WO2012141036A1 - Reflective type lighting device - Google Patents

Reflective type lighting device Download PDF

Info

Publication number
WO2012141036A1
WO2012141036A1 PCT/JP2012/059017 JP2012059017W WO2012141036A1 WO 2012141036 A1 WO2012141036 A1 WO 2012141036A1 JP 2012059017 W JP2012059017 W JP 2012059017W WO 2012141036 A1 WO2012141036 A1 WO 2012141036A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
led
reflecting mirror
heat
light
Prior art date
Application number
PCT/JP2012/059017
Other languages
French (fr)
Japanese (ja)
Inventor
米田 賢治
満 斎藤
Original Assignee
シーシーエス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シーシーエス株式会社 filed Critical シーシーエス株式会社
Publication of WO2012141036A1 publication Critical patent/WO2012141036A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/04Combinations of only two kinds of elements the elements being reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/51Cooling arrangements using condensation or evaporation of a fluid, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/76Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
    • F21V29/767Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section the planes containing the fins or blades having directions perpendicular to the light emitting axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0008Reflectors for light sources providing for indirect lighting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a reflective illumination device that can be suitably used not only for medical purposes such as surgery but also in an exhibition hall or a theater.
  • This type of reflective illumination device illuminates a predetermined area by once reflecting light emitted from a light source by a reflecting mirror.
  • a light source For example, a halogen lamp or a mercury lamp is used as the light source, but in recent years, a lamp using an LED has been developed.
  • the inventors of the present application have applied for a reflective illumination device using an LED as shown in Patent Document 1. More specifically, as shown in FIG. 14, the reflective illumination device includes a concave mirror 1A, a heat dissipation structure 2A attached to the back side of the concave mirror 1, and an LED 3A provided to face the concave mirror 1A.
  • the heat dissipation structure 2A and the heat pipe 5A that connects the substrate 4A on which the LED 3A is mounted through the central portion 12A of the concave mirror 1A are provided, and the heat dissipation structure is provided on the LED 3A side.
  • the concave mirror 1A side is configured to protrude from the back side of the concave mirror 1A to the opposite side of the substrate 4A to provide a heat radiating structure 2A so that the LED can radiate heat without blocking reflected light. Is.
  • the light emitted from the LED 3A is substantially lumbar as shown in the enlarged view of FIG. If it has a cyan distribution, the LED light also enters the central portion of the concave mirror 1A. Then, as shown in FIG. 15A, the light (shown by a dotted line in the figure) reflected after entering the central portion of the concave mirror 1A from the LED 3A is blocked by the LED 3A or the substrate 4A, and therefore reaches the irradiation target. You can't do it and you're wasted. For this reason, the problem that the use efficiency of the light of the optical axis vicinity which is light with especially high intensity
  • the present invention has been made in view of the above-described problems, and the high-intensity light emitted from the LED is blocked by the LED or the substrate on which the LED is provided after being reflected by the reflecting mirror. It is an object of the present invention to provide a reflection type illumination device that can prevent light from being used effectively and efficiently use light emitted from an LED.
  • a reflecting mirror having a concave reflecting surface formed on the front side, a substrate provided so as to face the central portion of the reflecting surface, and attached to the substrate to emit light toward the reflecting surface
  • An LED chip that includes a LED chip from which the LED emits light, and a lens provided between the LED chip and the reflective surface, The present invention is characterized in that light in the vicinity of the optical axis emitted from the LED chip is refracted toward the outer edge of the reflecting surface.
  • the light of the optical axis vicinity inject
  • the shape of the central portion include a wedge shape, a concave lens shape, or a convex lens shape.
  • a rod-shaped end fixed to the substrate is used. It further includes a heat conducting member, the heat conducting member is provided radially from the substrate toward the outer edge of the reflecting mirror, and the other end of the heat conducting member is fixed to the reflecting mirror. .
  • the said heat conductive member is a rod-shaped thing and is provided radially from the said board
  • the heat conducting member is fixed to the reflecting mirror itself, it is possible to dissipate heat from the reflecting mirror itself. Therefore, it is not necessary to provide a heat dissipation structure by projecting greatly from the back side of the reflecting mirror along the optical axis, and the heat dissipation structure can be eliminated or the size thereof can be reduced. As a result, since restrictions on heat dissipation are weakened, the degree of freedom of forming the back surface of the reflecting mirror on a substantially flat surface is increased, and it becomes easy to attach the reflective illumination device to a flat surface such as a ceiling.
  • the distance for transferring heat can be reduced as compared with the conventional case, so that the heat radiation efficiency can be further improved.
  • the heat conducting member is a rod-shaped member that is provided radially from the substrate to the outer edge of the reflecting mirror, the LED and the substrate are supported even if the diameter thereof is smaller than the conventional one. In addition, the light reflected on the reflecting surface can be hardly blocked. Accordingly, it is possible to further improve the amount of light emitted from the reflection type illumination device irradiated from the reflection surface.
  • a heat dissipation structure is formed on the back side of the reflecting mirror. If it is such, the distance of LED and a thermal radiation structure can be made very short, for example, the contribution of the thermal radiation effect by the heat conduction which made the air the medium can also be enlarged.
  • the heat conducting member is a heat pipe. If it is such, since it can be set as the heat conductive member of a very thin diameter, it can minimize that the light reflected in the reflective surface is interrupted, and does not impair the light quantity. be able to.
  • any position adjustment mechanism that adjusts the distance of the substrate to the reflection surface may be used.
  • the heat dissipation structure Is provided on the outer side of the reflecting mirror, the fixing part to which the other end of the heat conducting member is fixed, the contact part in contact with the back side of the reflecting surface, and provided between the fixing part and the contact part, What is necessary is just to be comprised from the fin part formed in the spiral.
  • the heat conducting member comprises the reflector, the substrate, and the like. What is necessary is just to be provided in between.
  • Another embodiment for efficiently radiating the heat of the LED includes a rod-like heat conductive member having one end fixed to the substrate, and a heat dissipation structure provided on the back side of the reflector, It suffices that the heat conducting member penetrates the central portion of the reflecting mirror from the substrate and the other end is fixed to the heat dissipation structure. Even in such a case, the amount of light reflected from the reflecting surface is reduced by the LED or the substrate due to the configuration of the lens, so that the light use efficiency is higher than before, and LED heat can be efficiently dissipated.
  • the substrate has translucency. And those provided to close the concave surface of the reflecting mirror.
  • the light in the vicinity of the optical axis of the light emitted from the LED is refracted by the lens toward the outer edge of the reflective surface, so that the reflected light from the reflective surface is applied to the LED or the substrate. It is possible to prevent the light from being blocked and improve the use efficiency of the light emitted from the LED.
  • FIG. 1 is a schematic perspective view showing a reflective illumination device according to a first embodiment of the present invention.
  • the schematic diagram which shows an example of the use condition of the reflection type illuminating device in 1st Embodiment.
  • trajectory of light of the reflection type illuminating device which concerns on 5th Embodiment of this invention The typical sectional view showing the structure of the conventional reflection type lighting installation.
  • the reflective illumination device 100 is a reflective shadowless illumination device used for medical use, particularly for dental treatment, and has a concave surface on the front side as shown in FIGS. 1 and 2. 11, a substrate 4 provided so as to face the central portion 12 of the reflection surface 11, and an LED 3 that is attached to the substrate 4 and emits light toward the reflection surface 11. , And a heat radiating structure 2 is formed on the back side of the reflecting mirror 1, and a heat pipe 5 serving as a heat conducting member for thermally connecting the heat radiating structure 2 and the substrate 4 is provided. .
  • the reflective illumination device 100 illuminates a predetermined region by once reflecting the light from the LED 3 so as to be directed inward by the reflecting surface 11, and the LED 3 and the substrate 4.
  • the illumination is performed so that the shadow of the dentist's finger or the treatment tool J interposed between the irradiation region and the reflecting surface 11 does not occur in the predetermined region.
  • the reflecting mirror 1 has a shape obtained by removing a bowl shape from a substantially short cylindrical shape formed of a metal such as aluminum or copper having good thermal conductivity, and the reflective surface is obtained by performing aluminum deposition on the inner surface thereof. 11 is formed.
  • the reflecting surface 11 formed on the front side of the reflecting mirror 1 has a concave shape, and is specifically a parabolic mirror or an ellipsoidal mirror.
  • the heat dissipating structure 2 formed on the back side of the reflecting mirror 1 is a fin 21 formed by providing annular grooves at regular intervals on the side surface of the cylindrical body centered on the optical axis.
  • the depth of the grooves forming the fins 21 is formed as deep as possible within a range not reaching the reflecting surface 11 on the front side. That is, since the fin 21 which is the heat radiating structure 2 is formed directly on the reflecting mirror 1 itself, the heat transferred to the reflecting mirror 1 can be quickly radiated.
  • the substrate 4 has a truncated conical shape made of a highly heat conductive material such as metal (for example, aluminum or copper), and the tip of the heat pipe 5 is incident on the side surface substantially perpendicularly. It is provided to do.
  • LED3 is provided in the reflective surface 11 side, and the light inject
  • the LED 3 is provided on the surface of the substrate 4 on the reflective surface 11 side, and emits light in the visible light range toward the reflective surface 11.
  • the LED 3 includes an LED chip 31 on which a light emitting element that emits light of R (red), G (green), and B (blue) is mounted, and emits these colors so as to be mixed.
  • one LED 3 is provided in the central portion 12 of the reflective surface side surface of the substrate 44.
  • the LED 3 includes an LED chip 31 that emits light, and a lens 32 provided between the LED chip 31 and the reflective surface 11, and the lens 32 emits light emitted from the LED chip 31. Light in the vicinity of the axis (center portion) is refracted to the outer edge portion 13 (peripheral portion side) of the reflecting surface 11.
  • FIG. 4 used in the following description, the heat pipe 5 connecting the reflecting mirror 1 and the substrate 4 is omitted for the sake of clarity, and the position of the LED 3 is indicated by the reflecting surface. This is described using an example in which the reflected light is substantially parallel light. In each figure, (a) shows an overall view, and (b) shows an enlarged view around the LED 3.
  • FIG. 4 shows an embodiment in which the lens 32 is formed of a sealing material that covers the LED chip 31.
  • the lens 32 is a substantially hemispherical lens, and has an inverted conical recess, that is, a wedge-shaped cross section, at the zenith portion in the light emission direction, which is the central portion. A notch is formed.
  • FIG. 4B shows a cross section cut through the zenith of the lens 32 for easy understanding. By this concave portion, the light emitted from the LED chip 31 and passing through the central portion is refracted toward the peripheral side. In other words, the form of refraction is changed only in the central part so that light in the vicinity of the optical axis passing through the central part of the lens is refracted in a direction away from the optical axis.
  • FIG. 5 shows the light distribution characteristics when the lens 32 having such a wedge-shaped cut is used.
  • the amount of light near the optical axis almost disappears, and the amount of light on the outer edge side increases.
  • the areas of the regions R1 and R2 indicated by hatching in the central portion and the areas of the regions I1 and I2 indicated by different hatching in the outer portion are substantially the same, and light that is no longer irradiated near the optical axis It is irradiated almost as it is to the outer edge side.
  • the alignment characteristic of the LED 3 is such that the light indicated by the dotted line that should have originally entered the central portion 12 of the reflecting surface 11 as shown in FIG. It can be kept away from the central portion 12 of the surface 11 and can be prevented from being blocked by the LED 3 or the substrate 4 even if it is reflected.
  • the light emitted from the LED 3 can be used almost without waste, the light use efficiency can be significantly improved as compared with the conventional case.
  • the heat pipe 53 has a distal end portion fixed to the substrate 4 and a proximal end portion fixed to the outer edge portion 13 of the reflecting mirror 1.
  • substrate 4, the reflective mirror 1, and the heat pipe 5 are fixed by welding or press fit, and it is comprised so that sufficient heat conduction may be performed.
  • the heat pipe 5 has two functions: a function of transferring heat generated in the LED 3 to the heat dissipation structure 2 and a function of holding the substrate 4 and the LED 3 in a predetermined position.
  • the four heat pipes 5 are provided radially from the substrate 4 to the outer edge portion 13 of the reflecting mirror 1 at 90 degrees as viewed from the optical axis direction, thereby supporting the substrate 4 and the LEDs 3. And heat transfer.
  • the specific structure of the heat pipe 5 will be described.
  • the heat pipe 5 is a pipe formed of copper, aluminum, stainless steel, or the like.
  • a groove structure as a capillary structure is formed on the inner wall thereof, and a small amount of water and freon are contained therein.
  • a heat medium such as ammonia is sealed in a vacuum.
  • the reflection type illumination device 100 since the heat pipes 5 are provided radially from the substrate 4 to the outer edge portion 13 of the reflection mirror 1, the substrate 4 and the reflection mirror 1 are provided with the heat pipe 5. Even if both ends of the heat pipe 5 are completely fixed by welding or press-fitting, the heat pipe 5 provided at an angle can bend the central portion, and the position of the substrate 4 can be changed minutely. can do. Therefore, it is possible to adjust the position and orientation of the LED while the heat pipe 5 is directly fixed to the reflecting mirror 1 and the heat can be sufficiently transferred.
  • the heat dissipation structure 2 is provided on the back side of the reflecting mirror 1, the heat generated in the LED 3 is transferred to the heat dissipation structure 2 by the substrate 4 and the heat pipe 5 without using an extra member. , Can dissipate heat. Therefore, compared with the prior art, the distance by which heat is transferred by the heat pipe 5 can be significantly shortened, so that the heat dissipation efficiency can be improved.
  • the heat pipe 5 is provided from the substrate 4 to the outer edge portion 13 of the reflecting mirror 1, the heat pipe 5 is provided at the central portion 12 of the reflecting mirror 1 as in the prior art, and the reflecting surface 11.
  • the light emitted from the LED 3 can be reflected without wasting at all the strength of the central portion 12. That is, the amount of reflected light returning from the reflecting surface 11 can be increased, and the amount of light as the reflective illumination device 100 can be further improved.
  • a load to be supported is provided vertically. This can be improved compared to the case. That is, even if the diameter of the heat pipe 5 is reduced, the LED 3 and the substrate 4 can be supported and the diameter can be reduced, so that the light reflected from the reflecting surface 11 is blocked by the heat pipe 5. Can be minimized. That is, the amount of light that can be irradiated by the heat pipe 5 can be hardly impaired.
  • a heat radiating member such as a fin is greatly increased from the back surface of the reflecting mirror 1 as in the prior art.
  • the design restriction coming from the heat dissipation structure 2 is weakened, and the degree of freedom in designing an equal shape that can make the shape of the back side of the reflecting mirror 1 substantially flat as in this embodiment is increased.
  • the lens 32 of the first embodiment may have other shapes.
  • FIG. 6B only the central portion of the lens 32 may be formed in an aspheric concave lens shape.
  • FIG. 7 shows the light distribution characteristics in such a lens shape.
  • the light that should have been irradiated near the optical axis is also on the outer edge side. It can be seen that it can be distributed as it is. Therefore, in this case, the light use efficiency in the reflective illumination device 100 can be improved in substantially the same manner as when the lens 32 shown in FIG. 4 is used.
  • the center portion of the lens 32 may be protruded and formed into an aspherical convex lens shape.
  • the light that has passed through the central portion of the lens 32 is once collected at the focal point and then moves away from the optical axis. Even in such a case, the light distribution near 0 degrees ahead of the LED can be made substantially zero, and the light use efficiency can be improved.
  • the light distribution near 0 degrees forward is eliminated by changing the shape of the lens only in the central portion. For example, if the refractive index of the lens is different only in the central portion by selecting the material or the like. By doing so, the above-described light distribution may be achieved.
  • the example in which the LED 3 is disposed in the vicinity of the focal point of the reflecting mirror 1 is described as a reference.
  • the LED 3 is located at other positions, the vicinity of 0 degrees in front of the LED 3.
  • the light use efficiency can be similarly improved by refracting the light and preventing it from entering the central portion 12 of the reflection surface 11.
  • the reflective illumination device 100 of the first embodiment may further include a position adjusting mechanism 6 that adjusts the distance of the substrate 4 relative to the reflective surface 11.
  • a rod-shaped guide portion 61 that extends from the reflecting surface 11 toward the substrate 4 and is inserted into a hole formed in the substrate 4, and the substrate 4 is detachably fixed to the guide portion 61.
  • the fixing part 62 is constituted by a screw hole and a set screw which are formed on the side surface of the substrate 4 and which go to the guide part 61. If it is such, the distance of the said LED3 and the said reflective surface 11 can be adjusted, and the irradiation range by reflected light can be adjusted now appropriately.
  • the reflective illumination device 100 of the second embodiment there is one having a heat dissipation structure 2 formed so as to protrude perpendicularly to the curved surface from the back side of the reflecting mirror 1.
  • the heat dissipating structure 2 is generally formed in a spring shape, and is provided on the outer side of the reflecting mirror 1, and a fixing portion 22 to which the other end of the heat pipe 5 as a heat conducting member is fixed.
  • the contact portion 23 is in contact with the back side of the reflection surface, and the fin portion 24 is provided between the fixing portion 22 and the contact portion 23 and formed in a spiral shape.
  • the pair of heat pipes 5 and the heat dissipation structure 2 are provided so as to be line symmetric with respect to the optical axis of the reflecting mirror 1. Since such a heat dissipation structure 2 is formed in a spring shape, the restoring force is reduced by shrinking in advance and attaching the fixing portion 22 and the substrate 4 symmetrically with the heat pipe 5. Thus, the contact portion 23 can be pressed against the back side of the reflecting mirror 1 without a substantial gap. Therefore, the heat generated in the LED and transferred to the fixing portion 22 by the heat pipe 5 can be efficiently transferred to the reflecting mirror 1 through the contact portion 23 while dissipating the heat in the fin portion 24. Since the area can be further increased, the heat dissipation efficiency can be improved.
  • the heat dissipation structure 2 is formed in a spring shape, so that the movement amount can be absorbed by expansion and contraction. This makes it possible to set the illumination range more easily.
  • the reflective illumination device 100 has a heat radiating structure at the outer edge portion 13 instead of fixing the end portion of the heat pipe 5 to the reflecting surface 11 of the reflecting mirror 1.
  • the heat pipe 5 is bent to the opposite side of the reflecting surface 11 and is fixed to the substrate 4. Further, as shown in FIG. 11, one end of the heat pipe 5 is incident substantially perpendicularly to the obliquely formed side surface of the substrate 4 and the other end is incident on the reflecting mirror 1 with a slight inclination. It is configured.
  • the heat pipe 5 is fixed vertically to the reflecting mirror 1, and thus is incident and fixed obliquely. Compared to the case, it is easy to return to the vicinity of the LED 3 that is the heat generating portion and liquefy in the vicinity of the heat radiating structure 2, thereby further improving the heat dissipation efficiency.
  • the heat pipe 5 may be bent to the reflective surface side, for example, in addition to the heat pipe 5 bent to the opposite side of the reflective surface 11.
  • the heat dissipation structure is a fin extending in the radial direction in the reflecting mirror, but may be extending in another direction, for example, the axial direction. In short, what is necessary is just to have the heat dissipation structure formed in the reflecting mirror itself.
  • the LED and the substrate are supported by four heat pipes and heat is transferred to the heat dissipation structure.
  • two or three heat pipes may be used.
  • a plurality of heat pipes greater than four may be used.
  • the heat conducting member is not limited to the heat pipe, and may be another heat conducting member.
  • the substrate portion of the heat pipe is provided at the outer edge portion of the reflecting mirror, particularly the outer edge portion of the reflecting surface.
  • the heat pipe substrate portion may be directly attached to the fin that is a heat dissipation structure. It doesn't matter.
  • the reflective illumination device 100 of the fourth embodiment is provided with the heat pipes 5 radially from the substrate 4 toward the outer edge of the reflector 1. Instead, it is provided toward the center of the reflecting surface 11.
  • the LED 3 includes a lens 32 having an inverted conical concave portion at the zenith and an LED chip 31 as in the first embodiment. Accordingly, the light in the vicinity of the optical axis emitted from the LED chip 31 is refracted toward the outer edge of the reflecting surface 11 as indicated by the dotted line in FIG. The reflected light can reach the irradiation target without being blocked by the LED 3 or the substrate 4. That is, regardless of the arrangement of the heat pipe 5, the light use efficiency can be improved by the function of the lens.
  • the reflection type illumination device 100 of the fifth embodiment will be described.
  • the reflective illumination device 100 of the fifth embodiment is different from the first embodiment in that the heat pipe 5 is not used.
  • a light-transmitting substrate 4 such as a glass substrate is attached on a substantially thin disk to which the LED 1 is attached so as to cover the opening side of the reflecting mirror 1, and the reflection of the reflecting mirror 1 is performed.
  • a sealed internal space is formed by the surface 11 and the substrate 4.
  • the peripheral surface 41 of the substrate 4 is directly attached to the outer edge portion 13 of the reflecting mirror 1 so that the concave surface of the reflecting mirror 1 is covered with the substrate 4.
  • the lens 32 constituting the LED 3 is not blocked by the translucent substrate 4, for example, a refractive index or the like as compared with each of the embodiments so that the light does not return from the reflecting surface 11 only around the LED 3.
  • the range away from the optical axis is set narrow, for example, by lowering the value.
  • the light emitted from the LED 3 is reflected by the reflecting surface 11 and then passes through the substrate 4 to reach the irradiation target.
  • the heat generated in the LED 3 is directly conducted from the substrate 4 to the reflecting mirror 1 and then quickly radiated by the heat radiating structure 2 formed in the reflecting mirror 1.
  • the substrate 4 is attached so as to block the front side of the reflecting mirror 1, that is, the reflecting surface 11, it is possible to prevent dust and the like from adhering to the reflecting surface 11.
  • a power source such as a battery may be provided on the back side of the reflecting mirror, and wiring may be provided along the heat pipe.
  • the above-described reflective illumination device may be used for a car light or the like. Moreover, you may use as general illumination.
  • the light in the vicinity of the optical axis of the light emitted from the LED is refracted by the lens toward the outer edge of the reflective surface, so that the reflected light from the reflective surface is applied to the LED or the substrate. It is possible to prevent the light from being blocked and improve the use efficiency of the light emitted from the LED.

Abstract

To provide a reflective type lighting device that can effectively use high-intensity light from a middle part that is output by LEDs, this reflective type lighting device (100) is provided with a reflecting mirror (1) on which a reflective surface (11) that forms a concave surface shape on the front side thereof is formed, a substrate (4) provided so as to face the center part (12) of the reflective surface (11), and an LED (3) that is attached to the substrate (4) and outputs light toward the reflective surface (11). The LED (3) is equipped with an LED chip (31) that outputs light and a lens (32) provided between the LED chip (31) and the reflective surface (11). The lens (32) is constituted such that the light that is output by the LED chip (31) in the proximity of the optical axis is refracted toward the outer edge part (13) sides of the reflective surface (11).

Description

反射型照明装置Reflective lighting device
 本発明は、手術等の医用の他、展示場あるいは劇場等にでも好適に用いることができる反射型照明装置に関するものである。 The present invention relates to a reflective illumination device that can be suitably used not only for medical purposes such as surgery but also in an exhibition hall or a theater.
 この種の反射型照明装置は、光源から射出された光を一旦反射鏡で反射させて、所定領域を照明するものである。光源には例えばハロゲンランプや水銀灯が用いられていたが、近年、LEDを用いたものも開発されている。 This type of reflective illumination device illuminates a predetermined area by once reflecting light emitted from a light source by a reflecting mirror. For example, a halogen lamp or a mercury lamp is used as the light source, but in recent years, a lamp using an LED has been developed.
 例えば、本願発明者らは、特許文献1で示されるようなLEDを用いた反射型照明装置を出願している。より具体的には、この反射型照明装置は、図14に示すように、凹面鏡1Aと、前記凹面鏡1の裏側に取り付けられる放熱構造2Aと、前記凹面鏡1Aに対向するように設けられたLED3Aと、前記放熱構造2Aと、前記LED3Aが載置されている基板4Aとを、前記凹面鏡1Aの中央部12Aを通過して接続するヒートパイプ5Aと、を備えたものであり、LED3A側に放熱構造2Aを設けるのではなく、凹面鏡1A側において当該凹面鏡1Aの裏側から前記基板4Aとは反対側へと突出させて放熱構造2Aを設けて反射光を遮ることなくLEDの放熱を行えるように構成したものである。 For example, the inventors of the present application have applied for a reflective illumination device using an LED as shown in Patent Document 1. More specifically, as shown in FIG. 14, the reflective illumination device includes a concave mirror 1A, a heat dissipation structure 2A attached to the back side of the concave mirror 1, and an LED 3A provided to face the concave mirror 1A. The heat dissipation structure 2A and the heat pipe 5A that connects the substrate 4A on which the LED 3A is mounted through the central portion 12A of the concave mirror 1A are provided, and the heat dissipation structure is provided on the LED 3A side. Instead of providing 2A, the concave mirror 1A side is configured to protrude from the back side of the concave mirror 1A to the opposite side of the substrate 4A to provide a heat radiating structure 2A so that the LED can radiate heat without blocking reflected light. Is.
 ところで、このように放熱構造2Aを凹面鏡1Aの裏側に設けて遮光される光の量を減らしたとしても、図15(b)の拡大図に示すように前記LED3Aから射出される光が略ランバーシアン分布を有していると、前記凹面鏡1Aの中央部にもLEDの光が入射することになる。すると、図15(a)に示すようにLED3Aから凹面鏡1Aの中央部に入射した後に反射された光(図中において点線で示す)は、前記LED3A又は基板4Aに遮られるため、照射対象に到達することができず無駄になってしまっている。このため、LED3Aから射出された光のうち特に強度の高い光である光軸近傍の光の使用効率が低下してしまっているという問題が依然として残っている。 By the way, even if the heat radiation structure 2A is provided on the back side of the concave mirror 1A to reduce the amount of light to be blocked, the light emitted from the LED 3A is substantially lumbar as shown in the enlarged view of FIG. If it has a cyan distribution, the LED light also enters the central portion of the concave mirror 1A. Then, as shown in FIG. 15A, the light (shown by a dotted line in the figure) reflected after entering the central portion of the concave mirror 1A from the LED 3A is blocked by the LED 3A or the substrate 4A, and therefore reaches the irradiation target. You can't do it and you're wasted. For this reason, the problem that the use efficiency of the light of the optical axis vicinity which is light with especially high intensity | strength among the lights inject | emitted from LED3A has fallen still remains.
特開2008-108721号公報JP 2008-108721 A
 本発明は上述したような問題を鑑みてなされたものであり、LEDから射出される中央部の強度の高い光が、反射鏡にて反射した後にLED又はLEDの設けられている基板により遮られるのを防ぎ、LEDから射出される光を無駄なく有効に使用することができる反射型照明装置を提供することを目的とする。 The present invention has been made in view of the above-described problems, and the high-intensity light emitted from the LED is blocked by the LED or the substrate on which the LED is provided after being reflected by the reflecting mirror. It is an object of the present invention to provide a reflection type illumination device that can prevent light from being used effectively and efficiently use light emitted from an LED.
 すなわち、表側に凹面状をなす反射面が形成された反射鏡と、前記反射面の中央部に対向するように設けられた基板と、前記基板に取り付けられ、前記反射面に向かって光を射出するLEDと、を備えた反射型照明装置であって、前記LEDが光を射出するLEDチップと、前記LEDチップと前記反射面との間に設けられたレンズとを具備し、前記レンズが、前記LEDチップから射出された光軸近傍の光を前記反射面の外縁部側へと屈折させるように構成されていることを特徴とする。 That is, a reflecting mirror having a concave reflecting surface formed on the front side, a substrate provided so as to face the central portion of the reflecting surface, and attached to the substrate to emit light toward the reflecting surface An LED chip that includes a LED chip from which the LED emits light, and a lens provided between the LED chip and the reflective surface, The present invention is characterized in that light in the vicinity of the optical axis emitted from the LED chip is refracted toward the outer edge of the reflecting surface.
 このようなものであれば、LEDから射出された光軸近傍の光は、前記反射面の中央部以外の部分に入射する、又は、中央部に入射したとしても反射面に対してある程度入射角のある状態で入射するので、前記反射面からの反射光を前記LED又は前記基板を避けて照射対象に到達させることができるようになる。つまり、従来であればLED又は基板に遮られていた光も有効に利用する事ができ、より好適に照射対象を照明する事が可能となる。 If it is such, the light of the optical axis vicinity inject | emitted from LED injects into parts other than the center part of the said reflective surface, or even if it injects into a center part, an incident angle to some extent with respect to a reflective surface Therefore, the reflected light from the reflecting surface can reach the irradiation target while avoiding the LED or the substrate. That is, conventionally, the light blocked by the LED or the substrate can be used effectively, and the irradiation target can be more suitably illuminated.
 前記反射面の中央部に入射する光の量を少なくし、反射面から照射対象に到達する光の量をより多くして高効率にするための具体的な実施の態様としては、前記レンズの中央部の形状がクサビ形状、凹レンズ形状、又は凸レンズ形状に形成されているものが挙げられる。 As a specific embodiment for reducing the amount of light incident on the central portion of the reflecting surface and increasing the amount of light reaching the irradiation target from the reflecting surface for high efficiency, Examples of the shape of the central portion include a wedge shape, a concave lens shape, or a convex lens shape.
 反射面において反射された光を大きく遮ることなく、LEDにおいて発生する熱を効率よく放熱し、LEDの故障等を防ぐことができるようにするには、一端が前記基板に固着されている棒状の熱伝導部材を更に備え、前記熱伝導部材が、前記基板から前記反射鏡の外縁部へ向かって放射状に設けられており、前記熱伝導部材の他端が前記反射鏡に固着されていればよい。 In order to efficiently dissipate the heat generated in the LED without largely blocking the light reflected on the reflecting surface, and to prevent the failure of the LED, etc., a rod-shaped end fixed to the substrate is used. It further includes a heat conducting member, the heat conducting member is provided radially from the substrate toward the outer edge of the reflecting mirror, and the other end of the heat conducting member is fixed to the reflecting mirror. .
 このようなものであれば、前記熱伝導部材が棒状のものであり、前記基板から前記反射鏡の外縁部へと放射状に設けられているので、前記熱伝導部材の両端が前記基板及び前記反射鏡に固着されているとしても、前記基板から見て斜めに取り付けられている当該熱伝導部材をたわませることが可能であることから、そのたわみによってLEDの位置や向きを微調整する事も可能となる。 If it is such, since the said heat conductive member is a rod-shaped thing and is provided radially from the said board | substrate to the outer edge part of the said reflective mirror, the both ends of the said heat conductive member are the said board | substrate and the said reflection. Even if it is fixed to the mirror, it is possible to bend the heat conduction member that is attached obliquely when viewed from the substrate, so the position and orientation of the LED can be finely adjusted by the deflection. It becomes possible.
 また、前記反射鏡自体に前記熱伝導部材が固着されているので、前記反射鏡自体から放熱させることができる。従って、反射鏡の裏側から光軸に沿って大きく突出させて放熱構造を設ける必要が無く、放熱構造を無くしたり、その大きさを小さく構成したり事が可能となる。この結果、放熱に関する制限が弱くなるので、前記反射鏡の裏面を略平面に形成する等の自由度が大きくなり、この反射型照明装置を天井等の平面に取り付けることが容易になる。 Further, since the heat conducting member is fixed to the reflecting mirror itself, it is possible to dissipate heat from the reflecting mirror itself. Therefore, it is not necessary to provide a heat dissipation structure by projecting greatly from the back side of the reflecting mirror along the optical axis, and the heat dissipation structure can be eliminated or the size thereof can be reduced. As a result, since restrictions on heat dissipation are weakened, the degree of freedom of forming the back surface of the reflecting mirror on a substantially flat surface is increased, and it becomes easy to attach the reflective illumination device to a flat surface such as a ceiling.
 さらに、基板と反射鏡とが直接熱伝導部材で接続されるので、従来に比べて熱を移送する距離を小さくすることができるので、放熱効率をより向上させることが可能となる。 Furthermore, since the substrate and the reflecting mirror are directly connected by the heat conducting member, the distance for transferring heat can be reduced as compared with the conventional case, so that the heat radiation efficiency can be further improved.
 加えて、前記熱伝導部材を反射面の中央部に取り付けたり、挿入するための穴を設けたりする必要がなく、LEDから射出される中央部の強度の強い光を無駄にすることなく反射させることができるようになる。さらに、反射面の中央部を通るように前記伝熱部材が設けられるのではなく、反射鏡の外縁部に一端を設けられるので、前記熱伝導部材により前記LEDから射出された光が遮られることがなく、略全ての光を反射面まで到達させることができるようになる。また、前記熱伝導部材は前記基板から前記反射鏡の外縁部へと放射状に設けられている棒状のものであるので、従来に比べてその径を小さくしても、前記LED及び前記基板を支持させることができるとともに、反射面において反射された光をほとんど遮らないようにすることができる。従って、反射面から照射される反射型照装置から射出される光量をさらに向上させることができるようになる。 In addition, there is no need to attach the heat conducting member to the central part of the reflecting surface or to provide a hole for insertion, and the strong light at the central part emitted from the LED is reflected without wasting it. Will be able to. Further, since the heat transfer member is not provided so as to pass through the central portion of the reflecting surface, one end is provided at the outer edge of the reflecting mirror, so that the light emitted from the LED is blocked by the heat conducting member. And almost all light can reach the reflecting surface. Further, since the heat conducting member is a rod-shaped member that is provided radially from the substrate to the outer edge of the reflecting mirror, the LED and the substrate are supported even if the diameter thereof is smaller than the conventional one. In addition, the light reflected on the reflecting surface can be hardly blocked. Accordingly, it is possible to further improve the amount of light emitted from the reflection type illumination device irradiated from the reflection surface.
 より放熱効果を高めるためには、前記反射鏡の裏側に放熱構造が形成されているものであればよい。このようなものであれば、LEDと放熱構造との距離を非常に短いものにすることができ、例えば、空気を媒介にした熱伝導による放熱効果の寄与も大きくすることができる。 In order to further enhance the heat dissipation effect, it is sufficient if a heat dissipation structure is formed on the back side of the reflecting mirror. If it is such, the distance of LED and a thermal radiation structure can be made very short, for example, the contribution of the thermal radiation effect by the heat conduction which made the air the medium can also be enlarged.
 熱伝導部材の具体的な実施の態様としては、前記熱伝導部材がヒートパイプであるものがあげられる。このようなものであれば、非常に細い径の熱伝導部材とすることができるので、反射面において反射された光が遮られるのを最小限にすることができ、光量を損なわないようにすることができる。 As a specific embodiment of the heat conducting member, the heat conducting member is a heat pipe. If it is such, since it can be set as the heat conductive member of a very thin diameter, it can minimize that the light reflected in the reflective surface is interrupted, and does not impair the light quantity. be able to.
 前記反射型照明装置の照射範囲を調整できるようにするには、前記基板の前記反射面に対する距離を調節する位置調節機構を更に備えたものであればよい。 In order to be able to adjust the irradiation range of the reflection type illumination device, any position adjustment mechanism that adjusts the distance of the substrate to the reflection surface may be used.
 前記熱伝導部材と、前記反射鏡との固着具合を向上させて熱伝導の効率を向上させるとともに、前記LEDと前記反射面と間の相対位置の調整できる範囲を大きくするには、前記放熱構造が、反射鏡の外側に設けられ、熱伝導部材の他端が固着される固着部と、前記反射面の裏側に接触して接触部と、前記固着部と前記接触部の間に設けられ、らせん状に形成されたフィン部と、から構成されるものであればよい。 In order to improve the heat conduction efficiency by improving the fixing condition between the heat conducting member and the reflecting mirror, and to increase the range in which the relative position between the LED and the reflecting surface can be adjusted, the heat dissipation structure Is provided on the outer side of the reflecting mirror, the fixing part to which the other end of the heat conducting member is fixed, the contact part in contact with the back side of the reflecting surface, and provided between the fixing part and the contact part, What is necessary is just to be comprised from the fin part formed in the spiral.
 複雑な機構を用いずに、熱伝導部材の熱伝導効率を高めるとともに、LEDの反射面に対する可動範囲を大きくするための実施の態様としては、前記熱伝導部材が、前記反射鏡と前記基板との間に曲げて設けられているものであればよい。 As an embodiment for enhancing the heat conduction efficiency of the heat conducting member without using a complicated mechanism and increasing the movable range with respect to the reflective surface of the LED, the heat conducting member comprises the reflector, the substrate, and the like. What is necessary is just to be provided in between.
 LEDの熱を効率よく放熱するための別の実施態様としては、一端が前記基板に固着されている棒状の熱伝導部材と、前記反射鏡の裏側に設けられた放熱構造と、を備え、前記熱伝導部材が、前記基板から前記反射鏡の中央部を貫通して、その他端が前記放熱構造に固着されていればよい。このようなものであっても、前記レンズの構成により、反射面からの反射光が前記LED又は前記基板により遮られる量が小さくなっているので、光の使用効率を従来と比べて高く、しかも、LEDの放熱も効率よく行える。 Another embodiment for efficiently radiating the heat of the LED includes a rod-like heat conductive member having one end fixed to the substrate, and a heat dissipation structure provided on the back side of the reflector, It suffices that the heat conducting member penetrates the central portion of the reflecting mirror from the substrate and the other end is fixed to the heat dissipation structure. Even in such a case, the amount of light reflected from the reflecting surface is reduced by the LED or the substrate due to the configuration of the lens, so that the light use efficiency is higher than before, and LED heat can be efficiently dissipated.
 前記反射面に対してほこりがつくのを防ぎつつ、反射面から反射された光が損なわれないようにするための具体的な実施の態様としては、前記基板が透光性を有するものであり、前記反射鏡の凹面を塞ぐように設けられたものが挙げられる。 As a specific embodiment for preventing the light reflected from the reflection surface from being damaged while preventing dust from being applied to the reflection surface, the substrate has translucency. And those provided to close the concave surface of the reflecting mirror.
 このように本発明によれば、レンズによってLEDからの射出光のうち光軸近傍の光を前記反射面の外縁部側へと屈折させているので、反射面からの反射光がLED又は基板に遮られてしまうのを防ぎ、LEDから射出された光の使用効率を良くすることができる。 As described above, according to the present invention, the light in the vicinity of the optical axis of the light emitted from the LED is refracted by the lens toward the outer edge of the reflective surface, so that the reflected light from the reflective surface is applied to the LED or the substrate. It is possible to prevent the light from being blocked and improve the use efficiency of the light emitted from the LED.
本発明の第1実施形態に係る反射型照明装置を示す模式的斜視図。1 is a schematic perspective view showing a reflective illumination device according to a first embodiment of the present invention. 第1実施形態における反射型照明装置の構造を示す模式的断面図。The typical sectional view showing the structure of the reflection type lighting device in a 1st embodiment. 第1実施形態における反射型照明装置の使用状態の一例を示す模式図。The schematic diagram which shows an example of the use condition of the reflection type illuminating device in 1st Embodiment. 第1実施形態におけるレンズの構造及びLEDから射出される光の軌跡を示す模式図。The schematic diagram which shows the structure of the lens in 1st Embodiment, and the locus | trajectory of the light inject | emitted from LED. 第1実施形態におけるLEDの配光特性図。The light distribution characteristic figure of LED in a 1st embodiment. 第1実施形態の変形実施形態におけるレンズの構造及びLEDから射出される光の軌跡を示す模式図。The schematic diagram which shows the locus | trajectory of the light inject | emitted from the structure of the lens and LED in the deformation | transformation embodiment of 1st Embodiment. 第1実施形態の変形実施形態におけるLEDの配光特性図。The light distribution characteristic figure of LED in the deformation | transformation embodiment of 1st Embodiment. 第1実施形態の更に別の変形実施形態におけるレンズの構造及びLEDから射出される光の軌跡を示す模式図。The schematic diagram which shows the locus | trajectory of the light inject | emitted from the structure of the lens and LED in another deformation | transformation embodiment of 1st Embodiment. 第1実施形態の更に異なる変形実施形態における反射型照明装置の構造を示す模式的断面図。The typical sectional view showing the structure of the reflection type illuminating device in still another modified embodiment of the first embodiment. 本発明の第2実施形態に係る反射型照明装置の構造を示す模式的断面図。The typical sectional view showing the structure of the reflection type lighting installation concerning a 2nd embodiment of the present invention. 本発明の第3実施形態に係る反射型照明装置の構造を示す模式的断面図。The typical sectional view showing the structure of the reflective illumination device concerning a 3rd embodiment of the present invention. 本発明の第4実施形態に係る反射型照明装置の構造及び光の軌跡を示す模式図。The schematic diagram which shows the structure of the reflection type illuminating device which concerns on 4th Embodiment of this invention, and the locus | trajectory of light. 本発明の第5実施形態に係る反射型照明装置の構造及び光の軌跡を示す模式図。The schematic diagram which shows the structure and locus | trajectory of light of the reflection type illuminating device which concerns on 5th Embodiment of this invention. 従来の反射型照明装置の構造を示す模式的断面図。The typical sectional view showing the structure of the conventional reflection type lighting installation. 従来の反射型照明装置における、LEDから射出された光の軌跡を示す模式図。The schematic diagram which shows the locus | trajectory of the light inject | emitted from LED in the conventional reflection type illuminating device.
 100・・・反射型照明装置
1・・・反射鏡
11・・・反射面
2・・・放熱構造
3・・・LED
31・・・LEDチップ
32・・・レンズ
4・・・基板
5・・・熱伝導部(ヒートパイプ)
6・・・位置調節機構
DESCRIPTION OF SYMBOLS 100 ... Reflective type illumination device 1 ... Reflective mirror 11 ... Reflecting surface 2 ... Heat radiation structure 3 ... LED
31 ... LED chip 32 ... Lens 4 ... Substrate 5 ... Heat conduction part (heat pipe)
6 ... Position adjustment mechanism
 以下、本発明の第1実施形態について図面を参照して説明する。 Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
 本実施形態に係る反射型照明装置100は、医療用、特に歯科治療に用いられる反射型の無影照明装置であって、図1及び図2に示すように、表側に凹面状をなす反射面11が形成された反射鏡1と、前記反射面11の中央部12に対向するように設けられた基板4と、前記基板4に取り付けられ、前記反射面11に向かって光を射出するLED3と、を具備し、前記反射鏡1の裏側に放熱構造2が形成されるとともに、前記放熱構造2と、前記基板4とを熱的に接続する熱伝導部材たるヒートパイプ5を備えたものである。そして、この反射型照明装置100は、図3に示すように、LED3からの光を一旦反射面11で内方に向かうように反射させて、所定領域を照明するものであり、LED3及び基板4だけでなく、照射領域及び反射面11の間に介在する歯科医師の指や治療用具Jの影が所定領域に生じないように照明するものである。以下に各部について説明する。 The reflective illumination device 100 according to the present embodiment is a reflective shadowless illumination device used for medical use, particularly for dental treatment, and has a concave surface on the front side as shown in FIGS. 1 and 2. 11, a substrate 4 provided so as to face the central portion 12 of the reflection surface 11, and an LED 3 that is attached to the substrate 4 and emits light toward the reflection surface 11. , And a heat radiating structure 2 is formed on the back side of the reflecting mirror 1, and a heat pipe 5 serving as a heat conducting member for thermally connecting the heat radiating structure 2 and the substrate 4 is provided. . As shown in FIG. 3, the reflective illumination device 100 illuminates a predetermined region by once reflecting the light from the LED 3 so as to be directed inward by the reflecting surface 11, and the LED 3 and the substrate 4. In addition, the illumination is performed so that the shadow of the dentist's finger or the treatment tool J interposed between the irradiation region and the reflecting surface 11 does not occur in the predetermined region. Each part will be described below.
 前記反射鏡1は、例えば熱伝導性のよいアルミや銅等の金属から形成された概略短円筒形状から椀形状を取り除いた形状をなしており、その内面にアルミ蒸着を施すことにより前記反射面11が形成してある。前記反射鏡1の表側に形成してある反射面11は、凹面状をなすものであり、具体的には放物面鏡又は楕円面鏡である。 The reflecting mirror 1 has a shape obtained by removing a bowl shape from a substantially short cylindrical shape formed of a metal such as aluminum or copper having good thermal conductivity, and the reflective surface is obtained by performing aluminum deposition on the inner surface thereof. 11 is formed. The reflecting surface 11 formed on the front side of the reflecting mirror 1 has a concave shape, and is specifically a parabolic mirror or an ellipsoidal mirror.
 前記反射鏡1の裏側に形成してある放熱構造2は、光軸を中心とした円筒体の側面に円環状の溝を一定間隔ごとに設けることにより形成されたフィン21である。このフィン21を形成する溝の深さは、表側の反射面11に到達しない範囲で可能な限り深く形成してある。つまり、この放熱構造2であるフィン21は反射鏡1自体に直設形成してあるものであることから、反射鏡1に伝熱された熱を速やかに放熱することができる。 The heat dissipating structure 2 formed on the back side of the reflecting mirror 1 is a fin 21 formed by providing annular grooves at regular intervals on the side surface of the cylindrical body centered on the optical axis. The depth of the grooves forming the fins 21 is formed as deep as possible within a range not reaching the reflecting surface 11 on the front side. That is, since the fin 21 which is the heat radiating structure 2 is formed directly on the reflecting mirror 1 itself, the heat transferred to the reflecting mirror 1 can be quickly radiated.
 前記基板4は、金属(例えばアルミや銅)等の熱伝導性に富む高熱伝導性材料から形成された切頭円錐形状のものであり、ヒートパイプ5の先端部がその側面に略垂直に入射するように設けられている。そして、その反射面11側には、LED3が設けられ、LED3から射出された光は、直接照明対象物(図示しない)に照射されることなく反射面11に照射されるようにしている。反射面11により反射された光が照明対象物に照射される。 The substrate 4 has a truncated conical shape made of a highly heat conductive material such as metal (for example, aluminum or copper), and the tip of the heat pipe 5 is incident on the side surface substantially perpendicularly. It is provided to do. And LED3 is provided in the reflective surface 11 side, and the light inject | emitted from LED3 is made to irradiate the reflective surface 11 without irradiating to an illumination target object (not shown) directly. The light reflected by the reflecting surface 11 is irradiated onto the illumination object.
 前記LED3は、基板4の反射面11側の表面に設けられ、反射面11に向かって可視光域の光を射出するものである。そして、このLED3は、R(赤)、G(緑)、B(青)の光を射出する発光素子が搭載されたLEDチップ31を含み、それら各色が混ざるように射出する。本実施形態においては、1つのLED3が基板44の反射面側表面の中央部12に設けられている。 The LED 3 is provided on the surface of the substrate 4 on the reflective surface 11 side, and emits light in the visible light range toward the reflective surface 11. The LED 3 includes an LED chip 31 on which a light emitting element that emits light of R (red), G (green), and B (blue) is mounted, and emits these colors so as to be mixed. In the present embodiment, one LED 3 is provided in the central portion 12 of the reflective surface side surface of the substrate 44.
 前記LED3は、光を射出するLEDチップ31と、前記LEDチップ31と前記反射面11との間に設けられたレンズ32とを具備し、前記レンズ32が、前記LEDチップ31から射出された光軸近傍(中央部)の光を反射面11の外縁部13(周辺部側)へ屈折させるように構成してある。 The LED 3 includes an LED chip 31 that emits light, and a lens 32 provided between the LED chip 31 and the reflective surface 11, and the lens 32 emits light emitted from the LED chip 31. Light in the vicinity of the axis (center portion) is refracted to the outer edge portion 13 (peripheral portion side) of the reflecting surface 11.
 なお、以下の説明で用いている図4においては、反射鏡1と基板4とを接続するヒートパイプ5を分かりやすさのため省略して記載しているとともに、前記LED3の位置を前記反射面の焦点に配置し、反射光が略平行光となる例を用いて説明している。また、各図においては、(a)に全体図を、(b)にLED3周辺の拡大図を示している。 In FIG. 4 used in the following description, the heat pipe 5 connecting the reflecting mirror 1 and the substrate 4 is omitted for the sake of clarity, and the position of the LED 3 is indicated by the reflecting surface. This is described using an example in which the reflected light is substantially parallel light. In each figure, (a) shows an overall view, and (b) shows an enlarged view around the LED 3.
 図4には、前記レンズ32が前記LEDチップ31を覆う封止材により形成してある実施形態を示している。図4(b)の拡大図に示すようにこのレンズ32は略半球状のレンズであって、その中央部である光の射出方向にある天頂部分に逆円錐状の凹部、すなわち断面形状がくさび状の切り込みを形成してある。なお、図4(b)では、分かりやすさのためレンズ32の天頂を通るように切断した断面を示してある。この凹部により、LEDチップ31から射出され中央部を通過する光を周辺側へと屈折させるように構成してある。言い換えると、レンズ中央部を通過する光軸近傍の光を光軸から離れる方向へと屈折するように中央部のみ屈折の形態が変化するようにしてある。 FIG. 4 shows an embodiment in which the lens 32 is formed of a sealing material that covers the LED chip 31. As shown in the enlarged view of FIG. 4B, the lens 32 is a substantially hemispherical lens, and has an inverted conical recess, that is, a wedge-shaped cross section, at the zenith portion in the light emission direction, which is the central portion. A notch is formed. FIG. 4B shows a cross section cut through the zenith of the lens 32 for easy understanding. By this concave portion, the light emitted from the LED chip 31 and passing through the central portion is refracted toward the peripheral side. In other words, the form of refraction is changed only in the central part so that light in the vicinity of the optical axis passing through the central part of the lens is refracted in a direction away from the optical axis.
 このようなくさび状の切り込みを形成したレンズ32を用いた場合の配光特性は図5のようになる。この図5から明らかなように光軸付近の光量がほとんど無くなるとともに、外縁部側の光量が大きくなっていることが分かる。また、中央部のハッチングで示した領域R1、R2の面積と、外側の部分について別のハッチングで示した領域I1、I2の面積はそれぞれ略同じであり、光軸付近に照射されなくなった光が略そのまま外縁部側へと照射されるようになっている。 FIG. 5 shows the light distribution characteristics when the lens 32 having such a wedge-shaped cut is used. As can be seen from FIG. 5, the amount of light near the optical axis almost disappears, and the amount of light on the outer edge side increases. In addition, the areas of the regions R1 and R2 indicated by hatching in the central portion and the areas of the regions I1 and I2 indicated by different hatching in the outer portion are substantially the same, and light that is no longer irradiated near the optical axis It is irradiated almost as it is to the outer edge side.
 このように構成されたレンズ32を用いることにより、LED3の配向特性は、図4(a)のように本来反射面11の中央部12に入射するはずであった点線で示される光は、反射面11の中央部12から遠ざけることができ、反射されてもLED3や基板4により遮られてしまうことを防ぐことができる。 By using the lens 32 configured in this manner, the alignment characteristic of the LED 3 is such that the light indicated by the dotted line that should have originally entered the central portion 12 of the reflecting surface 11 as shown in FIG. It can be kept away from the central portion 12 of the surface 11 and can be prevented from being blocked by the LED 3 or the substrate 4 even if it is reflected.
 従って、LED3から射出される光を略無駄なく使用することができるので、光の使用効率を従来に比べて格段に向上することができる。 Therefore, since the light emitted from the LED 3 can be used almost without waste, the light use efficiency can be significantly improved as compared with the conventional case.
 前記ヒートパイプ53は、図1及び図2等に示すようにその先端部が前記基板4に固着し、その基端部が反射鏡1の外縁部13に固着してあるものである。ここで、本実施形態では溶接又は圧入により基板4及び反射鏡1とヒートパイプ5とを固着してあり、十分な熱伝導が行われるように構成してある。このヒートパイプ5は、LED3で発生した熱を前記放熱構造2に移送する機能と、前記基板4及びLED3を所定位置に保持する機能という2つの機能を兼ね備えたものである。本実施形態では、4本のヒートパイプ5を前記基板4から前記反射鏡1の外縁部13へ放射状に、光軸方向から見て90度ずつに設けることにより、前記基板4及び前記LED3を支持及び伝熱するようにしてある。このヒートパイプ5についての具体的な構成について説明すると、例えば銅、アルミニウム又はステンレス鋼等で形成されたパイプであり、その内壁に毛細管構造としての溝構造が形成され、内部に少量の水、フレオン又はアンモニア等の熱媒体が真空封入されたものである。 As shown in FIGS. 1 and 2, etc., the heat pipe 53 has a distal end portion fixed to the substrate 4 and a proximal end portion fixed to the outer edge portion 13 of the reflecting mirror 1. Here, in this embodiment, the board | substrate 4, the reflective mirror 1, and the heat pipe 5 are fixed by welding or press fit, and it is comprised so that sufficient heat conduction may be performed. The heat pipe 5 has two functions: a function of transferring heat generated in the LED 3 to the heat dissipation structure 2 and a function of holding the substrate 4 and the LED 3 in a predetermined position. In the present embodiment, the four heat pipes 5 are provided radially from the substrate 4 to the outer edge portion 13 of the reflecting mirror 1 at 90 degrees as viewed from the optical axis direction, thereby supporting the substrate 4 and the LEDs 3. And heat transfer. The specific structure of the heat pipe 5 will be described. For example, the heat pipe 5 is a pipe formed of copper, aluminum, stainless steel, or the like. A groove structure as a capillary structure is formed on the inner wall thereof, and a small amount of water and freon are contained therein. Alternatively, a heat medium such as ammonia is sealed in a vacuum.
 このように構成された反射型照明装置100によれば、前記基板4から前記反射鏡1の外縁部13へと放射状にヒートパイプ5が設けてあるので、前記基板4及び前記反射鏡1に前記ヒートパイプ5の両端がそれぞれ溶接又は圧入により完全に固定されているとしても、斜めに設けられたヒートパイプ5は中央部をたわませることが可能であり、前記基板4の位置を微小に変更することができる。従って、ヒートパイプ5を反射鏡1に直接固着し、熱の移送を十分に行うことができるようにしながら、LEDの位置や向きを調整することが可能となる。 According to the reflection type illumination device 100 configured as described above, since the heat pipes 5 are provided radially from the substrate 4 to the outer edge portion 13 of the reflection mirror 1, the substrate 4 and the reflection mirror 1 are provided with the heat pipe 5. Even if both ends of the heat pipe 5 are completely fixed by welding or press-fitting, the heat pipe 5 provided at an angle can bend the central portion, and the position of the substrate 4 can be changed minutely. can do. Therefore, it is possible to adjust the position and orientation of the LED while the heat pipe 5 is directly fixed to the reflecting mirror 1 and the heat can be sufficiently transferred.
 また、前記反射鏡1の裏側に放熱構造2が設けられているので、余計な部材を介することなく、前記LED3で発生した熱を前記基板4、前記ヒートパイプ5によって前記放熱構造2に移送し、放熱することができる。従って、従来に比べて、ヒートパイプ5により熱が移送される距離を大幅に短くすることができるので、放熱効率を向上させることができる。 Moreover, since the heat dissipation structure 2 is provided on the back side of the reflecting mirror 1, the heat generated in the LED 3 is transferred to the heat dissipation structure 2 by the substrate 4 and the heat pipe 5 without using an extra member. , Can dissipate heat. Therefore, compared with the prior art, the distance by which heat is transferred by the heat pipe 5 can be significantly shortened, so that the heat dissipation efficiency can be improved.
 さらに、前記ヒートパイプ5が前記基板4から前記反射鏡1の外縁部13へと設けられているので、従来のように反射鏡1の中央部12にヒートパイプ5が設けられおり、反射面11の中央部12に穴等が設けられていた場合に比べて、LED3から射出される光のうち中央部12の強度の強いものを全く無駄にすることなく反射させることができる。つまり、反射面11から帰ってくる反射光の光量をより多くすることができ、反射型照明装置100としての光量をより向上させることができる。 Further, since the heat pipe 5 is provided from the substrate 4 to the outer edge portion 13 of the reflecting mirror 1, the heat pipe 5 is provided at the central portion 12 of the reflecting mirror 1 as in the prior art, and the reflecting surface 11. Compared with the case where a hole or the like is provided in the central portion 12, the light emitted from the LED 3 can be reflected without wasting at all the strength of the central portion 12. That is, the amount of reflected light returning from the reflecting surface 11 can be increased, and the amount of light as the reflective illumination device 100 can be further improved.
 また、前記基板4から前記反射光の外縁部13へと複数のヒートパイプ5が放射状に設けてあり、ヒートパイプ5同士が斜めに支え合うような形状となるため、支えられる荷重を垂直に設けた場合に比べて向上させることができる。つまり、ヒートパイプ5の径を小さくしたとしても、前記LED3及び前記基板4を支えることができるとともに、径を小さくすることができるので、反射面11から反射された光がヒートパイプ5により遮られるのを最小限にすることができる。つまり、ヒートパイプ5により照射できる光量が損なわれることがほとんどないようにすることができる。 In addition, since a plurality of heat pipes 5 are provided radially from the substrate 4 to the outer edge portion 13 of the reflected light, and the heat pipes 5 support each other diagonally, a load to be supported is provided vertically. This can be improved compared to the case. That is, even if the diameter of the heat pipe 5 is reduced, the LED 3 and the substrate 4 can be supported and the diameter can be reduced, so that the light reflected from the reflecting surface 11 is blocked by the heat pipe 5. Can be minimized. That is, the amount of light that can be irradiated by the heat pipe 5 can be hardly impaired.
 加えて、前記基板4から反射鏡1の中央部12へと延びるヒートパイプ5が存在しないので、LED3から射出された光が反射面11に到達するまでヒートパイプ5によって遮られることがないので、反射型照明装置100全体としての光量のロスを大幅に改善することができる。 In addition, since there is no heat pipe 5 extending from the substrate 4 to the central portion 12 of the reflecting mirror 1, the light emitted from the LED 3 is not blocked by the heat pipe 5 until it reaches the reflecting surface 11. It is possible to greatly improve the light amount loss of the reflective illumination device 100 as a whole.
 さらに、ヒートパイプ5を前記反射鏡1へと直接固着するようにして反射鏡1自体から放熱させるように構成してあるので、従来のようにフィン等の放熱部材を反射鏡1の裏面から大きく突出させるなどして放熱量を大きくする必要が無い。つまり、放熱構造2から来る設計の制限が弱くなり、反射鏡1の裏側の形状を本実施形態のように略平面にすることができる等形状の設計自由度が大きくなる。その結果、本実施形態の反射型照明装置100を例えば天井等の平面に設ける事が容易となり、様々な用途に対して用いることが可能となる。 Further, since the heat pipe 5 is directly fixed to the reflecting mirror 1 so as to dissipate heat from the reflecting mirror 1 itself, a heat radiating member such as a fin is greatly increased from the back surface of the reflecting mirror 1 as in the prior art. There is no need to increase the heat dissipation by making it protrude. In other words, the design restriction coming from the heat dissipation structure 2 is weakened, and the degree of freedom in designing an equal shape that can make the shape of the back side of the reflecting mirror 1 substantially flat as in this embodiment is increased. As a result, it becomes easy to provide the reflective illumination device 100 of the present embodiment on a plane such as a ceiling, and can be used for various applications.
 その他の実施形態について説明する。なお、前記実施形態に対応する部材には同じ符号を付すこととする。 Other embodiments will be described. In addition, the same code | symbol shall be attached | subjected to the member corresponding to the said embodiment.
 前記第1実施形態のレンズ32についてはその他の形状であっても構わない。例えば、図6(b)に示すように、レンズ32の中央部のみが非球面凹レンズ状に形成してあってもよい。このようなレンズ形状にした場合の配光特性を図7に示す。図5に示すくさび状にした場合の配光特性と比べて、光軸近傍に照射される光量が若干多くなっているものの、やはり光軸近傍に照射されるはずであった光を外縁部側へとそのまま振り分ける事ができていることが分かる。従ってこの場合、図4に示したレンズ32を用いた場合と略同様に反射型照明装置100における光の使用効率を向上させることができる。 The lens 32 of the first embodiment may have other shapes. For example, as shown in FIG. 6B, only the central portion of the lens 32 may be formed in an aspheric concave lens shape. FIG. 7 shows the light distribution characteristics in such a lens shape. Compared with the light distribution characteristic in the case of the wedge shape shown in FIG. 5, although the amount of light irradiated near the optical axis is slightly larger, the light that should have been irradiated near the optical axis is also on the outer edge side. It can be seen that it can be distributed as it is. Therefore, in this case, the light use efficiency in the reflective illumination device 100 can be improved in substantially the same manner as when the lens 32 shown in FIG. 4 is used.
 さらに、図8に示すようにレンズ32の中央部が突出させてあり、非球面凸レンズ形状に形成してあってもよい。この場合は、図4、図6に示した場合とは異なり、レンズ32の中央部を通過した光は一度焦点に集められたのちに、光軸から離れていくことなる。このようなものであってもLEDの前方0度付近の配光を略ゼロにすることができ、光の使用効率を向上させることができる。 Further, as shown in FIG. 8, the center portion of the lens 32 may be protruded and formed into an aspherical convex lens shape. In this case, unlike the case shown in FIGS. 4 and 6, the light that has passed through the central portion of the lens 32 is once collected at the focal point and then moves away from the optical axis. Even in such a case, the light distribution near 0 degrees ahead of the LED can be made substantially zero, and the light use efficiency can be improved.
 また前記第1実施形態では、レンズの形状を中央部のみ変化させることによって前方0度付近の配光をなくすようにしていたが、例えば、材質の選択等によりレンズの屈折率を中央部のみ異ならせることによって、上述した配光を達成できるようにしても構わない。 In the first embodiment, the light distribution near 0 degrees forward is eliminated by changing the shape of the lens only in the central portion. For example, if the refractive index of the lens is different only in the central portion by selecting the material or the like. By doing so, the above-described light distribution may be achieved.
 なお、図4、図6、図8の説明では、反射鏡1の焦点近傍にLED3を配置する例を基準として説明しているが、その他の位置にあったとしても、LED3の前方0度付近の光を屈折させて前記反射面11の中央部12に入射することを防ぐことにより同様に光の使用効率を向上させることができる。 4, 6, and 8, the example in which the LED 3 is disposed in the vicinity of the focal point of the reflecting mirror 1 is described as a reference. However, even if the LED 3 is located at other positions, the vicinity of 0 degrees in front of the LED 3. The light use efficiency can be similarly improved by refracting the light and preventing it from entering the central portion 12 of the reflection surface 11.
 図9に示すように、前記第1実施形態の反射型照明装置100がさらに、前記基板4の前記反射面11に対する距離を調節する位置調節機構6を備えたものであってもよい。具体的には、前記反射面11から前記基板4に向かって延び、前記基板4に形成された穴に挿入される棒状の案内部61と、前記案内部61に前記基板4を着脱可能に固定する固定部62と、を備えたものであればよい。前記固定部62は、前記基板4の側面に形成された前記案内部61へと向かうねじ穴と止めねじから構成されるものである。このようなものであれば、前記LED3と前記反射面11との距離を調節することができ、反射光による照射範囲を適宜調整することができるようになる。 As shown in FIG. 9, the reflective illumination device 100 of the first embodiment may further include a position adjusting mechanism 6 that adjusts the distance of the substrate 4 relative to the reflective surface 11. Specifically, a rod-shaped guide portion 61 that extends from the reflecting surface 11 toward the substrate 4 and is inserted into a hole formed in the substrate 4, and the substrate 4 is detachably fixed to the guide portion 61. What is necessary is just to be provided with the fixing | fixed part 62 to perform. The fixing part 62 is constituted by a screw hole and a set screw which are formed on the side surface of the substrate 4 and which go to the guide part 61. If it is such, the distance of the said LED3 and the said reflective surface 11 can be adjusted, and the irradiation range by reflected light can be adjusted now appropriately.
 第2実施形態の反射型照明装置100としては図10に示すように、前記反射鏡1の裏側から曲面に対して垂直に突出するように形成された放熱構造2を有するものが挙げられる。より具体的には、前記放熱構造2は概略スプリング状に形成されたものであって、反射鏡1の外側に設けられ、熱伝導部材たるヒートパイプ5の他端が固着される固着部22と、前記反射面の裏側に接触して接触部23と、前記固着部22と前記接触部23との間に設けられ、らせん状に形成されたフィン部24と、から構成されるものである。この実施形態では、一対のヒートパイプ5と前記放熱構造2が、前記反射鏡1の光軸に対して線対称となるように設けてある。このような放熱構造2であれば、スプリング状に形成されているので、予め縮めておき、前記固着部22と前記基板4との間をヒートパイプ5で対称に取り付けておくことにより、復元力によって前記接触部23が前記反射鏡1の裏側に略隙間なく押しつけることができる。従って、LEDで発生し、ヒートパイプ5によって前記固着部22に移送された熱がフィン部24で放熱させつつ、さらに接触部23を介して反射鏡1に効率よく伝熱させることができ、放熱面積をさらに大きくすることができるので、放熱効率を向上させることができる。また、前記LED3及び前記基板4を前記反射面11に対して前後方向に動かす場合には、前記放熱構造2がスプリング状に形成されていることから、伸び縮みによりその移動量を吸収させることができ、より簡単に照明範囲の設定を行うことができるようになる。 As the reflective illumination device 100 of the second embodiment, as shown in FIG. 10, there is one having a heat dissipation structure 2 formed so as to protrude perpendicularly to the curved surface from the back side of the reflecting mirror 1. More specifically, the heat dissipating structure 2 is generally formed in a spring shape, and is provided on the outer side of the reflecting mirror 1, and a fixing portion 22 to which the other end of the heat pipe 5 as a heat conducting member is fixed. The contact portion 23 is in contact with the back side of the reflection surface, and the fin portion 24 is provided between the fixing portion 22 and the contact portion 23 and formed in a spiral shape. In this embodiment, the pair of heat pipes 5 and the heat dissipation structure 2 are provided so as to be line symmetric with respect to the optical axis of the reflecting mirror 1. Since such a heat dissipation structure 2 is formed in a spring shape, the restoring force is reduced by shrinking in advance and attaching the fixing portion 22 and the substrate 4 symmetrically with the heat pipe 5. Thus, the contact portion 23 can be pressed against the back side of the reflecting mirror 1 without a substantial gap. Therefore, the heat generated in the LED and transferred to the fixing portion 22 by the heat pipe 5 can be efficiently transferred to the reflecting mirror 1 through the contact portion 23 while dissipating the heat in the fin portion 24. Since the area can be further increased, the heat dissipation efficiency can be improved. Further, when the LED 3 and the substrate 4 are moved in the front-rear direction with respect to the reflecting surface 11, the heat dissipation structure 2 is formed in a spring shape, so that the movement amount can be absorbed by expansion and contraction. This makes it possible to set the illumination range more easily.
 第3実施形態の反射型照明装置100としては、図11に示すように、反射鏡1の反射面11にヒートパイプ5の端部を固着してあるのではなく、外縁部13にある放熱構造2へと直接固着してあり、前記ヒートパイプ5が反射面11とは反対側へと曲げてあり、前記基板4に固着してあるものが挙げられる。さらに、図11に示すようにヒートパイプ5の一端は前記基板4の斜めに形成されている側面へと略垂直に入射し、他端は前記反射鏡1に対して若干傾いて入射するように構成してある。 As shown in FIG. 11, the reflective illumination device 100 according to the third embodiment has a heat radiating structure at the outer edge portion 13 instead of fixing the end portion of the heat pipe 5 to the reflecting surface 11 of the reflecting mirror 1. The heat pipe 5 is bent to the opposite side of the reflecting surface 11 and is fixed to the substrate 4. Further, as shown in FIG. 11, one end of the heat pipe 5 is incident substantially perpendicularly to the obliquely formed side surface of the substrate 4 and the other end is incident on the reflecting mirror 1 with a slight inclination. It is configured.
 このようなものであれば、予めヒートパイプ5を曲げてあるので、前記基板4及びLED3と反射面11との位置関係を調節する場合において、ヒートパイプ5の軸方向の伸び縮みだけでなく、曲げでもその変化量を吸収することができ、前記基板4及びLED3の可動範囲をより大きくすることができる。 In such a case, since the heat pipe 5 is bent in advance, when adjusting the positional relationship between the substrate 4 and the LED 3 and the reflecting surface 11, not only the expansion and contraction of the heat pipe 5 in the axial direction, The amount of change can be absorbed even by bending, and the movable range of the substrate 4 and the LED 3 can be further increased.
 また、例えば、反射鏡の光照射方向が鉛直下向きになっている場合であれば、前記ヒートパイプ5が反射鏡1に対して鉛直に固着されているので、斜めに入射させて固着させてある場合に比べて、放熱構造2の近傍で液化し、再び冷媒を発熱部であるLED3の近傍に返しやすくなるので放熱効率を更に向上させることができる。 Further, for example, if the light irradiation direction of the reflecting mirror is vertically downward, the heat pipe 5 is fixed vertically to the reflecting mirror 1, and thus is incident and fixed obliquely. Compared to the case, it is easy to return to the vicinity of the LED 3 that is the heat generating portion and liquefy in the vicinity of the heat radiating structure 2, thereby further improving the heat dissipation efficiency.
 加えて、図11に示されるように反射面11とは反対側へヒートパイプ5を曲げて設ける以外にも、例えば、反射面側へヒートパイプ5を曲げて設けても構わない。 In addition, as shown in FIG. 11, the heat pipe 5 may be bent to the reflective surface side, for example, in addition to the heat pipe 5 bent to the opposite side of the reflective surface 11.
 前記実施形態において、放熱構造は、反射鏡において半径方向に延びるフィンであったが、他の方向、例えば、軸方向等に延びるものであっても構わない。要するに、反射鏡自体に放熱構造が形成されているものであればよい。 In the above embodiment, the heat dissipation structure is a fin extending in the radial direction in the reflecting mirror, but may be extending in another direction, for example, the axial direction. In short, what is necessary is just to have the heat dissipation structure formed in the reflecting mirror itself.
 前記各実施形態では4本のヒートパイプにより、前記LED及び前記基板を支持するとともに、放熱構造へ熱を移動させるようにしていたが、2本又は3本であっても構わない。また、4本より多くの複数のヒートパイプを用いても構わない。また、熱伝導部材はヒートパイプのみに限られるものではなく、その他の伝熱部材であっても構わない。加えて、前記実施形態では、ヒートパイプの基板部は反射鏡の外縁部、特に反射面の外縁部に設けられるものであったが、例えば、放熱構造であるフィンに直接取り付けられるようにしてあってもかまわない。 In each of the above embodiments, the LED and the substrate are supported by four heat pipes and heat is transferred to the heat dissipation structure. However, two or three heat pipes may be used. A plurality of heat pipes greater than four may be used. Further, the heat conducting member is not limited to the heat pipe, and may be another heat conducting member. In addition, in the above-described embodiment, the substrate portion of the heat pipe is provided at the outer edge portion of the reflecting mirror, particularly the outer edge portion of the reflecting surface. For example, the heat pipe substrate portion may be directly attached to the fin that is a heat dissipation structure. It doesn't matter.
 次に第4実施形態の反射型照明装置100について説明する。図12(a)に示すように、第4実施形態の反射型照明装置100は、前記第1実施形態とは異なり、ヒートパイプ5を基板4から反射鏡1の外縁部に向かって放射状に設けるのではなく、前記反射面11の中央部に向かって設けてある。LED3は、図12(b)の拡大図に示すように、前記第1実施形態と略同様に天頂部に逆円錐状の凹部を有したレンズ32と、LEDチップ31とから構成してある。従って、LEDチップ31から射出された光軸近傍の光は、図12の点線で示すように反射面11の外縁部側へと屈折されるので、本来であればLED3又は基板4に入射していた反射光をLED3又は基板4により遮られることなく、照射対象へと到達させることができる。つまり、ヒートパイプ5の配置に関係なく、レンズの機能により光の使用効率を向上させることができる。 Next, the reflective illumination device 100 of the fourth embodiment will be described. As shown in FIG. 12A, unlike the first embodiment, the reflective illumination device 100 of the fourth embodiment is provided with the heat pipes 5 radially from the substrate 4 toward the outer edge of the reflector 1. Instead, it is provided toward the center of the reflecting surface 11. As shown in the enlarged view of FIG. 12B, the LED 3 includes a lens 32 having an inverted conical concave portion at the zenith and an LED chip 31 as in the first embodiment. Accordingly, the light in the vicinity of the optical axis emitted from the LED chip 31 is refracted toward the outer edge of the reflecting surface 11 as indicated by the dotted line in FIG. The reflected light can reach the irradiation target without being blocked by the LED 3 or the substrate 4. That is, regardless of the arrangement of the heat pipe 5, the light use efficiency can be improved by the function of the lens.
 さらに第5実施形態の反射型照明装置100について説明する。図13に示すように、第5実施形態の反射型照明装置100は、ヒートパイプ5を用いていない点が前記第1実施形態とは異なっている。より具体的には、前記反射鏡1の開口側を覆うように前記LED1が取り付けられる概略薄円板上の例えばガラス基板等の透光性を有する基板4が取り付けてあり、反射鏡1の反射面11と前記基板4とにより密閉された内部空間が形成されるようにしてある。言い換えると、前記基板4の周縁部41を前記反射鏡1の外縁部13に直接貼り付けることにより、前記反射鏡1の凹面を前記基板4で蓋をするようにしている。また、LED3を構成するレンズ32は透光性の基板4では遮られないので、前記LED3の周囲にのみ前記反射面11から光が戻ってこないように前記各実施形態に比べて例えば屈折率等を低くする等して光軸から離れていく範囲を狭く設定してある。 Furthermore, the reflection type illumination device 100 of the fifth embodiment will be described. As shown in FIG. 13, the reflective illumination device 100 of the fifth embodiment is different from the first embodiment in that the heat pipe 5 is not used. More specifically, a light-transmitting substrate 4 such as a glass substrate is attached on a substantially thin disk to which the LED 1 is attached so as to cover the opening side of the reflecting mirror 1, and the reflection of the reflecting mirror 1 is performed. A sealed internal space is formed by the surface 11 and the substrate 4. In other words, the peripheral surface 41 of the substrate 4 is directly attached to the outer edge portion 13 of the reflecting mirror 1 so that the concave surface of the reflecting mirror 1 is covered with the substrate 4. Further, since the lens 32 constituting the LED 3 is not blocked by the translucent substrate 4, for example, a refractive index or the like as compared with each of the embodiments so that the light does not return from the reflecting surface 11 only around the LED 3. The range away from the optical axis is set narrow, for example, by lowering the value.
 このように構成されているので、前記LED3から射出された光は前記反射面11にて反射された後に前記基板4を透過して照射対象へ到達することになる。しかも、前記LED3で発生した熱は前記基板4から直接前記反射鏡1へと伝導し、その後反射鏡1に形成された放熱構造2によりすみやかに放熱されることになる。 Since it is configured in this way, the light emitted from the LED 3 is reflected by the reflecting surface 11 and then passes through the substrate 4 to reach the irradiation target. In addition, the heat generated in the LED 3 is directly conducted from the substrate 4 to the reflecting mirror 1 and then quickly radiated by the heat radiating structure 2 formed in the reflecting mirror 1.
 また、前記基板4は前記反射鏡1の表側、すなわち反射面11を塞ぐように取り付けられているので、ほこりなどが前記反射面11に付着することを防止することができる。 Further, since the substrate 4 is attached so as to block the front side of the reflecting mirror 1, that is, the reflecting surface 11, it is possible to prevent dust and the like from adhering to the reflecting surface 11.
 前記LEDと電源を接続するには、電池等の電源を反射鏡の裏側等に設けておき、前記ヒートパイプに沿わして配線を設けるようにしても構わない。 In order to connect the LED and the power source, a power source such as a battery may be provided on the back side of the reflecting mirror, and wiring may be provided along the heat pipe.
 前記実施形態では医療用、歯科用に用いられるものであったが、例えば、自動車のライト等にも上述した反射型照明装置を用いても構わない。また、一般の照明として用いても構わない。 In the above-described embodiment, it is used for medical use and dental use. However, for example, the above-described reflective illumination device may be used for a car light or the like. Moreover, you may use as general illumination.
 その他、本発明の趣旨に反しない限りにおいて、様々な変形や実施形態の組み合わせを行っても構わない。 Besides, various modifications and combinations of embodiments may be performed as long as they do not contradict the gist of the present invention.
 このように本発明によれば、レンズによってLEDからの射出光のうち光軸近傍の光を前記反射面の外縁部側へと屈折させているので、反射面からの反射光がLED又は基板に遮られてしまうのを防ぎ、LEDから射出された光の使用効率を良くすることができる。 As described above, according to the present invention, the light in the vicinity of the optical axis of the light emitted from the LED is refracted by the lens toward the outer edge of the reflective surface, so that the reflected light from the reflective surface is applied to the LED or the substrate. It is possible to prevent the light from being blocked and improve the use efficiency of the light emitted from the LED.

Claims (10)

  1.  表側に凹面状をなす反射面が形成された反射鏡と、前記反射面の中央部に対向するように設けられた基板と、前記基板に取り付けられ、前記反射面に向かって光を射出するLEDと、を備えた反射型照明装置であって、
     前記LEDが光を射出するLEDチップと、前記LEDチップと前記反射面との間に設けられたレンズとを具備し、前記レンズが、前記LEDチップから射出された光軸近傍の光を前記反射面の外縁部側へと屈折させるように構成されていることを特徴とする反射型照明装置。
    A reflecting mirror having a concave reflecting surface formed on the front side, a substrate provided to face the central portion of the reflecting surface, and an LED that is attached to the substrate and emits light toward the reflecting surface A reflective illumination device comprising:
    The LED includes an LED chip that emits light, and a lens provided between the LED chip and the reflecting surface, and the lens reflects the light in the vicinity of the optical axis emitted from the LED chip. A reflection type illumination device configured to be refracted toward an outer edge portion side of a surface.
  2.  前記レンズの中央部の形状がクサビ形状、凹レンズ形状、又は凸レンズ形状に形成されている請求項1記載の反射型照明装置。 The reflective illumination device according to claim 1, wherein a shape of a central portion of the lens is formed in a wedge shape, a concave lens shape, or a convex lens shape.
  3.  一端が前記基板に固着されている棒状の熱伝導部材を更に備え、
     前記熱伝導部材が、前記基板から前記反射鏡の外縁部へ向かって放射状に設けられており、前記熱伝導部材の他端が前記反射鏡に固着されている請求項1記載の反射型照明装置。
    A rod-like heat conducting member having one end fixed to the substrate;
    The reflective illumination device according to claim 1, wherein the heat conducting member is provided radially from the substrate toward an outer edge of the reflecting mirror, and the other end of the heat conducting member is fixed to the reflecting mirror. .
  4.  前記反射鏡の裏側に放熱構造が形成されている請求項1記載の反射型照明装置。 The reflective illumination device according to claim 1, wherein a heat dissipation structure is formed on the back side of the reflecting mirror.
  5.  前記熱伝導部材がヒートパイプである請求項3記載の反射型照明装置。 The reflection type lighting device according to claim 3, wherein the heat conducting member is a heat pipe.
  6.  前記基板の前記反射面に対する距離を調節する位置調節機構を更に備えた請求項1記載の反射型照明装置。 The reflective illumination device according to claim 1, further comprising a position adjusting mechanism that adjusts a distance of the substrate to the reflective surface.
  7.  前記放熱構造が、反射鏡の外側に設けられ、熱伝導部材の他端が固着される固着部と、前記反射面の裏側に接触する接触部と、前記固着部と前記接触部の間に設けられ、らせん状に形成されたフィン部と、から構成される請求項4記載の反射型照明装置。 The heat dissipating structure is provided outside the reflecting mirror, and is provided between a fixing part to which the other end of the heat conducting member is fixed, a contact part that contacts the back side of the reflecting surface, and the fixing part and the contact part. The reflective illumination device according to claim 4, further comprising: a fin portion formed in a spiral shape.
  8.  前記熱伝導部材が、前記反射鏡と前記基板との間に曲げて設けられている請求項3記載の反射型照明装置。 4. The reflective illumination device according to claim 3, wherein the heat conducting member is provided between the reflecting mirror and the substrate.
  9.  一端が前記基板に固着されている棒状の熱伝導部材と、前記反射鏡の裏側に設けられた放熱構造と、を備え、
     前記熱伝導部材が、前記基板から前記反射鏡の中央部を貫通して、その他端が前記放熱構造に固着されている請求項1記載の反射型照明装置。
    A rod-like heat conducting member having one end fixed to the substrate, and a heat dissipation structure provided on the back side of the reflecting mirror,
    The reflective illumination device according to claim 1, wherein the heat conducting member penetrates the central portion of the reflecting mirror from the substrate and the other end is fixed to the heat dissipation structure.
  10.  前記基板が透光性を有するものであり、前記反射鏡の凹面を塞ぐように設けられた請求項1記載の反射型照明装置。 2. The reflective illumination device according to claim 1, wherein the substrate has translucency and is provided so as to close the concave surface of the reflecting mirror.
PCT/JP2012/059017 2011-04-15 2012-04-02 Reflective type lighting device WO2012141036A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011091373A JP2012226874A (en) 2011-04-15 2011-04-15 Reflection type lighting device
JP2011-091373 2011-04-15

Publications (1)

Publication Number Publication Date
WO2012141036A1 true WO2012141036A1 (en) 2012-10-18

Family

ID=47009215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059017 WO2012141036A1 (en) 2011-04-15 2012-04-02 Reflective type lighting device

Country Status (2)

Country Link
JP (1) JP2012226874A (en)
WO (1) WO2012141036A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014077283A1 (en) * 2012-11-14 2014-05-22 株式会社 東芝 X-ray diagnostic device method for controlling x-ray diagnostic device
WO2019056032A1 (en) * 2017-09-21 2019-03-28 Litestudio Og Illumination module for emitting light directed in parallel
DE102012020931B4 (en) 2012-10-25 2022-10-20 Rüdiger Lanz High-performance headlights with high-performance LED bulbs

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8864346B2 (en) * 2012-12-10 2014-10-21 GE Lighting Solutions, LLC Lens-reflector combination for batwing light distribution
JP6190768B2 (en) * 2014-07-02 2017-08-30 株式会社日立ハイテクノロジーズ Electron microscope apparatus and imaging method using the same
JP6710534B2 (en) 2016-02-17 2020-06-17 トキコーポレーション株式会社 Light emitting device
JP6885423B2 (en) * 2019-06-27 2021-06-16 株式会社リコー A light source device and an image projection device having this light source device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335706A (en) * 1997-05-30 1998-12-18 Toyoda Gosei Co Ltd Light emitting diode lamp
JP2002314137A (en) * 2001-04-11 2002-10-25 Toyoda Gosei Co Ltd Reflection type light emitting diode
JP2004127782A (en) * 2002-10-04 2004-04-22 Ichikoh Ind Ltd Vehicle lamp and lighting device
WO2005043637A1 (en) * 2003-10-31 2005-05-12 Toyoda Gosei Co., Ltd. Light emitting device
JP2007526605A (en) * 2004-03-05 2007-09-13 パテント−トロイハント−ゲゼルシヤフト フユール エレクトリツシエ グリユーラムペン ミツト ベシユレンクテル ハフツング lamp
JP2008108721A (en) * 2006-09-27 2008-05-08 Ccs Inc Reflection type illuminator
JP2011065892A (en) * 2009-09-17 2011-03-31 Iwasaki Electric Co Ltd White led device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335706A (en) * 1997-05-30 1998-12-18 Toyoda Gosei Co Ltd Light emitting diode lamp
JP2002314137A (en) * 2001-04-11 2002-10-25 Toyoda Gosei Co Ltd Reflection type light emitting diode
JP2004127782A (en) * 2002-10-04 2004-04-22 Ichikoh Ind Ltd Vehicle lamp and lighting device
WO2005043637A1 (en) * 2003-10-31 2005-05-12 Toyoda Gosei Co., Ltd. Light emitting device
JP2007526605A (en) * 2004-03-05 2007-09-13 パテント−トロイハント−ゲゼルシヤフト フユール エレクトリツシエ グリユーラムペン ミツト ベシユレンクテル ハフツング lamp
JP2008108721A (en) * 2006-09-27 2008-05-08 Ccs Inc Reflection type illuminator
JP2011065892A (en) * 2009-09-17 2011-03-31 Iwasaki Electric Co Ltd White led device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012020931B4 (en) 2012-10-25 2022-10-20 Rüdiger Lanz High-performance headlights with high-performance LED bulbs
WO2014077283A1 (en) * 2012-11-14 2014-05-22 株式会社 東芝 X-ray diagnostic device method for controlling x-ray diagnostic device
US10022093B2 (en) 2012-11-14 2018-07-17 Toshiba Medical Systems Corporation X-ray diagnosis apparatus and control method
WO2019056032A1 (en) * 2017-09-21 2019-03-28 Litestudio Og Illumination module for emitting light directed in parallel
AT520487A1 (en) * 2017-09-21 2019-04-15 Litestudio Og Light module for the emission of light directed in parallel
AT520487B1 (en) * 2017-09-21 2019-07-15 Litestudio Og Light module for the emission of light directed in parallel
US10995944B2 (en) 2017-09-21 2021-05-04 Litestudio Og Illumination module for emitting light directed in parallel

Also Published As

Publication number Publication date
JP2012226874A (en) 2012-11-15

Similar Documents

Publication Publication Date Title
WO2011074424A1 (en) Reflective illumination device
WO2012141036A1 (en) Reflective type lighting device
JP5393018B2 (en) High efficiency LED optical device for automobile
JP4726872B2 (en) Reflective lighting device
US7048412B2 (en) Axial LED source
JP4778503B2 (en) lamp
JP4376289B2 (en) Light irradiation device
US8106568B2 (en) Lighting device capable of suppressing occurrence of ovelap of multiple shades
JP2004259541A (en) Lighting fixture
KR101489092B1 (en) Lamp
JP2005166589A (en) Vehicular headlamp
JP2011023299A (en) Led light source
US10436408B2 (en) Lighting device, corresponding lamp and method
JP2010003451A (en) Vehicular lighting fixture
JP6507035B2 (en) Light flux control member, light emitting device and lighting device
JP2007287521A (en) Vehicular lighting fixture
TW202021836A (en) Light projecting device having high light utilization efficiency
JP2009087897A (en) Optical part and vehicular lamp using the same
JP5292790B2 (en) Lighting device
US9863602B2 (en) LED light source device
US9255673B2 (en) LED bulb having an adjustable light-distribution profile
JP4469411B1 (en) Light emitting device
JP6487768B2 (en) Laser optics for vehicle lamps
WO2010045763A1 (en) Light collimating device
JP5668980B2 (en) Light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12770942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12770942

Country of ref document: EP

Kind code of ref document: A1