设备的结构示意图,如图 1所示, 本实施例的基站设备可以包括 BBU 11、 RFU 12、 与 RFU 12连接的第一天 线 14、 RRU 13和与 RRU 13连接的第二天线 15。 其中, 连接 RFU 12与第 一天线 14的馈线 16上设置第一转换盒 17和第二转换盒 18。 具体地, 第一 转换盒 17可以用于接收来自第一电源模块的 RRU直流电压信号和来自 RFU 12的射频信号,并通过馈线 16将上述 RRU直流电压信号传输到第二转换盒 18, 以及通过馈线 16将上述射频信号传输到第二转换盒 18; 第二转换盒 18 可以用于通过馈线 16接收来自第一转换盒 17的上述 RRU直流电压信号和 上述射频信号,并将上述 RRU直流电压信号传输到 RRU 13,用以向 RRU 13 供电, 以及将上述射频信号传输到第一天线 14 , 用以向空间辐射。
其中, 上述 RRU直流电压信号的电压值可以包括但不限于 -48V。
具体地, 第一转换盒 17具体可以靠近 RFU 12设置, 第二转换盒 18具 体可以靠近第一天线 14设置。
本实施例中, 通过第一转换盒接收 RRU 直流电压信号 (在天馈口实现 RRU 直流电压信号的馈入和合并) , 进而由馈线将第一转换盒接收的 RRU 直流电压信号传输到第二转换盒,并由第二转换盒将接收到的 RRU直流电压 信号传输到 RRU (在天线口实现 RRU直流电压信号的分开) , 以及通过第 一转换盒接收射频信号,由第二转换盒将接收到的射频信号传输到第一天线, 实现了 RRU能够通过室内基站的馈线传输 RRU直流电压信号, 同时不影响 馈线上传输的射频信号,避免了单独的电源线传输 RRU直流电压信号,从而 降低了布线走线的复杂性和安装成本。
图 2A为本发明另一实施例提供的一种基站设备的结构示意图, 如图 2A 所示,在上一实施例的基础之上, 本实施例的馈线 16上还可以设置第三转换 盒 21 和第四转换盒 22。 具体地, 第三转换盒 21 可以用于将光纤通过馈线 16的外导体 162和馈线 16的内导体 161穿入馈线 16的内导体 161 ; 第四 转换盒 22可以用于将馈线 16的内导体 161 中的光纤穿出馈线 16的外导体 162和馈线 16的内导体 161 ; 其中, BBU 11通过上述光纤与 RRU 13连接。 光纤在第三转换盒 21和第四转换盒 22中的形态可以参见图 2B。
这样, 实现了 RRU 能够通过室内基站的馈线穿入光纤传输高速数据信 号, 同时不影响馈线上传输的射频信号, 避免了单独的光纤传输光信号, 从 而进一步降低了布线走线的复杂性和安装成本。
具体地,第三转换盒 21靠近 RFU 12设置,第四转换盒 22靠近 RRU 13 设置。
本实施例中, 第三转换盒 21可以是馈线 16上单独设置的转换盒, 也可 以是与第一转换盒 17—体化设置的转换盒; 类似地, 第四转换盒 22可以是 馈线 16上单独设置的转换盒, 也可以是与第二转换盒 18—体化设置的转换 合。
图 3和图 4为本发明另一实施例提供的一种基站设备的结构示意图, 如 图 3和图 4所示, 在图 1或图 2A对应的实施例的基础之上, 本实施例的馈 线 16上还设置塔顶放大器(Tower Mounted Amplifier, 简称 TMA ) 19, 即 RFU 12与第一天线 14之间还设置塔顶放大器 TMA 19。 其中, 第二转换盒 18还可以进一步用于将上述 RRU直流电压信号转换为 TMA直流电压信号, 并将该 TMA直流电压信号传输到 TMA 19, 用以向 TMA 19供电。
其中,上述 TMA直流电压信号的电压值可以包括但不限于 12V或 24V。 可选地,本实施例中的第一转换盒 17还可以进一步用于接收来自第二电 源模块的上述 TMA直流电压信号, 并模拟 TMA 19的负载。 这样, 可以使得 RFU 12能够根据第一转换盒 17所模拟的 TMA 19的负载对应的 TMA负载 值, 进行告警, 例如: 过流或欠流等。
具体地, 本实施例中的第一转换盒 17还可以进一步与第二转换盒 18进 行通信, 用以进行相应的模拟操作和转换操作。 具体地, 第一转换盒 17还可 以进一步向第二转换盒 18发送第一指示信息,用以指示 TM A直流电压数值, 以使第二转换盒 18将接收到的 RRU直流电压信号转换为上述 TMA直流电 压数值对应的 TMA直流电压信号, 以及接收来自第二转换盒 18的第二指示 信息, 用以指示 TMA负载值, 以使第一转换盒 17模拟上述 TMA负载值对 应的 TMA的负载; 相应地, 第二转换盒 18还可以进一步接收来自第一转换 盒 17的上述第一指示信息, 以及向第一转换盒 17发送上述第二指示信息。 这样,通过第一转换盒 17与第二转换盒 18之间的通信,能够建立告警途径。 例如: 本实施例中的第一转换盒 17与第二转换盒 18之间的通信可以利用天 线接口标准组织 ( Antenna Interface Standards Group, 简称 AISG )通信接 口技术, 建立第一转换盒 17与第二转换盒 18之间信息 (第一指示信息和第 二指示信息) 交互的通道。 第一转换盒 17与第二转换盒 18之间的通道还可 以用来传输其他控制信息, 在本发明实施例中可以不予限定。 例如: 第一转 换盒 17还可以将经过 BBU 1 1和 RFU 12接收到的 TMA的增益信息, 通过 该通道向第二转换盒 18发送, 以使向 TMA发送, 这样, TMA则可以根据该 TMA的增益信息设置对应的增益; 再例如: 第二转换盒 18还可以将从 TM A 获取的 TMA的故障信息通过该通道向第一转换盒 17发送,以使通过 RFU 12 向 BBU 11发送, 这样, BBU 1 1则可以根据该 TMA的故障信息进行相应处 理。
可选地, 本实施例中的第二转换盒 18还可以向 RFU 12上报 TMA负载 值。 这样, 可以使得 RFU 12能够根据第二转换盒 18上报的 TMA负载值, 进行告警, 例如: 过流或欠流等。 具体地,本实施例中的第二转换盒 18还可以进一步与 RFU 12进行通信, 用以进行相应的上报操作。 具体地, 第二转换盒 18向 RFU 12发送第三指示 信息, 用以指示 TMA负载值。 例如: 通过 RFU 12利用天线接口标准组织 ( Antenna Interface Standards Group, 简称 AISG )通信接口技术, 建立第 二转换盒 18与 RFU 12之间信息 (第三指示信息) 交互的通道。
本实施例中, 通过第一转换盒接收 RRU 直流电压信号 (在天馈口实现 RRU 直流电压信号的馈入和合并) , 进而由馈线将第一转换盒接收的 RRU 直流电压信号传输到第二转换盒,并由第二转换盒将接收到的 RRU直流电压 信号传输到 RRU (在天线口实现 RRU直流电压信号的分开) , 以及通过第 二转换盒将接收到的 RRU直流电压信号转换为 TMA直流电压信号, 并传输 到 TMA, 实现了 RRU能够通过室内基站的馈线传输 RRU直流电压信号,并 向 TMA供电, 同时不影响馈线上传输的射频信号,避免了单独的电源线传输 RRU直流电压信号, 从而降低了布线走线的复杂性和安装成本。
需要说明的是: 图 1、 图 2A、 图 3和图 4对应的实施例中第一天线 14 和第二天线 15可以为同一物理实体。
图 5A为本发明另一实施例提供的另一种基站设备的结构示意图, 如图 5A所示, 本实施例的基站设备可以包括 BBU 31、 RFU 32、 与 RFU 32连接 的第一天线 34、 RRU 33和与 RRU 33连接的第二天线 35。其中, 连接 RFU 32与第一天线 34的馈线 36上设置第一转换盒 37和第二转换盒 38。具体地, 第一转换盒 37用于将光纤通过馈线 36的外导体 362和馈线 36的内导体 361 穿入馈线 16的内导体 161 , 第二转换盒 38用于将馈线 36的内导体 361 中 的光纤穿出馈线 36的外导体 362和馈线 36的内导体 361 , 其中, BBU 31 通过上述光纤与 RRU 33连接。 光纤在第一转换盒 37和第二转换盒 38中的 形态可以参见图 5B。
本实施例能够实现 RRU 能够通过室内基站的馈线穿入光纤传输高速数 据信号, 同时不影响馈线上传输的射频信号, 避免了单独的光纤传输光信号, 从而降低了布线走线的复杂性和安装成本。
图 6为本发明另一实施例提供的另一种基站设备的结构示意图, 如图 6 所示,在上一实施例的基础之上, 本实施例的馈线 36上还可以设置第三转换 盒 41和第四转换盒 42。具体地, 第三转换盒 41可以用于接收来自第一电源 模块的 RRU直流电压信号和来自 RFU 32的射频信号, 并通过馈线 36将上 述 RRU直流电压信号传输到第四转换盒 42,以及通过馈线 36将上述射频信 号传输到第四转换盒 42;第四转换盒 42可以用于通过馈线 36接收来自第三 转换盒 41的上述 RRU直流电压信号和上述射频信号, 并将上述 RRU直流 电压信号传输到 RRU 33, 用以向 RRU 33供电, 以及将上述射频信号传输 到第一天线 34, 用以向空间辐射。
其中, 上述 RRU直流电压信号的电压值可以包括但不限于 -48V。
具体地, 第三转换盒 41具体可以靠近 RFU 32设置, 第四转换盒 42具 体可以靠近第一天线 34设置。
本实施例中, 通过第三转换盒接收 RRU 直流电压信号 (在天馈口实现 RRU 直流电压信号的馈入和合并) , 进而由馈线将第三转换盒接收的 RRU 直流电压信号传输到第四转换盒,并由第四转换盒将接收到的 RRU直流电压 信号传输到 RRU (在天线口实现 RRU直流电压信号的分开) , 以及通过第 三转换盒接收射频信号,由第四转换盒将接收到的射频信号传输到第一天线, 实现了 RRU能够通过室内基站的馈线传输 RRU直流电压信号, 同时不影响 馈线上传输的射频信号,避免了单独的电源线传输 RRU直流电压信号,从而 降低了布线走线的复杂性和安装成本。
本实施例中, 第三转换盒 41可以是馈线 36上单独设置的转换盒, 也可 以是与第一转换盒 37—体化设置的转换盒; 类似地, 第四转换盒 42可以是 馈线 36上单独设置的转换盒, 也可以是与第二转换盒 38—体化设置的转换 ^^。
图 7和图 8为本发明另一实施例提供的另一种基站设备的结构示意图, 如图 7和图 8所示, 在图 5A或图 6对应的实施例的基础之上, 本实施例的 馈线 36上还设置 TMA 39, 即 RFU 32与第一天线 34之间还设置 TMA 39。 其中, 第四转换盒 42还可以进一步用于将上述 RRU 直流电压信号转换为 TMA直流电压信号,并将该 TMA直流电压信号传输到 TMA 39,用以向 TMA 39供电。
其中,上述 TMA直流电压信号的电压值可以包括但不限于 12V或 24V。 可选地,本实施例中的第三转换盒 41还可以进一步用于接收来自第二电 源模块的上述 TMA直流电压信号, 并模拟 TMA 39的负载。 这样, 可以使得 RFU 32能够根据第三转换盒 41所模拟的 TMA 39的负载对应的 TMA负载 值, 进行告警, 例如: 过流或欠流等。
具体地, 本实施例中的第三转换盒 41还可以进一步与第四转换盒 42进 行通信, 用以进行相应的模拟操作和转换操作。 具体地, 第三转换盒 41还可 以进一步向第四转换盒 42发送第一指示信息,用以指示 TMA直流电压数值, 以使第四转换盒 42将接收到的 RRU直流电压信号转换为上述 TMA直流电 压数值对应的 TMA直流电压信号, 以及接收来自第四转换盒 42的第二指示 信息, 用以指示 TMA负载值, 以使第三转换盒 41模拟上述 TMA负载值对 应的 TMA的负载; 相应地, 第四转换盒 42还可以进一步接收来自第三转换 盒 41的上述第一指示信息, 以及向第三转换盒 41发送上述第二指示信息。 这样,通过第三转换盒 41与第四转换盒 42之间的通信,能够建立告警途径。 例如: 本实施例中的第三转换盒 41 与第四转换盒 42之间的通信可以利用 AISG通信接口技术, 建立第三转换盒 41与第四转换盒 42之间信息 (第一 指示信息和第二指示信息) 交互的通道。 第三转换盒 41与第四转换盒 42之 间的通道还可以用来传输其他控制信息, 在本发明实施例中可以不予限定。 例如: 第三转换盒 41还可以将经过 BBU 31和 RFU 32接收到的 TMA的增 益信息, 通过该通道向第四转换盒 42发送, 以使向 TMA发送, 这样, TMA 则可以根据该 TMA的增益信息设置对应的增益; 再例如: 第四转换盒 42还 可以将从 TMA获取的 TMA的故障信息通过该通道向第三转换盒 41发送, 以使通过 RFU 32向 BBU 31发送, 这样, BBU 31则可以根据该 TMA的故 障信息进行相应处理。
可选地, 本实施例中的第四转换盒 42还可以向 RFU 32上报 TMA负载 值。 这样, 可以使得 RFU 32能够根据第四转换盒 42上报的 TMA负载值, 进行告警, 例如: 过流或欠流等。
具体地,本实施例中的第四转换盒 42还可以进一步与 RFU 32进行通信, 用以进行相应的上报操作。 具体地, 第四转换盒 42向 RFU 32发送第三指示 信息,用以指示 TMA负载值。例如:通过 RFU 12利用 AISG通信接口技术, 建立第四转换盒 42与 RFU 32之间信息 (第三指示信息 ) 交互的通道。
本实施例中, 通过第三转换盒接收 RRU 直流电压信号 (在天馈口实现 RRU 直流电压信号的馈入和合并) , 进而由馈线将第三转换盒接收的 RRU 直流电压信号传输到第四转换盒,并由第四转换盒将接收到的 RRU直流电压 信号传输到 RRU (在天线口实现 RRU直流电压信号的分开) , 以及通过第 四转换盒将接收到的 RRU直流电压信号转换为 TMA直流电压信号, 并传输 到 TMA, 实现了 RRU能够通过室内基站的馈线传输 RRU直流电压信号,并 向 TMA供电, 同时不影响馈线上传输的射频信号,避免了单独的电源线传输 RRU直流电压信号, 从而降低了布线走线的复杂性和安装成本。
需要说明的是: 图 5A、 图 6、 图 7和图 8对应的实施例中第一天线 34 和第二天线 35可以为同一物理实体。
图 9为本发明另一实施例提供的一种基站设备的信号传输方法的流程示 意图, 上述基站设备包括 BBU、 RFU、 与 RFU连接的第一天线、 RRU、 与 RRU连接的第二天线。 如图 9所示, 本实施例的基站设备的信号传输方法可 以包括:
901、 通过连接上述 RFU与上述第一天线的馈线接收来自第一电源模块 的 RRU直流电压信号和来自上述 RFU的射频信号; 902、 通过上述馈线将上述 RRU直流电压信号传输到上述 RRU, 用以 向上述 RRU供电, 以及将上述射频信号传输到上述第一天线,用以向空间辐 射。
901和 902的执行主体可以为基站设备。
本实施例中,基站设备通过馈线接收 RRU直流电压信号(在天馈口实现
RRU直流电压信号的馈入和合并) , 进而传输到 RRU (在天线口实现 RRU 直流电压信号的分开), 以及通过馈线接收射频信号, 进而传输到第一天线, 实现了 RRU能够通过室内基站的馈线传输 RRU直流电压信号, 同时不影响 馈线上传输的射频信号,避免了单独的电源线传输 RRU直流电压信号,从而 降低了布线走线的复杂性和安装成本。
进一步地, 光纤可以通过上述馈线的外导体和上述馈线的内导体穿入上 外导体和上述馈线的内导体; 相应地, 基站设备可以通过上述馈线中的光纤 接收来自上述 BBU的光信号;以及通过上述馈线中的光纤将上述光信号传输 到上述 RRU , 用以向上述第二天线发送。
这样, 实现了 RRU 能够通过室内基站的馈线穿入光纤传输高速数据信 号, 同时不影响馈线上传输的射频信号, 避免了单独的光纤传输光信号, 从 而进一步降低了布线走线的复杂性和安装成本。
进一步地, 如果 RFU与第一天线之间还设置 TMA, 本实施例中的基站 设备还可以进一步通过馈线将上述 RRU直流电压信号转换为 TMA直流电压 信号,并将上述 TMA直流电压信号传输到上述 TMA,用以向上述 TMA供电。
可选地, 基站设备还可以进一步通过馈线接收来自第二电源模块的上述 TMA直流电压信号,并通过馈线模拟上述 TMA的负载。这样,可以使得 RFU 能够根据该 TMA负载值, 进行告警, 例如: 过流或欠流等。
本实施例中,基站设备通过馈线接收 RRU直流电压信号(在天馈口实现
RRU直流电压信号的馈入和合并) , 进而传输到 RRU (在天线口实现 RRU 直流电压信号的分开), 以及通过馈线将接收到的 RRU直流电压信号转换为 TMA直流电压信号, 并传输到 TMA, 实现了 RRU能够通过室内基站的馈线 传输 RRU直流电压信号, 并向 TMA供电, 同时不影响馈线上传输的射频信 号,避免了单独的电源线传输 RRU直流电压信号,从而降低了布线走线的复 杂性和安装成本。
图 10 为本发明另一实施例提供的另一种基站设备的信号传输方法的流 程示意图, 上述基站设备包括 BBU、 RFU、 与 RFU连接的第一天线、 RRU、 与 RRU连接的第二天线。 其中, 光纤通过连接上述 RFU与上述第一天线的 馈线的外导体和上述馈线的内导体穿入上述馈线的内导体, 以及上述馈线的 内导体中的上述光纤穿出上述馈线的外导体和上述馈线的内导体。如图 10所 示, 本实施例的基站设备的信号传输方法可以包括:
1001、 通过上述馈线中的光纤接收来自上述 BBU的光信号;
1002、通过上述馈线中的光纤将上述光信号传输到上述 RRU ,用以向上 述第二天线发送。
1001和 1002的执行主体可以为基站设备。
本实施例能够实现 RRU 能够通过室内基站的馈线穿入光纤传输高速数 据信号, 同时不影响馈线上传输的射频信号, 避免了单独的光纤传输光信号, 从而降低了布线走线的复杂性和安装成本。
进一步地, 本实施例中的基站设备还可以进一步通过馈线接收来自第一 电源模块的 RRU直流电压信号和来自上述 RFU的射频信号; 并通过馈线将 上述 RRU直流电压信号传输到上述 RRU , 用以向上述 RRU供电, 以及通 过馈线将上述射频信号传输到上述第一天线, 用以向空间辐射。
本实施例中,基站设备通过馈线接收 RRU直流电压信号(在天馈口实现 RRU直流电压信号的馈入和合并) , 进而传输到 RRU (在天线口实现 RRU 直流电压信号的分开), 以及通过馈线接收射频信号, 进而传输到第一天线, 实现了 RRU能够通过室内基站的馈线传输 RRU直流电压信号, 同时不影响 馈线上传输的射频信号,避免了单独的电源线传输 RRU直流电压信号,从而 降低了布线走线的复杂性和安装成本。
进一步地, 如果 RFU与第一天线之间还设置 TMA, 本实施例中的基站 设备还可以进一步通过馈线将上述 RRU直流电压信号转换为 TMA直流电压 信号, 并通过馈线将上述 TMA直流电压信号传输到上述 TMA, 用以向上述 TMA供电。
可选地, 本实施例中的基站设备还可以进一步通过馈线接收来自第二电 源模块的上述 TMA直流电压信号,并通过馈线模拟上述 TMA的负载。这样, 可以使得 RFU能够根据该 TMA负载值, 进行告警, 例如: 过流或欠流等。
本实施例中,基站设备通过馈线接收 RRU直流电压信号(在天馈口实现
RRU直流电压信号的馈入和合并) , 进而传输到 RRU (在天线口实现 RRU 直流电压信号的分开),以及通过馈线将接收到的 RRU直流电压信号转换为 TMA直流电压信号, 并传输到 TMA, 实现了 RRU能够通过室内基站的馈线 传输 RRU直流电压信号, 并向 TMA供电, 同时不影响馈线上传输的射频信 号,避免了单独的电源线传输 RRU直流电压信号,从而降低了布线走线的复 杂性和安装成本。 需要说明的是: 本发明实施例不限于 RRU , 在塔上的天线附近设置的有 源天线系统 (Active Antenna System )、 内置天线的射频单元 ( Antenna Integrated Radio, 简称 AIR )、 基站收发台 ( Base Transceiver Station, 简 称 BTS )、 发射功率提升器(transmit booster, 简称 TX booster ), 接收机 ( Receive Unit, 简称 RXU )等其他具有需要额外大功率供电和高速数据接 口的远端模块都可以适用于本发明实施例。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要求
1、 一种基站设备, 所述基站设备包括室内基带处理单元 BBU、 射频单 元 RFU、 与所述 RFU连接的第一天线、 远端模块、 与所述远端模块连接的 第二天线, 其特征在于, 连接所述 RFU与所述第一天线的馈线上设置第一转 换盒和第二转换盒; 其中,
所述第一转换盒用于接收来自第一电源模块的远端模块直流电压信号和 来自所述 RFU的射频信号,并通过所述馈线将所述远端模块直流电压信号传 输到所述第二转换盒, 以及通过所述馈线将所述射频信号传输到所述第二转 换盒;
所述第二转换盒用于通过所述馈线接收来自所述第一转换盒的所述远端 模块直流电压信号和所述射频信号, 并将所述远端模块直流电压信号传输到 所述远端模块, 用以向所述远端模块供电, 以及将所述射频信号传输到所述 第一天线, 用以向空间辐射。
2、 根据权利要求 1所述的基站设备, 其特征在于, 所述第一转换盒靠近 所述 RFU设置, 所述第二转换盒靠近所述第一天线设置。
3、根据权利要求 1或 2所述的基站设备, 其特征在于, 所述馈线上还设 置第三转换盒和第四转换盒; 其中,
所述第三转换盒用于将光纤通过所述馈线的外导体和所述馈线的内导体 穿入所述馈线的内导体;
所述第四转换盒用于将所述馈线的内导体中的光纤穿出所述馈线的外导 体和所述馈线的内导体; 其中,
所述 BBU通过所述光纤与所述远端模块连接。
4、 根据权利要求 3所述的基站设备, 所述第三转换盒靠近所述 RFU设 置, 所述第四转换盒靠近所述远端模块设置。
5、根据权利要求 3或 4所述的基站设备, 其特征在于, 所述第三转换盒 与所述第一转换盒一体化设置; 所述第四转换盒与所述第二转换盒一体化设 置。
6、根据权利要求 1至 5任一权利要求所述的基站设备, 其特征在于, 所 述 RFU与所述第一天线之间还设置塔顶放大器 TMA;
所述第二转换盒还用于将所述远端模块直流电压信号转换为 TMA直流 电压信号, 并将所述 TMA直流电压信号传输到所述 TMA, 用以向所述 TMA 供电。
7、 根据权利要求 6所述的基站设备, 其特征在于, 所述第一转换盒还用 于接收来自第二电源模块的所述 TMA直流电压信号, 并模拟所述 TMA的负 载, 以使所述 RFU根据所述 TMA的负载对应的 TMA负载值, 进行告警。
8、 根据权利要求 7所述的基站设备, 其特征在于,
所述第一转换盒具体还用于向所述第二转换盒发送第一指示信息, 用以 指示 TMA直流电压数值,以使所述第二转换盒将所述远端模块直流电压信号 转换为所述 TMA直流电压数值对应的 TMA直流电压信号, 以及接收来自所 述第二转换盒的第二指示信息,用以指示 TMA负载值,根据所述第二指示信 息模拟所述 TMA负载值对应的 TMA的负载;
所述第二转换盒具体还用于接收来自所述第一转换盒的所述第一指示信 息, 根据所述第一指示信息, 将所述远端模块直流电压信号转换为所述 TMA 直流电压数值对应的 TMA直流电压信号,以及向所述第一转换盒发送所述第 二指示信息。
9、 根据权利要求 6所述的基站设备, 其特征在于, 所述第二转换盒还用 于向所述 RFU发送第三指示信息, 用以指示 TMA负载值, 以使所述 RFU 根据所述 TMA负载值, 进行告警。
10、 根据权利要求 1至 9任一权利要求所述的基站设备, 其特征在于, 所述第一天线和所述第二天线为同一物理实体。
11、 一种基站设备的信号传输方法, 所述基站设备包括室内基带处理单 元 BBU、 射频单元 RFU、 与所述 RFU连接的第一天线、 远端模块、 与所述 远端模块连接的第二天线, 其特征在于, 所述方法包括:
通过连接所述 RFU 与所述第一天线的馈线接收来自第一电源模块的远 端模块直流电压信号和来自所述 RFU的射频信号;
通过所述馈线将所述远端模块直流电压信号传输到所述远端模块, 用以 向所述远端模块供电, 以及将所述射频信号传输到所述第一天线, 用以向空 间辐射。
12、 根据权利要求 11 所述的方法, 其特征在于, 光纤通过所述馈线的 外导体和所述馈线的内导体穿入所述馈线的内导体, 以及所述馈线的内导体 中的所述光纤穿出所述馈线的外导体和所述馈线的内导体;所述方法还包括: 通过所述馈线中的光纤接收来自所述 BBU的光信号;
通过所述馈线中的光纤将所述光信号传输到所述远端模块, 用以向所述 第二天线发送。
13、 根据权利要求 11或 12所述的方法, 其特征在于, 所述 RFU与所 述第一天线之间还设置塔顶放大器 TMA; 所述方法还包括:
通过所述馈线将所述远端模块直流电压信号转换为 TMA直流电压信号, 并通过所述馈线将所述 TMA直流电压信号传输到所述 TMA, 用以向所述 TMA供电。
14、 根据权利要求 13所述的方法, 其特征在于, 所述方法还包括: 通过所述馈线接收来自第二电源模块的所述 TMA直流电压信号,并通过 所述馈线模拟所述 TMA的负载, 以使所述 RFU根据所述 TMA的负载对应 的 TMA负载值, 进行告警。
15、 一种基站设备, 所述基站设备包括室内基带处理单元 BBU、 射频单 元 RFU、 与所述 RFU连接的第一天线、 远端模块、 与所述远端模块连接的 第二天线, 其特征在于, 连接所述 RFU与所述第一天线的馈线上设置第一转 换盒和第二转换盒; 其中,
所述第一转换盒用于将光纤通过所述馈线的外导体和所述馈线的内导体 穿入所述馈线的内导体;
所述第二转换盒用于将所述馈线的内导体中的光纤穿出所述馈线的外导 体和所述馈线的内导体; 其中,
所述 BBU通过所述光纤与所述远端模块连接。
16、 根据权利要求 15所述的基站设备, 所述第一转换盒靠近所述 RFU 设置, 所述第二转换盒靠近所述远端模块设置。
17、 根据权利要求 15或 16所述的基站设备, 其特征在于, 所述馈线上 还设置第三转换盒和第四转换盒; 其中,
所述第三转换盒用于接收来自第一电源模块的远端模块直流电压信号和 来自所述 RFU的射频信号,并通过所述馈线将所述远端模块直流电压信号传 输到所述第四转换盒, 以及通过所述馈线将所述射频信号传输到所述第四转 换盒;
所述第四转换盒用于通过所述馈线接收来自所述第三转换盒的所述远端 模块直流电压信号和所述射频信号, 并将所述远端模块直流电压信号传输到 所述远端模块, 用以向所述远端模块供电, 以及将所述射频信号传输到所述 第一天线, 用以向空间辐射。
18、 根据权利要求 17 所述的基站设备, 其特征在于, 所述第三转换盒 靠近所述 RFU设置, 所述第四转换盒靠近所述第一天线设置。
19、 根据权利要求 17或 18所述的基站设备, 其特征在于, 所述第三转 换盒与所述第一转换盒一体化设置; 所述第四转换盒与所述第二转换盒一体 化设置。
20、根据权利要求 17至 19任一权利要求所述的基站设备,其特征在于, 所述 RFU与所述第一天线之间还设置塔顶放大器 TMA;
所述第四转换盒还用于将所述远端模块直流电压信号转换为 TMA直流 电压信号, 并将所述 TMA直流电压信号传输到所述 TMA, 用以向所述 TMA 供电。
21、 根据权利要求 20 所述的基站设备, 其特征在于, 所述第三转换盒 还用于接收来自第二电源模块的所述 TMA直流电压信号, 并模拟所述 TMA 的负载, 以使所述 RFU根据所述 TMA的负载对应的 TMA负载值, 进行告
22、 根据权利要求 21所述的基站设备, 其特征在于,
所述第三转换盒还用于向所述第四转换盒发送第一指示信息, 用以指示 TMA直流电压数值, 以使所述第四转换盒将所述远端模块直流电压信号转换 为所述 TMA直流电压数值对应的 TMA直流电压信号, 以及接收来自所述第 四转换盒的第二指示信息, 用以指示 TMA负载值,根据所述第二指示信息模 拟所述 TMA负载值对应的 TMA的负载;
所述第四转换盒还用于接收来自所述第三转换盒的所述第一指示信息, 根据所述第一指示信息,将所述远端模块直流电压信号转换为所述 TMA直流 电压数值对应的 TMA直流电压信号,以及向所述第三转换盒发送所述第二指 示信息。
23、 根据权利要求 20 所述的基站设备, 其特征在于, 所述第四转换盒 还用于向所述 RFU发送第三指示信息,用以指示 TMA负载值,以使所述 RFU 根据所述 TMA负载值, 进行告警。
24、根据权利要求 15至 23任一权利要求所述的基站设备,其特征在于, 所述第一天线和所述第二天线为同一物理实体。
25、 一种基站设备的信号传输方法, 所述基站设备包括室内基带处理单 元 BBU、 射频单元 RFU、 与所述 RFU连接的第一天线、 远端模块、 与所述 远端模块连接的第二天线, 其特征在于, 光纤通过连接所述 RFU与所述第一 天线的馈线的外导体和所述馈线的内导体穿入所述馈线的内导体, 以及所述 馈线的内导体中的所述光纤穿出所述馈线的外导体和所述馈线的内导体; 所 述方法包括:
通过所述馈线中的光纤接收来自所述 BBU的光信号; 通过所述馈线中的光纤将所述光信号传输到所述远端模块, 用以向所述 第二天线发送。
26、 根据权利要求 25所述的方法, 其特征在于, 所述方法还包括: 通过所述馈线接收来自第一电源模块的远端模块直流电压信号和来自所 述 RFU的射频信号;
通过所述馈线将所述远端模块直流电压信号传输到所述远端模块, 用以 向所述远端模块供电, 以及通过所述馈线将所述射频信号传输到所述第一天 线, 用以向空间辐射。
27、 根据权利要求 25或 26所述的方法, 其特征在于, 所述 RFU与所 述第一天线之间还设置塔顶放大器 TMA; 所述方法还包括:
通过所述馈线将所述远端模块直流电压信号转换为 TMA直流电压信号, 并通过所述馈线将所述 TMA直流电压信号传输到所述 TMA, 用以向所述 TMA供电。
28、 根据权利要求 27所述的方法, 其特征在于, 所述方法还包括: 通过所述馈线接收来自第二电源模块的所述 TMA直流电压信号,并通过 所述馈线模拟所述 TMA的负载, 以使所述 RFU根据所述 TMA的负载对应 的 TMA负载值, 进行告警。
PCT/CN2011/074676 2011-05-25 2011-05-25 基站设备及基站设备的信号传输方法 WO2011144084A2 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11783001.8A EP2713527B1 (en) 2011-05-25 2011-05-25 Base station device and signal transmission method thereof
CN2011800006318A CN102204402B (zh) 2011-05-25 2011-05-25 基站设备及基站设备的信号传输方法
PCT/CN2011/074676 WO2011144084A2 (zh) 2011-05-25 2011-05-25 基站设备及基站设备的信号传输方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/074676 WO2011144084A2 (zh) 2011-05-25 2011-05-25 基站设备及基站设备的信号传输方法

Publications (2)

Publication Number Publication Date
WO2011144084A2 true WO2011144084A2 (zh) 2011-11-24
WO2011144084A3 WO2011144084A3 (zh) 2012-04-26

Family

ID=44662851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074676 WO2011144084A2 (zh) 2011-05-25 2011-05-25 基站设备及基站设备的信号传输方法

Country Status (3)

Country Link
EP (1) EP2713527B1 (zh)
CN (1) CN102204402B (zh)
WO (1) WO2011144084A2 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103238369B (zh) * 2012-12-20 2016-09-28 华为技术有限公司 一种基站
CN106412933B (zh) * 2013-06-26 2019-12-13 华为技术有限公司 通信方法及设备
CN107888203A (zh) * 2016-09-29 2018-04-06 西安华为技术有限公司 用于合路rru信号的tma、方法和铁塔站点

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6151482A (en) * 1997-09-30 2000-11-21 Telefonaktiebolaget Lm (Publ) Operation and maintenance link for antenna equipment
US7280848B2 (en) * 2002-09-30 2007-10-09 Andrew Corporation Active array antenna and system for beamforming
US20070093204A1 (en) * 2004-07-16 2007-04-26 Dwayne Kincard Control system
CN100426897C (zh) * 2005-01-12 2008-10-15 华为技术有限公司 分体式基站系统及其组网方法和基带单元
CN2819658Y (zh) * 2005-06-09 2006-09-20 沈阳奥维通信技术有限公司 移动通信移频直放站
JP4772596B2 (ja) * 2006-06-07 2011-09-14 株式会社東芝 Rofシステム、光受信器およびその自動調整方法
CN101166064A (zh) * 2006-10-17 2008-04-23 中兴通讯股份有限公司 通讯系统中的射频远端分布系统所使用的转换装置
CN101299517B (zh) * 2008-05-27 2011-12-07 中国移动通信集团广东有限公司韶关分公司 集中式远程供电系统
EP2343777B1 (en) * 2009-05-26 2015-10-07 Huawei Technologies Co., Ltd. Antenna device
CN201742417U (zh) * 2010-07-07 2011-02-09 深圳国人通信有限公司 多制式数字光纤直放站及其近端机、远端机以及覆盖系统
CN102036257A (zh) * 2010-12-30 2011-04-27 芯通科技(成都)有限公司 一种数字移频压扩系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP2713527A4 *

Also Published As

Publication number Publication date
CN102204402B (zh) 2013-08-28
EP2713527A2 (en) 2014-04-02
WO2011144084A3 (zh) 2012-04-26
CN102204402A (zh) 2011-09-28
EP2713527A4 (en) 2014-05-21
EP2713527B1 (en) 2018-01-03

Similar Documents

Publication Publication Date Title
US8688033B2 (en) Antenna system, in particular mobile communication antenna system, and associated transmission and control device
US8768416B2 (en) Communication system, apparatus and method
CN110199535B (zh) 可同时连接多个终端的蓝牙装置
CN103973396A (zh) 传输无线基带数据的方法、装置和射频拉远模块rru
WO2022160949A1 (zh) 室内分布系统和信号传输方法
WO2011013943A2 (ko) 송수신모듈을 내장한 기지국 안테나장치
US11627005B2 (en) Electronic subsystem having multiple powered devices prioritized for providing power to the subsystem
KR102116539B1 (ko) 원격 무선 장비
CN107786988B (zh) 一种多信道LoRa网关及其信号处理方法
KR102345228B1 (ko) 안테나 제어 시스템 및 그 동작 방법
CN108012039B (zh) 一种便携式集成语音通信设备
WO2011144084A2 (zh) 基站设备及基站设备的信号传输方法
CN201976256U (zh) 一种网络中继设备
US8897225B2 (en) Apparatus and method for controlling communication path between multiple digital units and multiple radio frequency units in wireless communication system
US8121540B1 (en) Repeater system and method for providing wireless communications
CN203387687U (zh) 一种基站设备
KR20120057114A (ko) 이동 통신 안테나를 일체로 구비한 액세스 포인트 및 이를 구비한 통합 광 중계 장치
WO2013064091A1 (zh) 一种有源天线系统、基站和通信系统
WO2014153740A1 (zh) 一种多频段有源天线
CN217824951U (zh) 一种用于电梯的值班室通讯系统
CN216134569U (zh) 无线麦克风系统
CN201025718Y (zh) 一种带有无线音频发射和接收装置的电视机
CN107017895A (zh) 一种天线离合器和包括该天线离合器的移动终端
CN207835749U (zh) 一种音响及无线播音系统
CN206820754U (zh) 红外无线会议系统控制及收发一体设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180000631.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011783001

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783001

Country of ref document: EP

Kind code of ref document: A2