WO2012141342A1 - 자기장 차폐장치 - Google Patents

자기장 차폐장치 Download PDF

Info

Publication number
WO2012141342A1
WO2012141342A1 PCT/KR2011/002515 KR2011002515W WO2012141342A1 WO 2012141342 A1 WO2012141342 A1 WO 2012141342A1 KR 2011002515 W KR2011002515 W KR 2011002515W WO 2012141342 A1 WO2012141342 A1 WO 2012141342A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
shielding
shielding member
current collector
shield
Prior art date
Application number
PCT/KR2011/002515
Other languages
English (en)
French (fr)
Inventor
조동호
서인수
유병역
강대준
정윤
설동균
김중귀
윤대훈
김철현
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to PCT/KR2011/002515 priority Critical patent/WO2012141342A1/ko
Publication of WO2012141342A1 publication Critical patent/WO2012141342A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/005Current collectors for power supply lines of electrically-propelled vehicles without mechanical contact between the collector and the power supply line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M7/00Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway
    • B60M7/003Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway for vehicles using stored power (e.g. charging stations)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a magnetic field shielding device, and more particularly, is installed to be movable, and moves to one side to prevent leakage of electromagnetic waves and magnetic fields generated between the current collector and the power feeding device to the outside, and to the other side to move to an external object.
  • the present invention relates to a magnetic field shield of a non-contact magnetic induction charging device capable of preventing a collision or interference with a device.
  • the current collector of a non-contact magnetic induction type electric vehicle applies a principle of a transistor that converts a force of a magnetic field generated in a feeder road into electrical energy.
  • the magnetic field generated by the high-voltage current flowing in the feed road flows according to the law of the right-handed screw. Since the current collector installed in the lower part of the vehicle is in a flat plane parallel to the feed road, electromagnetic waves and The magnetic field leaks to the outside.
  • the leaked electromagnetic waves and magnetic fields not only have a detrimental effect on the health of passengers on the roadside, but also cause a problem that current collection efficiency is lowered due to the leaked magnetic fields.
  • the present invention is to solve the conventional problems as described above, an object of the present invention is to move to one side to prevent the leakage of electromagnetic waves and magnetic fields generated between the current collector and the power supply device to the outside to improve the current collection efficiency
  • the present invention provides a magnetic shielding device for a non-contact magnetic induction charging device which can minimize the influence of electromagnetic waves and magnetic fields on people near a vehicle, and move to the other side to prevent collision or interference with external objects.
  • the current collector for generating organic power by the magnetic field of the power supply device, an actuator having a piston vertically moved up and down by pneumatic or hydraulic pressure;
  • a shield member which is connected to the piston of the actuator and moves up and down and has a structure in which a plurality of shielding plates are stacked to block leakage of electromagnetic waves and magnetic fields generated between the current collector and the power feeding device to the outside when moved to one side. It provides a magnetic field shielding device of the non-contact magnetic induction device, characterized in that configured to include.
  • the magnetic field shielding device of the present invention may further include a buffer damper of a flexible material that is installed at the lower end of the shielding member to absorb the impact applied from the bottom.
  • the buffer damper is preferably a structure in which a flexible resin material is covered on the surface of the 'U'-shaped metal sheet material.
  • the shielding device of the present invention may further comprise a reinforcing material coupled between each shielding plate of the shielding member.
  • a current collector for generating organic power by the magnetic field of the power feeding device comprising: driving means for generating a moving force in the vertical direction; A shielding member coupled to the driving means and moving upward and downward, and shielding both sides of the current collector when moved downward to block leakage of electromagnetic waves and magnetic fields generated between the current collector and the power feeding device to the outside;
  • a magnetic field shielding device for a non-contact magnetic induction device comprising a controller for operating the driving means in association with opening and closing operation of a door of a moving object.
  • the shielding member is a plurality of shielding plate of the metal material is spaced apart from each other
  • the laminated structure is made.
  • a shielding member installed to be movable up and down, and a driving means for moving the shielding member up and down, to shield electromagnetic waves and magnetic fields generated between the current collector and the power feeding device
  • a method of operating a magnetic field shield of a non-contact magnetic induction charging device comprising: (a) detecting in real time whether a door of a moving object is opened or closed; (b) if it is detected that the door of the movable body is open, operating the driving means to move the shielding member downward to shield both sides of the current collector; (c) When it is detected that the door of the movable body is closed, there is provided a method of operating a magnetic field shielding device of a non-contact magnetic induction device comprising the step of operating the drive means to raise the shielding member.
  • a current collector for generating organic power by the magnetic field of the power feeding device comprising: driving means for generating a moving force in the vertical direction; A shielding member coupled to the driving means and moving upward and downward, and shielding both sides of the current collector when moved downward to block leakage of electromagnetic waves and magnetic fields generated between the current collector and the power feeding device to the outside;
  • a magnetic field shielding apparatus for a non-contact magnetic induction apparatus comprising a controller for operating the driving means in association with a traveling speed of a moving object.
  • the shielding member is a plurality of shielding plate of the metal material is spaced apart from each other
  • the laminated structure is made.
  • a shielding member installed to be movable up and down, and a driving means for moving the shielding member up and down, to shield electromagnetic waves and magnetic fields generated between the current collector and the power feeding device
  • a method of operating a magnetic field shield of a non-contact magnetic induction device comprising: detecting a traveling speed of a moving object in real time; Detecting that the detected moving object is in a stationary state, and when a predetermined time (t) elapses in the stationary state, operating a driving means to move the shielding member downward to shield both sides of the current collector;
  • a method of operating a magnetic field shield of a non-contact magnetic induction device comprising the step of raising the shielding member by operating the driving means.
  • a shield member installed to be movable up and down, and a driving means for moving the shield member up and down, shielding the electromagnetic waves and magnetic fields generated between the current collector and the power feeding device
  • a method of operating a magnetic field shield of a non-contact magnetic induction device comprising: detecting a traveling speed of a moving object in real time; When the detected moving object is sensed to be in a stopped state and when charging of the current collector is detected, operating a driving means to move the shielding member downward to shield both sides of the current collector; When the detected moving object is detected to be in a driving state, a method of operating a magnetic field shield of a non-contact magnetic induction device is provided, comprising the step of raising the shielding member by operating the driving means.
  • the magnetic field and the electromagnetic wave generated between the power feeding device and the current collecting device are shielded without leakage to the outside by the movable shielding member, the deterioration of current collection efficiency due to the magnetic field leakage is prevented, and the vicinity of the vehicle The negative impact on the passengers located in the can be minimized, and when the shield member moves upward, collision and interference with the road surface or other objects on the road surface are minimized, thereby improving safety.
  • the shielding member is made of a plurality of shielding plates made of a thin metal, it is possible to improve the electromagnetic and magnetic field shielding effect, there is also a light and easy installation.
  • the present invention can be applied to all devices of the non-contact magnetic induction type including the power feeding device and the current collecting device.
  • FIG. 2 is a front view of the non-contact magnetic induction charging method to which the magnetic field shield of FIG. 1 is applied.
  • a perspective view of a part of a motor vehicle is shown.
  • FIG. 3 is a perspective view of the magnetic field shield of FIG. 1.
  • FIG. 4A and 4B respectively show that the magnetic field shield of FIG.
  • FIG. 5 is a flowchart showing an embodiment of a method of operating a magnetic shielding device according to the present invention.
  • FIG. 6 is a flow chart showing another embodiment of a method of operating a magnetic shielding device according to the present invention.
  • FIG. 7 is a flow chart showing another embodiment of a method of operating a magnetic shielding device according to the present invention.
  • FIG. 8 is a flow chart showing another embodiment of a method of operating a magnetic shielding device according to the present invention.
  • a power feeding device including a ferrite core 2 and a primary coil 3 wound around the ferrite core 2 is embedded in a feed road 1, and organic power is applied to a lower portion of a vehicle body of an electric vehicle.
  • the current collector 5 to be generated is installed.
  • the current collector 5 is connected to the power supply device while maintaining a predetermined distance from the power supply road 1.
  • Organic power is generated by the magnetic field generated by the magnetic field to supply power to a motor (not shown) or a battery (not shown) of the vehicle.
  • the current collector 5 has a structure in which a secondary coil is wound around a flat plate-like ferrite core.
  • an actuator 20 having a piston 21 vertically moved upward and downward by pneumatic or hydraulic pressure is installed on both side body frames 4 of the electric vehicle.
  • the piston 21 of the actuator 20 is coupled to the shield member 10 for shielding the outer side portions of both sides of the current collector (5). Accordingly, the shielding member 10 moves vertically together with the piston 21 of the actuator 20, and moves to both sides of the lower side of the vehicle by the action of the actuator 20 when the vehicle is stopped to charge the current collector.
  • the electromagnetic wave and the magnetic field generated between the device 5 and the power feeding device are prevented from leaking to the outside, and when the vehicle is not charged, it moves upward to prevent collision or interference with an external object.
  • the actuator 20 is connected to a controller (not shown) of the electric vehicle, the controller
  • the controller applies pneumatic or hydraulic pressure to the actuator 20 in conjunction with the opening and closing operation of the door (not shown) of the electric vehicle.
  • the shielding member 10 has a structure in which shielding plates 11 made of a plurality of thin metal plates (three in this embodiment) having a magnetic field shielding function are stacked apart from each other.
  • the shielding plate 11 is made of a metal plate of the '' 'upper and lower ends bent at right angles, respectively, are coupled to each other by a fastening member such as a bolt or nut.
  • the actuator 20 may have a smaller capacity. In addition to reducing the amount of electricity consumed by the vehicle, the electric and magnetic field shielding effects can be further improved.
  • a reinforcing material 40 for reinforcing the strength of the shielding plate 11 is provided between the shielding plates 11 of the shielding member 10.
  • the reinforcing material 40 is made of a metal plate bent in the '' 'like the shielding plate 11, but is not limited thereto and may be formed in various forms.
  • a shock absorber 30 is installed to prevent the direct impact from being hit by an object.
  • the damper damper 30 may be made of a resin material such as rubber that can absorb a shock while being instantaneously deformed when it collides with an external object. It may be made of a structure covered with a flexible resin material.
  • the shielding member 10 is installed on the outside of the front wheel 6 and the rear wheel 7 of the vehicle, the front wheel 6 and the rear wheel 7 does not touch when the direction of the front wheel 6 and the rear wheel 7 is switched. It is desirable to keep enough distance.
  • the front end and the rear end of the shield member 10 is preferably formed to be bent inward to the vehicle in order to further enhance the electromagnetic and magnetic field shielding effect.
  • the shield member 10 is lowered by the operation of the actuator 20 as shown in FIG. 4A while the vehicle is stopped and charging of the current collector is performed.
  • the shielding member 10 is raised by the action of the actuator 20, and collision with the object on the road surface or the road surface is minimized. Since it is prevented there is an advantage that can improve the safety while driving.
  • a controller (not shown) for driving the actuator 20 (see FIG. 2) while the vehicle is running detects the opening / closing of the door (not shown) of the vehicle in real time (step S1).
  • the controller detects the door opening and the actuator 20 (see FIG. 2). Pneumatic or hydraulic pressure is applied to the shielding member 10 to lower the both sides of the vehicle as shown in FIG. 4A to shield magnetic fields and electromagnetic waves generated between the current collector 5 and the power feeding device (step S3).
  • step S4 When the current collector 5 is being charged or when the charging is completed, the door of the vehicle is closed (step S4), and the brake operation signal is turned off (step S5), the controller (not shown) indicates that the vehicle is in the main state. It is determined that the actuator 20 is operated to raise the shielding member 10 again as shown in FIG. 4B (step S6).
  • actuator 20 operating by hydraulic pressure or pneumatic pressure
  • various other well-known linear motion systems may be used to raise and lower the shielding member 10 according to the traveling speed of the vehicle.
  • the vehicle is stopped and the shield member 10 is automatically lowered as soon as the door is opened, but as shown in another embodiment in FIG. 6, after the vehicle is stopped and the door is opened (step) S2) If it is detected that the charging is started (S2-1), the controller (not shown) may lower the shield member 10 when the controller detects that charging is started.
  • FIGS. 7 and 4A and 4B another embodiment of a method of operating a shielding apparatus of an electric vehicle of a non-contact magnetic induction charging type configured as described above will be described.
  • a controller (not shown) for driving the actuator 20 (see FIG. 2) while the vehicle is running detects the driving speed of the vehicle in real time through a speed sensor (not shown) provided in the vehicle (step S11).
  • step S12 When the vehicle stops at the station or charging station where the power feeding device is installed, the speed is detected to be 0 km / h (step S12), and if a predetermined time t elapses (step S13), the controller (not shown) causes the actuator 20 (See Fig. 2) by applying pneumatic or hydraulic pressure to lower the shield member 10 to the lower side of both sides of the vehicle as shown in Figure 4a to shield the magnetic field and electromagnetic waves generated during charging of the current collector to the outside (Step S14).
  • the reason why the controller (not shown) waits for a predetermined time t after the vehicle stops, i.e., detects that the driving speed is 0 km / h is because the vehicle temporarily stops for reasons other than charging while driving. This is to prevent the shield member 10 from falling in this case.
  • the controller determines that the vehicle is running
  • the actuator 20 is operated to raise the shielding member 10 again as shown in FIG. 4B (step S15).
  • the actuator 20 operated by hydraulic pressure or pneumatic pressure is applied as a driving means for elevating the shield member 10 up and down, but the traveling speed of the vehicle using various other known linear motion systems. According to the shield member 10 will be able to move up and down.
  • the shield member 10 is automatically lowered.
  • the controller not shown
  • the shield member 10 is removed. It could be descending.
  • the shielding member when the door is opened for the passengers to get on and off and the charging of the current collector is made, or when the vehicle is stopped and the charging of the current collector is made by sensing the traveling speed of the vehicle, the shielding member ( By lowering 10), electromagnetic waves and magnetic fields can be shielded, and current collection efficiency can be prevented due to magnetic field leakage, and the adverse effects of electromagnetic waves on passengers waiting outside of the vehicle can be minimized.
  • the shielding member 10 is automatically raised by the action of the actuator 20 so as to be on the road or road surface. Since collision with an object is prevented, there is an advantage of improving safety while driving.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

본 발명은 자기장 차폐장치에 관한 것으로, 본 발명은 급전도로에 매설된 급전장치의 자기장에 의해 유기 전력을 생성하는 집전장치가 차체 하부에 설치된 비접촉 자기 유도 충전 방식의 전기자동차에 있어서, 상기 전기자동차의 양측면 차체 프레임에 각각 설치되어, 공압 또는 유압에 의해 상하로 수직운동하는 피스톤을 구비한 액츄에이터와; 상기 각각의 액츄에이터의 피스톤에 연결되어 상하로 이동하며, 금속재로 된 복수개의 차폐플레이트가 상호 이격되어 적층된 구조로 이루어져, 하측으로 이동했을 때 전기자동차의 집전장치의 양측면을 차폐하여 집전장치와 급전도로 사이에 발생하는 전자파 및 자기장이 외부로 누출되는 것을 차단하는 차폐부재를 포함하여 구성된 것을 특징으로 하는 자기장 차폐장치를 제공한다.

Description

자기장 차폐장치
본 발명은 자기장 차폐장치에 관한 것으로, 더욱 상세하게는 이동 가능하게 설치되어, 일측으로 이동하여 집전장치와 급전장치 간에 발생하는 전자파 및 자기장이 외부로 누출되는 것을 방지하고, 타측으로 이동하여 외부 물체와의 충돌 또는 간섭을 방지할 수 있는 비접촉 자기 유도 충전 장치의 자기장 차폐장치에 관한 것이다.
일반적으로 비접촉 자기 유도 방식의 전기자동차의 집전장치는 급전도로에서 발생하는 자기장의 힘을 전기에너지로 변환시키는 트랜지스터의 원리가 적용된다.
이 때, 급전도로에 흐르는 고압전류가 발생시키는 자기장이 오른나사의 법칙에 의해 흐르는데, 차량의 하부에 설치된 집전장치가 급전도로와 수평한 평면형상이기 때문에 집전장치와 급전도로 사이의 공극에서 전자파 및 자기장이 외부로 누출되는 현상이 발생하게 된다.
이렇게 누출된 전자파 및 자기장은 도로변에 있는 승객들의 건강에 유해한 영향을 미칠 뿐만 아니라, 누출된 자기장으로 인하여 집전 효율이 저하되는 문제를 유발한다.
본 발명은 상기와 같은 종래의 문제를 해결하기 위한 것으로, 본 발명의 목적은 일측으로 이동하여 집전장치와 급전장치 간에 발생하는 전자파 및 자기장이 외부로 누출되는 것을 방지함으로써 집전 효율을 향상시킴과 더불어 전자파 및 자기장이 자동차 인근의 사람들에게 미치는 영향을 최소화할 수 있으며, 타측으로 이동하여 외부 물체와의 충돌 또는 간섭을 방지할 수 있도록 한 비접촉 자기 유도 충전 장치의 자기장 차폐장치를 제공함에 있다.
상기와 같은 목적을 달성하기 위한 본 발명은, 급전장치의 자기장에 의해 유기 전력을 생성하는 집전장치에 있어서, 공압 또는 유압에 의해 상하로 수직운동하는 피스톤을 구비한 액츄에이터와; 상기 액츄에이터의 피스톤에 연결되어 상하로 이동하며, 복수개의 차폐플레이트가 적층된 구조로 이루어져, 일측으로 이동했을 때 집전장치와 급전장치 사이에 발생하는 전자파 및 자기장이 외부로 누출되는 것을 차단하는 차폐부재를 포함하여 구성된 것을 특징으로 하는 비접촉 자기 유도 장치의 자기장 차폐장치를 제공한다.
본 발명의 한 형태에 따르면, 본 발명의 자기장 차폐장치는 상기 차폐부재의 하단부에 설치되어 하부에서 가해지는 충격을 흡수하는 유연한 재질의 완충용 댐퍼를 더 포함하여 구성될 수 있다.
여기서, 상기 완충용 댐퍼는 'U'자형의 금속판재의 표면에 유연한 수지재가 덮여진 구조로 된 것이 바람직하다.
본 발명의 다른 한 형태에 따르면, 본 발명의 차폐장치는 상기 차폐부재의 각 차폐플레이트 사이에 결합되는 보강재를 더 포함하여 구성될 수 있다.
본 발명의 다른 한 범주에 따르면, 급전장치의 자기장에 의해 유기 전력을 생성하는 집전장치에 있어서, 상하 수직 방향으로의 이동력을 발생시키는 구동수단과; 상기 구동수단에 결합되어 상하로 이동하며, 하측으로 이동했을 때 집전장치의 양측면을 차폐하여 집전장치와 급전장치 사이에 발생하는 전자파 및 자기장이 외부로 누출되는 것을 차단하는 차폐부재와; 이동체의 도어의 개폐 작동과 연동하여 상기 구동수단을 작동시키는 컨트롤러를 포함하여 구성된 것을 특징으로 하는 비접촉 자기 유도 장치의 자기장 차폐장치가 제공된다.
여기서, 상기 차폐부재는 금속재로 된 복수개의 차폐플레이트가 상호 이격되
어 적층된 구조로 이루어진 것이 바람직하다.
본 발명의 다른 한 범주에 따르면, 상하로 이동 가능하게 설치되는 차폐부재와, 상기 차폐부재를 상하로 이동시키는 구동수단을 포함하여 구성되어, 집전장치와 급전장치 간에 발생하는 전자파 및 자기장을 차폐하는 비접촉 자기 유도 충전 장치의 자기장 차폐장치의 작동방법에 있어서, (a) 이동체의 도어의 개폐 여부를 실시간으로 감지하는 단계와; (b) 이동체의 도어가 개방된 것으로 감지될 경우, 구동수단을 작동시켜 차폐부재를 하측으로 이동시켜 집전장치 양측면부를 차폐시키는 단계와; (c) 이동체의 도어가 폐쇄된 것을 감지될 경우, 구동수단을 작동시켜 차폐부재를 상승시키는 단계를 포함하여 구성된 것을 특징으로 하는 비접촉 자기 유도 장치의 자기장 차폐장치의 작동방법이 제공된다.
본 발명의 다른 한 범주에 따르면, 급전장치의 자기장에 의해 유기 전력을 생성하는 집전장치에 있어서, 상하 수직 방향으로의 이동력을 발생시키는 구동수단과; 상기 구동수단에 결합되어 상하로 이동하며, 하측으로 이동했을 때 집전장치의 양측면을 차폐하여 집전장치와 급전장치 사이에 발생하는 전자파 및 자기장이 외부로 누출되는 것을 차단하는 차폐부재와; 이동체의 주행 속도에 연동하여 상기 구동수단을 작동시키는 컨트롤러를 포함하여 구성된 것을 특징으로 하는 비접촉 자기 유도 장치의 자기장 차폐장치가 제공된다.
여기서, 상기 차폐부재는 금속재로 된 복수개의 차폐플레이트가 상호 이격되
어 적층된 구조로 이루어진 것이 바람직하다.
본 발명의 다른 한 범주에 따르면, 상하로 이동 가능하게 설치되는 차폐부재와, 상기 차폐부재를 상하로 이동시키는 구동수단을 포함하여 구성되어, 집전장치와 급전장치 간에 발생하는 전자파 및 자기장을 차폐하는 비접촉 자기 유도 장치의 자기장 차폐장치의 작동방법에 있어서, 이동체의 주행 속도를 실시간으로 감지하는 단계와; 상기 감지된 이동체가 정지상태인 것으로 감지되고, 정지상태로 일정 시간(t)이 경과하면 구동수단을 작동시켜 차폐부재를 하측으로 이동시켜 집전 장치 양측면부를 차폐시키는 단계와; 감지된 이동체가 주행상태인 것으로 감지될 경우, 구동수단을 작동시켜 차폐부재를 상승시키는 단계를 포함하여 구성된 것을 특징으로 하는 비접촉 자기 유도 장치의 자기장 차폐장치의 작동방법이 제공된다.
본 발명의 또 다른 한 범주에 따르면, 상하로 이동 가능하게 설치되는 차폐부재와, 상기 차폐부재를 상하로 이동시키는 구동수단을 포함하여 구성되어, 집전장치와 급전장치 간에 발생하는 전자파 및 자기장을 차폐하는 비접촉 자기 유도 장치의 자기장 차폐장치의 작동방법에 있어서, 이동체의 주행 속도를 실시간으로 감지하는 단계와; 상기 감지된 이동체가 정지상태인 것으로 감지되고, 집전장치의 충전이 시작되는 것으로 감지되면 구동수단을 작동시켜 차폐부재를 하측으로 이동시켜 집전장치 양측면부를 차폐시키는 단계와; 감지된 이동체가 주행상태인 것으로 감지될 경우, 구동수단을 작동시켜 차폐부재를 상승시키는 단계를 포함하여 구성된 것을 특징으로 하는 비접촉 자기 유도 장치의 자기장 차폐장치의 작동방법이 제공된다.
본 발명에 따르면, 이동 가능하게 설치되는 차폐부재에 의해 급전장치와 집전장치 사이에서 발생하는 자기장 및 전자파가 외부로 누출되지 않고 차폐되므로 자기장 누출에 따른 집전 효율의 저하가 방지됨과 더불어, 자동차의 인근에서 위치한 승객에 미치는 악영향을 최소화할 수 있으며, 차폐부재가 상측으로 이동하는 경우에는 노면 또는 노면의 다른 물체와의 충돌 및 간섭이 최소화되므로 안전성을 향상시킬 수 있는 이점이 있다.
또한, 차폐부재가 얇은 금속으로 된 복수개의 차폐플레이트로 이루어지므로, 전자파 및 자기장 차폐 효과를 향상시킬 수 있으며, 가볍고 설치가 용이한 이점도 있다.
본 발명은 급전장치와 집전장치를 포함하는 비접촉 자기 유도 방식의 모든 장치에 적용될 수 있다.
도 1은 본 발명의 일 실시예에 따른 자기장 차폐장치가 적용된 비접촉 자기
유도 충전 방식의 전기자동차의 정면에서 본 요부 단면도이다.
도 2는 도 1의 자기장 차폐장치가 적용된 비접촉 자기 유도 충전 방식의 전
기자동차의 일부분을 나타낸 사시도이다.
도 3은 도 1의 자기장 차폐장치의 사시도이다.
도 4a와 도 4b는 각각 도 1의 자기장 차폐장치가 충전시에 차량의 하측으로
이동된 상태와, 주행시에 차량의 상측으로 이동된 상태를 나타내는 측면도이다.
도 5는 본 발명에 따른 자기장 차폐장치의 작동방법의 일 실시예를 나타낸 순서도이다.
도 6은 본 발명에 따른 자기장 차폐장치의 작동방법의 다른 일 실시예를 나타낸 순서도이다.
도 7은 본 발명에 따른 자기장 차폐장치의 작동방법의 다른 일 실시예를 나타낸 순서도이다.
도 8은 본 발명에 따른 자기장 차폐장치의 작동방법의 다른 일 실시예를 나타낸 순서도이다.
이하, 첨부된 도면을 참조하여 비접촉 자기 유도 충전 방식의 자기장 차폐장치의 바람직한 실시예를 상세히 설명한다.
도 1 내지 도 3을 참조하여 본 발명에 따른 비접촉 자기 유도 충전 방식의 전기자동차용 자기장 차폐장치의 구성에 대해 설명한다.
도 1을 참조하면, 급전도로(1)에 페라이트코어(2) 및 이 페라이트코어(2)에 권선된 1차 코일(3)로 이루어진 급전장치가 매설되고, 전기자동차의 차체 하부에 유기 전력을 생성하는 집전장치(5)가 설치된다.
상기 집전장치(5)는 급전도로(1)와 일정 간격을 유지하면서 상기 급전장치에
의해 생성된 자기장에 의해 유기 전력을 생성하여 차량의 모터(미도시) 또는 축전지(미도시)에 전력을 공급한다. 도면에 도시하지는 않았으나, 상기 집전장치(5)는 편평한 판상의 페라이트코어에 2차 코일이 감겨진 구조로 이루어진다.
그리고, 도 1 및 도 2에 도시된 것과 같이, 상기 전기자동차의 양측면 차체 프레임(4)에 공압 또는 유압에 의해 상하 방향으로 수직운동하는 피스톤(21)을 구비한 액츄에이터(20)가 설치되고, 이 액츄에이터(20)의 피스톤(21)에 상기 집전장치(5)의 양측면 외측부를 차폐하는 차폐부재(10)가 결합된다. 따라서, 상기 차폐부재(10)는 액츄에이터(20)의 피스톤(21)과 함께 수직 이동하여, 차가 정지하여 집전 장치에 충전이 이루어질 때 액츄에이터(20)의 작용에 의해 차량의 양측면 하측으로 이동하여 집전장치(5)와 급전장치 간에 발생하는 전자파 및 자기장이 외부로 누출되는 것을 방지하고, 충전이 이루어지는 않는 주행시에는 상측으로 이동하여 외부물체와의 충돌 또는 간섭을 방지한다.
상기 액츄에이터(20)는 전기자동차의 컨트롤러(미도시)에 연결되며, 상기 컨
트롤러(미도시)는 전기자동차의 도어(미도시)의 개폐 작동과 연동하여 상기 액츄에이터(20)에 공압 또는 유압을 인가한다.
상기 차폐부재(10)는 도 3에 도시된 것처럼, 자기장 차폐 기능을 갖는 복수개(이 실시예에서 3개)의 얇은 금속판재로 된 차폐플레이트(11)들이 상호 이격되어 적층된 구조로 이루어진다. 여기서, 상기 차폐플레이트(11)들은 상하단부가 각각 직각으로 밴딩된 'ㄷ'자형의 금속 판재로 이루어져, 볼트 또는 너트와 같은 체결부재에 의해 상호 결합된다. 상기와 같이 차폐부재(10)가 복수개의 금속 플레이트로 이루어지면, 하나의 금속판재를 두껍게 제작하여 차폐부재를 구성할 때보다 하중이 작아지기 때문에 액츄에이터(20)의 용량이 작은 것을 사용할 수 있으며, 차량의 전기소모량을 저감시킬 수 있을 뿐만 아니라, 전기장 및 자기장 차폐효과도 더욱 향상되는 이점을 얻을 수 있다.
그리고, 상기 차폐부재(10)의 각 차폐플레이트(11) 사이에 차폐플레이트(11)의 강도를 보강하기 위한 보강재(40)가 설치되는 것이 바람직하다. 이 실시예에서 상기 보강재(40)는 상기 차폐플레이트(11)들과 마찬가지로 'ㄷ'자형으로 밴딩된 금속판재로 이루어지나, 이에 한정하지 않으며 다양한 형태로 이루어질 수 있다.
또한, 상기 차폐부재(10)의 하단부에는 차폐부재(10)가 노면 또는 노면 상의
물체에 부딪혀 직접적인 충격을 받지 않도록 하여 주는 완충용 댐퍼(30)가 장착된다. 상기 완충용 댐퍼(30)는 외부의 물체와 충돌했을 때 순간적으로 변형되면서 충격을 흡수할 수 있는 고무 등의 수지재로 이루어질 수 있지만, 이와 다르게 'U'자형으로 밴딩된 금속판재에 고무 등의 유연한 수지재가 덮힌 구조로 이루어질 수도 있다.
상기 차폐부재(10)는 차량의 전륜(6)과 후륜(7)의 외측에 이격되게 설치되되, 전륜(6)과 후륜(7)의 방향 전환시 전륜(6)과 후륜(7)이 닿지 않을 정도의 충분한 거리를 유지하는 것이 바람직하다.
그리고, 전자파 및 자기장 차폐 효과를 더욱 높이기 위하여 상기 차폐부재(10)의 전단부와 후단부는 차량으로 내측으로 절곡되게 형성되는 것이 바람직하다.
상술한 바와 같이 구성된 본 발명의 비접촉 자기 유도 충전 방식의 전기자동차는 차량이 정차하여 집전장치의 충전이 이루어지는 동안에는 도 4a에 도시된 것과 같이 차폐부재(10)가 액츄에이터(20)의 작동에 의해 하강하여 급전도로(1)와 집전장치(5) 사이에서 발생하는 자기장 및 전자파가 외부로 누출되지 않도록 차폐시키는 기능을 하게 되므로 자기장 누출에 따른 집전 효율 저하를 방지하고, 차량의 외부에서 대기하고 있는 승객에 미치는 악영향을 최소화할 수 있으며, 충전이 이루어지지 않고 차량이 주행할 때에는 도 4b에 도시된 것처럼 차폐부재(10)가 액츄에이터(20)의 작용에 의해 상승하여 노면 또는 노면 상의 물체와의 충돌이 방지되므로 주행중 안전성을 향상시킬 수 있는 이점이 있다.
도 5와 도 4a 및 도 4b를 참조하여, 상술한 바와 같이 구성된 비접촉 자기 유도 충전 방식의 전기자동차의 차폐장치의 작동방법의 일 실시예에 대해 설명한다.
차량의 운행 중 상기 액츄에이터(20)(도 2참조)를 구동시키는 컨트롤러(미도시)는 차량의 도어(미도시)의 개폐를 실시간으로 감지한다(단계 S1).
차량이 급전장치가 설치된 정류장 또는 충전소에 정지하고, 승객을 탑승 또는 하차시키기 위하여 도어를 개방하면(단계 S2), 컨트롤러(미도시)가 이 도어 개방을 감지하여 액츄에이터(20)(도 2참조)에 공압 또는 유압을 인가하여 도 4a에 도시한 것과 같이 차폐부재(10)를 차량의 양측면 하부로 하강시켜 집전장치(5)와 급전장치 간에 발생하는 자기장 및 전자파를 차폐시킨다(단계 S3).
집전장치(5)의 충전이 이루어는 도중 또는 충전이 모두 완료되고, 차량의 도어가 폐쇄되고(단계 S4), 브레이크 작동 신호가 오프되면(단계 S5), 컨트롤러(미도시)는 차량이 주중인 것으로 판단하여 액츄에이터(20)를 작동시켜 도 4b에 도시된 것과 같이 차폐부재(10)를 다시 상승시킨다(단계 S6).
한편, 전술한 실시예에서는 차폐부재(10)를 상하로 승강시키는 구동수단으로
서 유압 또는 공압에 의해 동작하는 액츄에이터(20)가 적용되었지만, 이와 다른 다양한 공지의 선형운동시스템을 이용하여 차량의 주행 속도에 따라 차폐부재(10)를 승강운동시킬 수 있을 것이다.
또한, 전술한 실시예에서는 차량이 정지하고, 도어가 개방되면 바로 자동으로 차폐부재(10)가 하강하였으나, 도 6에 다른 실시예로 나타낸 것과 같이 차량이 정지하고, 도어가 개방된 후(단계 S2), 충전이 시작되는 것으로 감지되면(S2-1), 컨트롤러(미도시)가 충전이 시작되는 것을 감지하였을 때 차폐부재(10)를 하강시킬 수도 있을 것이다.
도 7과 도 4a 및 도 4b를 참조하여, 상술한 바와 같이 구성된 비접촉 자기 유도 충전 방식의 전기자동차의 차폐장치의 작동방법의 다른 일 실시예에 대해 설명한다.
차량의 운행 중 상기 액츄에이터(20)(도 2참조)를 구동시키는 컨트롤러(미도시)는 차량에 구비된 속도센서(미도시)를 통해 차량의 주행속도를 실시간으로 감지한다(단계 S11).
차량이 급전장치가 설치된 정류장 또는 충전소에 정지하여, 속도가 0 ㎞/h 인 것으로 감지되고(단계 S12), 일정 시간(t)이 경과하면(단계 S13), 컨트롤러(미도시)는 액츄에이터(20)(도 2참조)에 공압 또는 유압을 인가하여 도 4a에 도시한 것과 같이 차폐부재(10)를 차량의 양측면 하부로 하강시켜 집전장치의 충전 중 발생하는 자기장 및 전자파가 외부로 누출되지 않도록 차폐시킨다(단계 S14).
상기 컨트롤러(미도시)가 차량 정지 후, 즉 주행속도가 0 ㎞/h 인 것을 감지하고나서 일정 시간(t)이 경과하도록 기다리는 이유는 차량이 주행 중 충전이 아닌 다른 이유로 일시적으로 정지할 경우가 발생하는데, 이 경우에 차폐부재(10)가 불필요하게 하강하는 것을 방지하기 위함이다.
한편, 집전장치(5)의 충전이 이루어는 도중 또는 충전이 모두 완료되고, 차량이 출발하여 주행 속도가 다시 0 ㎞/h 보다 높게 감지되면, 컨트롤러(미도시)는 차량이 주행중인 것으로 판단하여 액츄에이터(20)를 작동시켜 도 4b에 도시된 것과 같이 차폐부재(10)를 다시 상승시킨다(단계 S15).
한편, 전술한 실시예에서는 차폐부재(10)를 상하로 승강시키는 구동수단으로서 유압 또는 공압에 의해 동작하는 액츄에이터(20)가 적용되었지만, 이와 다른 다양한 공지의 선형운동시스템을 이용하여 차량의 주행 속도에 따라 차폐부재(10)를 승강운동시킬 수 있을 것이다.
또한, 전술한 실시예에서는 차량이 정지하여 주행 속도가 0 ㎞/h인 것으로 감지된 후, 일정 시간(t) 동안 0 ㎞/h가 지속되면 자동으로 차폐부재(10)가 하강하였으나, 도 8에 다른 실시예로 나타낸 것과 같이 차량이 정지하여 주행 속도가 0 ㎞/h인 것으로 감지된 후, 컨트롤러(미도시)가 충전이 시작되는 것을 감지하였을 때(S13-2) 차폐부재(10)를 하강시킬 수도 있을 것이다.
상술한 바와 같이, 본 발명에 따르면 승객의 탑승 및 하차를 위해 도어가 개방되고 집전장치의 충전이 이루어질 때 또는 차량의 주행 속도를 감지하여 차량이 정지하고 집전장치의 충전이 이루어질 때, 차폐부재(10)를 하강시킴으로써 전자파 및 자기장을 차폐시키고 자기장 누출에 따른 집전 효율 저하를 방지하며 전자파가 차량의 외부에서 대기하고 있는 승객에 미치는 악영향을 최소화할 수 있다. 또한, 도어가 폐쇄되고 차량이 주행하는 것으로 감지될 때 또는 충전이 이루어지지 않고 차량이 주행하는 것으로 감지될 때에는 차폐부재(10)가 액츄에이터(20)의 작용에 의해 자동으로 상승하여 노면 또는 노면 상의 물체와의 충돌이 방지되므로 주행중 안전성을 향상시킬 수 있는 이점이 있다.
전술한 실시예는 단지 본 발명의 이해를 돕기 위한 예시 목적으로 제시된 것으로 본 발명은 이에 한정되지 아니하며, 첨부된 특허청구범위에 기재된 범위 내에서 다양한 변경 및 실시가 가능할 것이다.

Claims (20)

  1. 급전장치의 자기장에 의해 유기 전력을 생성하는 집전장치에 있어서,
    공압 또는 유압에 의해 상하로 수직운동하는 피스톤을 구비한 액츄에이터와;
    상기 액츄에이터의 피스톤에 연결되어 상하로 이동하며, 복수개의 차폐플레이트가 적층된 구조로 이루어져, 일측으로 이동했을 때 집전장치와 급전장치 사이에 발생하는 전자파 및 자기장이 외부로 누출되는 것을 차단하는 차폐부재를 포함하여 구성된 것을 특징으로 하는 비접촉 자기 유도 장치의 자기장 차폐장치.
  2. 제1항에 있어서, 상기 차폐부재의 하단부에 설치되어 하부에서 가해지는 충격을 흡수하는 유연한 재질의 완충용 댐퍼를 더 포함하여 구성된 것을 특징으로 하는 비접촉 자기 유도 장치의 자기장 차폐장치.
  3. 제1항에 있어서, 상기 완충용 댐퍼는 'U'자형의 금속판재의 표면에 유연한 수지재가 덮여진 구조로 된 것을 특징으로 하는 비접촉 자기 유도 장치의 자기장 차폐장치.
  4. 제1항에 있어서, 상기 차폐부재의 각 차폐플레이트 사이에 결합되는 보강재를 더 포함하여 구성된 것을 특징으로 하는 비접촉 자기 유도 장치의 자기장 차폐장치.
  5. 제1항에 있어서, 상기 차폐부재의 전단부 또는 후단부는 내측으로 절곡되게 형성된 것을 특징으로 하는 비접촉 자기 유도 장치의 자기장 차폐장치.
  6. 급전장치의 자기장에 의해 유기 전력을 생성하는 집전장치에 있어서,
    상하 수직 방향으로의 이동력을 발생시키는 구동수단과;
    상기 구동수단에 결합되어 상하로 이동하며, 하측으로 이동했을 때 집전장치의 양측면을 차폐하여 집전장치와 급전장치 사이에 발생하는 전자파 및 자기장이 외부로 누출되는 것을 차단하는 차폐부재와;
    이동체의 도어의 개폐 작동과 연동하여 상기 구동수단을 작동시키는 컨트롤러를 포함하여 구성된 것을 특징으로 하는 비접촉 자기 유도 장치의 자기장 차폐장치.
  7. 제6항에 있어서, 상기 차폐부재는 금속재로 된 복수개의 차폐플레이트가 상호 이격되어 적층된 구조로 이루어진 것을 특징으로 하는 비접촉 자기 유도 장치의 자기장 차폐장치.
  8. 제7항에 있어서, 상기 차폐부재의 하단부에 설치되어 하부에서 가해지는 충격을 흡수하는 유연한 재질의 완충용 댐퍼를 더 포함하여 구성된 것을 특징으로 하는 비접촉 자기 유도 장치의 자기장 차폐장치.
  9. 제8항에 있어서, 상기 완충용 댐퍼는 'U'자형의 금속판재의 표면에 유연한 수지재가 덮여진 구조로 된 것을 특징으로 하는 비접촉 자기 유도 장치의 자기장 차폐장치.
  10. 제7항에 있어서, 상기 차폐부재의 각 차폐플레이트 사이에 결합되는 보강재를 더 포함하여 구성된 것을 특징으로 하는 비접촉 자기 유도 장치의 자기장 차폐장치.
  11. 상하로 이동 가능하게 설치되는 차폐부재와, 상기 차폐부재를 상하로 이동시키는 구동수단을 포함하여 구성되어, 집전장치와 급전장치 간에 발생하는 전자파 및 자기장을 차폐하는 비접촉 자기 유도 충전 장치의 자기장 차폐장치의 작동방법에 있어서,
    (a) 이동체의 도어의 개폐 여부를 실시간으로 감지하는 단계와;
    (b) 이동체의 도어가 개방된 것으로 감지될 경우, 구동수단을 작동시켜 차폐부재를 하측으로 이동시켜 집전장치 양측면부를 차폐시키는 단계와;
    (c) 이동체의 도어가 폐쇄된 것을 감지될 경우, 구동수단을 작동시켜 차폐부재를 상승시키는 단계를 포함하여 구성된 것을 특징으로 하는 비접촉 자기 유도 장치의 자기장 차폐장치의 작동방법.
  12. 제11항에 있어서, 상기 (b) 단계에서는 이동체의 도어가 개방된 후, 충전이 이루어지는 것으로 감지되면 차폐부재를 하측으로 이동시키는 것을 특징으로 하는 비접촉 자기 유도 장치의 자기장 차폐장치의 작동방법.
  13. 제11항에 있어서, 상기 (c) 단계에서는 이동체의 도어가 폐쇄된 후, 브레이크 작동 신호가 없는 것으로 감지되면 차폐부재를 상승시키는 것을 특징으로 하는 비접촉 자기 유도 장치의 자기장 차폐장치의 작동방법.
  14. 급전장치의 자기장에 의해 유기 전력을 생성하는 집전장치에 있어서,
    상하 수직 방향으로의 이동력을 발생시키는 구동수단과;
    상기 구동수단에 결합되어 상하로 이동하며, 하측으로 이동했을 때 집전장치의 양측면을 차폐하여 집전장치와 급전장치 사이에 발생하는 전자파 및 자기장이 외부로 누출되는 것을 차단하는 차폐부재와;
    이동체의 주행 속도에 연동하여 상기 구동수단을 작동시키는 컨트롤러를 포함하여 구성된 것을 특징으로 하는 비접촉 자기 유도 장치의 자기장 차폐장치.
  15. 제14항에 있어서, 상기 차폐부재는 금속재로 된 복수개의 차폐플레이트가 상호 이격되어 적층된 구조로 이루어진 것을 특징으로 하는 비접촉 자기 유도 장치의 자기장 차폐장치.
  16. 제15항에 있어서, 상기 차폐부재의 하단부에 설치되어 하부에서 가해지는 충격을 흡수하는 유연한 재질의 완충용 댐퍼를 더 포함하여 구성된 것을 특징으로 하는 비접촉 자기 유도 장치의 자기장 차폐장치.
  17. 제16항에 있어서, 상기 완충용 댐퍼는 'U'자형의 금속판재의 표면에 유연한 수지재가 덮여진 구조로 된 것을 특징으로 하는 비접촉 자기 유도 장치의 자기장 차폐장치.
  18. 제15항에 있어서, 상기 차폐부재의 각 차폐플레이트 사이에 결합되는 보강재를 더 포함하여 구성된 것을 특징으로 하는 비접촉 자기 유도 장치의 자기장 차폐장치.
  19. 상하로 이동 가능하게 설치되는 차폐부재와, 상기 차폐부재를 상하로 이동시키는 구동수단을 포함하여 구성되어, 집전장치와 급전장치 간에 발생하는 전자파 및 자기장을 차폐하는 비접촉 자기 유도 장치의 자기장 차폐장치의 작동방법에 있어서,
    이동체의 주행 속도를 실시간으로 감지하는 단계와;
    상기 감지된 이동체가 정지상태인 것으로 감지되고, 정지상태로 일정 시간(t)이 경과하면 구동수단을 작동시켜 차폐부재를 하측으로 이동시켜 집전 장치 양측면부를 차폐시키는 단계와;
    감지된 이동체가 주행상태인 것으로 감지될 경우, 구동수단을 작동시켜 차폐부재를 상승시키는 단계를 포함하여 구성된 것을 특징으로 하는 비접촉 자기 유도 장치의 자기장 차폐장치의 작동방법.
  20. 상하로 이동 가능하게 설치되는 차폐부재와, 상기 차폐부재를 상하로 이동시키는 구동수단을 포함하여 구성되어, 집전장치와 급전장치 간에 발생하는 전자파 및 자기장을 차폐하는 비접촉 자기 유도 장치의 자기장 차폐장치의 작동방법에 있어서,
    이동체의 주행 속도를 실시간으로 감지하는 단계와;
    상기 감지된 이동체가 정지상태인 것으로 감지되고, 집전장치의 충전이 시작되는 것으로 감지되면 구동수단을 작동시켜 차폐부재를 하측으로 이동시켜 집전장치 양측면부를 차폐시키는 단계와;
    감지된 이동체가 주행상태인 것으로 감지될 경우, 구동수단을 작동시켜 차폐부재를 상승시키는 단계를 포함하여 구성된 것을 특징으로 하는 비접촉 자기 유도 장치의 자기장 차폐장치의 작동방법.
PCT/KR2011/002515 2011-04-11 2011-04-11 자기장 차폐장치 WO2012141342A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/002515 WO2012141342A1 (ko) 2011-04-11 2011-04-11 자기장 차폐장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/002515 WO2012141342A1 (ko) 2011-04-11 2011-04-11 자기장 차폐장치

Publications (1)

Publication Number Publication Date
WO2012141342A1 true WO2012141342A1 (ko) 2012-10-18

Family

ID=47009492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/002515 WO2012141342A1 (ko) 2011-04-11 2011-04-11 자기장 차폐장치

Country Status (1)

Country Link
WO (1) WO2012141342A1 (ko)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147593A (ja) * 2006-01-04 2006-06-08 Toyota Motor Corp 電気自動車
KR20060087888A (ko) * 2005-01-31 2006-08-03 삼성전자주식회사 전자파 차폐 및 방열장치
JP2008054424A (ja) * 2006-08-24 2008-03-06 Mitsubishi Heavy Ind Ltd 受電装置及び送電装置並びに車両
JP2010070048A (ja) * 2008-09-18 2010-04-02 Toyota Motor Corp 非接触受電装置、非接触送電装置、非接触給電システムおよび電動車両
JP2010268664A (ja) * 2009-05-18 2010-11-25 Toyota Motor Corp 車両および非接触給電システム
KR20110072069A (ko) * 2009-12-22 2011-06-29 한국과학기술원 비접촉 자기 유도 충전 방식의 전기자동차용 자기장 차폐장치
KR20110072074A (ko) * 2009-12-22 2011-06-29 한국과학기술원 비접촉 자기 유도 충전 방식의 전기자동차용 자기장 차폐장치의 작동방법
KR20110072065A (ko) * 2009-12-22 2011-06-29 한국과학기술원 비접촉 자기 유도 충전 방식의 전기자동차용 자기장 차폐장치의 작동방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060087888A (ko) * 2005-01-31 2006-08-03 삼성전자주식회사 전자파 차폐 및 방열장치
JP2006147593A (ja) * 2006-01-04 2006-06-08 Toyota Motor Corp 電気自動車
JP2008054424A (ja) * 2006-08-24 2008-03-06 Mitsubishi Heavy Ind Ltd 受電装置及び送電装置並びに車両
JP2010070048A (ja) * 2008-09-18 2010-04-02 Toyota Motor Corp 非接触受電装置、非接触送電装置、非接触給電システムおよび電動車両
JP2010268664A (ja) * 2009-05-18 2010-11-25 Toyota Motor Corp 車両および非接触給電システム
KR20110072069A (ko) * 2009-12-22 2011-06-29 한국과학기술원 비접촉 자기 유도 충전 방식의 전기자동차용 자기장 차폐장치
KR20110072074A (ko) * 2009-12-22 2011-06-29 한국과학기술원 비접촉 자기 유도 충전 방식의 전기자동차용 자기장 차폐장치의 작동방법
KR20110072065A (ko) * 2009-12-22 2011-06-29 한국과학기술원 비접촉 자기 유도 충전 방식의 전기자동차용 자기장 차폐장치의 작동방법

Similar Documents

Publication Publication Date Title
WO2010117139A2 (en) Ultra slim power supply device and power acquisition device for electric vehicle
US6412604B1 (en) Device for transferring energy to a vehicle of a transportation system
CN105896695A (zh) 电动公交车站台悬挂式无线充电系统
WO2014007587A1 (ko) 발전 가능한 엘리베이터
KR101373876B1 (ko) 엘리베이터의 엘리베이터칸 급전장치
JP5473883B2 (ja) エレベータ装置
CN103879849A (zh) 无随行电缆电梯轿厢的供电、轿厢意外移动检测及控制系统
JP2018104144A (ja) エレベーター
CN204237383U (zh) 无随行电缆电梯轿厢的供电、轿厢意外移动检测及控制系统
CN102099540A (zh) 用于门的驱动系统
WO2012050344A2 (ko) 차량 충전 시스템 및 급전장치
CN101902081A (zh) 电梯轿厢按楼层非接触式供电装置
WO2012141342A1 (ko) 자기장 차폐장치
JP4130913B2 (ja) 移動体システム
CN101374748B (zh) 位置检测设备、用于电梯的位置检测设备以及电梯装置
CN109205438B (zh) 非接触供电系统
KR20110072074A (ko) 비접촉 자기 유도 충전 방식의 전기자동차용 자기장 차폐장치의 작동방법
KR101125749B1 (ko) 비접촉 자기 유도 충전 방식의 전기자동차용 자기장 차폐장치의 작동방법
WO2023068702A1 (ko) 충전기능을 갖는 무선충,방전 모듈
CN207451380U (zh) 一种紧凑型对重后置别墅电梯
WO2023003116A1 (ko) 경량 무선충전 시스템
JP5901506B2 (ja) エレベータ装置
CN114301160B (zh) 一种双向应急电源系统及其使用方法
WO2018117332A1 (ko) 모듈형 집전장치를 구비한 항만 rtgc의 무선전력전송 구조
KR20110072069A (ko) 비접촉 자기 유도 충전 방식의 전기자동차용 자기장 차폐장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11863568

Country of ref document: EP

Kind code of ref document: A1