WO2012141246A1 - Ic module and ic card - Google Patents

Ic module and ic card Download PDF

Info

Publication number
WO2012141246A1
WO2012141246A1 PCT/JP2012/060013 JP2012060013W WO2012141246A1 WO 2012141246 A1 WO2012141246 A1 WO 2012141246A1 JP 2012060013 W JP2012060013 W JP 2012060013W WO 2012141246 A1 WO2012141246 A1 WO 2012141246A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
thickness
resin mold
module
card
Prior art date
Application number
PCT/JP2012/060013
Other languages
French (fr)
Japanese (ja)
Inventor
和宏 保坂
辻井 雅人
加藤 裕
谷中 雅顕
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to JP2013509962A priority Critical patent/JP6079624B2/en
Publication of WO2012141246A1 publication Critical patent/WO2012141246A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/0772Physical layout of the record carrier
    • G06K19/07728Physical layout of the record carrier the record carrier comprising means for protection against impact or bending, e.g. protective shells or stress-absorbing layers around the integrated circuit

Definitions

  • the present invention relates to an IC module.
  • This application claims priority based on Japanese Patent Application No. 2011-088190 filed in Japan on April 12, 2011, the contents of which are incorporated herein by reference.
  • An IC card to which an IC module is attached is known.
  • the IC card has a feature that it has a large storage capacity and is difficult to counterfeit compared to a conventional card to which a magnetic stripe is attached.
  • the shape of the IC card is standardized by ISO.
  • an IC module having a thickness of less than 0.76 mm is incorporated into an IC card having a thickness dimension of 0.76 mm.
  • a general IC module includes a resin substrate having a contact terminal that can be connected to an external read / write device, an IC chip mounted on the resin substrate, and a resin mold that covers the IC chip.
  • Patent Documents 1 to 9 disclose a structure that can prevent the IC chip from breaking in the IC module.
  • Patent Literature 1 to Patent Literature 9 has means for reinforcing the IC chip for the purpose of preventing the IC chip from breaking in the IC module.
  • the cause of the IC card that actually failed was investigated in detail, it was found that most of the cause was not a breakage of the IC chip itself but a disconnection due to breakage of the resin mold.
  • the possibility of the IC chip being damaged when an external force is applied to the IC card is lower than before.
  • the shape and arrangement of the connection terminals of the IC module are standardized for the purpose of maintaining the compatibility of the IC card, it is difficult to reduce the size of the resin mold.
  • since a disconnection by a resin mold being damaged cannot be prevented, it is insufficient as a measure for preventing failure of an IC module.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide an IC module and an IC card with a low occurrence frequency of failures.
  • An IC module has a first surface and a second surface opposite to the first surface, and a connection terminal for connecting to a read / write device is formed on the first surface.
  • An IC chip mounted on the second surface and conducted to the connection terminal by wire bonding; a resin mold that covers the IC chip, and in the thickness direction of the substrate, A residual thickness obtained by subtracting the thickness of the IC chip from the thickness of the resin mold is larger than the thickness of the IC chip.
  • the IC module may satisfy the following formula.
  • h 1 is the thickness of the IC chip
  • E 1 is the elastic modulus of the IC chip
  • ha is the thickness of the resin mold
  • E 2 is the elastic modulus of the resin mold.
  • the IC module may satisfy the following formula.
  • y 1 is the thickness of the IC chip
  • E 1 is the elastic modulus of the IC chip
  • t is the thickness of the resin mold
  • E 2 is the elastic modulus of the resin mold.
  • the resin mold is preferably made of a uniform kneaded material containing at least one of a thermoplastic resin, a thermosetting resin, and an ultraviolet curable resin.
  • the Young's modulus of the IC chip may be higher than the Young's modulus of the resin mold.
  • An IC card has a first surface and a second surface opposite to the first surface, and a connection terminal for connecting to a read / write device is formed on the first surface.
  • An IC module including: an IC chip mounted on the second surface and electrically connected to the connection terminal by wire bonding; and a resin mold that covers the IC chip; And a resin base material on which a housing portion having a bottomed hole shape is formed, wherein the IC module is housed so that the resin mold faces a bottom surface of the housing portion.
  • the thickness of the IC chip is subtracted from the sum of the thickness of the resin mold and the thickness of the resin base material in the region where the housing portion is formed. Residual thickness is greater than the thickness of the IC chip.
  • the IC card may satisfy the following formula.
  • h 1 is the thickness of the IC chip
  • E 1 is the elastic modulus of the IC chip
  • ha is the thickness of the resin mold
  • E 2 is the elastic modulus of the resin mold.
  • the IC card may satisfy the following formula.
  • y 1 is the thickness of the IC chip
  • E 1 is the elastic modulus of the IC chip
  • t is the thickness of the resin mold
  • E 2 is the elastic modulus of the resin mold.
  • the frequency of occurrence of failures in the IC module can be reduced.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 2 is a schematic diagram which shows the state in which the external force was applied to the IC card with which the conventional IC module was attached.
  • It is a schematic diagram of an IC card showing a state where an external force is applied to the IC module of the embodiment.
  • It is a figure which shows the IC card which concerns on 2nd Embodiment of this invention, and is sectional drawing along the line selected similarly to the AA line of FIG. It is a graph which shows the result of the linear pressure evaluation test in the Example and comparative example of this invention.
  • FIG. 1 is a plan view showing the IC card 1.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • the IC card 1 includes a resin base material 2 formed in a plate shape and an IC module 5 fixed to the resin base material 2.
  • the resin base material 2 is formed in a predetermined shape by, for example, a thermoplastic resin.
  • the shape of the resin substrate 2 is determined according to the purpose of use of the IC card 1.
  • the dimensions of the IC card are standardized by a standards organization such as ISO. Taking a cash card used in a financial institution as an example, the shape of the resin base material 2 conforms to ISO / IEC 7810 and JIS X 6301, and has a width of 85.60 mm, a height of 53.98 mm, and a thickness of 0.8. 76 mm (760 ⁇ m).
  • ISO ISO a standards organization
  • the shape of the resin base material 2 conforms to ISO / IEC 7810 and JIS X 6301, and has a width of 85.60 mm, a height of 53.98 mm, and a thickness of 0.8. 76 mm (760 ⁇ m).
  • the resin base material 2 is formed with a housing portion 3 for housing the IC module 5.
  • the position of the accommodating portion 3 in the resin base material 2 is determined so that a connection terminal 7 to be described later can be arranged at a position defined in ISO 7816-2.
  • the accommodating portion 3 has, for example, a bottomed hole shape having a rectangular opening on the first surface 2a of the resin base material 2 (hereinafter, this surface is referred to as “surface”). Yes.
  • the bottom portion 4 of the housing portion 3, that is, the region of the resin base material 2 where the housing portion 3 is formed is the second surface 2b of the resin base material 2 (hereinafter, this surface is referred to as "back surface"). Is formed to a thickness having sufficient rigidity to be flat.
  • the thickness dimension t4 of the bottom part 4 of the accommodating part 3 is 100 micrometers.
  • the depth dimension d3 of the accommodating portion 3 formed on the resin base material 2 is 660 ⁇ m obtained by subtracting 100 ⁇ m that is the thickness of the bottom portion 4 from 760 ⁇ m that is the thickness of the resin base material 2.
  • the IC module 5 is accommodated in the accommodating portion 3 without protruding from the opening of the accommodating portion 3 having a depth of 660 ⁇ m.
  • the IC module 5 is mounted on a substrate 6 on which a connection terminal 7 for connecting to a read / write device is formed on the first surface 6 a and a second surface 6 b opposite to the first surface 6 a of the substrate 6. And an IC chip 8 conducted to the connection terminal 7 by wire bonding, and a resin mold 10 covering the IC chip 8.
  • the substrate 6 is a wiring substrate including a glass epoxy substrate, a polyimide substrate, or a lead frame.
  • a known structure such as a single-sided substrate, a double-sided substrate, or a multilayer substrate can be appropriately selected and adopted.
  • the thickness dimension t6 of the substrate 6 can be appropriately set according to the thickness dimension t2 of the resin base material 2 and the strength required for the substrate 6. In the present embodiment, the thickness dimension t6 of the substrate 6 is 160 ⁇ m.
  • the position and area of each connection terminal 7 formed on the substrate 6 are set in accordance with the dimensions defined in ISO 7816-2.
  • the surface of each connection terminal 7 is plated with nickel, gold, or silver, or palladium or the like is deposited on the surface of each connection terminal 7.
  • One end of a metal wire 9 is joined to each connection terminal 7.
  • the metal wire 9 is used for connecting each connection terminal 7 and the IC chip 8 by wire bonding.
  • the IC chip 8 is fixed to the substrate 6 with an adhesive or an adhesive.
  • the IC chip 8 includes a silicon wafer having a circuit part and a terminal part (not shown).
  • the circuit unit of the IC chip 8 includes input / output means for inputting / outputting information or signals to / from the read / write device and storage means for storing information output from the read / write device.
  • the terminal portion of the IC chip 8 is a terminal for electrically connecting the circuit portion and each connection terminal 7.
  • the other end of the metal wire 9 used for wire bonding is joined to the terminal portion of the IC chip 8.
  • As the material of the metal wire 9, for example, gold, silver, copper, aluminum or the like can be adopted.
  • the dimension of the IC chip 8 mounted on the substrate 6 (hereinafter, this dimension is referred to as “the thickness dimension t8 of the IC chip 8”) is 200 ⁇ m or less in the thickness direction of the substrate 6.
  • the thickness dimension t8 of the IC chip 8 is desirably smaller than, for example, 220 ⁇ m.
  • the thickness t8 of the IC chip 8 is more preferably 139 ⁇ m or less, and further preferably 105 ⁇ m or less.
  • the IC chip 8 When an external force such as an impact is applied to the IC chip 8, the IC chip 8 is cracked as the mounting area of the IC chip 8 on the second surface 6 b of the substrate 6 is smaller and the volume of the IC chip 8 is smaller. Hateful. When the volume of the IC chip 8 is smaller, the number of IC chips 8 obtained from one wafer is larger and the yield of the IC chips 8 is higher.
  • the mounting area of the IC chip 8 is preferably about 10 mm 2 or less on one side. Further, the volume of the IC chip 8 is preferably about 2 mm 3 or less.
  • the IC chip 8 mounted on the substrate 6 has a square shape of 2.5 mm square when viewed from the thickness direction of the substrate 6.
  • the resin mold 10 is an insulator made of a kneaded material containing at least one of a thermoplastic resin, a thermosetting resin, and an ultraviolet curable resin.
  • the resin mold 10 is formed so that the IC chip 8 and the metal wire 9 are completely covered.
  • the IC module 5 is accommodated in the accommodating portion 3 so that the resin mold 10 faces the bottom surface of the accommodating portion 3.
  • the dimension of the resin mold 10 fixed to the substrate 6 in the thickness direction of the substrate 6 hereinafter, this dimension is referred to as “thickness dimension t10 of the resin mold 10”
  • the remaining thickness t10a of the resin mold 10 obtained by subtracting the thickness dimension t8 of the IC chip 8 from the thickness dimension t10 of the resin mold 10 is larger than the thickness dimension t8 of the IC chip 8.
  • the resin mold 10 is provided on the substrate 6 by, for example, a transfer molding method, a potting method, and a printing method, and seals the IC chip 8 and the metal wire 9. It should be noted that other methods for sealing the IC chip 8 using the resin mold 10 may be employed as appropriate.
  • the dimension of the IC module 5 in the thickness direction of the substrate 6 (hereinafter, this dimension is referred to as “thickness dimension t5 of the IC module 5”) is the thickness dimension t10 of the resin mold 10 and the thickness dimension t6 of the substrate 6. And the sum. That is, in the present embodiment, the thickness dimension t5 of the IC module 5 is 600 ⁇ m.
  • the connection terminal 7 of the IC module 5 accommodated in the accommodating portion 3 having a depth dimension d3 of 660 ⁇ m and the surface of the resin base material 2 are located on the same plane. In addition, there is a gap of 60 ⁇ m between the bottom 3 a of the housing part 3 and the resin mold 10. If the condition that the remaining thickness t10a of the resin mold 10 is larger than the thickness dimension t8 of the IC chip 8 is satisfied, the thickness dimension t5 of the IC module 5 may be less than 600 ⁇ m.
  • the relationship between the thickness dimension t8 of the IC chip 8 and the remaining thickness t10a of the resin mold 10 can be determined from the viewpoint of making the deflection amounts of the IC chip 8 and the resin mold 10 the same, as will be described in detail below.
  • the amount of deflection of a simple beam varies depending on how the load is applied to the beam. For example, when one end of a beam having a length l, a thickness h, and a depth b is fixed (cantilevered) and a load P is applied to the other end (concentrated load), the deflection amount V is expressed as follows.
  • the deflection amount V is It is expressed as follows. As described above, the amount of deflection differs depending on how the load is applied to the beam (cantilever / both-end support, concentrated load / equally distributed load). However, the conditions under which the amount of deflection of the IC chip and the resin mold in the laminated body La are the same do not depend on how the load is applied to the laminated body La.
  • the thickness h1 of the IC chip satisfies the above formula (4), it is possible to suppress the breakage at the IC chip / resin mold interface due to the difference in the amount of deflection between the IC chip and the resin mold.
  • the IC chip 8 is covered with the resin mold 10, and the area of the IC chip 8 on the surface of the substrate 6 of the IC module 5 is that of the resin mold 10. Smaller than the area. Therefore, even when the deflection amount of the IC chip 8 is larger than the deflection amount of the resin mold 10, it is possible to obtain an effect of suppressing the breakage at the IC chip / resin mold interface.
  • the following formula (5) it is possible to suppress the breakage at the IC chip / resin mold interface due to the difference in the deflection amount of the IC chip and the resin mold.
  • the IC module 5 satisfying the above formulas (4) and (5), in an IC module having a total thickness of 415 ⁇ m using an IC chip having an elastic modulus E1 of 170 GPa and a resin mold having an elastic modulus E2 of 16.6 GPa
  • the IC chip has a thickness dimension h1 of about 131 ⁇ m so that the IC chip and the resin mold have the same amount of deflection.
  • the thickness dimension h2 of the resin mold corresponding to the above-described remaining thickness t10a is 284 ⁇ m.
  • the relationship between the thickness dimension t8 of the IC chip 8 and the remaining thickness t10a of the resin mold 10 is described in detail below.
  • the IC chip 8 and the resin mold are arranged on the neutral surface in the two-layer laminate of the IC chip 8 and the resin mold 10. It can be determined from the viewpoint of matching the boundary surfaces between the ten.
  • a neutral surface in a material is a location where the material does not stretch or contract with respect to bending, i.e., where neither tensile nor compressive stress occurs.
  • the conditions under which the interface between the IC chip and the resin mold matches the neutral surface will be described.
  • the arc length ab between the two points a and b on the neutral plane shown in FIG. 8 is ( ⁇ + y 0 ) d ⁇ .
  • the arc length cd between the two points c and d on the plane parallel to the neutral plane is ( ⁇ + y) d ⁇ .
  • the point c is on a straight line connecting the two points of the curvature center O and the point a
  • the point d is on a straight line connecting the two points of the curvature center O and the point b.
  • Y is an arbitrary position in the thickness direction of the beam.
  • the strain ⁇ generated in the minute arc cd is expressed by the following equation. Accordingly, when the elastic modulus of the beam is E, the stress ⁇ generated in the minute arc cd is expressed by the following equation. Since the value obtained by integrating the stress ⁇ over the entire thickness direction of the beam is zero, the following equation is established.
  • the IC chip lower surface / resin mold interface has a compressive stress, not a tensile stress. Take it. In this case, the resin mold or the like is not broken by the tensile stress at the IC chip lower surface / resin mold interface.
  • a laminate having a total thickness t 415 ⁇ m using an IC chip having an elastic modulus E1 of 170 GPa and a resin mold having an elastic modulus E2 of 16.6 GPa.
  • the thickness y1 of the IC chip is about 100 ⁇ m.
  • the thickness t-y 1 of the resin mold corresponding to the above-described residual thickness t10a is about 315 .mu.m.
  • the thickness of the resin mold corresponding to the above-described remaining thickness t10a is 600 ⁇ m or less, and preferably about 400 ⁇ m or less. Since the thickness of the substrate of the IC module is about 100 to 200 ⁇ m and the thickness of the IC chip is about several tens of ⁇ m to 200 ⁇ m, if the thickness of the resin mold is larger than 600 ⁇ m, the thickness of the IC card is an IC according to JIS standards. The card will not fit in the thickness of 760 ⁇ m.
  • the thickness of the IC card does not fit in the thickness of 760 ⁇ m of the IC card according to the JIS standard.
  • FIG. 3 is a schematic diagram showing a state in which an external force is applied to an IC card to which a conventional IC module is attached.
  • FIG. 4 is a schematic diagram of the IC card 1 showing a state in which an external force is applied to the IC module 5 according to the present embodiment.
  • IC cards are stored in wallets and card cases.
  • a wallet or card case in which an IC card is stored may be stored in a trouser pocket, for example.
  • an excessive load is applied to the IC card, and the IC card may be bent as shown in FIGS.
  • the carryer's weight and other external forces are transmitted to the resin mold of the IC module, bending stress is generated in the resin mold.
  • a crack extending from the peripheral edge of the IC chip 108 in the thickness direction of the IC chip 108 occurs in the resin mold (indicated by reference numeral 110).
  • the hardness of the IC chip 108 and the resin mold 110 are different.
  • the Young's modulus of the IC chip 108 is about 170 GPa.
  • the Young's modulus of the resin mold 110 is about 17 GPa. That is, the IC chip 108 and the resin mold 110 are completely different in the amount of deflection with respect to bending stress.
  • the resin mold 110 that is relatively softer than the relatively hard IC chip 108 causes a greater deflection. It is considered that a crack is generated from the interface between the IC chip 108 and the resin mold 110 due to the difference in deflection amount between the IC chip 108 and the resin mold 110.
  • a crack generated at the interface grows in the resin mold 110 and is bonded to the bonding wire 109 sealed in the resin mold 110. Reach up to. When the crack reaches the bonding wire 109, the bonding wire 109 may be cut off due to separation or displacement on the crack surface of the resin mold 110.
  • the remaining thickness t10a of the resin mold 10 is larger than the thickness of the IC chip 8.
  • the amount of deflection with respect to the bending stress described above is governed by hardness (Young's modulus) and thickness when considered simply. That is, according to the IC card 1 in which the thickness of the harder IC chip 8 is thinner and the softer resin mold 10 is thicker, the difference between the deflection amounts of both can be made smaller than that of the conventional IC card. Therefore, the resin mold 10 is less likely to crack due to external force than the conventional IC card. If the resin mold 10 is not cracked, the bonding wire will not be broken, so that the function of the IC module 5 is maintained.
  • the IC card 1 according to the present embodiment since the thickness t8 of the IC chip 8 is thin and the resin mold 10 is not easily cracked as described above, the possibility that the metal wire 9 is disconnected is kept low. . For this reason, the possibility that the function of the IC module 5 is impaired even though the IC chip 8 is not damaged is lower than that of the conventional IC module 105. In the IC card 1 according to the present embodiment, when an external force is applied to the resin mold 10 to cause the above cracks, the IC chip 8 itself may be broken.
  • the frequency of occurrence of failures in the IC module 5 can be reduced.
  • a reinforcing plate or the like may be attached to the resin mold for the purpose of reinforcing the resin mold.
  • the resin mold 10 is made of a uniform kneaded material containing at least one of a thermoplastic resin, a thermosetting resin, and an ultraviolet curable resin as in the present embodiment, the resin mold and the reinforcing plate are There is no need to consider the possibility of peeling. For this reason, it is possible to keep the occurrence rate of failure in the IC module 5 from varying depending on each IC card or depending on use conditions.
  • FIG. 5 is a view showing the contact type IC card according to the present embodiment, and is a cross-sectional view along a selected line similar to the AA line of FIG.
  • the resin mold 10 is reinforced by the bottom portion 4 of the housing portion 3, that is, the region where the housing portion 3 of the resin base material 2 is formed. This is different from the IC card 1 of the first embodiment described above.
  • the bottom portion 4 of the housing portion 3, the resin mold 10, the IC chip 8, and the substrate 6 are laminated in this order in the thickness direction of the resin base material 2 composed of a single layer or a plurality of layers. That is, the IC module 5 is accommodated in the accommodating portion 3 so that the resin mold 10 faces the bottom surface of the accommodating portion 3.
  • the resin mold 10 is in close contact with the bottom 4 of the housing 3.
  • the resin mold 10 can be fixed to the housing portion 3 by applying an adhesive to one surface of the resin mold 10 and bonding the surface to the bottom surface of the housing portion 3.
  • the thickness t4 of the bottom 4 of the housing 3 is such that the IC module 5 can be housed in the housing 3 so that the IC module 5 does not protrude from the surface of the resin base material 2, and the back surface of the IC card 1A. It should be set to a value that does not impair the beauty of
  • the thickness dimension t4 of the bottom part 4 of the accommodating part 3 can be selected from a range of 100 ⁇ m or more and less than 160 ⁇ m. In the IC card 1A having a thickness of 760 ⁇ m, when the thickness dimension t5 of the IC module 5 is less than 600 ⁇ m, the thickness dimension t4 of the bottom portion 4 of the housing portion 3 is 160 ⁇ m or more.
  • the thickness t4 of the bottom part 4 is determined in a range where the thickness of the IC card 1A does not exceed 760 ⁇ m. In the thickness direction of the IC card 1A, the remaining thickness t10aA obtained by subtracting the thickness of the IC chip 8 from the sum of the thickness of the resin mold 10 and the thickness of the bottom 4 is larger than the thickness of the IC chip 8.
  • the resin mold 10 is reinforced by the bottom portion 4 of the housing portion 3 by fixing the bottom portion 4 of the housing portion 3 and the resin mold 10. For this reason, even when an external force such as bending or impact is applied to the IC card 1A, the resin mold 10 is not easily broken as in the first embodiment. Further, in the IC card 1A, since the resin mold 10 is reinforced by the bottom portion 4 of the housing portion 3, even if the thickness dimension t10 of the resin mold 10 is made smaller than that in the first embodiment, the remaining thickness t10aA is the IC. As long as the relationship that the thickness is larger than the thickness of the chip 8 is satisfied, the same effect as the IC card 1 of the first embodiment can be obtained.
  • the antenna module is formed on a resin base material used for the IC card, or a separate antenna sheet on which the antenna is formed is laminated on the IC card, and the IC module 5 according to the above embodiment attached to the antenna and the IC card By connecting the two, it is possible to obtain a so-called dual IC card capable of contact-type communication and non-contact-type communication.
  • the IC module and the IC card according to the embodiment of the present invention will be described in more detail.
  • the relationship between the residual thickness of the resin mold and the thickness dimension of the IC chip in the following IC module is different between each example and comparative example.
  • the relationship between the remaining thickness of the resin mold and the thickness dimension of the IC chip and the occurrence of cracks in the resin mold was examined. Specifically, an IC module satisfying the following dimensional conditions was manufactured, and an IC card was manufactured by fixing each IC module to a housing portion of a resin base material. A linear pressure evaluation test was performed on each manufactured IC card. 6 and 7 are graphs showing the results of the linear pressure evaluation test.
  • Example 1 IC module thickness dimension: 540 ⁇ m Substrate thickness dimension: 160 ⁇ m IC chip thickness dimension: 150 ⁇ m Resin mold thickness: 380 ⁇ m Resin mold remaining thickness: 230 ⁇ m (Example 2) IC module thickness dimension: 540 ⁇ m Substrate thickness dimension: 160 ⁇ m IC chip thickness dimension: 180 ⁇ m Resin mold thickness: 380 ⁇ m Resin mold remaining thickness: 200 ⁇ m (Example 3) IC module thickness dimension: 575 ⁇ m Substrate thickness dimension: 159 ⁇ m IC chip thickness dimension: 80 ⁇ m Resin mold thickness: 416 ⁇ m Resin mold remaining thickness: 336 ⁇ m Example 4 IC module thickness dimension: 575 ⁇ m Substrate thickness dimension: 159 ⁇ m IC chip thickness dimension: 100 ⁇ m Resin mold thickness: 416 ⁇ m Resin mold remaining thickness: 316 ⁇ m (Example 5) IC module thickness dimension: 575 ⁇ m Substrate thickness dimension: 159
  • ⁇ Line pressure evaluation test> A straight line parallel to one of the four sides of the IC chip when viewed from the thickness direction of the IC card and separated from the IC chip by about 1 mm (referred to as “first straight line X” in FIG. 1). ) The surface of the IC card was pressed above, and the load when a crack occurred in the resin mold was measured. In addition, for an IC card to which another IC module manufactured under the above dimensional conditions is attached, a straight line orthogonal to the first straight line X when viewed from the thickness direction of the IC card and separated from the IC chip by about 1 mm (reference numeral in FIG. 1). This is indicated by Y. Hereinafter, the surface of the IC card is pressed on the “second straight line Y”), and the load when a crack occurs in the resin mold is measured.
  • Example 1 it is possible to cause the resin mold to crack by making the remaining thickness of the resin mold larger than the thickness dimension of the IC chip and making the deflection amount of the resin mold and the IC chip closer. It was found that it can be kept low. That is, it was found that the frequency of occurrence of IC module failures can be reduced by making the remaining thickness of the resin mold larger than the thickness dimension of the IC chip.
  • FIG. 9 and 10 show the results of the linear pressure evaluation test for each IC card using the IC modules of Examples 3 to 7.
  • the thickness dimension of the resin mold is constant, but the thickness dimension of the IC chip is different and is 80, 100, 130, 185, and 250 ⁇ m, respectively.
  • Table 1 shows the number of times the resin mold was cracked at the IC chip / resin mold interface, that is, the number of times the resin mold was broken at the IC chip / resin mold interface, for the IC modules of Examples 3 to 7.
  • the number of times of destruction at the IC chip / resin mold interface is drastically reduced from Example 5 (IC chip thickness dimension: 130 ⁇ m), and Example 4 (IC chip thickness dimension: 100 ⁇ m), it can be seen that the number of fractures at the interface is further reduced. That is, if the thickness dimension of the IC chip is 130 ⁇ m or less, the destruction at the IC chip / resin mold interface is difficult to occur, and if the thickness dimension of the IC chip is 100 ⁇ m or less, the destruction mode changes and the destruction at the interface occurs more. You can see that it is difficult.
  • the IC module of Example 5 satisfies the above formula (4). That is, the IC module of Example 5 is configured so that the IC chip and the resin mold have the same amount of deflection. Therefore, in the IC module of Example 5, it is considered that the breakage at the IC chip / resin mold interface due to the difference in deflection amount between the IC chip and the resin mold is further suppressed. As illustrated in FIG. 2, in the IC module 5, the IC chip 8 is covered with the resin mold 10, and the area of the IC chip 8 on the surface of the substrate 6 of the IC module 5 is larger than the area of the resin mold 10. Is also small.
  • the deflection amount of the IC chip 8 is larger than the deflection amount of the resin mold 10
  • the effect of suppressing the breakage at the IC chip / resin mold interface can be obtained.
  • the IC modules of Examples 3 to 7 in the IC modules of Examples 3 to 5 in which the thickness dimension of the IC chip is 130 ⁇ m or less, the lower surface of the IC chip due to the difference in deflection amount between the IC chip and the resin mold / It is considered that the breakage at the resin mold interface is further suppressed.
  • the IC module of Example 4 satisfies the above formula (10). That is, the IC module of Example 4 is configured such that the interface between the IC chip and the resin mold matches the neutral surface. Therefore, in the IC module of Example 4, it is considered that the breakage due to bending stress at the IC chip lower surface / resin mold interface is further suppressed.
  • the IC chip lower surface / resin mold interface has a compressive stress, not a tensile stress. Take it. In this case, the resin mold or the like is not broken by the tensile stress at the IC chip lower surface / resin mold interface.

Abstract

This IC module is provided with a substrate which has a first surface and a second surface upon the opposite side of the first surface, and upon which a connection terminal for connecting to a read and write device is formed upon the first surface thereof; an IC chip which is mounted upon the second surface and which is electrically connected to the connection terminal by wire bonding; and a resin mold which covers the IC chip. In the thickness direction of the substrate, the remaining thickness after subtracting the thickness of the IC chip from the thickness of the resin mold is greater than the thickness of the IC chip.

Description

ICモジュールおよびICカードIC module and IC card
 本発明は、ICモジュールに関する。
 本願は、2011年4月12日に、日本に出願された特願2011-088190号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an IC module.
This application claims priority based on Japanese Patent Application No. 2011-088190 filed in Japan on April 12, 2011, the contents of which are incorporated herein by reference.
 ICモジュールが取り付けられたICカードが知られている。ICカードは、磁気ストライプが取り付けられた従来のカードと比較して記憶容量が大きく、また偽造が困難であるという特徴を有する。
 ICカードの形状は、ISOによって規格化されている。たとえば、厚さ寸法が0.76mmと定められたICカードには、0.76mm未満の厚さのICモジュールが組み込まれる。一般的なICモジュールは、外部の読み書き装置に接続可能な接触端子を有する樹脂基板と、樹脂基板上に実装されたICチップと、ICチップを被覆する樹脂モールドとを有する。
 ICモジュールが取り付けられたICカードの携行時には、曲げや荷重による外力がICモジュールにかかることがある。ICモジュールに外力がかかってICモジュールが破損すると、ICモジュールの機能が損なわれる。ICモジュールが破損するのを防止する目的で、例えば特許文献1ないし特許文献9には、ICモジュールにおけるICチップが割れるのを防止できる構造が開示されている。
An IC card to which an IC module is attached is known. The IC card has a feature that it has a large storage capacity and is difficult to counterfeit compared to a conventional card to which a magnetic stripe is attached.
The shape of the IC card is standardized by ISO. For example, an IC module having a thickness of less than 0.76 mm is incorporated into an IC card having a thickness dimension of 0.76 mm. A general IC module includes a resin substrate having a contact terminal that can be connected to an external read / write device, an IC chip mounted on the resin substrate, and a resin mold that covers the IC chip.
When carrying an IC card to which an IC module is attached, an external force due to bending or a load may be applied to the IC module. When an external force is applied to the IC module and the IC module is damaged, the function of the IC module is impaired. For the purpose of preventing the IC module from being damaged, for example, Patent Documents 1 to 9 disclose a structure that can prevent the IC chip from breaking in the IC module.
日本国特開昭63-145093号公報Japanese Laid-Open Patent Publication No. Sho 63-145093 日本国特開平2-188298号公報Japanese Unexamined Patent Publication No. 2-188298 国際公開第99/04367号明細書International Publication No. 99/04367 Specification 日本国特開2002-123809号公報Japanese Unexamined Patent Publication No. 2002-123809 日本国特開2004-264983号公報Japanese Unexamined Patent Publication No. 2004-264983 日本国特開2006-268718号公報Japanese Unexamined Patent Publication No. 2006-268718 日本国特開2006-18371号公報Japanese Unexamined Patent Publication No. 2006-18371 日本国特開2006-331198号公報Japanese Unexamined Patent Publication No. 2006-331198 日本国特開2007-1836号公報Japanese Unexamined Patent Publication No. 2007-1836
 特許文献1ないし特許文献9に開示された各発明は、ICモジュールにおけるICチップが割れるのを防止する目的で、ICチップを補強する手段を有している。しかしながら、実際に故障したICカードの原因を詳細に調査したところ、大半の原因は、ICチップ自体の破損ではなく、樹脂モールドが破損したことによる断線であることが判明した。
 また、近年の技術革新によりICチップは小型化されているため、ICカードに外力が加わったときにICチップが破損する可能性は従来よりも低下している。これに対して、ICモジュールの接続端子の形状や配置はICカードの互換性を保つ目的で規格化されているため、樹脂モールドを小型化することも困難である。
 特許文献1ないし9に記載の各発明では、樹脂モールドが破損したことによる断線を防止することができないため、ICモジュールが故障することを防止するための対策としては不十分である。
Each invention disclosed in Patent Literature 1 to Patent Literature 9 has means for reinforcing the IC chip for the purpose of preventing the IC chip from breaking in the IC module. However, when the cause of the IC card that actually failed was investigated in detail, it was found that most of the cause was not a breakage of the IC chip itself but a disconnection due to breakage of the resin mold.
Further, since the IC chip has been downsized due to recent technological innovation, the possibility of the IC chip being damaged when an external force is applied to the IC card is lower than before. On the other hand, since the shape and arrangement of the connection terminals of the IC module are standardized for the purpose of maintaining the compatibility of the IC card, it is difficult to reduce the size of the resin mold.
In each invention of patent documents 1 thru / or 9, since a disconnection by a resin mold being damaged cannot be prevented, it is insufficient as a measure for preventing failure of an IC module.
 本発明は、上述した事情に鑑みてなされたものであって、その目的は、故障の発生頻度が少ないICモジュールおよびICカードを提供することである。 The present invention has been made in view of the above-described circumstances, and an object thereof is to provide an IC module and an IC card with a low occurrence frequency of failures.
 上記課題を解決するために、本発明は以下の手段を採用している。
 本発明の一態様に係るICモジュールは、第1の面及びこの第1の面の反対側の第2の面を有し、読み書き装置と接続するための接続端子が前記第1の面に形成された基板と;前記第2の面上に実装され、ワイヤボンディングにより前記接続端子に導通されたICチップと;前記ICチップを被覆する樹脂モールドと;を備え、前記基板の厚さ方向において、前記樹脂モールドの厚さから前記ICチップの厚さを引いた残厚が、前記ICチップの厚さよりも大きい。
In order to solve the above problems, the present invention employs the following means.
An IC module according to one embodiment of the present invention has a first surface and a second surface opposite to the first surface, and a connection terminal for connecting to a read / write device is formed on the first surface. An IC chip mounted on the second surface and conducted to the connection terminal by wire bonding; a resin mold that covers the IC chip, and in the thickness direction of the substrate, A residual thickness obtained by subtracting the thickness of the IC chip from the thickness of the resin mold is larger than the thickness of the IC chip.
 上記ICモジュールは、下記の式を満たしてもよい。
Figure JPOXMLDOC01-appb-M000005
 ここで、hは前記ICチップの厚さであり、Eは前記ICチップの弾性率であり、haは前記樹脂モールドの厚さであり、Eは前記樹脂モールドの弾性率である。
The IC module may satisfy the following formula.
Figure JPOXMLDOC01-appb-M000005
Here, h 1 is the thickness of the IC chip, E 1 is the elastic modulus of the IC chip, ha is the thickness of the resin mold, and E 2 is the elastic modulus of the resin mold.
 上記ICモジュールは、下記の式を満たしてもよい。
Figure JPOXMLDOC01-appb-M000006
 ここで、yは前記ICチップの厚さであり、Eは前記ICチップの弾性率であり、tは前記樹脂モールドの厚さであり、Eは前記樹脂モールドの弾性率である。
The IC module may satisfy the following formula.
Figure JPOXMLDOC01-appb-M000006
Here, y 1 is the thickness of the IC chip, E 1 is the elastic modulus of the IC chip, t is the thickness of the resin mold, and E 2 is the elastic modulus of the resin mold.
 前記樹脂モールドは、熱可塑性樹脂、熱硬化性樹脂、および紫外線硬化性樹脂のうちの少なくともいずれかを含有する均一な混練材料からなることが好ましい。 The resin mold is preferably made of a uniform kneaded material containing at least one of a thermoplastic resin, a thermosetting resin, and an ultraviolet curable resin.
 前記ICチップのヤング率が前記樹脂モールドのヤング率よりも高くてもよい。 The Young's modulus of the IC chip may be higher than the Young's modulus of the resin mold.
 本発明の一態様に係るICカードは、第1の面及びこの第1の面の反対側の第2の面を有し、読み書き装置と接続するための接続端子が前記第1の面に形成された基板と;前記第2の面上に実装され、ワイヤボンディングにより前記接続端子に導通されたICチップと;前記ICチップを被覆する樹脂モールドと;を備えたICモジュールと;前記ICモジュールが収容される有底穴形状を有する収容部が形成された樹脂基材と;を備えたICカードであって、前記樹脂モールドが前記収容部の底面に対向するように、前記ICモジュールが前記収容部に収容されており、前記ICカードの厚さ方向において、前記樹脂モールドの厚さと前記収容部が形成されている領域における前記樹脂基材の厚さとの和から前記ICチップの厚さを引いた残厚が、前記ICチップの厚さよりも大きい。 An IC card according to one embodiment of the present invention has a first surface and a second surface opposite to the first surface, and a connection terminal for connecting to a read / write device is formed on the first surface. An IC module including: an IC chip mounted on the second surface and electrically connected to the connection terminal by wire bonding; and a resin mold that covers the IC chip; And a resin base material on which a housing portion having a bottomed hole shape is formed, wherein the IC module is housed so that the resin mold faces a bottom surface of the housing portion. In the thickness direction of the IC card, the thickness of the IC chip is subtracted from the sum of the thickness of the resin mold and the thickness of the resin base material in the region where the housing portion is formed. Residual thickness is greater than the thickness of the IC chip.
 上記ICカードは下記式を満たしてもよい。
Figure JPOXMLDOC01-appb-M000007
 ここで、hは前記ICチップの厚さであり、Eは前記ICチップの弾性率であり、haは前記樹脂モールドの厚さであり、Eは前記樹脂モールドの弾性率である。
The IC card may satisfy the following formula.
Figure JPOXMLDOC01-appb-M000007
Here, h 1 is the thickness of the IC chip, E 1 is the elastic modulus of the IC chip, ha is the thickness of the resin mold, and E 2 is the elastic modulus of the resin mold.
 上記ICカードは下記式を満たしてもよい。
Figure JPOXMLDOC01-appb-M000008
 ここで、yは前記ICチップの厚さであり、Eは前記ICチップの弾性率であり、tは前記樹脂モールドの厚さであり、Eは前記樹脂モールドの弾性率である。
The IC card may satisfy the following formula.
Figure JPOXMLDOC01-appb-M000008
Here, y 1 is the thickness of the IC chip, E 1 is the elastic modulus of the IC chip, t is the thickness of the resin mold, and E 2 is the elastic modulus of the resin mold.
 上記本発明の態様に係るICモジュールおよびICカードによれば、ICモジュールにおける故障の発生頻度を少なくすることができる。 According to the IC module and the IC card according to the above aspect of the present invention, the frequency of occurrence of failures in the IC module can be reduced.
本発明の第1実施形態に係るICモジュールが取り付けられたICカードの平面図である。It is a top view of the IC card with which the IC module which concerns on 1st Embodiment of this invention was attached. 図1のA-A線における断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG. 従来のICモジュールが取り付けられたICカードに外力がかかった状態を示す模式図である。It is a schematic diagram which shows the state in which the external force was applied to the IC card with which the conventional IC module was attached. 同実施形態のICモジュールに外力がかかった状態を示すICカードの模式図である。It is a schematic diagram of an IC card showing a state where an external force is applied to the IC module of the embodiment. 本発明の第2実施形態に係るICカードを示す図であり、図1のA-A線と同様に選択された線に沿った断面図である。It is a figure which shows the IC card which concerns on 2nd Embodiment of this invention, and is sectional drawing along the line selected similarly to the AA line of FIG. 本発明の実施例および比較例における線圧評価試験の結果を示すグラフである。It is a graph which shows the result of the linear pressure evaluation test in the Example and comparative example of this invention. 本発明の実施例および比較例における線圧評価試験の結果を示すグラフである。It is a graph which shows the result of the linear pressure evaluation test in the Example and comparative example of this invention. 曲げ荷重がかかった梁における、曲率中心及び中立面を説明するための説明図である。It is explanatory drawing for demonstrating the curvature center and neutral surface in the beam to which the bending load was applied. 本発明の実施例3~7における線圧評価試験の結果を示すグラフである。7 is a graph showing the results of linear pressure evaluation tests in Examples 3 to 7 of the present invention. 本発明の実施例3~7における線圧評価試験の結果を示すグラフである。7 is a graph showing the results of linear pressure evaluation tests in Examples 3 to 7 of the present invention.
(第1実施形態)
 本発明の第1実施形態に係るICモジュール5およびICカード1について説明する。
 図1は、ICカード1を示す平面図である。図2は図1のA-A線における断面図である。
 図1に示すように、ICカード1は、板状に形成された樹脂基材2と、樹脂基材2に固定されたICモジュール5とを備える。
(First embodiment)
The IC module 5 and the IC card 1 according to the first embodiment of the present invention will be described.
FIG. 1 is a plan view showing the IC card 1. FIG. 2 is a cross-sectional view taken along line AA in FIG.
As shown in FIG. 1, the IC card 1 includes a resin base material 2 formed in a plate shape and an IC module 5 fixed to the resin base material 2.
 樹脂基材2は、たとえば熱可塑性樹脂等によって所定の形状に形成されている。樹脂基材2の形状は、ICカード1の使用目的に応じて決定される。ICカードの寸法は、ISO等の規格団体によって規格化されている。金融機関において使用されるキャッシュカードを例に挙げると、樹脂基材2の形状は、ISO/IEC 7810やJIS X 6301に則っており、幅85.60mm、高さ53.98mm、厚さ0.76mm(760μm)である。以下では、幅85.60mm、高さ53.98mm、厚さ760μmのICカード1の例を説明する。 The resin base material 2 is formed in a predetermined shape by, for example, a thermoplastic resin. The shape of the resin substrate 2 is determined according to the purpose of use of the IC card 1. The dimensions of the IC card are standardized by a standards organization such as ISO. Taking a cash card used in a financial institution as an example, the shape of the resin base material 2 conforms to ISO / IEC 7810 and JIS X 6301, and has a width of 85.60 mm, a height of 53.98 mm, and a thickness of 0.8. 76 mm (760 μm). Hereinafter, an example of the IC card 1 having a width of 85.60 mm, a height of 53.98 mm, and a thickness of 760 μm will be described.
 図2に示すように、樹脂基材2には、ICモジュール5を収容するための収容部3が形成されている。樹脂基材2における収容部3の位置は、例えば上述のキャッシュカードの場合、後述する接続端子7がISO 7816-2に定められた位置に配置できるように決定される。
 本実施形態では、収容部3が、たとえば、樹脂基材2の第一の面2a(以下、この面を「表面」と称する。)に矩形状の開口を有する有底穴形状を有している。収容部3の底部4、すなわち、樹脂基材2のうちの収容部3が形成されている領域は、樹脂基材2の第二の面2b(以下、この面を「裏面」と称する。)が平坦となるために十分な剛性を有する厚さに形成されている。本実施形態では、収容部3の底部4の厚さ寸法t4が100μmである。本実施形態では、樹脂基材2に形成された収容部3の深さ寸法d3が、樹脂基材2の厚さである760μmから底部4の厚さである100μmを引いた660μmである。ICモジュール5は、深さ660μmの収容部3の開口から突出することなく収容部3に収容される。
As shown in FIG. 2, the resin base material 2 is formed with a housing portion 3 for housing the IC module 5. For example, in the case of the above-described cash card, the position of the accommodating portion 3 in the resin base material 2 is determined so that a connection terminal 7 to be described later can be arranged at a position defined in ISO 7816-2.
In the present embodiment, the accommodating portion 3 has, for example, a bottomed hole shape having a rectangular opening on the first surface 2a of the resin base material 2 (hereinafter, this surface is referred to as “surface”). Yes. The bottom portion 4 of the housing portion 3, that is, the region of the resin base material 2 where the housing portion 3 is formed is the second surface 2b of the resin base material 2 (hereinafter, this surface is referred to as "back surface"). Is formed to a thickness having sufficient rigidity to be flat. In this embodiment, the thickness dimension t4 of the bottom part 4 of the accommodating part 3 is 100 micrometers. In this embodiment, the depth dimension d3 of the accommodating portion 3 formed on the resin base material 2 is 660 μm obtained by subtracting 100 μm that is the thickness of the bottom portion 4 from 760 μm that is the thickness of the resin base material 2. The IC module 5 is accommodated in the accommodating portion 3 without protruding from the opening of the accommodating portion 3 having a depth of 660 μm.
 ICモジュール5は、読み書き装置と接続するための接続端子7が第一の面6aに形成された基板6と、基板6の第一の面6aと反対側の第2の面6b上に実装され、ワイヤボンディングにより接続端子7に導通されたICチップ8と、ICチップ8を被覆する樹脂モールド10と、を備える。 The IC module 5 is mounted on a substrate 6 on which a connection terminal 7 for connecting to a read / write device is formed on the first surface 6 a and a second surface 6 b opposite to the first surface 6 a of the substrate 6. And an IC chip 8 conducted to the connection terminal 7 by wire bonding, and a resin mold 10 covering the IC chip 8.
 基板6は、ガラスエポキシ基板やポリイミド基板、あるいはリードフレームなどを含む配線基板である。基板6には、片面基板、両面基板、あるいは多層基板など公知の構造を適宜選択して採用することができる。基板6の厚さ寸法t6は、樹脂基材2の厚さ寸法t2と基板6に求められる強度とに応じて適宜設定することができる。本実施形態では、基板6の厚さ寸法t6が160μmである。基板6に形成された各接続端子7の位置および面積は、ISO 7816-2に定められた寸法に則って設定されている。各接続端子7の表面は、ニッケル、金、あるいは銀によってメッキされたり、パラジウム等が各接続端子7の表面に蒸着されたりしている。各接続端子7には、金属線9の一端が接合されている。金属線9は、各接続端子7とICチップ8とをワイヤボンディングにより接続するために用いられる。 The substrate 6 is a wiring substrate including a glass epoxy substrate, a polyimide substrate, or a lead frame. As the substrate 6, a known structure such as a single-sided substrate, a double-sided substrate, or a multilayer substrate can be appropriately selected and adopted. The thickness dimension t6 of the substrate 6 can be appropriately set according to the thickness dimension t2 of the resin base material 2 and the strength required for the substrate 6. In the present embodiment, the thickness dimension t6 of the substrate 6 is 160 μm. The position and area of each connection terminal 7 formed on the substrate 6 are set in accordance with the dimensions defined in ISO 7816-2. The surface of each connection terminal 7 is plated with nickel, gold, or silver, or palladium or the like is deposited on the surface of each connection terminal 7. One end of a metal wire 9 is joined to each connection terminal 7. The metal wire 9 is used for connecting each connection terminal 7 and the IC chip 8 by wire bonding.
 ICチップ8は、基板6に対して接着剤や粘着剤などによって固定されている。ICチップ8は、図示しない回路部および端子部を有するシリコンウェハを備える。ICチップ8の回路部は、読み書き装置に対して情報あるいは信号の入出力を行なう入出力手段と、読み書き装置から出力された情報を記憶する記憶手段とを備える。ICチップ8の端子部は、回路部と各接続端子7とを電気的に接続するための端子である。ワイヤボンディングのために用いられる金属線9の他端がICチップ8の端子部に接合されている。
 金属線9の材料は、たとえば金、銀、銅、アルミニウムなどを採用することができる。
The IC chip 8 is fixed to the substrate 6 with an adhesive or an adhesive. The IC chip 8 includes a silicon wafer having a circuit part and a terminal part (not shown). The circuit unit of the IC chip 8 includes input / output means for inputting / outputting information or signals to / from the read / write device and storage means for storing information output from the read / write device. The terminal portion of the IC chip 8 is a terminal for electrically connecting the circuit portion and each connection terminal 7. The other end of the metal wire 9 used for wire bonding is joined to the terminal portion of the IC chip 8.
As the material of the metal wire 9, for example, gold, silver, copper, aluminum or the like can be adopted.
 基板6上に実装されたICチップ8の寸法(以下、この寸法を「ICチップ8の厚さ寸法t8」と称する。)は、基板6の厚さ方向において200μm以下である。なお、ICチップ8に曲げ応力が生じた場合には、ICチップ8は、その厚さ寸法t8が小さいほどたわみやすいため、割れにくい。樹脂モールドの厚さ寸法が440μmの場合、ICチップ8の厚さ寸法t8は、たとえば、220μmよりも小さいことが望ましい。また、ICチップ8の厚さ寸法t8が139μm以下であることがより好ましく、105μm以下であることがさらに好ましい。 The dimension of the IC chip 8 mounted on the substrate 6 (hereinafter, this dimension is referred to as “the thickness dimension t8 of the IC chip 8”) is 200 μm or less in the thickness direction of the substrate 6. When bending stress is generated in the IC chip 8, the IC chip 8 is more likely to bend as its thickness dimension t8 is smaller, so it is difficult to break. When the thickness dimension of the resin mold is 440 μm, the thickness dimension t8 of the IC chip 8 is desirably smaller than, for example, 220 μm. Further, the thickness t8 of the IC chip 8 is more preferably 139 μm or less, and further preferably 105 μm or less.
 なお、ICチップ8に衝撃などの外力がかかった場合には、基板6の第二の面6bにおけるICチップ8の実装面積が小さいほど、またICチップ8の体積が小さいほどICチップ8は割れにくい。ICチップ8の体積が小さい方が、1枚のウェハから得られるICチップ8の数が多いとともにICチップ8の歩留まりも高い。例えば、ICチップ8の実装面積は一辺がおおよそ10mm以下であることが好ましい。また、ICチップ8の体積は、おおよそ2mm以下であることが好ましい。なお、本実施形態では、基板6の厚さ方向から見たときに、基板6上に実装されたICチップ8が、2.5mm四方の正方形状となっている。 When an external force such as an impact is applied to the IC chip 8, the IC chip 8 is cracked as the mounting area of the IC chip 8 on the second surface 6 b of the substrate 6 is smaller and the volume of the IC chip 8 is smaller. Hateful. When the volume of the IC chip 8 is smaller, the number of IC chips 8 obtained from one wafer is larger and the yield of the IC chips 8 is higher. For example, the mounting area of the IC chip 8 is preferably about 10 mm 2 or less on one side. Further, the volume of the IC chip 8 is preferably about 2 mm 3 or less. In the present embodiment, the IC chip 8 mounted on the substrate 6 has a square shape of 2.5 mm square when viewed from the thickness direction of the substrate 6.
 樹脂モールド10は、熱可塑性樹脂、熱硬化性樹脂、および紫外線硬化性樹脂のうちの少なくともいずれかを含有する混練材料からなる絶縁体である。
 樹脂モールド10は、ICチップ8および金属線9が完全に被覆されるように形成されている。樹脂モールド10が収容部3の底面に対向するように、ICモジュール5は収容部3に収容されている。本実施形態では、基板6に固定された樹脂モールド10の、基板6の厚さ方向における寸法(以下、この寸法を「樹脂モールド10の厚さ寸法t10」と称する。)が440μm以下である。また、樹脂モールド10の厚さ寸法t10からICチップ8の厚さ寸法t8を引いた樹脂モールド10の残厚t10aは、ICチップ8の厚さ寸法t8よりも大きい。
The resin mold 10 is an insulator made of a kneaded material containing at least one of a thermoplastic resin, a thermosetting resin, and an ultraviolet curable resin.
The resin mold 10 is formed so that the IC chip 8 and the metal wire 9 are completely covered. The IC module 5 is accommodated in the accommodating portion 3 so that the resin mold 10 faces the bottom surface of the accommodating portion 3. In the present embodiment, the dimension of the resin mold 10 fixed to the substrate 6 in the thickness direction of the substrate 6 (hereinafter, this dimension is referred to as “thickness dimension t10 of the resin mold 10”) is 440 μm or less. Further, the remaining thickness t10a of the resin mold 10 obtained by subtracting the thickness dimension t8 of the IC chip 8 from the thickness dimension t10 of the resin mold 10 is larger than the thickness dimension t8 of the IC chip 8.
 樹脂モールド10は、たとえばトランスファモールド法、ポッティング法、および印刷法などによって基板6上に設けられ、ICチップ8および金属線9を封止する。なお、樹脂モールド10を用いてICチップ8を封止する他の方法を適宜採用することもできる。 The resin mold 10 is provided on the substrate 6 by, for example, a transfer molding method, a potting method, and a printing method, and seals the IC chip 8 and the metal wire 9. It should be noted that other methods for sealing the IC chip 8 using the resin mold 10 may be employed as appropriate.
 基板6の厚さ方向におけるICモジュール5の寸法(以下、この寸法を「ICモジュール5の厚さ寸法t5」と称する。)は、樹脂モールド10の厚さ寸法t10と基板6の厚さ寸法t6との和である。すなわち、本実施形態では、ICモジュール5の厚さ寸法t5が600μmである。深さ寸法d3が660μmである収容部3に収容されたICモジュール5の接続端子7と、樹脂基材2の表面とは、同一面上に位置している。また、収容部3の底3aと樹脂モールド10との間には60μmの隙間がある。なお、樹脂モールド10の残厚t10aがICチップ8の厚さ寸法t8よりも大きいという条件を満たせば、ICモジュール5の厚さ寸法t5は600μm未満であってもよい。 The dimension of the IC module 5 in the thickness direction of the substrate 6 (hereinafter, this dimension is referred to as “thickness dimension t5 of the IC module 5”) is the thickness dimension t10 of the resin mold 10 and the thickness dimension t6 of the substrate 6. And the sum. That is, in the present embodiment, the thickness dimension t5 of the IC module 5 is 600 μm. The connection terminal 7 of the IC module 5 accommodated in the accommodating portion 3 having a depth dimension d3 of 660 μm and the surface of the resin base material 2 are located on the same plane. In addition, there is a gap of 60 μm between the bottom 3 a of the housing part 3 and the resin mold 10. If the condition that the remaining thickness t10a of the resin mold 10 is larger than the thickness dimension t8 of the IC chip 8 is satisfied, the thickness dimension t5 of the IC module 5 may be less than 600 μm.
 ICチップ8の厚さ寸法t8と樹脂モールド10の残厚t10aとの関係は、以下に詳しく述べるとおり、ICチップ8及び樹脂モールド10のたわみ量を同一にする観点から決定することができる。以下において、ICチップ及び樹脂モールドのたわみ量が同一となる条件について説明する。
 単純な梁のたわみ量は、梁への荷重の掛かり方によって異なる。たとえば、長さl、厚さh、奥行きbの梁の一端を固定して(片持ち)、他端に荷重Pを加えた(集中荷重)場合、そのたわみ量Vは以下のように表される。
Figure JPOXMLDOC01-appb-M000009
 また、たとえば、長さl、厚さh、奥行きbの梁の両端を固定して(両持ち)、梁の全長にわたって均等に荷重Pを加えた(等分布荷重)場合、そのたわみ量Vは以下のように表される。
Figure JPOXMLDOC01-appb-M000010
 上述の通り、梁への荷重のかかり方(片持ち/両持ち,集中荷重/等分布荷重)によって、そのたわみ量は異なる。しかしながら、積層体LaにおいてICチップ及び樹脂モールドのたわみ量が同一となる条件は、積層体Laへの荷重のかかり方によらない。厚さ寸法h1,弾性率E1のICチップ、及び厚さ寸法h2,弾性率E2の樹脂モールドからなる、総厚ha,長さlaの積層体Laに曲げ荷重がかっている際に、ICチップ及び樹脂モールドのたわみ量が同一となる条件は、下記式(3)で表される。
Figure JPOXMLDOC01-appb-M000011
 上記式(3)をh1について解くと、下記式(4)が導かれる。
Figure JPOXMLDOC01-appb-M000012
The relationship between the thickness dimension t8 of the IC chip 8 and the remaining thickness t10a of the resin mold 10 can be determined from the viewpoint of making the deflection amounts of the IC chip 8 and the resin mold 10 the same, as will be described in detail below. Hereinafter, the conditions under which the deflection amounts of the IC chip and the resin mold are the same will be described.
The amount of deflection of a simple beam varies depending on how the load is applied to the beam. For example, when one end of a beam having a length l, a thickness h, and a depth b is fixed (cantilevered) and a load P is applied to the other end (concentrated load), the deflection amount V is expressed as follows. The
Figure JPOXMLDOC01-appb-M000009
Further, for example, when both ends of a beam having a length l, a thickness h, and a depth b are fixed (both ends) and a load P is uniformly applied over the entire length of the beam (equally distributed load), the deflection amount V is It is expressed as follows.
Figure JPOXMLDOC01-appb-M000010
As described above, the amount of deflection differs depending on how the load is applied to the beam (cantilever / both-end support, concentrated load / equally distributed load). However, the conditions under which the amount of deflection of the IC chip and the resin mold in the laminated body La are the same do not depend on how the load is applied to the laminated body La. When a bending load is applied to the laminate La having a total thickness ha and a length la, which is composed of an IC chip having a thickness dimension h1 and an elastic modulus E1, and a resin mold having a thickness dimension h2 and an elastic modulus E2, the IC chip and The condition that the amount of deflection of the resin mold is the same is expressed by the following formula (3).
Figure JPOXMLDOC01-appb-M000011
Solving the above equation (3) for h1, the following equation (4) is derived.
Figure JPOXMLDOC01-appb-M000012
 ICチップの厚さ寸法h1が上記式(4)を満たせば、ICチップ及び樹脂モールドのたわみ量の差異によるICチップ/樹脂モールド界面での破壊を抑制することができる。
 なお、図2に例示されているように、実際のICモジュール5ではICチップ8が樹脂モールド10に被覆されており、ICモジュール5の基板6の面においてICチップ8の面積は樹脂モールド10の面積よりも小さい。したがって、ICチップ8のたわみ量が樹脂モールド10のたわみ量よりも大きい場合にも、ICチップ/樹脂モールド界面での破壊を抑制する効果を得ることが可能である。
 以上をまとめると、下記式(5)を満たせば、ICチップ及び樹脂モールドのたわみ量の差異によるICチップ/樹脂モールド界面での破壊を抑制することができる。
Figure JPOXMLDOC01-appb-M000013
If the thickness h1 of the IC chip satisfies the above formula (4), it is possible to suppress the breakage at the IC chip / resin mold interface due to the difference in the amount of deflection between the IC chip and the resin mold.
As illustrated in FIG. 2, in the actual IC module 5, the IC chip 8 is covered with the resin mold 10, and the area of the IC chip 8 on the surface of the substrate 6 of the IC module 5 is that of the resin mold 10. Smaller than the area. Therefore, even when the deflection amount of the IC chip 8 is larger than the deflection amount of the resin mold 10, it is possible to obtain an effect of suppressing the breakage at the IC chip / resin mold interface.
In summary, if the following formula (5) is satisfied, it is possible to suppress the breakage at the IC chip / resin mold interface due to the difference in the deflection amount of the IC chip and the resin mold.
Figure JPOXMLDOC01-appb-M000013
 上記式(4)及び式(5)を満たすICモジュール5の一例として、弾性率E1が170GPaであるICチップ及び弾性率E2が16.6GPaである樹脂モールドを用いた総厚415μmのICモジュールにおいて、ICチップ及び樹脂モールドのたわみ量が同一となるための、ICチップの厚さ寸法h1は約131μmである。また、上述の残厚t10aに相当する樹脂モールドの厚さ寸法h2は284μmである。 As an example of the IC module 5 satisfying the above formulas (4) and (5), in an IC module having a total thickness of 415 μm using an IC chip having an elastic modulus E1 of 170 GPa and a resin mold having an elastic modulus E2 of 16.6 GPa The IC chip has a thickness dimension h1 of about 131 μm so that the IC chip and the resin mold have the same amount of deflection. The thickness dimension h2 of the resin mold corresponding to the above-described remaining thickness t10a is 284 μm.
 ICチップ8の厚さ寸法t8と樹脂モールド10の残厚t10aとの関係は、以下に詳しく述べるとおり、ICチップ8及び樹脂モールド10の2層積層体における中立面にICチップ8及び樹脂モールド10間の境界面を一致させる観点から決定することができる。ある材料における中立面とは、曲げに対して材料が伸びも縮みもしない場所、すなわち、引っ張り応力も圧縮応力も生じない場所である。以下において、ICチップ及び樹脂モールド間の界面と中立面とが一致する条件について説明する。 The relationship between the thickness dimension t8 of the IC chip 8 and the remaining thickness t10a of the resin mold 10 is described in detail below. The IC chip 8 and the resin mold are arranged on the neutral surface in the two-layer laminate of the IC chip 8 and the resin mold 10. It can be determined from the viewpoint of matching the boundary surfaces between the ten. A neutral surface in a material is a location where the material does not stretch or contract with respect to bending, i.e., where neither tensile nor compressive stress occurs. Hereinafter, the conditions under which the interface between the IC chip and the resin mold matches the neutral surface will be described.
 図8に示したように、梁の上面をy=0として、中立面がy=yの位置にあり、梁の下面がy=tの位置にあり、曲げの曲率中心Oがy=-ρの位置にあるとする。点a,b,c,dで規定される微小領域における微小変形を考える。
図8に示されている中立面上の2点a,b間の円弧の長さabは、(ρ+y)dθである。また、中立面と平行な面上の2点c,d間の円弧の長さcdは、(ρ+y)dθである。点cは曲率中心O及び点aの2点を結ぶ直線上にあり、点dは曲率中心O及び点bの2点を結ぶ直線上にある。また、yは梁の厚さ方向における任意の位置である。
 微小円弧cdに生じている歪みεは、以下の式で表される。
Figure JPOXMLDOC01-appb-M000014
 したがって、梁の弾性率をEとすると、微小円弧cdに生じている応力σは、以下の式で表される。
Figure JPOXMLDOC01-appb-M000015
応力σを梁の厚さ方向全体にわたって積分した値はゼロとなるので、以下の式が成り立つ。
Figure JPOXMLDOC01-appb-M000016
ここで、厚さ寸法y1,弾性率E1のICチップ、及び厚さ寸法y2,弾性率E2の樹脂モールドからなる、総厚tの積層体Lbについて、上記式(8)を適用すると、以下の式が得られる。
Figure JPOXMLDOC01-appb-M000017
 上記式(9)において、y=yの場合、すなわち、ICチップ下面/樹脂モールド界面が中立面に一致する場合、yは以下の式で表される。
Figure JPOXMLDOC01-appb-M000018
As shown in FIG. 8, the upper surface of the beam is y = 0, the neutral surface is at y = y 0 , the lower surface of the beam is at y = t, and the bending center of curvature O is y = Suppose that it is in the position of -ρ. Consider a minute deformation in a minute region defined by points a, b, c, and d.
The arc length ab between the two points a and b on the neutral plane shown in FIG. 8 is (ρ + y 0 ) dθ. The arc length cd between the two points c and d on the plane parallel to the neutral plane is (ρ + y) dθ. The point c is on a straight line connecting the two points of the curvature center O and the point a, and the point d is on a straight line connecting the two points of the curvature center O and the point b. Y is an arbitrary position in the thickness direction of the beam.
The strain ε generated in the minute arc cd is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000014
Accordingly, when the elastic modulus of the beam is E, the stress σ generated in the minute arc cd is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000015
Since the value obtained by integrating the stress σ over the entire thickness direction of the beam is zero, the following equation is established.
Figure JPOXMLDOC01-appb-M000016
Here, when the above formula (8) is applied to the laminate Lb having the total thickness t, which is composed of the IC chip having the thickness dimension y1, the elastic modulus E1, and the resin mold having the thickness dimension y2, the elastic modulus E2, The formula is obtained.
Figure JPOXMLDOC01-appb-M000017
In the above equation (9), when y 0 = y 1 , that is, when the IC chip lower surface / resin mold interface coincides with the neutral surface, y 1 is represented by the following equation.
Figure JPOXMLDOC01-appb-M000018
 ICチップの厚さ寸法yが上記式(10)を満たせば、ICチップ下面/樹脂モールド界面での曲げ応力による破壊を抑制することができる。
なお、ICチップの厚さ寸法をより小さくして、ICチップ下面/樹脂モールド界面が中立面よりも曲率中心に近い場合、ICチップ下面/樹脂モールド界面には引っ張り応力ではなく、圧縮応力がかかる。この場合、ICチップ下面/樹脂モールド界面における引っ張り応力による樹脂モールド等の破断が生じなくなる。したがって、ICチップ下面/樹脂モールド界面が中立面よりも曲率中心に近い場合にも、ICチップ下面/樹脂モールド界面での曲げ応力による破壊を抑制する効果を得ることができる。
 以上をまとめると、下記式(11)を満たせば、ICチップ下面/樹脂モールド界面と中立面との位置関係によるICチップ下面/樹脂モールド界面での破壊を抑制することができる。
Figure JPOXMLDOC01-appb-M000019
Satisfies thickness y 1 of the IC chip above formula (10), it is possible to suppress the breakage due to bending stress in the IC chip lower surface / resin mold surface.
When the thickness dimension of the IC chip is made smaller and the IC chip lower surface / resin mold interface is closer to the center of curvature than the neutral surface, the IC chip lower surface / resin mold interface has a compressive stress, not a tensile stress. Take it. In this case, the resin mold or the like is not broken by the tensile stress at the IC chip lower surface / resin mold interface. Therefore, even when the IC chip lower surface / resin mold interface is closer to the center of curvature than the neutral surface, an effect of suppressing breakage due to bending stress at the IC chip lower surface / resin mold interface can be obtained.
In summary, if the following formula (11) is satisfied, it is possible to suppress the breakage at the IC chip lower surface / resin mold interface due to the positional relationship between the IC chip lower surface / resin mold interface and the neutral surface.
Figure JPOXMLDOC01-appb-M000019
 上記式(10)及び(11)を満たすICモジュール5の一例として、弾性率E1が170GPaであるICチップ及び弾性率E2が16.6GPaである樹脂モールドを用いた総厚t=415μmの積層体Lbにおいて、ICチップの厚さy1は約100μmである。また、上述の残厚t10aに相当する樹脂モールドの厚さt-yは約315μmである。 As an example of the IC module 5 satisfying the above formulas (10) and (11), a laminate having a total thickness t = 415 μm using an IC chip having an elastic modulus E1 of 170 GPa and a resin mold having an elastic modulus E2 of 16.6 GPa. In Lb, the thickness y1 of the IC chip is about 100 μm. The thickness t-y 1 of the resin mold corresponding to the above-described residual thickness t10a is about 315 .mu.m.
なお、上述の残厚t10aに相当する樹脂モールドの厚さは、600μm以下、好ましくは400μm以下程度であることが好ましい。ICモジュールの基板の厚さが100~200μm程度、ICチップの厚さが数十μm~200μm程度であるため、樹脂モールドの厚さが600μmより大きいと、ICカードの厚さがJIS規格によるICカードの厚さ760μmに収まらなくなる。ICモジュールの基板の厚さやICチップの厚さによっては、樹脂モールドの厚さが400μmより大きいと、ICカードの厚さがJIS規格によるICカードの厚さ760μmに収まらなくなる。 Note that the thickness of the resin mold corresponding to the above-described remaining thickness t10a is 600 μm or less, and preferably about 400 μm or less. Since the thickness of the substrate of the IC module is about 100 to 200 μm and the thickness of the IC chip is about several tens of μm to 200 μm, if the thickness of the resin mold is larger than 600 μm, the thickness of the IC card is an IC according to JIS standards. The card will not fit in the thickness of 760 μm. Depending on the thickness of the substrate of the IC module and the thickness of the IC chip, if the thickness of the resin mold is larger than 400 μm, the thickness of the IC card does not fit in the thickness of 760 μm of the IC card according to the JIS standard.
 以上に説明したように構成されたICモジュール5の作用について説明する。図3は、従来のICモジュールが取り付けられたICカードに外力がかかった状態を示す模式図である。図4は、本実施形態に係るICモジュール5に外力がかかった状態を示すICカード1の模式図である。 The operation of the IC module 5 configured as described above will be described. FIG. 3 is a schematic diagram showing a state in which an external force is applied to an IC card to which a conventional IC module is attached. FIG. 4 is a schematic diagram of the IC card 1 showing a state in which an external force is applied to the IC module 5 according to the present embodiment.
 一般的に、ICカードは財布やカードケース内に収納される。また、ICカードが収納された財布やカードケースは、たとえばズボンのポケットに収納されて携行される場合がある。財布やカードケースをズボンのポケットに収納した状態で椅子等に座ると、ICカードに過度の荷重がかかり、図3および図4に示すようにICカードが湾曲する場合がある。携行者の体重その他の外力がICモジュールの樹脂モールドに伝わると、樹脂モールドには曲げ応力が発生する。 Generally, IC cards are stored in wallets and card cases. In addition, a wallet or card case in which an IC card is stored may be stored in a trouser pocket, for example. When sitting on a chair or the like with a wallet or card case stored in a trouser pocket, an excessive load is applied to the IC card, and the IC card may be bent as shown in FIGS. When the carryer's weight and other external forces are transmitted to the resin mold of the IC module, bending stress is generated in the resin mold.
 図3に示す従来のICモジュール105では、ICチップ108の周縁からICチップ108の厚さ方向にのびる亀裂が樹脂モールド(符号110で示す)に生じる。これは、ICチップ108と樹脂モールド110の硬さが異なっているからである。たとえばICチップ108の材質がシリコン(Si)である場合、ICチップ108のヤング率は170GPa程度である。樹脂モールド110の材質が一般的に使われている熱硬化樹脂である場合、樹脂モールド110のヤング率は17GPa程度である。
 つまり、ICチップ108と樹脂モールド110とでは、曲げ応力に対するたわみ量の大きさが全く異なっている。すなわち、相対的に硬いICチップ108よりも相対的に軟らかい樹脂モールド110のほうがより大きなたわみが発生することになる。
 ICチップ108と樹脂モールド110とのたわみ量の差により、ICチップ108と樹脂モールド110との界面から亀裂が生じるものと考えられる。
In the conventional IC module 105 shown in FIG. 3, a crack extending from the peripheral edge of the IC chip 108 in the thickness direction of the IC chip 108 occurs in the resin mold (indicated by reference numeral 110). This is because the hardness of the IC chip 108 and the resin mold 110 are different. For example, when the material of the IC chip 108 is silicon (Si), the Young's modulus of the IC chip 108 is about 170 GPa. When the material of the resin mold 110 is a commonly used thermosetting resin, the Young's modulus of the resin mold 110 is about 17 GPa.
That is, the IC chip 108 and the resin mold 110 are completely different in the amount of deflection with respect to bending stress. In other words, the resin mold 110 that is relatively softer than the relatively hard IC chip 108 causes a greater deflection.
It is considered that a crack is generated from the interface between the IC chip 108 and the resin mold 110 due to the difference in deflection amount between the IC chip 108 and the resin mold 110.
 従来のICカード101に強い外力がかかった場合や、繰り返し外力がかかった場合には、上記界面に生じた亀裂が樹脂モールド110において成長し、樹脂モールド110内に封止されているボンディングワイヤ109まで達する。亀裂がボンディングワイヤ109まで達すると、樹脂モールド110の亀裂面における離間やずれにより、ボンディングワイヤ109が千切れる場合がある。 When a strong external force is applied to the conventional IC card 101 or a repeated external force is applied, a crack generated at the interface grows in the resin mold 110 and is bonded to the bonding wire 109 sealed in the resin mold 110. Reach up to. When the crack reaches the bonding wire 109, the bonding wire 109 may be cut off due to separation or displacement on the crack surface of the resin mold 110.
 これに対して、図4に示す本実施形態に係るICカード1では、樹脂モールド10の残厚t10aがICチップ8の厚さよりも大きい。上記した曲げ応力に対するたわみ量は単純に考えると硬さ(ヤング率)と厚みによって支配される。すなわち、より硬いICチップ8の厚みがより薄く、より軟らかい樹脂モールド10の厚みがより厚いICカード1によれば、両者のたわみ量の差を従来のICカードよりも小さくすることができる。したがって、従来のICカードよりも外力による樹脂モールド10の亀裂が生じにくい。樹脂モールド10に亀裂が生じなければ、ボンディングワイヤが千切れることがないので、ICモジュール5の機能は維持される。 On the other hand, in the IC card 1 according to this embodiment shown in FIG. 4, the remaining thickness t10a of the resin mold 10 is larger than the thickness of the IC chip 8. The amount of deflection with respect to the bending stress described above is governed by hardness (Young's modulus) and thickness when considered simply. That is, according to the IC card 1 in which the thickness of the harder IC chip 8 is thinner and the softer resin mold 10 is thicker, the difference between the deflection amounts of both can be made smaller than that of the conventional IC card. Therefore, the resin mold 10 is less likely to crack due to external force than the conventional IC card. If the resin mold 10 is not cracked, the bonding wire will not be broken, so that the function of the IC module 5 is maintained.
 本実施形態に係るICカード1では、ICチップ8の厚さ寸法t8が薄く、かつ上述のように樹脂モールド10に亀裂が入りにくいので、金属線9が断線する可能性が低く抑えられている。このため、ICチップ8が破損していないのにICモジュール5の機能が損なわれてしまう可能性が従来のICモジュール105よりも低い。なお、本実施形態に係るICカード1において、樹脂モールド10に上記のような亀裂が生じるほどの外力がかかった場合には、ICチップ8自体が割れる可能性がある。 In the IC card 1 according to the present embodiment, since the thickness t8 of the IC chip 8 is thin and the resin mold 10 is not easily cracked as described above, the possibility that the metal wire 9 is disconnected is kept low. . For this reason, the possibility that the function of the IC module 5 is impaired even though the IC chip 8 is not damaged is lower than that of the conventional IC module 105. In the IC card 1 according to the present embodiment, when an external force is applied to the resin mold 10 to cause the above cracks, the IC chip 8 itself may be broken.
 以上説明したように、本実施形態に係るICモジュール5およびICカード1によれば、ICモジュール5における故障の発生頻度を少なくすることができる。
 また、樹脂モールドを補強する目的で補強板などを樹脂モールドに取り付けてもよい。本実施形態のように樹脂モールド10が熱可塑性樹脂、熱硬化性樹脂、および紫外線硬化性樹脂のうちの少なくともいずれかを含有する均一な混練材料からなる場合には、樹脂モールドと補強板とが剥離する可能性を考慮する必要がない。このため、ICモジュール5における故障の発生率が、ICカードごと、あるいは使用条件によってばらつくのを低く抑えることができる。
As described above, according to the IC module 5 and the IC card 1 according to the present embodiment, the frequency of occurrence of failures in the IC module 5 can be reduced.
A reinforcing plate or the like may be attached to the resin mold for the purpose of reinforcing the resin mold. When the resin mold 10 is made of a uniform kneaded material containing at least one of a thermoplastic resin, a thermosetting resin, and an ultraviolet curable resin as in the present embodiment, the resin mold and the reinforcing plate are There is no need to consider the possibility of peeling. For this reason, it is possible to keep the occurrence rate of failure in the IC module 5 from varying depending on each IC card or depending on use conditions.
(第2実施形態)
 次に、本発明の第2実施形態に係るICカード1Aについて説明する。本実施形態では、上述した第1実施形態で説明した構成要素と同一の構成要素には同一の符号を付し、重複する説明を省略する。図5は、本実施形態に係る接触式のICカードを示す図で、図1のA-A線と同様に選択された線に沿った断面図である。
(Second Embodiment)
Next, an IC card 1A according to a second embodiment of the present invention will be described. In the present embodiment, the same components as those described in the first embodiment described above are denoted by the same reference numerals, and redundant description is omitted. FIG. 5 is a view showing the contact type IC card according to the present embodiment, and is a cross-sectional view along a selected line similar to the AA line of FIG.
 図5に示すように、本実施形態のICカード1Aは、収容部3の底部4、すなわち、樹脂基材2のうちの収容部3が形成されている領域によって樹脂モールド10が補強される点で上述の第1実施形態のICカード1と異なっている。
 ICカード1Aは、単層または複数層からなる樹脂基材2の厚さ方向において、収容部3の底部4、樹脂モールド10、ICチップ8、および基板6がこの順に積層されている。すなわち、樹脂モールド10が収容部3の底面に対向するように、ICモジュール5は収容部3に収容されている。本実施形態では、樹脂モールド10が収容部3の底部4に密着している。たとえば、樹脂モールド10の一面に接着剤を塗布して、その面を収容部3の底面に貼り合わせることにより、樹脂モールド10を収容部3に固定できる。
As shown in FIG. 5, in the IC card 1 </ b> A of the present embodiment, the resin mold 10 is reinforced by the bottom portion 4 of the housing portion 3, that is, the region where the housing portion 3 of the resin base material 2 is formed. This is different from the IC card 1 of the first embodiment described above.
In the IC card 1A, the bottom portion 4 of the housing portion 3, the resin mold 10, the IC chip 8, and the substrate 6 are laminated in this order in the thickness direction of the resin base material 2 composed of a single layer or a plurality of layers. That is, the IC module 5 is accommodated in the accommodating portion 3 so that the resin mold 10 faces the bottom surface of the accommodating portion 3. In the present embodiment, the resin mold 10 is in close contact with the bottom 4 of the housing 3. For example, the resin mold 10 can be fixed to the housing portion 3 by applying an adhesive to one surface of the resin mold 10 and bonding the surface to the bottom surface of the housing portion 3.
 収容部3の底部4の厚さ寸法t4は、ICモジュール5が樹脂基材2の表面から突出しないようにICモジュール5を収容部3内に収容することができ、且つ、ICカード1Aの裏面の美観を損ねない値に設定すればよい。たとえば、収容部3の底部4の厚さ寸法t4は100μm以上160μm未満の範囲から選択することができる。厚さ760μmのICカード1Aにおいて、ICモジュール5の厚さ寸法t5が600μm未満である場合、収容部3の底部4の厚さ寸法t4は160μm以上である。底部4の厚さ寸法t4は、ICカード1Aの厚さが760μm超えない範囲で決定される。
 ICカード1Aの厚さ方向において、樹脂モールド10の厚さと底部4の厚さとの和からICチップ8の厚さを引いた残厚t10aAは、ICチップ8の厚さよりも大きい。
The thickness t4 of the bottom 4 of the housing 3 is such that the IC module 5 can be housed in the housing 3 so that the IC module 5 does not protrude from the surface of the resin base material 2, and the back surface of the IC card 1A. It should be set to a value that does not impair the beauty of For example, the thickness dimension t4 of the bottom part 4 of the accommodating part 3 can be selected from a range of 100 μm or more and less than 160 μm. In the IC card 1A having a thickness of 760 μm, when the thickness dimension t5 of the IC module 5 is less than 600 μm, the thickness dimension t4 of the bottom portion 4 of the housing portion 3 is 160 μm or more. The thickness t4 of the bottom part 4 is determined in a range where the thickness of the IC card 1A does not exceed 760 μm.
In the thickness direction of the IC card 1A, the remaining thickness t10aA obtained by subtracting the thickness of the IC chip 8 from the sum of the thickness of the resin mold 10 and the thickness of the bottom 4 is larger than the thickness of the IC chip 8.
 本実施形態では、収容部3の底部4と樹脂モールド10とが固定されていることにより、収容部3の底部4によって樹脂モールド10が補強されている。このため、ICカード1Aに曲げや衝撃などの外力がかかった場合にも、第1実施形態と同様に樹脂モールド10が割れにくい。また、ICカード1Aでは、収容部3の底部4によって樹脂モールド10が補強されるので、上述の第1実施形態よりも樹脂モールド10の厚さ寸法t10を小さくしても、残厚t10aAがICチップ8の厚さよりも大きいという関係を満たす限り、第1実施形態のICカード1と同等の効果が得られる。 In the present embodiment, the resin mold 10 is reinforced by the bottom portion 4 of the housing portion 3 by fixing the bottom portion 4 of the housing portion 3 and the resin mold 10. For this reason, even when an external force such as bending or impact is applied to the IC card 1A, the resin mold 10 is not easily broken as in the first embodiment. Further, in the IC card 1A, since the resin mold 10 is reinforced by the bottom portion 4 of the housing portion 3, even if the thickness dimension t10 of the resin mold 10 is made smaller than that in the first embodiment, the remaining thickness t10aA is the IC. As long as the relationship that the thickness is larger than the thickness of the chip 8 is satisfied, the same effect as the IC card 1 of the first embodiment can be obtained.
 なお、ICカードに用いる樹脂基材にアンテナコイルを形成するか、アンテナが形成された別途のアンテナシートをICカードに積層し、アンテナとICカードに取り付けられた上記実施形態に係るICモジュール5とを接続することにより、接触式通信と非接触式通信が可能ないわゆるデュアルICカードを得ることができる。 The antenna module is formed on a resin base material used for the IC card, or a separate antenna sheet on which the antenna is formed is laminated on the IC card, and the IC module 5 according to the above embodiment attached to the antenna and the IC card By connecting the two, it is possible to obtain a so-called dual IC card capable of contact-type communication and non-contact-type communication.
 次に、以下に示す各実施例に基づいて、本発明の上記実施形態に係るICモジュールおよびICカードについてより詳細に説明する。
 下記ICモジュールにおける樹脂モールドの残厚とICチップの厚さ寸法との関係は、各実施例及び比較例の間で互いに異なる。これらICモジュールを用いて、樹脂モールドの残厚およびICチップの厚さ寸法と、樹脂モールドの亀裂の発生との関係を調べた。具体的には、下記の寸法条件を満たすICモジュールを製造し、各ICモジュールをそれぞれ樹脂基材の収容部に固定してICカードを製造した。製造された各ICカードについて、線圧評価試験を行った。図6および図7は、線圧評価試験の結果を示すグラフである。
Next, based on each example shown below, the IC module and the IC card according to the embodiment of the present invention will be described in more detail.
The relationship between the residual thickness of the resin mold and the thickness dimension of the IC chip in the following IC module is different between each example and comparative example. Using these IC modules, the relationship between the remaining thickness of the resin mold and the thickness dimension of the IC chip and the occurrence of cracks in the resin mold was examined. Specifically, an IC module satisfying the following dimensional conditions was manufactured, and an IC card was manufactured by fixing each IC module to a housing portion of a resin base material. A linear pressure evaluation test was performed on each manufactured IC card. 6 and 7 are graphs showing the results of the linear pressure evaluation test.
 <寸法条件>
 (実施例1)
 ICモジュールの厚さ寸法:540μm
 基板の厚さ寸法:160μm
 ICチップの厚さ寸法:150μm
 樹脂モールドの厚さ寸法:380μm
 樹脂モールドの残厚:230μm
 (実施例2)
 ICモジュールの厚さ寸法:540μm
 基板の厚さ寸法:160μm
 ICチップの厚さ寸法:180μm
 樹脂モールドの厚さ寸法:380μm
 樹脂モールドの残厚:200μm
 (実施例3)
 ICモジュールの厚さ寸法:575μm
 基板の厚さ寸法:159μm
 ICチップの厚さ寸法:80μm
 樹脂モールドの厚さ寸法:416μm
 樹脂モールドの残厚:336μm
 (実施例4)
 ICモジュールの厚さ寸法:575μm
 基板の厚さ寸法:159μm
 ICチップの厚さ寸法:100μm
 樹脂モールドの厚さ寸法:416μm
 樹脂モールドの残厚:316μm
 (実施例5)
 ICモジュールの厚さ寸法:575μm
 基板の厚さ寸法:159μm
 ICチップの厚さ寸法:130μm
 樹脂モールドの厚さ寸法:416μm
 樹脂モールドの残厚:286μm
 (実施例6)
 ICモジュールの厚さ寸法:575μm
 基板の厚さ寸法:159μm
 ICチップの厚さ寸法:185μm
 樹脂モールドの厚さ寸法:416μm
 樹脂モールドの残厚:231μm
 (実施例7)
 ICモジュールの厚さ寸法:575μm
 基板の厚さ寸法:159μm
 ICチップの厚さ寸法:250μm
 樹脂モールドの厚さ寸法:416μm
 樹脂モールドの残厚:166μm
 (比較例1)
 ICモジュールの厚さ寸法:540μm
 基板の厚さ寸法:160μm
 ICチップの厚さ寸法:210μm
 樹脂モールドの厚さ寸法:380μm
 樹脂モールドの残厚:170μm
<Dimensional conditions>
Example 1
IC module thickness dimension: 540 μm
Substrate thickness dimension: 160 μm
IC chip thickness dimension: 150 μm
Resin mold thickness: 380 μm
Resin mold remaining thickness: 230 μm
(Example 2)
IC module thickness dimension: 540 μm
Substrate thickness dimension: 160 μm
IC chip thickness dimension: 180 μm
Resin mold thickness: 380 μm
Resin mold remaining thickness: 200 μm
(Example 3)
IC module thickness dimension: 575 μm
Substrate thickness dimension: 159 μm
IC chip thickness dimension: 80 μm
Resin mold thickness: 416 μm
Resin mold remaining thickness: 336 μm
Example 4
IC module thickness dimension: 575 μm
Substrate thickness dimension: 159 μm
IC chip thickness dimension: 100 μm
Resin mold thickness: 416 μm
Resin mold remaining thickness: 316 μm
(Example 5)
IC module thickness dimension: 575 μm
Substrate thickness dimension: 159 μm
IC chip thickness dimension: 130 μm
Resin mold thickness: 416 μm
Resin mold remaining thickness: 286 μm
(Example 6)
IC module thickness dimension: 575 μm
Substrate thickness dimension: 159 μm
IC chip thickness dimension: 185μm
Resin mold thickness: 416 μm
Resin mold remaining thickness: 231 μm
(Example 7)
IC module thickness dimension: 575 μm
Substrate thickness dimension: 159 μm
IC chip thickness dimension: 250 μm
Resin mold thickness: 416 μm
Resin mold remaining thickness: 166 μm
(Comparative Example 1)
IC module thickness dimension: 540 μm
Substrate thickness dimension: 160 μm
IC chip thickness dimension: 210 μm
Resin mold thickness: 380 μm
Resin mold remaining thickness: 170 μm
 <線圧評価試験>
 ICカードの厚さ方向からみたときにICチップの4辺のうちの1辺と平行でICチップから1mm程度離間した直線(図1に符号Xで示す。以下、「第一直線X」と称する。)上でICカードの表面を押圧し、樹脂モールドに亀裂が生じたときの荷重を計測した。また、上記寸法条件で製造された別のICモジュールが取り付けられたICカードについて、ICカードの厚さ方向からみたときに第一直線Xと直交しICチップから1mm程度離間した直線(図1に符号Yで示す。以下、「第二直線Y」と称する。)上でICカードの表面を押圧し、樹脂モールドに亀裂が生じたときの荷重を計測した。
<Line pressure evaluation test>
A straight line parallel to one of the four sides of the IC chip when viewed from the thickness direction of the IC card and separated from the IC chip by about 1 mm (referred to as “first straight line X” in FIG. 1). ) The surface of the IC card was pressed above, and the load when a crack occurred in the resin mold was measured. In addition, for an IC card to which another IC module manufactured under the above dimensional conditions is attached, a straight line orthogonal to the first straight line X when viewed from the thickness direction of the IC card and separated from the IC chip by about 1 mm (reference numeral in FIG. 1). This is indicated by Y. Hereinafter, the surface of the IC card is pressed on the “second straight line Y”), and the load when a crack occurs in the resin mold is measured.
 <結果>
 図6および図7に示すように、実施例1、2、および比較例1における線圧評価試験の結果は、樹脂モールドの残厚がICチップの厚さ寸法より大きくなると樹脂モールドに亀裂を生じさせるために要する荷重が大きくなることを示している。
<Result>
As shown in FIGS. 6 and 7, the results of the linear pressure evaluation tests in Examples 1 and 2 and Comparative Example 1 show that the resin mold cracks when the remaining thickness of the resin mold becomes larger than the thickness dimension of the IC chip. It shows that the load required to make it increase.
 上記結果より、実施例1に示すように樹脂モールドの残厚をICチップの厚さ寸法よりも大きくして樹脂モールド及びICチップのたわみ量を近づけることにより、樹脂モールドに亀裂が生じる可能性を低く抑えられることができることが分かった。すなわち、樹脂モールドの残厚をICチップの厚さ寸法よりも大きくすることにより、ICモジュールの故障の発生頻度を下げることができることが分かった。 From the above results, as shown in Example 1, it is possible to cause the resin mold to crack by making the remaining thickness of the resin mold larger than the thickness dimension of the IC chip and making the deflection amount of the resin mold and the IC chip closer. It was found that it can be kept low. That is, it was found that the frequency of occurrence of IC module failures can be reduced by making the remaining thickness of the resin mold larger than the thickness dimension of the IC chip.
図9及び10には、実施例3~7のICモジュールを用いた各ICカードについての、線圧評価試験の結果が示されている。実施例3~7のICモジュールでは、樹脂モールドの厚さ寸法は一定であるが、ICチップの厚さ寸法が異なっており、それぞれ80,100,130,185,250μmである。
また、実施例3~7のICモジュールに関し、ICチップ/樹脂モールド界面において樹脂モールドに亀裂が発生した回数、すなわち、ICチップ/樹脂モールド界面において樹脂モールドが破壊した回数を表1に示す。
9 and 10 show the results of the linear pressure evaluation test for each IC card using the IC modules of Examples 3 to 7. FIG. In the IC modules of Examples 3 to 7, the thickness dimension of the resin mold is constant, but the thickness dimension of the IC chip is different and is 80, 100, 130, 185, and 250 μm, respectively.
Table 1 shows the number of times the resin mold was cracked at the IC chip / resin mold interface, that is, the number of times the resin mold was broken at the IC chip / resin mold interface, for the IC modules of Examples 3 to 7.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
図9及び10の結果より、ICチップの厚さ寸法が小さいほど、すなわち、樹脂モールドの残厚が大きいほど樹脂モールドに亀裂を生じさせるために要する荷重が大きくなる傾向が読み取れる。また、表1より、実施例5(ICチップの厚さ寸法:130μm)を境にICチップ/樹脂モールド界面での破壊の回数が激減しており、実施例4(ICチップの厚さ寸法:100μm)では同界面での破壊回数がさらに減っていることがわかる。すなわち、ICチップの厚さ寸法が130μm以下ではICチップ/樹脂モールド界面での破壊が起こりにくくなり、さらにICチップの厚さ寸法が100μm以下では破壊モードが変化してより界面での破壊が起こりにくくなっていることがわかる。 From the results of FIGS. 9 and 10, it can be seen that the smaller the IC chip thickness dimension is, that is, the greater the residual thickness of the resin mold, the greater the load required to cause cracks in the resin mold. Further, from Table 1, the number of times of destruction at the IC chip / resin mold interface is drastically reduced from Example 5 (IC chip thickness dimension: 130 μm), and Example 4 (IC chip thickness dimension: 100 μm), it can be seen that the number of fractures at the interface is further reduced. That is, if the thickness dimension of the IC chip is 130 μm or less, the destruction at the IC chip / resin mold interface is difficult to occur, and if the thickness dimension of the IC chip is 100 μm or less, the destruction mode changes and the destruction at the interface occurs more. You can see that it is difficult.
より具体的には、実施例5のICモジュールは、上記式(4)を満たしている。すなわち、実施例5のICモジュールは、ICチップ及び樹脂モールドのたわみ量が同一となるように構成されている。したがって、実施例5のICモジュールでは、ICチップ及び樹脂モールドのたわみ量の差異によるICチップ/樹脂モールド界面での破壊がより抑制されていると考えられる。
なお、図2に例示されているように、ICモジュール5ではICチップ8が樹脂モールド10に被覆されており、ICモジュール5の基板6の面においてICチップ8の面積は樹脂モールド10の面積よりも小さい。したがって、ICチップ8のたわみ量が樹脂モールド10のたわみ量よりも大きい場合にも、ICチップ/樹脂モールド界面での破壊を抑制する効果が得られる。
以上より、実施例3~7のICモジュールの中では、ICチップの厚さ寸法が130μm以下である実施例3~5のICモジュールにおいて、ICチップ及び樹脂モールドのたわみ量の差異によるICチップ下面/樹脂モールド界面での破壊がより抑制されているものと考えられる。
More specifically, the IC module of Example 5 satisfies the above formula (4). That is, the IC module of Example 5 is configured so that the IC chip and the resin mold have the same amount of deflection. Therefore, in the IC module of Example 5, it is considered that the breakage at the IC chip / resin mold interface due to the difference in deflection amount between the IC chip and the resin mold is further suppressed.
As illustrated in FIG. 2, in the IC module 5, the IC chip 8 is covered with the resin mold 10, and the area of the IC chip 8 on the surface of the substrate 6 of the IC module 5 is larger than the area of the resin mold 10. Is also small. Therefore, even when the deflection amount of the IC chip 8 is larger than the deflection amount of the resin mold 10, the effect of suppressing the breakage at the IC chip / resin mold interface can be obtained.
As described above, among the IC modules of Examples 3 to 7, in the IC modules of Examples 3 to 5 in which the thickness dimension of the IC chip is 130 μm or less, the lower surface of the IC chip due to the difference in deflection amount between the IC chip and the resin mold / It is considered that the breakage at the resin mold interface is further suppressed.
実施例4のICモジュールは、上記式(10)を満たしている。すなわち、実施例4のICモジュールは、ICチップ及び樹脂モールド間の界面と中立面とが一致するように構成されている。したがって、実施例4のICモジュールでは、ICチップ下面/樹脂モールド界面での曲げ応力による破壊がより抑制されていると考えられる。
なお、ICチップの厚さ寸法をより小さくして、ICチップ下面/樹脂モールド界面が中立面よりも曲率中心に近い場合、ICチップ下面/樹脂モールド界面には引っ張り応力ではなく、圧縮応力がかかる。この場合、ICチップ下面/樹脂モールド界面における引っ張り応力による樹脂モールド等の破断が生じなくなる。したがって、ICチップ下面/樹脂モールド界面が中立面よりも曲率中心に近い場合にも、ICチップ下面/樹脂モールド界面での曲げ応力による破壊を抑制する効果を得ることができる。
以上より、実施例3~7のICモジュールの中では、ICチップの厚さ寸法が100μm以下である実施例3及び4のICモジュールにおいて、ICチップ下面/樹脂モールド界面での曲げ応力による破壊がより抑制されていると考えられる。
The IC module of Example 4 satisfies the above formula (10). That is, the IC module of Example 4 is configured such that the interface between the IC chip and the resin mold matches the neutral surface. Therefore, in the IC module of Example 4, it is considered that the breakage due to bending stress at the IC chip lower surface / resin mold interface is further suppressed.
When the thickness dimension of the IC chip is made smaller and the IC chip lower surface / resin mold interface is closer to the center of curvature than the neutral surface, the IC chip lower surface / resin mold interface has a compressive stress, not a tensile stress. Take it. In this case, the resin mold or the like is not broken by the tensile stress at the IC chip lower surface / resin mold interface. Therefore, even when the IC chip lower surface / resin mold interface is closer to the center of curvature than the neutral surface, an effect of suppressing breakage due to bending stress at the IC chip lower surface / resin mold interface can be obtained.
As described above, among the IC modules of Examples 3 to 7, in the IC modules of Examples 3 and 4 in which the thickness dimension of the IC chip is 100 μm or less, the fracture due to the bending stress at the IC chip lower surface / resin mold interface occurs. It is thought that it is suppressed more.
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成は上記実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。 As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to the above-described embodiments, and includes design changes and the like without departing from the gist of the present invention.
故障の発生頻度が少ないICモジュールおよびICカードを提供することができる。 It is possible to provide an IC module and an IC card with a low occurrence frequency of failures.
 1、1A ICカード
 2 樹脂基材
 3 収容部
 4 底部
 5 ICモジュール
 6 基板
 7 接続端子
 8 ICチップ
 9 金属線
 10 樹脂モールド
DESCRIPTION OF SYMBOLS 1, 1A IC card 2 Resin base material 3 Accommodating part 4 Bottom part 5 IC module 6 Substrate 7 Connection terminal 8 IC chip 9 Metal wire 10 Resin mold

Claims (8)

  1.  第1の面及びこの第1の面の反対側の第2の面を有し、読み書き装置と接続するための接続端子が前記第1の面に形成された基板と;
     前記第2の面上に実装され、ワイヤボンディングにより前記接続端子に導通されたICチップと;
     前記ICチップを被覆する樹脂モールドと;
    を備え、
     前記基板の厚さ方向において、前記樹脂モールドの厚さから前記ICチップの厚さを引いた残厚が、前記ICチップの厚さよりも大きい
    ICモジュール。
    A substrate having a first surface and a second surface opposite to the first surface, wherein a connection terminal for connection to a read / write device is formed on the first surface;
    An IC chip mounted on the second surface and conducted to the connection terminal by wire bonding;
    A resin mold covering the IC chip;
    With
    An IC module in which a remaining thickness obtained by subtracting the thickness of the IC chip from the thickness of the resin mold in the thickness direction of the substrate is larger than the thickness of the IC chip.
  2.  下記の式を満たす請求項1に記載のICモジュール。
    Figure JPOXMLDOC01-appb-M000001
     ここで、hは前記ICチップの厚さであり、Eは前記ICチップの弾性率であり、haは前記樹脂モールドの厚さであり、Eは前記樹脂モールドの弾性率である。
    The IC module according to claim 1 satisfying the following formula.
    Figure JPOXMLDOC01-appb-M000001
    Here, h 1 is the thickness of the IC chip, E 1 is the elastic modulus of the IC chip, ha is the thickness of the resin mold, and E 2 is the elastic modulus of the resin mold.
  3.  下記式を満たす請求項1に記載のICモジュール。
    Figure JPOXMLDOC01-appb-M000002
     ここで、yは前記ICチップの厚さであり、Eは前記ICチップの弾性率であり、tは前記樹脂モールドの厚さであり、Eは前記樹脂モールドの弾性率である。
    The IC module according to claim 1 satisfying the following formula.
    Figure JPOXMLDOC01-appb-M000002
    Here, y 1 is the thickness of the IC chip, E 1 is the elastic modulus of the IC chip, t is the thickness of the resin mold, and E 2 is the elastic modulus of the resin mold.
  4.  前記樹脂モールドは、熱可塑性樹脂、熱硬化性樹脂、および紫外線硬化性樹脂のうちの少なくともいずれかを含有する均一な混練材料からなる請求項1に記載のICモジュール。 2. The IC module according to claim 1, wherein the resin mold is made of a uniform kneaded material containing at least one of a thermoplastic resin, a thermosetting resin, and an ultraviolet curable resin.
  5.  前記ICチップのヤング率が前記樹脂モールドのヤング率よりも高い請求項1に記載のICモジュール。 2. The IC module according to claim 1, wherein the Young's modulus of the IC chip is higher than the Young's modulus of the resin mold.
  6.  第1の面及びこの第1の面の反対側の第2の面を有し、読み書き装置と接続するための接続端子が前記第1の面に形成された基板と;前記第2の面上に実装され、ワイヤボンディングにより前記接続端子に導通されたICチップと;前記ICチップを被覆する樹脂モールドと;を備えたICモジュールと;
     前記ICモジュールが収容される有底穴形状を有する収容部が形成された樹脂基材と;
    を備えたICカードであって、
    前記樹脂モールドが前記収容部の底面に対向するように、前記ICモジュールが前記収容部に収容されており、
     前記ICカードの厚さ方向において、前記樹脂モールドの厚さと前記収容部が形成されている領域における前記樹脂基材の厚さとの和から前記ICチップの厚さを引いた残厚が、前記ICチップの厚さよりも大きい
    ICカード。
    A substrate having a first surface and a second surface opposite to the first surface, wherein a connection terminal for connection to a read / write device is formed on the first surface; on the second surface; An IC chip mounted on the IC chip and connected to the connection terminal by wire bonding; and a resin mold that covers the IC chip;
    A resin base material in which a housing portion having a bottomed hole shape in which the IC module is housed is formed;
    An IC card with
    The IC module is accommodated in the accommodating portion so that the resin mold faces the bottom surface of the accommodating portion,
    In the thickness direction of the IC card, a residual thickness obtained by subtracting the thickness of the IC chip from the sum of the thickness of the resin mold and the thickness of the resin base material in the region where the housing portion is formed is An IC card larger than the thickness of the chip.
  7.  下記の式を満たす請求項6に記載のICカード。
    Figure JPOXMLDOC01-appb-M000003
     ここで、hは前記ICチップの厚さであり、Eは前記ICチップの弾性率であり、haは前記樹脂モールドの厚さであり、Eは前記樹脂モールドの弾性率である。
    The IC card according to claim 6 satisfying the following formula.
    Figure JPOXMLDOC01-appb-M000003
    Here, h 1 is the thickness of the IC chip, E 1 is the elastic modulus of the IC chip, ha is the thickness of the resin mold, and E 2 is the elastic modulus of the resin mold.
  8.  下記式を満たす請求項6に記載のICカード。
    Figure JPOXMLDOC01-appb-M000004
     ここで、yは前記ICチップの厚さであり、Eは前記ICチップの弾性率であり、tは前記樹脂モールドの厚さであり、Eは前記樹脂モールドの弾性率である。
    The IC card according to claim 6 satisfying the following formula.
    Figure JPOXMLDOC01-appb-M000004
    Here, y 1 is the thickness of the IC chip, E 1 is the elastic modulus of the IC chip, t is the thickness of the resin mold, and E 2 is the elastic modulus of the resin mold.
PCT/JP2012/060013 2011-04-12 2012-04-12 Ic module and ic card WO2012141246A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013509962A JP6079624B2 (en) 2011-04-12 2012-04-12 IC module and IC card

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-088190 2011-04-12
JP2011088190 2011-04-12

Publications (1)

Publication Number Publication Date
WO2012141246A1 true WO2012141246A1 (en) 2012-10-18

Family

ID=47009413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060013 WO2012141246A1 (en) 2011-04-12 2012-04-12 Ic module and ic card

Country Status (3)

Country Link
JP (1) JP6079624B2 (en)
TW (1) TW201303742A (en)
WO (1) WO2012141246A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62134295A (en) * 1985-12-06 1987-06-17 松下電器産業株式会社 Integrated circuit card
JPH0752589A (en) * 1993-08-11 1995-02-28 Hitachi Maxell Ltd Ic card module

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1134555A (en) * 1997-07-18 1999-02-09 Dainippon Printing Co Ltd Ic card
JPH1134554A (en) * 1997-07-18 1999-02-09 Dainippon Printing Co Ltd Ic module and ic card
CA2265845A1 (en) * 1997-07-18 1999-01-28 Naoki Shimada Ic module, ic card, sealing resin for ic module, and method for manufacturing ic module
JP4386008B2 (en) * 2004-11-11 2009-12-16 セイコーエプソン株式会社 Mounting board and electronic equipment
JP2011237967A (en) * 2010-05-10 2011-11-24 Dainippon Printing Co Ltd Ic module and ic card using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62134295A (en) * 1985-12-06 1987-06-17 松下電器産業株式会社 Integrated circuit card
JPH0752589A (en) * 1993-08-11 1995-02-28 Hitachi Maxell Ltd Ic card module

Also Published As

Publication number Publication date
TW201303742A (en) 2013-01-16
JP6079624B2 (en) 2017-02-15
JPWO2012141246A1 (en) 2014-07-28

Similar Documents

Publication Publication Date Title
EP1514698B1 (en) Card mounted with circuit chip and circuit chip module
WO1996032696A1 (en) Ic card and ic module
US20080283619A1 (en) Ic card
JPH10193848A (en) Circuit chip-mounted card and circuit chip module
US20140239428A1 (en) Chip arrangement and a method for manufacturing a chip arrangement
JP4284021B2 (en) Mobile data support
US9183485B2 (en) Microcircuit module of reduced size and smart card comprising same
US7315070B2 (en) Fingerprint sensor package
US20050189638A1 (en) Portable electronic device
JP6079624B2 (en) IC module and IC card
US7492604B2 (en) Electronic module interconnection apparatus
JP2006074044A (en) Chip module
JP2014115808A (en) Ic module and ic card
JP4845179B2 (en) IC chip reinforcing plate and paper
US20190259712A1 (en) Ic card
JPH10138671A (en) Module for ic card
JP2013225196A (en) Highly reliable contact type ic card
JP6451298B2 (en) Dual interface IC card and IC module used for the IC card
CN213751100U (en) Fingerprint module and electronic terminal
CN219642282U (en) Capacitive fingerprint module and electronic equipment
CN211236933U (en) Chip assembly, fingerprint identification module and electronic device
JP5560841B2 (en) Non-contact IC built-in paper and IC booklet or IC card
JP5556550B2 (en) High strength IC card
JP2008234246A (en) Non-contact type ic card
JP2011248582A (en) Contactless ic card

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12771509

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013509962

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12771509

Country of ref document: EP

Kind code of ref document: A1