WO2012139373A1 - 无线网络汇聚传输方法、系统及设备 - Google Patents

无线网络汇聚传输方法、系统及设备 Download PDF

Info

Publication number
WO2012139373A1
WO2012139373A1 PCT/CN2011/081681 CN2011081681W WO2012139373A1 WO 2012139373 A1 WO2012139373 A1 WO 2012139373A1 CN 2011081681 W CN2011081681 W CN 2011081681W WO 2012139373 A1 WO2012139373 A1 WO 2012139373A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
network
bearer
radio access
data stream
Prior art date
Application number
PCT/CN2011/081681
Other languages
English (en)
French (fr)
Inventor
刘晟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to RU2013105756/07A priority Critical patent/RU2532416C2/ru
Priority to BR112013002305-8A priority patent/BR112013002305B1/pt
Priority to EP11863458.3A priority patent/EP2574096B1/en
Publication of WO2012139373A1 publication Critical patent/WO2012139373A1/zh
Priority to US13/731,132 priority patent/US8693456B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • H04L47/125Avoiding congestion; Recovering from congestion by balancing the load, e.g. traffic engineering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/09Management thereof
    • H04W28/0958Management thereof based on metrics or performance parameters
    • H04W28/0967Quality of Service [QoS] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a wireless network convergence transmission method, system, and device. Background technique
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • the mobile communication network is composed of a Radio Access Network (RAN) and a Core Network (CN).
  • the User Equipment (UE) is connected to the core through the air access network through an air interface (referred to as an air interface). network.
  • the air interface is always closely related to the Radio Access Technology (RAT) used by the mobile communication network.
  • RAT Radio Access Technology
  • UMTS wireless network
  • LTE Long Term Evolution
  • the transmission channels established by the user equipment in a wireless network are collectively referred to as wireless access.
  • One transmission channel is a bearer of the radio access technology.
  • the bearers in the UMTS network and the LTE network are respectively called UMTS bearers.
  • LTE bearer is a bearer of the radio access technology.
  • the number of users and the amount of traffic on the LTE network are gradually increased, and accordingly the average user rate is decreased; and as the number of users and traffic on the UMTS network are gradually reduced, UMTS
  • the spectrum utilization of the network will decrease. Therefore, in the process of migrating from UMTS to LTE network, it is necessary to effectively utilize the spectrum resources on the UMTS network, so as to avoid the user experience degradation caused by excessive load on the spectrum of the LTE network in the middle and the middle of the migration.
  • a wireless network convergence method is: The terminal introduces a mobile access router (MAR), which aggregates different radio access technology links of the UE, such as a wireless link that aggregates UMTS and WLAN, and is responsible for allocating radio links in the uplink direction.
  • MAR mobile access router
  • IP Internet Protocol
  • the 3GPP organization can simplify the structure of the network system, specifically: configured on the user equipment and the Packet Data Network (PDN) gateway.
  • PDN Packet Data Network
  • At least one routing filter includes a source/destination IP address, a source/destination port number, a protocol type, and the like, and is used to match IP packet flows having the same feature.
  • Wireless access (including non-3GPP wireless access, 3GPP wireless access)
  • the IP address is configured as a different Care-of Address (CoA), and each wireless access passes through a PDN gateway.
  • CoA Care-of Address
  • Each routing filter on the PDN gateway corresponds to a care-of address, so that in the downstream direction, the PDN gateway will The IP packet flow matched by the route filter is routed to the wireless network corresponding to the corresponding care-of address; in the uplink direction, the route filter of the user equipment performs the flow control of the IP packet flow.
  • the wireless network convergence method proposed by the above 3GPP organization is applicable to convergence of non-3GPP and 3GPP wireless access, and when the wireless network is aggregated and transmitted, the wireless access in the uplink and downlink directions is fixed, and the wireless network cannot be utilized well. resource of.
  • Embodiments of the present invention provide a wireless network convergence transmission method, system, and device, which effectively utilize resources of each wireless network in an aggregation network.
  • the embodiment of the invention provides a wireless network convergence transmission method, including:
  • the data stream of the user equipment is transmitted in the determined manner.
  • the embodiment of the invention provides a network convergence transmission method, including:
  • the method of transmitting the user equipment data stream by using at least two radio access technologies in the downlink direction is a packet data network, and the PDN gateway is located according to the user equipment.
  • the network load information in the current location of at least two wireless networks is determined; the manner in which the data stream of the user equipment is transmitted;
  • the uplink data stream of the user equipment is transmitted from the corresponding wireless network to the packet core network according to the determined manner.
  • the embodiment of the invention provides a gateway device, including:
  • a location obtaining unit configured to acquire location information of the user equipment in the at least two wireless networks
  • a load acquiring unit configured to acquire, according to the location information acquired by the location acquiring unit, the current location of each wireless network where the user equipment is located Network load information
  • a determining unit configured to determine, according to network load information acquired by the load acquiring unit and a preset policy, a manner of transmitting the user equipment data stream by using the at least two radio access technologies;
  • An embodiment of the present invention provides a user equipment, including:
  • a downlink detecting unit configured to detect a manner in which the user equipment data stream is transmitted by using at least two radio access technologies in the downlink direction; and the method for transmitting the user equipment data stream by using at least two radio access technologies in the downlink direction is a packet data network Determining, by the PDN gateway, the network load information in the current location of the at least two wireless networks where the user equipment is located; and using the at least two radio access technologies to transmit the user equipment data stream;
  • a data access unit configured to transmit the uplink data stream of the user equipment from the corresponding wireless network to the packet core network according to the manner determined by the uplink information determining unit.
  • the embodiment of the present invention provides a network convergence transmission system, including a user equipment and a PDN gateway device, where the user equipment includes:
  • a downlink detecting unit configured to detect that the user is transmitted by using at least two radio access technologies in the downlink direction
  • the manner of the device data stream; the manner of using the at least two radio access technologies to transmit the user equipment data stream in the downlink direction is the packet data network PDN gateway according to the network load information in the current location of the at least two wireless networks where the user equipment is located Determining a manner of transmitting the user equipment data stream using the at least two radio access technologies;
  • a data access unit configured to transmit the uplink data stream of the user equipment from the corresponding wireless network to the packet core network according to the manner determined by the uplink information determining unit;
  • the PDN gateway device is configured to determine, according to the network load information in the current location of the at least two wireless networks where the user equipment is located, the manner in which the user equipment data stream is transmitted by using at least two radio access technologies in the downlink direction.
  • the PDN gateway firstly obtains the network load information in the current location of each wireless network where the user equipment is located according to the location information of the user equipment in the at least two wireless networks, and according to the network load information.
  • the preset policy determines a manner of transmitting the user equipment data stream by using the at least two radio access technologies, and finally transmitting the data stream of the user equipment according to the determined manner. In this way, according to the actual load condition of the network, the amount of data transmitted by each wireless access technology in the aggregation network is reasonably allocated, so that the resources of each wireless network in the aggregation network are effectively utilized.
  • FIG. 1 is a flowchart of a wireless network convergence transmission method according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of dynamically controlling data flow in an embodiment of the present invention
  • FIG. 3 is a flowchart of another wireless network convergence transmission method according to Embodiment 2 of the present invention
  • FIG. 4 is a schematic structural diagram of an SGSN supporting an S3/S4 interface in a UMTS/LTE aggregation network according to an embodiment of the present invention
  • FIG. 4b is a schematic structural diagram of an SGSN not supporting an S3/S4 interface in a UMTS/LTE aggregation network according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of establishing a bearer of a user equipment in a UMTS and an LTE network according to an embodiment of the present disclosure
  • FIG. 6 is a flowchart of controlling a data flow of a UMTS and an LTE bearer transmission user equipment in a semi-static manner according to an embodiment of the present invention
  • FIG. 7 is a flowchart of dynamically controlling data flow of a UMTS and LTE bearer transmission user equipment according to an embodiment of the present invention
  • FIG. 8 is a flowchart of transitioning from a current LTE (or UMTS) network transmission state to an aggregation network transmission state according to an embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of a gateway device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another gateway device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of another gateway device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • a wireless network convergence transmission method is mainly used for convergence of different wireless accesses of a unified packet core network, such as convergence of UMTS and LTE wireless access, and user equipment can access from at least two different wireless air interfaces.
  • the method in this embodiment is a unified packet core network and a gateway of an external packet network, that is, a method performed by the PDN gateway.
  • the flowchart is as shown in FIG. 1 , and includes: Step 101: Acquire user equipment at least Location information in two wireless networks.
  • the user equipment is connected to the packet core network through at least two wireless air interfaces, that is, the bearer of the at least two radio access technologies is established between the user equipment and the PDN gateway.
  • the location information can indicate the current location of the user equipment in the wireless network, and may be the identification information of the current cell of the user equipment, the identification information of the routing area where the user equipment is located, or the identification information of the tracking area where the user equipment is located.
  • the access service gateway sends the current location information of the user equipment to the PDN gateway, where
  • the ingress service gateway is a serving network node that the user equipment accesses to the packet core network, such as a Serving GPRS Support Node (SGSN) of the general packet radio service technology in the UMTS network, and a mobility management entity in the LTE network (Mobility) Management Entity, MME) and Serving Gateway (S-GW). Therefore, when acquiring location information of the user equipment, the PDN gateway can obtain from the access service gateway.
  • SGSN Serving GPRS Support Node
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • Step 102 Acquire, according to the location information, network load information in a current location of each wireless network where the user equipment is located.
  • the network load information in the current location of the wireless network where the user equipment is located may be information such as the number of active users, the network load rate, the data throughput, or the data transmission speed of the current location of the wireless network of the user equipment.
  • the Operation Support System is a comprehensive business operation and management platform.
  • the OSS system stores information about the network, including various network status information, and the PDN gateway.
  • the OSS system may be queried for load information of the corresponding regional network indicated by the user equipment location information.
  • Step 103 Determine, according to the network load information and the preset policy, a manner of transmitting the user equipment data stream by using at least two radio access technologies.
  • the preset policy herein may include one or more of the following information: a traffic scale factor of the first wireless network and the second wireless network is a preset value; and uplink and downlink of the same data flow use the same wireless access technology.
  • the transmission for example, the uplink and downlink data of the same Transmission Control Protocol (TCP) connection is transmitted by using the same radio access technology; the number of network users in the corresponding area of the first wireless network is less than a preset value; and the uplink of the user equipment
  • TCP Transmission Control Protocol
  • the data stream is preferentially transmitted using the second radio access technology, and when the data transmission speed of the second radio network is less than a preset value, the first radio access technology is used to transmit the downlink data stream and the like.
  • the PDN gateway can determine the manner in which the radio access technology transmits the data stream only by considering the actual load in the network, so that the bearer of the corresponding radio access technology can transmit the data stream of the user equipment and meet the preset policy. In order to achieve load balancing of each wireless network;
  • the PDN gateway can also consider the load of the actual network and the application layer data flow information of the user equipment, that is, the other information that the user equipment actually needs based on the data transmission, etc., to determine the manner in which the wireless access technology transmits the data stream, so that the corresponding wireless The data flow of the access technology carrying the user equipment After that, it can meet the requirements in the preset strategy and meet the actual requirements of the user equipment. In this way, load balancing of each wireless network can be achieved, and the quality of service requirements of the user equipment can be met.
  • the manner in which the user equipment data stream is transmitted by using the at least two radio access technologies determined by the PDN gateway may include: which radio access technology and the radio connection should be used for each uplink and each downlink data stream of the user equipment. Which one of the technologies is carried to transmit.
  • the application layer data stream information of the user equipment refers to information such as the maximum allowed transmission rate, the total data amount, and the maximum allowable delay of the uplink and downlink data streams to be transmitted.
  • the user equipment can obtain application layer data flow information through an application layer message when the session is established, such as a Session Initiation Protocol (SIP) message, a File Transmission Protocol (FTP), and a hypertext transfer protocol.
  • SIP Session Initiation Protocol
  • FTP File Transmission Protocol
  • HTTP Hypertext Transmission Protocol
  • the PDN gateway can query the entity through the Policy and Charging Rule Function (PCRF), or use the deep packet detection built in the PDN gateway (Deep The Packet Inspection (DPI) function acquires application layer data flow information of the user equipment.
  • PCRF Policy and Charging Rule Function
  • DPI Deep Packet Inspection
  • Step 104 Transmit the data stream of the user equipment according to the determined manner.
  • the PDN gateway will transmit data streams according to the determined bearer using each radio access technology, that is, which radio access technology should be used for each uplink and/or each downlink data stream of the user equipment and Which bearer of the radio access technology is transmitted to configure the bearer of each radio access technology in the uplink and/or downlink direction of the user equipment accordingly.
  • the PDN gateway transmits the downlink data flow of the user equipment according to the configured bearer of the radio access technology in the downlink direction.
  • the user equipment performs the radio access technology bearer according to the configured uplink direction.
  • the upstream data stream of the user equipment is transmitted.
  • the PDN gateway firstly obtains network load information in the current location of each wireless network where the user equipment is located according to the location information of the user equipment in the at least two wireless networks, and according to The network load information and the preset policy determine a manner of transmitting the user equipment data stream by using the at least two radio access technologies, and finally transmitting the data stream of the user equipment according to the determined manner.
  • the wireless network convergence transmission method of the embodiment of the present invention is a transmission method for the user equipment to access the packet core network through the at least two wireless air interfaces.
  • the PDN gateway before the step 101, the PDN gateway further performs the following steps:
  • Step 100 Establish a bearer of at least two radio access technologies with the user equipment, and correspondingly store the identifier information of the user equipment and the identifier information of the bearer of the at least two radio access technologies.
  • the bearer for establishing the radio access technology refers to a data transmission channel between the user equipment and the packet core network established by the user equipment after the user equipment is attached to the wireless network, and specifically, any one of the following or A bearer is established in a plurality of manners: a bearer of a plurality of radio access technologies connected by a PDN of the user equipment through the PDN gateway; and a bearer of the radio access technology is established between the user equipment and the plurality of PDNs, that is, the user equipment passes A part of the PDN connection established by the PDN gateway uses a bearer of a radio access technology, and another part of the PDN connection established by the user equipment through the PDN gateway uses another radio access technology bearer.
  • the bearer of the multiple radio access technologies of the same user equipment uses the same PDN address, that is, the IP address, when the PDN connection is established, and the address resource is avoided. Waste.
  • the PDN gateway can control the allocation of the data stream transmitted by each radio access technology in a semi-static manner and/or a dynamic manner, specifically:
  • Controlling the data flow in a semi-static manner When controlling the data flow, the bearer of each radio access technology established between the user equipment and the PDN gateway is passed through a traffic flow template (TFT) and/or a PDN. Connect to distinguish.
  • TFT traffic flow template
  • the PDN connection may be used to distinguish the bearers of different radio access technologies.
  • the user equipment may be configured to use different radio accesses with different PDN connections.
  • the technology for example, the user equipment has five PDN connections through the PDN gateway, wherein the three PDN connections of the user equipment use the radio access technology A, and the other two PDN connections of the user equipment use the radio access technology B.
  • each bearer corresponds to one TFT, and the TFT is a group of packet filters (packet) Filter ), each packet filter can contain features such as source/destination IP address, protocol type, port range, etc., for matching and separating data streams with the same characteristics.
  • the different data streams that the user equipment is connected to the PDN can be configured to be transmitted by using different radio access technologies, because the data streams correspond to The TFTs are different, so they can be separately distinguished from the application layer data packets and transmitted through the 7-carrier of the corresponding radio access technology.
  • the PDN gateway can control the bearer transmission data flow through each radio access technology in a semi-static manner when performing the foregoing step 103, which can be specifically implemented by the following steps A1 or B1:
  • A1 Consider only the network load information obtained in step 102 and the preset policy, to determine the service flow template TFT corresponding to the data stream of the user equipment in the uplink direction and/or the downlink direction, and the radio access technology of the corresponding bearer;
  • the PDN gateway knows the radio access technology corresponding to the bearer established between the user equipment and the user equipment, because the user equipment carries the identifier of the radio access technology corresponding to the bearer in the bearer request, and the user equipment It also knows the radio access technology corresponding to the established bearer.
  • the PDN gateway can determine, according to the actual load of the network and the preset policy, a manner of transmitting the radio access technology used by the uplink and/or downlink data flows, so that after the data transmission of the user equipment is transmitted through the bearer of the corresponding radio access technology, The requirements of the preset policy are met, so that the load balancing of each wireless network is implemented, and the preset policy is as described in the step of step 103 above, and details are not described herein.
  • the data stream transmission manner specifically determined by the PDN gateway may include: a data stream transmitted in the uplink and downlink direction, where each data stream corresponds to one TFT; and a bearer used for transmitting the data access radio access technology, and the like.
  • B1 determining, according to the network load information, the data flow information of the user equipment service layer, and the preset policy, the service flow template corresponding to the data flow corresponding to the user equipment in the uplink direction and/or the downlink direction, and the wireless connection of the corresponding bearer Into the technology.
  • the manner of transmitting the data stream may be determined according to the actual load information in the current network and the requirement of the user equipment based on the data transmission, so that the corresponding manner is adopted.
  • the requirements of the preset policy can be met, and the actual requirements of the user equipment can be met, so that the load balancing of each wireless network can be achieved, and the user can be satisfied.
  • Service quality requirements for the equipment is as described in the step of step 103 above, and no comment is made here.
  • the data stream transmission manner specifically determined by the PDN gateway may include: a data stream transmitted in the uplink and downlink direction, where each data stream corresponds to one TFT; and a bearer used for transmitting the data stream, and the like.
  • the PDN gateway transmits the downlink of the user equipment according to the configured bearer of the radio access technology in the downlink direction.
  • the user equipment transmits the uplink data stream of the user equipment according to the configured bearer of the radio access technology in the uplink direction.
  • the same data flow that is, the uplink or downlink data flow of the same TCP connection is transmitted as much as possible by using the bearer of the same radio access technology, so that the same data is avoided.
  • the PDN gateway When the data stream is controlled in a dynamic manner, the PDN gateway only determines the data stream transmission mode in the downlink direction, and the data stream transmission mode in the uplink direction is determined by the user equipment (described in the second embodiment).
  • the PDN gateway may determine the data amount, or data, of the user equipment data stream that is transmitted by using the radio access technology in the downlink direction.
  • the ratio of the quantity, etc.; when performing the above step 104, can be achieved by the following steps:
  • A2 selecting a radio access technology for transmitting a data stream of the user equipment in the downlink direction according to the determined amount of data or the amount of data;
  • the bearer of the selected radio access technology transmits the corresponding data stream of the user equipment in the downlink direction.
  • the PDN gateway when selecting a radio access technology, the PDN gateway needs to make the data amount or the data amount ratio of the bearer transmission user equipment data stream of each radio access technology in the downlink direction conform to the data amount determined by the PDN gateway according to the network load information or The proportion of data.
  • the TFT1 in the PDN gateway corresponds to the downlink data stream of the user equipment 1 and the TFT2 is matched and separated from the downlink data stream of the user equipment 2, and is determined by using a dynamic manner.
  • the radio access technology selection function entity selects the radio access technology for transmitting the downlink data stream according to the determined data volume of the transmitted downlink data stream;
  • the selected radio access technology 1 and/or 2 bearers transmit the downstream data stream of the corresponding user equipment.
  • the same data flow that is, the uplink or downlink data flow of the same TCP connection
  • the PDN gateway can configure the same TFT to correspond to multiple different radio access technology bearers, so that they can carry the data flows with the same QoS requirements as much as possible, so that the same TFT can be used for the bearer of the different radio access technologies in the dynamic mode.
  • the same data stream is avoided, that is, when the uplink or downlink data stream of the same TCP connection is transmitted through the bearers of different radio access technologies, the TCP performance loss caused by the excessive transmission delay difference is excessive.
  • the user equipment accesses the packet core network through at least two wireless air interfaces, and the user equipment is in the aggregation network transmission state; the user equipment can exit the wireless network, so that the packet is accessed only through one wireless air interface. In the core network, the user equipment is in a single network transmission state.
  • the user equipment can switch between a single network transmission state and a convergence network transmission state, specifically:
  • the user equipment can be switched from a single network transmission state to a convergence network transmission state in the following cases, that is, the user equipment is reattached to the first wireless network.
  • the second wireless network In other wireless networks, such as the second wireless network:
  • the user equipment automatically turns on the function of network convergence transmission
  • the user equipment does not turn off the function of the network convergence transmission.
  • the user equipment only carries the data stream by one of the radio access technologies 1 due to the network coverage, and the user equipment re-enters the coverage area of the other wireless network.
  • the user equipment does not turn off the function of network aggregation transmission. Since one of the wireless network 1 is overloaded (or other reason) and exits the wireless network 1, when the user equipment exits the wireless network 1, the reason has been eliminated, and The bearer of the wireless network 1 is re-established.
  • the user equipment directly initiates an attach request to the second wireless network, when After receiving the attach request, the packet core network establishes a bearer of the second radio access technology between the PDN gateway and the user equipment.
  • the PDN gateway needs to detect the actual condition in the second network, for example, detecting Whether the network load of the wireless network is within a preset range, and if so, establishing a bearer of the second wireless access technology with the user equipment.
  • the user equipment can transition from the aggregation network transmission state to the single network transmission state in the following situations:
  • the user equipment automatically disables the function of network aggregation transmission.
  • the movement of the user equipment causes it to leave the coverage area of any wireless network
  • the user equipment needs to exit the wireless network because the network load of any wireless network where the user equipment is located is too heavy.
  • the user equipment directly initiates a detach request to any wireless network; for the above case b2, the user equipment initiates to the wireless network after detecting that the signal strength of a wireless network is less than a preset threshold.
  • De-attach request for the above case c2, a de-attach request of the user equipment to another wireless network may be initiated by one of the wireless networks.
  • the PDN gateway receives the detach request, the user equipment is logged off on another wireless network;
  • the PDN gateway can detect whether the network load of any wireless network where the user equipment is located exceeds a preset range, and if so, exit the bearer of the user equipment in the wireless network.
  • a wireless network convergence transmission method is mainly for convergence of different wireless networks using a unified packet core network, for example, convergence of UMTS and LTE wireless networks, and user equipments can be accessed from at least two different wireless air interfaces.
  • the method in this embodiment is a method performed by the user equipment, and the flowchart is as shown in FIG. 3, and includes:
  • Step 201 Detect a manner of transmitting, by using at least two radio access technologies, a data stream of the user equipment in the downlink direction;
  • the uplink data stream is transmitted by using different radio access technologies in a dynamic manner, and the user equipment cannot obtain the relevant network load status, so when the user equipment performs dynamic traffic control of the uplink data stream, You can use the method of reverse synchronization, that is, detecting the downstream direction
  • a method for transmitting a data stream by using at least two radio access technologies for example, a bearer of a radio access technology in a downlink data stream received by a user equipment, and the like.
  • the manner in which the user equipment data stream is transmitted by using at least two radio access technologies in the downlink direction is determined by the PDN gateway in a dynamic manner and according to the network load information of the current location of the at least two radio networks where the user equipment is located, and the specific determining method is as follows: As shown in the first embodiment, details are not described herein again. The manner in which the user equipment data stream is transmitted;
  • the user equipment may determine the data stream transmission of the user equipment in the uplink direction according to the proportion of the data traffic carried by the at least two radio access technologies in the downlink direction or according to the preset calculation relationship. the way. For example: use the proportion of data traffic carried by at least two radio access technologies in the downlink direction as the proportion of data traffic carried by at least two radio access technologies in the uplink direction; or multiply the proportion of data traffic using the downlink radio access technology
  • the ratio of the data traffic carried by the at least two radio access technologies in the uplink direction is obtained by using a certain scale factor, wherein the scale factor may be fixedly configured in the user equipment, or may be dynamically configured by the network side through signaling.
  • HSPA High Speed Packet Access
  • the user equipment does not allocate HSPA to transmit uplink user data, but allocates HSPA for transmission.
  • the L1/L2/L3 control signaling required for the air interface so that the power consumption of the user equipment can also be reduced when the uplink data stream is transmitted.
  • Step 203 The uplink data stream of the user equipment is transmitted from the corresponding wireless network to the packet core network according to the determined manner.
  • the user equipment uses at least two radio access technologies to transmit data streams according to the detected downlink direction, and determines that the user equipment uses at least two radio access technologies in the uplink direction.
  • the manner in which the data stream is transmitted, and the upstream data stream is transmitted from the corresponding wireless network to the packet core network according to a determined manner. Since the information of the data stream of the user equipment in the downlink direction is reasonably allocated according to the actual load condition of the network, the resources of each wireless network in the aggregation network are effectively utilized.
  • the wireless network convergence transmission method of the embodiment of the present invention is a transmission method for the user equipment to access the packet core network through the at least two wireless networks.
  • the user equipment before the step 201, the user equipment further performs the following steps: Step 200: Establish a bearer of at least two radio access technologies with the PDN gateway.
  • the bearer may be established by using one or more of the following methods: a PDN connection established by the user equipment through the PDN gateway, and a bearer of multiple radio access technologies; A bearer of a different radio access technology is established between the PDN and the PDN, and a part of the PDN established by the user equipment through the PDN gateway is used for the bearer of one radio access technology, and another part of the PDN established by the user equipment through the PDN gateway. Connect bearers for another wireless access technology.
  • the user equipment uses the same PDN address, that is, the IP address, to establish a bearer of multiple radio access technologies connected by the same PDN, thereby avoiding waste of address resources; the user equipment passes the PDN gateway and uses different IP addresses.
  • the address is used to establish the bearer of different radio access technologies corresponding to different PDN connections, and the PDN gateway can know which bearer of the radio access technology is established by the user equipment through the identification information of the user equipment.
  • the following takes the aggregation transmission of UMTS and LTE networks as an example:
  • the LTE network system includes network elements such as a mobility management entity, a service gateway, a PDN gateway, and a policy and charging rule function entity; and the UMTS network system includes a general packet radio service.
  • the technical service supports node, PCRF and PDN gateway and other network elements.
  • the UMTS radio access network is connected to the SGSN through the Iu interface, and the SGSN is connected to the MME and the S-GW through the S3 and S4 interfaces, UMTS wireless.
  • the access network can also be directly connected to the S-GW through the S12 interface; the LTE radio access network is connected to the MME and the S-GW through the control plane interface Sl-mme and the user plane interface Slu, respectively, and the MME and the S-GW pass The control plane interface S11 is connected.
  • the S-GW is connected to the PDN gateway through the S5 interface, and the PDN gateway is connected to the packet core network through the SGi interface, and is also connected to the PCRF through the Gx interface.
  • the structure of the aggregation network is similar to the aggregation network structure of the S3/S4 interface supported by the SGSN, except that in the aggregation network, The SGSN is respectively connected to the MME and the PDN gateway through the Gn interface; and the UMTS radio access network cannot directly connect to the S-GW through the S12 interface. Shown in the aggregation network system.
  • the user equipment has the LTE/UMTS convergence transmission function
  • the network system uses the broadcast message to the user equipment to notify the user equipment that the network system supports the LTE/UMTS network convergence transmission function, and the user can enable the user equipment by using the broadcast message.
  • LTE/UMTS aggregation transmission function and access to the network system.
  • the LTE/UMTS aggregation transmission function of the user equipment can be turned off, that is, only the LTE or UMTS network system is used to transmit the data stream.
  • the user equipment may first access the LTE wireless network to complete the network attachment (Network Attachment). Establish an LTE bearer with the PDN gateway. In this process, the network side can assign an IP address to the user equipment. And the default bearer may be included in the established LTE bearer, or the default bearer and the at least one dedicated bearer, specifically the radio bearer between the user equipment and the base station (eNB) of the LTE wireless network ( Radio Bearer, RB), SI bearer between the eNB and the S-GW, and S5 bearer between the S-GW and the PDN gateway. In this way, the user equipment can send the corresponding data stream to the packet core network through the LTE bearer through the uplink TFT.
  • Network Attachment Network Attachment
  • the user equipment can access the UMTS wireless network by using the IP address assigned by the network side to the user equipment.
  • UMTS bearer between gateways.
  • the established UMTS bearer includes: a packet data protocol context (PDP Context) between the user equipment and the SGSN, or a packet data protocol context or at least one secondary packet data protocol context (Secondary PDP Context), specifically for the user equipment and the UMTS wireless network.
  • PDP Context packet data protocol context
  • Secondary PDP Context secondary packet data protocol context
  • Radio access bearer between (RAN), and Iu bearer between UMTS radio network and SGSN; and the established UMTS bearer also includes default bearer between SGSN and packet core network, or default bearer And at least one dedicated bearer, specifically an S4 bearer between the SGSN and the S-GW, and an S5 bearer between the S-GW and the PDN gateway.
  • the user equipment may first access the UMTS wireless network, and after completing the network attachment, establish a UMTS bearer with the PDN gateway through separate bearer setup signaling; if the user equipment turns on the LTE/UMTS network convergence Function, when the user equipment finds that the current location has LTE network coverage, it accesses the LTE wireless network and establishes an LTE bearer with the PDN gateway.
  • the user equipment can establish the same identity through the PDN gateway and using the same IP address.
  • the LTE and UMTS bearers of the PDN can also be used to establish LTE and UMTS bearers of different PDN connections through the PDN gateway and using different IP addresses. After the LTE and UMTS bearers are established, the PDN gateway can be correspondingly stored. The identification information of the user equipment, and the identification information of the LTE and UMTS bearers, so that the PDN gateway can know which bearers are established by the user equipment.
  • Step 2 The PDN gateway can obtain the location information of the user equipment on the LTE and UMTS wireless networks through the User Location Information (ULI) carried in the bearer management related message.
  • the PDN gateway can create a session request (Create Session Request), bearer resource command (Bearer Resource Command), modify bearer request ( Modify Bearer Request), update bearer response (Update Bearer Response), delete the bearer response (Delete Bearer Response) or
  • the message such as the Delete Session Response message carries the ULI, and obtains the location information of the network where the user equipment is located.
  • the foregoing ULI may be information such as a cell global identifier (CGI), an evolved access network cell global identifier (ECGI), a routing area identifier (RAI), and a tracking area identifier (TAI), where: CGI is an identifier of a UMTS cell where the user equipment is located.
  • CGI is an identifier of a UMTS cell where the user equipment is located.
  • RAI is the identifier of the routing area (RA) of the user equipment in the packet switching (PS) domain of the UMTS system, that is, one or more geographically adjacent cells
  • RAU Routing Area Update
  • TAI is the tracking area of the user equipment in the LTE system.
  • the identifier of the Tracking Area (TA) that is, the area corresponding to one or more geographically adjacent cells.
  • the process of network attaching, establishing, modifying, and deleting LTE and UMTS bearers in the user equipment includes tracking area update (TAU), routing area update (RAU), and networks such as SGSN and S-GW/MME.
  • TAU tracking area update
  • RAU routing area update
  • SGSN and S-GW/MME both send the ULI to the PDN gateway.
  • the SGSN provides CGI and RAI information to the PDN gateway.
  • the S-GW/MME provides the ECGI and TAI information to the PDN gateway. Therefore, the PDN gateway can always know the location of the user equipment in the UMTS and LTE systems. information.
  • Step 2-2 The PDN gateway queries the OSS system for the network load information in the current location of the two networks where the user equipment is located according to the obtained location information CGI and ECGI of the user equipment in UMTS and LTE, and records in the OSS system.
  • Load-related information such as the average number of active users, average traffic, and time in each RA or TA.
  • Step 2-3 Under the existing QoS policy control mechanism, the PDN gateway can obtain the application layer data flow information through the PCRF, and determine the LTE in the uplink and downlink directions according to the network load information, the application layer data flow information, and the preset policy. And the UMTS transmits the TFT of the user equipment and the radio access technology of the corresponding bearer. This can better control the load in both LTE and UMT S systems, maximizing the efficiency and throughput of the two systems.
  • the user equipment and the PDN gateway can know for sure whether the radio access technology corresponding to each bearer established belongs to LTE or UMT S.
  • the TFT and/or PDN can be adopted.
  • the connection is used to distinguish the bearers of different radio access technologies, and specifically, the TFTs corresponding to the LTE and UMTS transport data streams and the radio access technologies of the corresponding bearers are determined, and the uplink or downlink data streams of the same TCP connection are used to use the same radio connection. Transfer into the technology's bearer.
  • Step 2-4 After determining the manner in which the data stream is transmitted in the uplink and downlink directions, the PDN gateway configures the bearer of each radio access technology in the uplink and downlink direction of the user equipment according to the determined manner, and uses the configured bearer to transmit the user. The data flow of the device.
  • Step 3-1 The PDN gateway obtains location information of the user equipment on the LTE and UMTS wireless networks, such as CGI/ECGI, and RAI/TAI, by using the ULI carried in the message related to the bearer management.
  • location information of the user equipment on the LTE and UMTS wireless networks such as CGI/ECGI, and RAI/TAI
  • Step 3-2 The PDN gateway queries the OSS system for the network load information of the current location in the two networks where the user equipment is located, according to the obtained location information of the user equipment in the UMTS and the LTE.
  • Step 3-3 The PDN gateway determines, according to the network load information and the preset policy, a manner of using the LTE and the UMTS to transmit the data stream of the user equipment in the downlink direction, including using LTE and UMTS to transmit the data volume of the downlink data stream, for example, The amount of data, or the proportion of data, etc. This better controls the load in both LTE and UMTS systems, maximizing the efficiency and throughput of the two systems.
  • Step 3-4 The PDN gateway selects the corresponding LTE or UMTS according to the determined data volume or data volume ratio of the downlink data transmission, and transmits the downlink data stream according to the selected LTE or UMTS bearer.
  • the same TFT and/or PDN connection can correspond to bearers of different radio access technologies, and specifically, different packets of the same data stream can be used with different radio accesses.
  • the bearer of the technology is transmitted, and the bearers of different radio access technologies are required to have the same QoS.
  • the user equipment determines by using the reverse synchronization method, that is, the user equipment detects the manner in which the LTE and UMTS transmit data streams in the downlink direction, and determines the uplink direction according to the detection manner.
  • the user equipment transmits the uplink data stream from the corresponding LTE or UMTS wireless network to the packet core network according to the determined manner of transmitting the data stream in the uplink direction.
  • the user equipment may directly initiate an attach procedure to the UMTS (or LTE) network when the PDN gateway receives the UMTS (or LTE) network.
  • the attach request establishes a UMTS (or LTE) bearer with the user equipment.
  • the user equipment can also implement the transition from the current LTE (or UMTS) network transmission state to the aggregation network transmission state by the following steps:
  • Step 4-1 When the PDN gateway detects that the load of the UMTS (or LTE) network where the user equipment is located is within a preset range or other reasons, it is determined that a bearer of the UMTS (or LTE) radio access technology is established with the user equipment;
  • Step 4 The PDN gateway sends a bearer request to the S-GW, and includes the identifier information of the UMTS (or LTE) in the setup bearer request.
  • the cell may be added with the radio access technology in the bearer request message. Type ", and add UMTS (or LTE) identification information to the newly added cell;
  • Step 4-3 The S-GW determines, according to the newly added information in the setup bearer request, which bearer of the radio access technology is established. In this embodiment, it is determined that a bearer of the UMTS (or LTE) radio access technology is established with the user equipment.
  • Step 4_4 The S-GW notifies the user equipment by the MME or the SGSN by forwarding the setup bearer request to the MME or the SGSN, and requests the user equipment to initiate an attach and 7-play establishment process in the UMTS (or LTE) wireless network.
  • the user equipment may directly initiate a detach procedure to the UMTS (or LTE) wireless network, when the PDN gateway receives the UMTS (or LTE)
  • the detachment request of the wireless network exits the bearer of UMTS (or LTE) with the user equipment.
  • the PDN gateway may also send a delete bearer request to the S-GW when the UMTS (or LTE) radio network is overloaded, and include UMTS (or LTE) identifier information in the delete bearer request;
  • the UMTS (or LTE) identification information is notified to the user equipment by the MME or the SGSN, and the user equipment is required to initiate a detach procedure in the UMTS (or LTE) wireless network.
  • a gateway device is provided in this embodiment of the present invention.
  • the gateway device in this embodiment may be a PDN gateway.
  • the structure is shown in FIG. 9 and includes:
  • the location obtaining unit 10 is configured to obtain location information of the user equipment in the at least two wireless networks; where the location information can indicate the current location of the user equipment in the wireless network, and may be identifier information of the current cell of the user equipment, where the user equipment is located. The identification information of the area, or the identification information of the tracking area where the user equipment is located.
  • the load obtaining unit 11 is configured to obtain, according to the location information acquired by the location acquiring unit 10, network load information in a current location of each wireless network where the user equipment is located;
  • a determining unit 12 configured to determine, according to network load information acquired by the load acquiring unit 11 and a preset policy, a manner of transmitting the user equipment data stream by using the at least two radio access technologies; As described in the first embodiment of the method, no mention is made here.
  • the determining unit 12 can determine the manner in which the radio access technology transmits the data stream only by considering the actual load in the network, so that the bearer of the corresponding radio access technology transmits the data stream of the user equipment, and can satisfy the preset policy. Requirements to achieve load balancing of each wireless network;
  • the determining unit 12 can also consider both the load of the actual network and the application layer data of the user equipment.
  • the flow information that is, the other information that the user equipment actually needs to transmit based on the data transmission, determines the manner in which the wireless access technology transmits the data stream, so that the data stream of the user equipment is transmitted through the bearer of the corresponding radio access technology, and the preset policy can be satisfied.
  • the requirements in the user can meet the actual requirements of the user equipment. In this way, load balancing of each wireless network can be achieved, and the quality of service requirements of the user equipment can be met.
  • the manner in which the determining unit 12 determines to transmit the user equipment data stream by using at least two radio access technologies may include: which radio access technology and the radio should be used for each uplink and each downlink data stream of the user equipment. Which bearer of the access technology is transmitted. The data stream.
  • the data transmission unit 13 transmits the data stream according to the determined bearer using each radio access technology, that is, which radio access technology and the radio connection should be adopted for each uplink and/or each downlink data stream of the user equipment. Which bearer of the technology is transmitted for transmission, to correspondingly configure bearers of the radio access technologies in the uplink and/or downlink directions of the user equipment.
  • the PDN gateway transmits the downlink data flow of the user equipment according to the configured bearer of the radio access technology in the downlink direction.
  • the user equipment performs the radio access technology bearer according to the configured uplink direction.
  • the upstream data stream of the user equipment is transmitted.
  • the load obtaining unit 11 obtains the network in the current location of each wireless network where the user equipment is located according to the location information of the user equipment acquired by the location acquiring unit 10 in the at least two wireless networks.
  • Load information, and determining, by the determining unit 12, the manner in which the data stream of the user equipment is transmitted by using the at least two radio access technologies according to the network load information and the preset policy, and finally the data transmission unit 13 transmits the data of the user equipment according to the determined manner. flow.
  • the amount of data transmitted by each radio access technology in the aggregation network is dynamically allocated, so that the resources of each wireless network in the aggregation network are effectively utilized.
  • the gateway device may further include: a plurality of bearer establishing units 14 and an exiting bearer unit 15, wherein:
  • the multiple bearer establishing unit 14 is configured to establish a bearer of the at least two radio access technologies with the user equipment, and correspondingly store the identifier information of the user equipment and the at least two radio access technologies. Identification information;
  • the multiple bearer establishing unit 14 can establish a bearer using any one or more of the following methods: user setting A bearer of a plurality of radio access technologies connected by a PDN through a PDN gateway; a bearer of a different radio access technology is established between the user equipment and the plurality of PDNs, that is, a part of the PDN connection established by the user equipment through the PDN gateway. With one radio access technology bearer, another part of the PDN connection established by the user equipment through the PDN gateway uses another radio access technology bearer.
  • Exiting the bearer unit 15 configured to receive the detach request of the user equipment in any wireless network, or detect that the network load of any wireless network where the user equipment is located exceeds a preset range, and then exit the user equipment.
  • the bearer of any of the wireless networks configured to receive the detach request of the user equipment in any wireless network, or detect that the network load of any wireless network where the user equipment is located exceeds a preset range, and then exit the user equipment.
  • the multiple bearer establishing unit 14 may include a single bearer establishing unit 140, configured to receive an attach request of the user equipment in a second wireless network, or detect that a network load of the second wireless network is within a preset range, And establishing, by the user equipment, a bearer of the second radio access technology; the second radio network is a radio network outside the first radio network where the user equipment is currently located.
  • the bearer of the second radio access technology can be established between the single bearer establishing unit 140 and the user equipment in the multiple bearer establishing unit 14, so that the user equipment can be converted from the single network transmission state to the convergence network.
  • the transmission state can be exited from the aggregation network transmission state to the single network transmission state by exiting the bearer unit 15 and exiting the bearer of the user equipment in any wireless network.
  • the determining unit 12 may specifically include a first determining unit 121, a second determining unit 122, and a third determining unit 123
  • the data transmitting unit 13 may include a wireless selecting unit 132.
  • a wireless routing unit 133 wherein:
  • the first determining unit 121 is configured to determine, in an uplink direction and/or a downlink direction, a service flow template TFT corresponding to the data stream of the user equipment and a radio access technology of the corresponding bearer;
  • the second determining unit 122 is configured to determine, according to the network load information, the service layer data flow information of the user equipment, and the preset policy, that the user equipment transmits the data stream corresponding bearer in the uplink direction and/or the downlink direction.
  • the service flow template TFT and the corresponding bearer wireless access technology are configured to determine, according to the network load information, the service layer data flow information of the user equipment, and the preset policy, that the user equipment transmits the data stream corresponding bearer in the uplink direction and/or the downlink direction.
  • the first determining unit 121 and the second determining unit 122 control the data flow in a semi-static manner, and may use the same wireless data as the uplink or downlink data flow of the same TCP connection.
  • the bearer of the technology is transmitted, which avoids the loss of TCP performance caused by the difference in transmission delay of the same data stream through different radio access technologies.
  • Each of the data streams corresponds to one TFT.
  • the data transmitting unit 13 configures the uplink and downlink directions according to the manner determined by the determining unit 12.
  • the bearer of each radio access technology transmits the data stream in the uplink and downlink directions according to the configured bearer.
  • the third determining unit 123 is configured to determine a data amount or a data amount ratio of the user equipment data stream that is transmitted by using the at least two radio access technologies in the downlink direction;
  • the radio selection unit 132 is configured to select, according to the data amount or the data amount ratio determined by the third determining unit 123 in the determining unit 12, a radio access technology for transmitting the data stream of the user equipment in the downlink direction;
  • the wireless routing unit 133 is configured to transmit the data stream of the user equipment in the downlink direction by the bearer of the radio access technology selected by the radio selecting unit 132.
  • the gateway device performs the control data flow in a dynamic manner, and the third determining unit 123 of the determining unit 12 determines, in a dynamic manner, the data amount or the data amount ratio of the downlink data stream transmitted by using each radio access technology in the downlink direction. Then, the radio selection unit 132 selects the radio access technology corresponding to the downlink data stream according to the data amount or the data amount ratio determined by the third determining unit 123, and the radio routing unit 133 transmits the downlink data according to the selected radio access technology.
  • the same TFT can be configured to correspond to multiple different radio access technology bearers, so that they can carry the same as much as possible, because the same TFT can be used for the bearer of the different radio access technologies in the dynamic mode.
  • the embodiment of the present invention further provides a user equipment, and a schematic structural diagram is shown in FIG.
  • a downlink detecting unit 20 configured to detect a manner in which a user equipment data stream is transmitted by using at least two radio access technologies in a downlink direction;
  • the method for transmitting the user equipment data stream by using at least two radio access technologies in the downlink direction is determined by the packet radio network PDN gateway according to the network load information in the current location of the at least two radio networks where the user equipment is located;
  • the uplink information determining unit 21 may The proportion of data traffic carried by at least two radio access technologies in the row direction, or the preset calculation relationship is used to determine the transmission mode of the user equipment data stream in the uplink direction. For example: use the proportion of data traffic carried by at least two radio access technologies in the downlink direction as the proportion of data traffic carried by at least two radio access technologies in the uplink direction; or multiply the proportion of data traffic using the downlink radio access technology
  • the proportion of the data traffic carried by the at least two radio access technologies in the uplink direction is obtained by using a certain scale factor, wherein the scale factor may be fixedly configured in the user equipment, or may be dynamically configured by the network side through signaling.
  • the data access unit 22 is configured to transmit the uplink data stream of the user equipment from the corresponding wireless network to the packet core network according to the manner determined by the uplink information determining unit 21.
  • the uplink information determining unit 21 determines that the user equipment uses at least two uplink access technologies in the uplink direction according to the manner that the downlink detecting unit 20 detects the downlink data in the downlink direction.
  • the user equipment further includes a bearer establishing unit 23, configured to establish a bearer of at least two radio access technologies by using the PDN gateway.
  • the bearer may be established by using any one or more of the following methods: a PDN connection established by the PDN gateway, and a bearer of multiple radio access technologies;
  • the bearers of different radio access technologies are respectively established between the PDNs, that is, a part of the PDNs established by the bearer establishing unit 23 through the PDN gateway is used for the bearer of one radio access technology, and the bearer establishing unit 23 establishes another through the PDN gateway.
  • a portion of the PDN connection is used for the bearer of another radio access technology.
  • the bearer establishing unit 23 establishes bearers of multiple radio access technologies connected by the same PDN through the PDN gateway and using the same PDN address, that is, the IP address, thus avoiding waste of address resources; the bearer establishing unit 23 passes the PDN gateway.
  • the bearer of the different radio access technologies corresponding to different PDN connections is established by using different IP addresses, and the PDN gateway can know which radio access technologies are established by one user equipment by using the identification information of the user equipment.
  • the embodiment of the invention further provides a wireless network convergence transmission system, and multiple wireless networks in the system A unified packet core network, including a user equipment and a PDN gateway device, wherein the user equipment is as shown in FIG. 12;
  • the PDN gateway device is configured to determine, according to the network load information in the current location of the at least two wireless networks where the user equipment is located, the manner in which the user equipment data stream is transmitted by using at least two radio access technologies in the downlink direction.
  • the network convergence transmission may be performed between the user equipments and the gateways in the embodiment of the present invention in accordance with the methods described in Embodiments 1 and 2, and is not described herein.
  • the embodiments of the present invention provide a wireless network convergence method, system, and device.
  • the PDN gateway first obtains the current location of each wireless network where the user equipment is located according to the location information of the user equipment in the at least two wireless networks.
  • the network load information in the location and determining, according to the network load information and the preset policy, a manner of transmitting the data stream of the user equipment by using the at least two radio access technologies, and finally transmitting the data stream of the user equipment according to the determined manner.
  • the amount of data transmitted by each radio access technology in the aggregation network is reasonably allocated, so that the resources of each wireless network in the aggregation network are effectively utilized.
  • the program may be stored in a computer readable storage medium, and the storage medium may include: ROM, RAM, disk or CD, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线网络汇聚传输的方法、系统及设备,应用于通信技术。该无线网络汇聚传输的方法包括:获取用户设备在至少两个无线网络中的位置信息;根据位置信息相应地获取用户设备所在各个无线网络当前位置中的网络负载信息;根据网络负载信息及预置的策略,确定使用至少两个无线接入技术传输所述用户设备数据流的方式;按照确定的方式传输所述用户设备的数据流。实现了无线网络的汇聚传输。

Description

无线网络汇聚传输方法、 系统及设备
本申请要求于 2011 年 4 月 13 日提交中国专利局、 申请号为 201110092172.2, 发明名称为 "无线网络汇聚传输方法、 系统及设备" 的中国 专利申请优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,特别涉及无线网络汇聚传输方法、系统及设备。 背景技术
在移动通信网络发展过程中, 由于受各种条件制约,新兴的宽带移动通信 网络与现有的网络将长期共同存在, 例如: 第三代移动通信伙伴计划(3rd Generation Partnership Project, 3GPP)组织推出的通用移动通信系统 (Universal Mobile Telecommunications System, UMTS)网络, 向长期演进 ( Long Term Evolution, LTE ) 网络发展的过程中, UMTS和 LTE两个网络将会长期共存。
移动通信网络由无线接入网( Radio Access Network, RAN )和核心网( Core Network, CN )组成, 用户设备( User Equipment, UE )通过空中接口 (简称 空口)经由无线接入网接入到核心网。 空口总是与移动通信网络所釆用的无线 接入技术( Radio Access Technology, RAT ) 密切相关, 为便于描述, 以下将 一种无线接入技术对应的移动通信网络简称为无线网络, UMTS和 LTE就是两 种不同的无线接入技术,它们对应的无线网络分别称为 UMTS网络和 LTE网络。 用户设备在一个无线网络中建立的传输通道统称为无线接入, 其中,一个传输 通道即为该无线接入技术的一条承载(Bearer ), 如 UMTS网络和 LTE网络中的 承载分别称为 UMTS承载和 LTE承载。
在 UMTS网络向 LTE网络演进的过程中, LTE网络上的用户数和业务量则 逐步增加, 相应地用户平均速率就会下降; 而随着 UMTS网络上的用户数和业 务量将逐步减少, UMTS网络的频谱利用率就会下降。 因此,在从 UMTS向 LTE 网络迁移过程中, 需要有效利用 UMTS网络上的频谱资源, 避免在迁移的中后 期, LTE网络频谱上的负载过重造成用户体验的下降。
为了避免上述问题, 釆用无线网络汇聚传输的方法, 即一个用户设备的多 种无线接入的汇聚, 可以使原有的 UMTS资源可以得到充分的利用, 也没有网 络异系统之间的同频干扰和邻频干扰问题。一种无线网络汇聚方法是: 在用户 端引入移动接入路由器 ( Mobile Access Router, MAR ), 该路由器汇聚用户端 不同的无线接入技术链路, 比如汇聚 UMTS和 WLAN等的无线链路, 并负责为 上行方向的各个无线链路分配互联网协议 ( Internet Protocol, IP )分组, 且通 过局域网为各个终端用户提供数据接入;在网络侧引入 MAR服务器代理(MAR 但是这种无线网络汇聚传输方案需要引入 MAR路由器和服务器代理器等 功能实体, 会增加了系统复杂度和成本, 而 3GPP组织提出的另一种无线网络 汇聚方法可以简化网络系统的结构, 具体地: 在用户设备和分组数据网络 ( Packet Data Network, PDN ) 网关上分别配置至少一个路由过滤器(Routing filter ), 配置的路由过滤器中包含源 /目的 IP地址、 源 /目的端口号、 协议类型等 特征, 用于匹配具有相同特征的 IP分组流。 用户设备首先将各无线接入(包括 非 3GPP无线接入、 3GPP无线接入 ) 对应的 IP地址配置为不同的转交地址 ( Care-of Address, CoA ), 各个无线接入都经过 PDN网关, 其中 PDN网关上每 个路由过滤器对应一个转交地址, 这样在下行方向, PDN网关将经过路由过滤 器匹配的 IP分组流路由到相应转交地址对应的无线网络; 同理在上行方向, 用 户设备的路由过滤器进行 IP分组流的分流控制。
上述 3GPP组织提出的无线网络汇聚方法适用于非 3GPP和 3GPP无线接入 的汇聚, 且在无线网络汇聚传输时, 在上下行方向上的无线接入是固定的, 不 能 4艮好的利用各个无线网络的资源。
发明内容
本发明实施例提供无线网络汇聚传输方法、 系统及设备,有效地利用汇聚 网络中各个无线网络的资源。
本发明实施例提供一种无线网络汇聚传输方法, 包括:
获取用户设备在至少两个无线网络中的位置信息;
根据所述位置信息相应地获取所述用户设备所在各个无线网络当前位置 中的网络负载信息;
根据所述网络负载信息及预置的策略,确定使用所述至少两个无线接入技 术传输所述用户设备数据流的方式;
按照所述确定的方式传输所述用户设备的数据流。 本发明实施例提供一种网络汇聚传输方法, 包括:
检测下行方向上使用至少两个无线接入技术传输用户设备数据流的方式; 所述下行方向上使用至少两个无线接入技术传输用户设备数据流的方式是分 组数据网络 PDN网关根据用户设备所在至少两个无线网络当前位置中的网络 负载信息确定的; 输用户设备的数据流的方式;
根据所述确定的方式将所述用户设备的上行数据流从对应的无线网络传 输到分组核心网中。
本发明实施例提供一种网关设备, 包括:
位置获取单元, 用于获取用户设备在至少两个无线网络中的位置信息; 负载获取单元,用于根据所述位置获取单元获取的位置信息相应地获取所 述用户设备所在各个无线网络当前位置中的网络负载信息;
确定单元, 用于根据所述负载获取单元获取的网络负载信息及预置的策 略, 确定使用所述至少两个无线接入技术传输所述用户设备数据流的方式; 据流。
本发明实施例提供一种用户设备, 包括:
下行检测单元,用于检测下行方向上使用至少两个无线接入技术传输用户 设备数据流的方式;所述下行方向上使用至少两个无线接入技术传输用户设备 数据流的方式是分组数据网络 PDN网关根据用户设备所在所述至少两个无线 网络当前位置中的网络负载信息确定的; 上使用所述至少两个无线接入技术传输用户设备数据流的方式;
数据接入单元,用于根据所述上行信息确定单元确定的方式将所述用户设 备的上行数据流从对应的无线网络传输到分组核心网中。
本发明实施例提供一种网络汇聚传输系统, 包括用户设备和 PDN网关设 备, 所述用户设备包括:
下行检测单元,用于检测下行方向上使用至少两个无线接入技术传输用户 设备数据流的方式;所述下行方向上使用至少两个无线接入技术传输用户设备 数据流的方式是分组数据网络 PDN网关根据用户设备所在所述至少两个无线 网络当前位置中的网络负载信息确定的; 上使用所述至少两个无线接入技术传输用户设备数据流的方式;
数据接入单元,用于根据所述上行信息确定单元确定的方式将所述用户设 备的上行数据流从对应的无线网络传输到分组核心网中;
所述 PDN网关设备,用于根据所述用户设备所在至少两个无线网络当前位 置中的网络负载信息确定下行方向上使用至少两个无线接入技术传输用户设 备数据流的方式。
本发明实施例的网络汇聚传输中由 PDN网关先根据用户设备在至少两个 无线网络中的位置信息 ,相应地得到该用户设备所在各个无线网络当前位置中 的网络负载信息,并根据网络负载信息及预置的策略确定使用该至少两个无线 接入技术传输用户设备数据流的方式,最后按照确定的方式传输用户设备的数 据流。这样根据网络实际的负载状况,合理分配汇聚网络中使用各个无线接入 技术传输数据流的数据量,使得汇聚网络中各个无线网络的资源得到有效地利 用。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲, 在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例以提供的一种无线网络汇聚传输方法的流程图; 图 2是本发明实施例中以动态方式控制数据流的结构示意图;
图 3是本发明实施例二提供的另一种无线网络汇聚传输方法的流程图; 图 4a是本发明实施例提供的 UMTS/LTE汇聚网络中 SGSN支持 S3/S4接口 的结构示意图;
图 4b是本发明实施例提供的 UMTS/LTE汇聚网络中 SGSN不支持 S3/S4接 口的结构示意图; 图 5是本发明实施例提供的建立用户设备在 UMTS和 LTE网络中的承载的 结构示意图;
图 6是本发明实施例提供的以半静态方式控制 UMTS和 LTE承载传输用户 设备的数据流的流程图;
图 7是本发明实施例提供的以动态方式控制 UMTS和 LTE承载传输用户设 备的数据流的流程图;
图 8是本发明实施例提供的从当前 LTE (或 UMTS )网络传输状态转换到汇 聚网络传输状态的流程图;
图 9是本发明实施例提供的一种网关设备的结构示意图;
图 10是本发明实施例提供的另一种网关设备的结构示意图;
图 11是本发明实施例提供的另一种网关设备的结构示意图;
图 12是本发明实施例提供的一种用户设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
方法实施例一:
一种无线网络汇聚传输方法,主要是对釆用统一分组核心网的不同无线接 入的汇聚, 比如对 UMTS和 LTE无线接入的汇聚, 且用户设备可以从至少两个 不同的无线空口接入到分组核心网中,本实施例的方法是统一的分组核心网与 外部分组网络的网关, 即 PDN网关所执行的方法, 流程图如图 1所示, 包括: 步骤 101 , 获取用户设备在至少两个无线网络中的位置信息。
本实施例中用户设备通过至少两个无线空口接入到分组核心网中,即用户 设备与 PDN网关之间建立了至少两种无线接入技术的承载。这里位置信息能指 示用户设备在无线网络中的当前位置, 可以是用户设备当前小区的标识信息, 用户设备所在路由区的标识信息, 或用户设备所在跟踪区的标识信息等。
当用户设备在进行无线网络附着、建立、修改或删除无线网络承载的过程 中, 接入服务网关都会将用户设备当前的位置信息发送给 PDN网关, 其中, 接 入服务网关是用户设备接入到分组核心网的服务网络节点, 如 UMTS网络中的 通用分组无线服务技术的服务支持节点( Serving GPRS Support Node, SGSN ), LTE网络中的移动性管理实体 ( Mobility Management Entity, MME )和服务网 关 ( Serving Gateway, S-GW )等设备。 因此在获取用户设备的位置信息时, PDN网关可以从接入服务网关获取。
步骤 102, 根据位置信息相应地获取用户设备所在各个无线网络当前位置 中的网络负载信息。
这里用户设备所在无线网络当前位置中的网络负载信息可以是用户设备 当前所在无线网络当前位置的活跃用户数, 网络负载率,数据吞吐量或数据传 输速度等信息。
在移动通信系统中, 运营支撑系统(Operation Support System, OSS ) 一个综合的业务运营和管理平台, 在 OSS系统中储存着关于网络的信息, 包括 网络负载信息在内的各种状态信息, PDN网关可以向 OSS系统查询该用户设备 位置信息所指示的相应区域网络的负载信息。
步骤 103 , 根据网络负载信息及预置的策略, 确定使用至少两个无线接入 技术传输该用户设备数据流的方式。
这里预置的策略可以包括以下信息中的一个或多个:第一无线网络与第二 无线网络的流量比例因子为预置的值;同一个数据流的上下行使用同一个无线 接入技术来传输, 比如同一个传输控制协议(Transmission Control Protocol, TCP )连接的上下行数据使用同一个无线接入技术来传输; 第一无线网络相应 区域的网络用户数小于预置的值;用户设备的上行数据流优先使用第二无线接 入技术传输, 并在第二无线网络的数据传输速度小于预置的值时,使用第一无 线接入技术传输下行数据流等等。
则可以理解的是, PDN网关可以只考虑网络中实际的负载来确定无线接入 技术传输数据流的方式,使得通过相应无线接入技术的承载传输用户设备的数 据流后, 能满足预置策略中的要求, 从而实现各无线网络的负载平衡;
PDN网关还可以既考虑实际网络的负载,又考虑用户设备的应用层数据流 信息,即用户设备实际基于数据传输的要求等其它信息来确定无线接入技术传 输数据流的方式, 使得通过相应无线接入技术的承载传输用户设备的数据流 后, 既能满足预置策略中的要求, 又可以满足该用户设备的实际要求。 这样既 能实现各无线网络的负载平衡, 又可以满足该用户设备的服务质量要求。
其中 PDN网关确定的使用至少两个无线接入技术传输该用户设备数据流 的方式可以包括:该用户设备的每一个上行和每一个下行数据流应通过哪一种 无线接入技术以及该无线接入技术的哪一个承载来传输。
而用户设备的应用层数据流信息是指将要开始传输的上行和下行数据流 的最大允许的传输速率、 总的数据量和最大允许的时延等信息。 用户设备可以 在会话 ( Session )建立时通过应用层消息获得应用层数据流信息, 如通过会话 发起协议 ( Session Initiation Protocol , SIP ) 消息、 文件传输协议 ( File Transmission Protocol , FTP ) 和超文本传输协议 ( Hypertext Transmission Protocol, HTTP )消息等获得应用层数据流信息; PDN网关可以通过向策略和 计费规则功能(Policy and Charging Rule Function, PCRF ) 实体查询, 或者利 用 PDN网关内置的深度分组检测( Deep Packet Inspection, DPI )功能获取该用 户设备的应用层数据流信息。
步骤 104, 按照确定的方式传输用户设备的数据流。
需要说明的是, PDN网关会根据确定的使用各个无线接入技术的承载传输 数据流的方式, 即用户设备的每一个上行和 /或每一个下行数据流应通过哪一 种无线接入技术以及该无线接入技术的哪一个承载来传输,来相应地配置该用 户设备的上行和 /或下行方向上的各无线接入技术的承载。 这样在下行方向, PDN网关按照配置的下行方向上无线接入技术的承载来传输该用户设备的下 行方向的数据流, 在上行方向, 用户设备按照配置的上行方向上无线接入技术 的承载来传输该用户设备的上行方向的数据流。
可见,本发明实施例的无线网络汇聚传输中由 PDN网关先根据用户设备在 至少两个无线网络中的位置信息,相应地得到该用户设备所在各个无线网络当 前位置中的网络负载信息,并根据网络负载信息及预置的策略确定使用该至少 两个无线接入技术传输用户设备数据流的方式,最后按照确定的方式传输用户 设备的数据流。这样根据网络实际的负载状况,合理分配汇聚网络中使用各个 无线接入技术传输的数据量,使得汇聚网络中各个无线网络的资源得到有效地 利用。 本发明实施例的无线网络汇聚传输方法是在用户设备通过至少两个无线 空口接入分组核心网的传输方法, 在一个具体的实施例中, 在上述步骤 101之 前, PDN网关还执行如下步骤:
步骤 100, 与用户设备之间建立至少两种无线接入技术的承载, 并对应地 储存用户设备的标识信息与至少两种无线接入技术的承载的标识信息。
这里建立无线接入技术的承载是指用户设备附着到该无线网络后,建立的 用户设备与分组核心网之间基于该无线接入技术的数据传输通道, 具体地, 可 以使用下面任一种或多种方式来建立承载:用户设备通过 PDN网关建立的一个 PDN连接的多种无线接入技术的承载;用户设备和多个 PDN之间分别建立不同 的无线接入技术的承载,即用户设备通过 PDN网关建立的一部分 PDN连接釆用 一种无线接入技术的承载, 而用户设备通过该 PDN网关建立的另一部分 PDN 连接釆用另一种无线接入技术的承载。
需要说明的是, 本实施实例中在建立承载的过程中,对于同一个用户设备 的多种无线接入技术的承载,在建立一个 PDN连接时使用同一个 PDN地址即 IP 地址, 避免了地址资源的浪费。 这样在建立承载之后, PDN网关就可以通过半静态方式和 /或动态方式控 制釆用各无线接入技术传输数据流的分配, 具体地:
( 1 )通过半静态方式控制数据流: 在控制数据流时, 将用户设备与 PDN 网关之间建立的每个无线接入技术的承载通过业务流模板 (traffic flow template, TFT )和 /或 PDN连接来区分。
本实施例中, 可以用 PDN连接来区分不同无线接入技术的承载, 具体地, 当用户设备通过 PDN网关建立多个 PDN连接时,可以配置用户设备与不同 PDN 连接釆用不同的无线接入技术, 例如用户设备通过 PDN网关有 5个 PDN连接, 其中用户设备的 3个 PDN连接釆用无线接入技术 A, 而用户设备的另 2个 PDN连 接釆用无线接入技术 B。
不同无线接入技术的承载还可以通过业务流模板来区分,为了从应用层数 据分组中区分出某条承载传输的数据流, 每条承载对应一个 TFT, 而 TFT是一 组分组过滤器(packet filter ), 每个分组过滤器可以包含源 /目的 IP地址、 协议 类型、 端口范围等特征, 用于匹配和分离出具有相同特征的数据流。 具体地, 当用户设备通过 PDN网关建立的同一个 PDN连接中有多个数据流时,可以配置 该用户设备与该 PDN连接的不同数据流釆用不同的无线接入技术来传输,由于 这些数据流对应的 TFT不同, 因此可以从应用层数据分组中分别加以区分, 并 通过相应的无线接入技术的 7 载来传输。
无论是通过 PDN连接还是通过 TFT来区分不同无线接入技术的承载,
PDN网关都可以在执行上述步骤 103时, 以半静态的方式来控制通过各无线接 入技术的承载传输数据流, 具体地可以通过如下步骤 A1或 B 1来实现:
A1 : 只考虑步骤 102中获得的网络负载信息及预置的策略, 来确定上行方 向和 /或下行方向上传输用户设备的数据流对应承载的业务流模板 TFT和对应 承载的无线接入技术;
由于在承载建立的过程中,用户设备会在承载请求中携带该承载对应的无 线接入技术的标识,则 PDN网关知道与用户设备之间建立的承载所对应的无线 接入技术; 且用户设备也知道建立的承载所对应的无线接入技术。
则 PDN网关可以根据网络实际的负载和预置的策略确定传输上行和 /或下 行数据流使用的无线接入技术的方式,使得通过相应无线接入技术的承载传输 用户设备的数据流后, 能满足预置策略中的要求,从而实现各无线网络的负载 平衡, 其中预置的策略如上述步骤 103步骤中所述, 在此不进行赘述。
PDN网关具体确定的数据流传输方式可以包括: 上下行方向传输的数据 流, 其中每个数据流对应一个 TFT; 和传输数据流釆用的无线接入技术的承载 等等。
B1 : 根据网络负载信息、 用户设备业务层的数据流信息及预置的策略, 确定在上行方向和 /或下行方向上传输该用户设备的数据流对应承载的业务流 模板和对应承载的无线接入技术。
可以理解, 在确定上行和 /或下行方向上用户设备传输数据流的方式时, 可以根据当前网络中实际的负载信息及用户设备基于数据传输的要求,来确定 传输数据流的方式,使得通过相应无线接入技术的承载传输用户设备的数据流 后, 既能满足预置策略中的要求, 又可以满足该用户设备的实际要求, 这样既 能实现各无线网络的负载平衡, 又可以满足该用户设备的服务质量要求。其中 预置的策略如上述步骤 103步骤中所述, 在此不进行赞述。 PDN网关具体确定的数据流传输方式可以包括: 上下行方向传输的数据 流, 其中每个数据流对应一个 TFT; 和传输数据流釆用的无线接入技术的承载 等等。
釆用半静态方式确定传输数据流的方式后, 在执行上述步骤 104中的数据 流传输时, 在下行方向, PDN网关按照配置的下行方向上无线接入技术的承载 来传输该用户设备的下行方向的数据流; 在上行方向, 用户设备按照配置的上 行方向上无线接入技术的承载来传输该用户设备的上行方向的数据流。
需要说明的是,在通过半静态方式进行控制数据流时,尽量使得同一数据 流, 即同一 TCP连接的上行或下行的数据流釆用同一无线接入技术的承载来传 输,这样会避免同一数据流因经由不同的无线接入技术来传输时延差别较大而 造成的 TCP性能损失。
( 2 )通过动态方式控制数据流: 在动态方式下, 用户设备通过 PDN网关 建立的同一个 PDN连接所对应的不同无线接入技术的承载可以釆用相同的 TFT。
通过动态方式控制数据流时, PDN网关只确定下行方向的数据流传输方 式, 而上行方向的数据流传输方式由用户设备来进行确定(在后面的实施例二 中说明)。 则在确定下行方向使用至少两个无线接入技术传输用户设备数据流 的方式时, PDN网关可以确定下行方向上釆用各无线接入技术的承载传输的用 户设备数据流的数据量, 或数据量的比例等; 则在执行上述步骤 104时, 可以 通过如下步骤来实现:
A2: 按照确定的数据量或数据量比例选择传输下行方向上用户设备的数 据流的无线接入技术;
B2: 用选择的无线接入技术的承载传输相应的下行方向上用户设备的数 据流。
可以理解, PDN网关在选择无线接入技术时, 需要使得下行方向上使用各 无线接入技术的承载传输用户设备数据流的数据量或数据量比例符合 PDN网 关按照网络负载信息确定的数据量或数据量比例。
参考图 2所示, PDN网关中的 TFT1对应匹配和分离用户设备 1的下行数据 流, 而 TFT2对应匹配和分离用户设备 2的下行数据流, 通过动态方式确定使用 无线接入技术 1和 /或 2传输下行数据流的数据量后, 由无线接入技术选择功能 实体根据确定的传输下行数据流的数据量,选择传输下行数据流的无线接入技 术; 并按照选择的无线接入技术 1和 /或 2的承载来传输相应的用户设备的下行 数据流。
需要说明的是, 在通过动态方式进行控制数据流时, 可以使同一数据流, 即同一 TCP连接的上行或下行的数据流釆用不同无线接入技术的承载来传输, 这样可以动态地灵活控制用户设备在不同无线接入网络中的流量。
由于在动态方式下的不同无线接入技术的承载可以釆用同一个 TFT, 则 PDN网关可以配置同一个 TFT对应多个不同无线接入技术承载,使得它们尽量 承载相同 QoS需求的数据流, 从而避免同一数据流, 即同一 TCP连接的上行或 下行数据流经由不同无线接入技术的承载来传输时,传输时延差别过大而造成 的 TCP性能损失。 本发明实施例中用户设备通过至少两个无线空口接入到分组核心网中,此 时用户设备处于汇聚网络传输状态; 用户设备可以退出其中的无线网络,使得 只通过一个无线空口接入到分组核心网中,此时用户设备处于单一网络传输状 态。
在另一个具体的实施例中,用户设备可以在单一网络传输状态与汇聚网络 传输状态之间进行转换, 具体地:
( 1 )假设用户设备当前所在第一无线网络中, 则用户设备可以在如下几 种情况下,从单一网络传输状态转换到汇聚网络传输状态, 即用户设备再附着 到除第一无线网络之外的其他无线网络中, 比如第二无线网络中:
al、 用户设备自动开启了网络汇聚传输的功能;
bl、用户设备并未关闭网络汇聚传输的功能, 由于网络覆盖等原因用户设 备只由其中一个无线接入技术 1承载数据流, 当用户设备又重新进入其他无线 网络的覆盖区域;
cl、 用户设备并未关闭网络汇聚传输的功能, 由于其中一个无线网络 1的 网络负载过重 (或其它原因) 而退出该无线网络 1 , 当用户设备退出该无线网 络 1的原因已经消除, 需要重新建立该无线网络 1的承载。
对于上述情况 al和 bl , 用户设备直接发起到第二无线网络的附着请求, 当 分组核心网接收到该附着请求后,则在 PDN网关与用户设备之间建立起第二无 线接入技术的承载; 对于上述情况 cl , 需要 PDN网关检测第二网络中的实际状 况, 比如检测第二无线网络的网络负载是否在预置的范围内, 如果是, 则与用 户设备之间建立第二无线接入技术的承载。
( 2 )用户设备可以在如下几种情况下, 从汇聚网络传输状态转换到单一 网络传输的状态:
a2、 用户设备自动关闭了网络汇聚传输的功能;
b2、 用户设备的移动导致其离开了任一无线网络的覆盖区;
c2、 因任一无线网络的条件异常, 或用户设备进入任一无线网络的盲区等 原因, 导致用户设备不能使用该无线网络通信;
d2、 因用户设备所在任一无线网络的网络负载过重等原因, 用户设备需要 退出该无线网络。
对于上述情况 a2, 用户设备直接发起到任一无线网络的去附着请求; 对于 上述情况 b2, 用户设备在检测到某个无线网络的信号强度小于预置的门限值, 则发起到该无线网络的去附着请求;对于上述情况 c2可以由其中一个无线网络 发起用户设备到另一无线网络的去附着请求。 当 PDN网关接收到该去附着请 求, 则退出用户设备在另一无线网络上的承载;
对于上述情况 d2, PDN网关可以检测用户设备所在任一无线网络的网络负 载是否超过预置的范围, 如果是, 则退出用户设备在该无线网络中的承载。 方法实施例二:
一种无线网络汇聚传输方法,主要是对釆用统一的分组核心网的不同无线 网络的汇聚, 比如对 UMTS和 LTE无线网络的汇聚, 且用户设备可以从至少两 个不同的无线空口接入到分组核心网中,本实施例的方法是用户设备所执行的 方法, 流程图如图 3所示, 包括:
步骤 201 , 检测下行方向上使用至少两个无线接入技术传输用户设备的数 据流的方式;
可以理解,本实施例中是以动态方式控制使用不同无线接入技术传输上行 数据流的, 由于用户设备并不能获得相关的网络负载状况, 因此用户设备在进 行上行数据流的动态流量控制时, 可以釆用反向同步的方法, 即检测下行方向 上使用至少两个无线接入技术传输数据流的方式, 比如, 用户设备接收的下行 数据流中无线接入技术的承载等等。
这里下行方向上使用至少两个无线接入技术传输用户设备数据流的方式 是 PDN网关以动态方式,并根据用户设备所在至少两个无线网络当前位置的网 络负载信息确定的, 具体的确定方法如实施例一中所示, 在此不再赘述。 输用户设备数据流的方式;
在确定上行方向上数据流的传输方式时,用户设备可以根据下行方向上使 用至少两个无线接入技术承载的数据流量比例,或按照预置计算关系来确定上 行方向上用户设备数据流的传输方式。 比如: 用下行方向上使用至少两个无线 接入技术承载的数据流量比例作为上行方向上使用至少两个无线接入技术承 载的数据流量比例;或用下行方向无线接入技术的数据流量比例乘以某个比例 因子得到上行方向上使用至少两个无线接入技术承载的数据流量比例,其中比 例因子可以是固定配置在用户设备内, 也可以由网络侧通过信令动态配置的。
需要说明的是,由于高速分组接入技术( High Speed Packet Access, HSPA ) 的上行传输性能较差, 传输效率较低, 用户设备尽量不分配 HSPA来传输上行 方向的用户数据, 而分配 HSPA来传输空口必须的 L1/L2/L3控制信令等, 这样 在进行上行数据流的传输时, 也可以降低用户设备的功耗。
步骤 203 , 根据确定的方式将用户设备的上行数据流从对应的无线网络传 输到分组核心网中。
可见,本发明实施例的无线网络汇聚传输中由用户设备根据检测到的下行 方向上使用至少两个无线接入技术传输数据流的方式,确定上行方向上用户设 备使用至少两个无线接入技术传输数据流的方式,并根据确定的方式将上行数 据流从对应的无线网络传输到分组核心网中。由于下行方向上该用户设备的数 据流的信息是根据网络实际的负载状况合理分配的,使得汇聚网络中各个无线 网络的资源得到有效地利用。
本发明实施例的无线网络汇聚传输方法是在用户设备通过至少两个无线 网络接入分组核心网的传输方法, 在一个具体的实施例中, 在上述步骤 201之 前, 用户设备还执行如下步骤: 步骤 200 , 与 PDN网关之间建立至少两种无线接入技术的承载。 用户设备在建立与 PDN网关之间的承载时,可以使用下面任一种或多种方 式来建立承载:用户设备通过 PDN网关建立的一个 PDN连接釆用多种无线接入 技术的承载; 用户设备和多个 PDN之间分别建立不同的无线接入技术的承载, 即用户设备通过 PDN网关建立的一部分 PDN连接用于一种无线接入技术的承 载,而用户设备通过 PDN网关建立的另一部分 PDN连接用于另一种无线接入技 术的承载。
本实施例中用户设备通过 PDN网关且使用同一个 PDN地址即 IP地址,建立 同一 PDN连接的多种无线接入技术的承载, 这样避免了地址资源的浪费; 用户 设备通过 PDN网关且使用不同 IP地址,分别建立不同 PDN连接对应的不同无线 接入技术的承载,而 PDN网关通过用户设备的标识信息就可以知道一个用户设 备建立了哪些无线接入技术的承载。 以下以 UMTS和 LTE网络的汇聚传输为例来说明:
在 UMTS和 LTE汇聚网络中有统一的分组核心网, 其中 LTE网络系统包括 移动性管理实体、服务网关、 PDN网关和策略和计费规则功能实体等网元; 而 UMTS网络系统包括通用分组无线服务技术的服务支持节点、 PCRF和 PDN网 关等网元。
参考图 4a所示, 在 UMTS系统的 SGSN支持 S3/S4接口的情况下, UMTS无 线接入网通过 Iu接口与 SGSN连接, 而 SGSN通过 S3和 S4接口与分别 MME和 S-GW相连, UMTS无线接入网还可以通过 S12接口直接和 S-GW相连; LTE无 线接入网通过控制面接口 Sl-mme和用户面接口 Slu分别和 MME和 S-GW相连, MME和 S-GW之间则通过控制面接口 S11相连。 S-GW通过 S5接口与 PDN网关相 连 , PDN网关则通过 SGi接口与分组核心网连接 , 同时通过 Gx接口与 PCRF相 连。
参考图 4b所示, 在 UMTS系统的 SGSN不支持 S3/S4接口的情况下, 汇聚网 络的结构与 SGSN支持 S3/S4接口的汇聚网络结构相似,不同的是在该汇聚网络 中 , , 此时 SGSN通过 Gn接口分别与 MME和 PDN网关相连; 且 UMTS无线接入 网不能通过 S12接口直接和 S-GW相连。 示的汇聚网络系统中。且本实施例中,用户设备具有 LTE/UMTS汇聚传输功能, 网络系统利用广播消息给用户设备,通知用户设备该网络系统支持 LTE/UMTS 网络汇聚传输功能, 用户可以通过该广播消息开启用户设备的 LTE/UMTS汇聚 传输功能, 并接入网络系统中。 如果为了节省电量, 可以关闭用户设备的 LTE/UMTS汇聚传输功能, 即只使用 LTE或 UMTS网络系统来传输数据流。
具体地, 对于 UMTS系统的 SGSN支持 S3/S4接口的情况:
( 1 )建立用户设备与分组核心网络侧之间关于 UMTS和 LTE的承载: 参考图 5所示, 在一种情况下, 用户设备可以先接入 LTE无线网络, 完成 网络附着(Network Attachment )从而建立与 PDN网关的 LTE承载, 在这个过程 中网络侧可以为用户设备分配一个 IP地址。 且在建立的 LTE承载中可以包括缺 省 载 ( default bearer ) , 或缺省 载和至少一条专用 载 ( dedicated bearer ) , 具体为用户设备与 LTE无线网络的基站( eNB )之间的无线承载( Radio Bearer, RB )、 eNB与 S-GW之间的 SI承载和 S-GW与 PDN网关之间的 S5承载。 这样用户 设备可以通过上行 TFT将对应的数据流通过 LTE的承载发送到分组核心网。
如果用户设备开启了 LTE/UMTS网络汇聚功能, 当用户设备发现当前位置 有 UMTS的网络覆盖, 可以使用之前网络侧为用户设备分配的 IP地址接入 UMTS无线网络, 在完成网络附着后建立与 PDN网关之间的 UMTS承载。 在建 立的 UMTS承载中包括: 用户设备与 SGSN之间分组数据协议上下文 (PDP Context ) , 或分组数据协议上下文或至少一条辅助分组数据协议上下文 ( Secondary PDP Context ) , 具体为用户设备和 UMTS无线网络( RAN )之间的 无线接入承载(RAB ), 以及 UMTS无线网络与 SGSN之间的 Iu承载; 且建立的 UMTS承载中还包括 SGSN到分组核心网之间的缺省承载, 或缺省承载和至少 一条专用承载, 具体为 SGSN与 S-GW之间的 S4承载, 和 S-GW与 PDN网关之间 的 S5承载。
在另一种情况下, 用户设备可以先接入 UMTS无线网络, 在完成网络附着 后, 通过单独的承载建立信令建立与 PDN网关之间的 UMTS承载; 如果用户设 备开启了 LTE/UMTS网络汇聚功能, 当用户设备发现当前位置有 LTE的网络覆 盖, 就会接入 LTE无线网络, 建立与 PDN网关之间的 LTE承载。
需要说明的是,用户设备可以通过 PDN网关且使用同一个 IP地址建立同一 个 PDN的 LTE和 UMTS的承载, 也可以通过 PDN网关且使用不同的 IP地址, 分 别建立不同 PDN连接的 LTE和 UMTS的承载; 且在建立 LTE和 UMTS的承载后 , 在 PDN网关可以对应地储存用户设备的标识信息, 与 LTE和 UMTS承载的标识 信息, 这样 PDN网关就可以知道该用户设备建立了哪些承载。
( 2 )以半静态方式控制 UMTS和 LTE承载来传输用户设备的数据流, 具体 通过如下步骤来实现, 流程图如图 6所示:
步骤 2- 1、 PDN网关可以通过与承载管理相关的消息中携带的用户位置信 息 ( User Location Information, ULI ), 得到用户设备在 LTE和 UMTS无线网络 的位置信息。 比如 PDN网关可以从创建会话请求(Create Session Request ), 承 载资源命令 ( Bearer Resource Command )、 修改承载请求 ( Modify Bearer Request ), 更新 载请求 (Update Bearer Response ), 删除 载响应 (Delete Bearer Response )或删除会话请求( Delete Session Response )等消息中携带 ULI, 得到用户设备所在网络的位置信息。
上述的 ULI可以为小区全球标识 (CGI )、 演进接入网络小区全球标识 ( ECGI )、 路由区标识(RAI )和跟踪区标识( TAI )等信息, 其中: CGI为用 户设备所在 UMTS小区的标识; ECGI为用户设备所在 LTE小区的标识; RAI为 用户设备在 UMTS系统的分组交换(PS )域中路由区 (Routing Area, RA ) 的 标识, 即一个或多个地理上相邻的小区对应的区域, 当用户设备的 RA发生变 化时, 用户设备会发起路由区更新 (RAU )过程, 保证 SGSN能够确切知道该 用户设备当前所在的新的路由区位置; TAI为用户设备在 LTE系统的跟踪区 ( Tracking Area, TA ) 的标识, 即一个或多个地理上相邻的小区对应的区域, 当用户设备的 TA发生变化时, 用户设备会发起跟踪区更新 (TAU )过程, 保 证 MME/S-GW能够确切知道该用户设备当前所在的新的跟踪区位置。
可以理解, 在用户设备进行网络附着、 建立、 修改和删除 LTE和 UMTS承 载的过程, 包括了用户设备发生跟踪区更新 (TAU )、 路由区更新 (RAU )和 SGSN与 S-GW/MME等网络节点的重定位等移动性管理过程中, SGSN与 S-GW/MME都会将 ULI发送给 PDN网关。 在 UMTS系统中 SGSN会向 PDN网关 提供 CGI和 RAI信息, 而 LTE系统中 S-GW/MME会向 PDN网关提供 ECGI和 TAI 信息, 因此 PDN网关总能够获知用户设备在 UMTS和 LTE系统中的位置信息。 步骤 2-2、 PDN网关根据得到的用户设备在 UMTS和 LTE中的位置信息 CGI 和 ECGI , 向 OSS系统查询该用户设备所在的这两个网络当前位置中的网络负 载信息, 在 OSS系统中记录着每个 RA或 TA中一段时间内的平均活跃用户数、 平均业务量等负载相关的信息。
步骤 2-3、 PDN网关在现有 QoS策略控制机制下, 能够通过 PCRF获得应用 层数据流信息, 并根据网络负载信息、 该应用层数据流信息及预置的策略, 确 定上下行方向上使用 LTE和 UMTS传输该用户设备的数据流对应承载的 TFT和 对应承载的无线接入技术。 这样能较好地控制 LTE和 UMT S两个系统中的负荷 量, 最大限度地提高两个系统的使用效率和吞吐量。
可以理解,用户设备和 PDN网关可以确切地知道建立的每个承载所对应的 无线接入技术是属于 LTE还是 UMT S, 在以半静态方式进行数据流的确定时, 可以通过 TFT和 /或 PDN连接来区分不同无线接入技术的承载,具体可以确定使 用 LTE和 UMTS传输数据流对应承载的 TFT和对应承载的无线接入技术, 且尽 量使得同一 TCP连接的上行或下行数据流使用同一无线接入技术的承载来传 输。
步骤 2-4、 在确定上下行方向传输数据流的方式后, PDN网关则根据确定 的方式来相应配置该用户设备的上下行方向上各无线接入技术的承载,并使用 配置的承载来传输用户设备的数据流。
( 3 ) 以动态方式控制使用 UMTS和 LTE的承载来传输的用户设备数据流, 具体可以通过如下步骤来实现, 流程图如图 7所示:
步骤 3-1、 PDN网关通过与承载管理相关的消息中携带的 ULI,得到用户设 备在 LTE和 UMTS无线网络的位置信息, 比如 CGI/ECGI, 和 RAI/TAI等信息。
步骤 3-2、 PDN网关根据得到的用户设备在在 UMTS和 LTE中的位置信息, 向 OSS系统查询该用户设备所在的这两个网络中当前位置的网络负载信息。
步骤 3-3、 PDN网关根据网络负载信息及预置的策略, 确定下行方向上使 用 LTE和 UMTS传输该用户设备的数据流的方式,包括使用 LTE和 UMTS传输下 行数据流的数据量, 比如具体的数据量, 或数据量的比例等。 这样较好地控制 LTE和 UMTS两个系统中的负荷量, 最大限度地提高两个系统的使用效率和吞 吐量。 步骤 3-4、 PDN网关则根据确定的下行方向传输数据流的数据量或数据量 比例选择相应的 LTE或 UMTS ,并将下行数据流按照选择的 LTE或 UMTS的承载 来传输下行数据流。
可以理解, 以动态方式进行数据流传输方式的确定时, 同一个 TFT和 /或 PDN连接能对应不同无线接入技术的承载, 具体地, 可以使得同一数据流的不 同分组釆用不同无线接入技术的承载进行传输,且尽量使得不同无线接入技术 的承载对应 QoS相同。
而对于上行方向数据流传输方式的确定,由用户设备通过反向同步的方法 进行确定, 即用户设备检测下行方向上使用 LTE和 UMTS传输数据流的方式, 并根据检测的方式确定上行方向上使用 LTE和 UMTS传输数据流的方式, 最后 用户设备根据确定的上行方向传输数据流的方式, 将上行数据流从对应的 LTE 或 UMTS无线网络传输到分组核心网中。
( 4 ) 汇聚网络传输状态与单一网络传输状态之间的转换:
当用户设备从 LTE (或 UMTS ) 网络传输状态转换到汇聚网络传输状态的 过程中, 用户设备可以直接发起到 UMTS (或 LTE ) 网络的附着过程, 当 PDN 网关接收到 UMTS (或 LTE )网络的附着请求,则建立与用户设备之间的 UMTS (或 LTE )承载。
参考图 8所示,用户设备也可以通过如下步骤来实现从当前 LTE(或 UMTS ) 网络传输状态转换到汇聚网络传输状态:
步骤 4-1、 当 PDN网关检测到用户设备所在 UMTS (或 LTE )网络的负载在 预置的范围内或其他原因, 决定与用户设备之间建立 UMTS (或 LTE )无线接 入技术的承载;
步骤 4-2、 PDN网关发送建立承载请求给 S-GW, 在建立承载请求中包含 UMTS (或 LTE ) 的标识信息, 具体地, 可以在建立承载请求消息中增加信元 "无线接入技术的类型", 并在该新增的信元中添加 UMTS (或 LTE )的标识信 息;
步骤 4-3、 S-GW根据建立承载请求中新增的信息判断建立哪个无线接入技 术的承载, 本实施例中判断与用户设备之间建立 UMTS (或 LTE )无线接入技 术的承载; 步骤 4_4、 S-GW通过将建立承载请求转交给 MME或 SGSN, 由 MME或 SGSN通知用户设备, 要求该用户设备发起在 UMTS (或 LTE )无线网络的附着 和 7 载建立过程。
当用户设备从汇聚网络传输状态转换到 LTE (或 UMTS ) 网络传输状态的 过程中, 用户设备可以直接发起到 UMTS (或 LTE )无线网络的去附着过程, 当 PDN网关接收到 UMTS (或 LTE )无线网络的去附着请求, 则退出与用户设 备之间的 UMTS (或 LTE ) 的承载。
也可以在 PDN网关检测到 UMTS (或 LTE )无线网络的负载过重时, 发送 删除承载请求给 S-GW,且在删除承载请求中包含 UMTS (或 LTE )的标识信息; 则 S-GW根据 UMTS (或 LTE ) 的标识信息, 通过 MME或 SGSN通知用户设备, 要求该用户设备发起在 UMTS (或 LTE )无线网络的去附着过程。
对于 UMTS系统的 SGSN不支持 S3/S4接口的情况下无线网络汇聚传输方 法, 与 UMTS系统的 SGSN支持 S3/S4接口的情况下无线网络汇聚传输方法类 似, 在此不进行赘述。 本发明实施例提供的一种网关设备, 本实施例的网关设备可以为 PDN网 关, 结构示意图如图 9所示, 包括:
位置获取单元 10, 用于获取用户设备在至少两个无线网络中的位置信息; 这里位置信息能指示用户设备在无线网络中的当前位置,可以是用户设备 当前小区的标识信息, 用户设备所在路由区的标识信息, 或用户设备所在跟踪 区的标识信息等。
负载获取单元 11 ,用于根据所述位置获取单元 10获取的位置信息相应地获 取所述用户设备所在各个无线网络当前位置中的网络负载信息;
确定单元 12 ,用于根据所述负载获取单元 11获取的网络负载信息及预置的 策略, 确定使用所述至少两个无线接入技术传输所述用户设备数据流的方式; 这里预置的策略如方法实施例一中所述, 在此不进行赞述。
可以理解 ,确定单元 12可以只考虑网络中实际的负载来确定无线接入技术 传输数据流的方式,使得通过相应无线接入技术的承载传输用户设备的数据流 后, 能满足预置策略中的要求, 从而实现各无线网络的负载平衡;
确定单元 12还可以既考虑实际网络的负载,又考虑用户设备的应用层数据 流信息,即用户设备实际基于数据传输的要求等其它信息来确定无线接入技术 传输数据流的方式,使得通过相应无线接入技术的承载传输用户设备的数据流 后, 既能满足预置策略中的要求, 又可以满足该用户设备的实际要求。 这样既 能实现各无线网络的负载平衡, 又可以满足该用户设备的服务质量要求。
其中确定单元 12确定的使用至少两个无线接入技术传输该用户设备数据 流的方式可以包括:该用户设备的每一个上行和每一个下行数据流应通过哪一 种无线接入技术以及该无线接入技术的哪一个承载来传输。 的数据流。
数据传输单元 13会根据确定的使用各个无线接入技术的承载传输数据流 的方式, 即用户设备的每一个上行和 /或每一个下行数据流应通过哪一种无线 接入技术以及该无线接入技术的哪一个承载来传输,来相应地配置该用户设备 的上行和 /或下行方向上的各无线接入技术的承载。 这样在下行方向, PDN网 关按照配置的下行方向上无线接入技术的承载来传输该用户设备的下行方向 的数据流, 在上行方向, 用户设备按照配置的上行方向上无线接入技术的承载 来传输该用户设备的上行方向的数据流。
可见, 本发明实施例的网关设备中, 负载获取单元 11根据位置获取单元 10 获取的用户设备在至少两个无线网络中的位置信息,相应地得到该用户设备所 在各个无线网络当前位置中的网络负载信息,并由确定单元 12根据网络负载信 息及预置的策略确定使用该至少两个无线接入技术传输用户设备的数据流的 方式, 最后数据传输单元 13按照确定的方式传输用户设备的数据流。这样根据 网络实际的负载状况,动态分配汇聚网络中使用各个无线接入技术传输的数据 量, 使得汇聚网络中各个无线网络的资源得到有效地利用。
参考图 10所示, 在一个具体的实施例中, 网关设备还可以包括: 多种承载 建立单元 14和退出承载单元 15 , 其中:
多种承载建立单元 14 ,用于与所述用户设备之间建立至少两种无线接入技 术的承载,并对应地储存所述用户设备的标识信息与所述至少两种无线接入技 术的 7 载的标识信息;
多种承载建立单元 14可以使用下面任一种或多种方式来建立承载:用户设 备通过 PDN网关建立的一个 PDN连接的多种无线接入技术的承载;用户设备和 多个 PDN之间分别建立不同的无线接入技术的承载,即用户设备通过 PDN网关 建立的一部分 PDN连接釆用一种无线接入技术的承载,而用户设备通过该 PDN 网关建立的另一部分 PDN连接釆用另一种无线接入技术的承载。
退出承载单元 15 , 用于接收到所述用户设备在任一无线网络的去附着请 求, 或检测到所述用户设备所在任一无线网络的网络负载超过预置的范围, 则 退出所述用户设备在所述任一无线网络的承载。
多种承载建立单元 14可以包括单一承载建立单元 140, 用于接收到所述用 户设备在第二无线网络的附着请求,或检测到所述第二无线网络的网络负载在 预置的范围内, 则与所述用户设备之间建立第二无线接入技术的承载; 所述第 二无线网络是所述用户设备当前所在第一无线网络之外的无线网络。
在本实施例中, 可以通过多种承载建立单元 14中的单一承载建立单元 140 与用户设备之间建立第二无线接入技术的承载,从而可以将用户设备从单一网 络传输状态转换到汇聚网络传输状态;并可以通过退出承载单元 15退出用户设 备在任一无线网络的承载,将用户设备从汇聚网络传输状态转换到单一网络传 输状态。
参考图 11所示, 在另一个具体的实施例中, 确定单元 12具体可以包括第一 确定单元 121、 第二确定单元 122和第三确定单元 123 , 而数据传输单元 13可以 包括无线选择单元 132和无线路由单元 133 , 其中:
第一确定单元 121 , 用于确定上行方向和 /或下行方向传输所述用户设备的 数据流对应承载的业务流模板 TFT和对应承载的无线接入技术;
第二确定单元 122, 用于根据所述网络负载信息、 所述用户设备的业务层 数据流信息及预置的策略, 确定在上行方向和 /或下行方向上所述用户设备传 输数据流对应承载的业务流模板 TFT和对应承载的无线接入技术。
本实施例中第一确定单元 121和第二确定单元 122是通过半静态方式进行 控制数据流的, 且可以尽量使得同一数据流, 即同一 TCP连接的上行或下行的 数据流釆用同一无线接入技术的承载来传输,这样会避免同一数据流因经由不 同的无线接入技术来传输时延差别较大而造成的 TCP性能损失。其中每个数据 流对应一个 TFT。 网关设备中第一确定单元 121和第二确定单元 122以半静态分配方式确定 传输上行和 /或下行数据流的方式后, 由数据传输单元 13按照确定单元 12确定 的方式来相应配置上下行方向各个无线接入技术的承载,并按照配置的承载传 输上下行方向的数据流。
第三确定单元 123 , 用于确定下行方向使用所述至少两个无线接入技术传 输用户设备数据流的数据量或数据量比例;
无线选择单元 132 ,用于按照所述确定单元 12中第三确定单元 123确定的数 据量或数据量比例选择下行方向上传输所述用户设备的数据流的无线接入技 术;
无线路由单元 133 ,用于用所述无线选择单元 132选择的无线接入技术的承 载传输下行方向上所述用户设备的数据流。
本实施例中网关设备是通过动态方式进行控制数据流的,确定单元 12的第 三确定单元 123以动态方式来确定下行方向上使用各个无线接入技术传输下行 数据流的数据量或数据量比例, 则无线选择单元 132会按照第三确定单元 123 确定的数据量或数据量比例选择传输下行数据流对应的无线接入技术,并由无 线路由单元 133按照选择的无线接入技术传输下行数据。
由于在动态方式下的不同无线接入技术的承载可以釆用同一个 TFT, 则可 以配置同一个 TFT对应多个不同无线接入技术承载, 使得它们尽量承载相同
QoS需求的数据流, 从而避免同一数据流, 即同一 TCP连接的上行或下行数据 流经由不同无线接入技术的承载来传输时,传输时延差别过大而造成的 TCP性 能损失。 本发明实施例还提供一种用户设备, 结构示意图如图 12所示, 包括: 下行检测单元 20 ,用于检测下行方向上使用至少两个无线接入技术传输用 户设备数据流的方式;所述下行方向上使用至少两个无线接入技术传输用户设 备数据流的方式是分组无线网络 PDN网关根据用户设备所在至少两个无线网 络当前位置中的网络负载信息确定的; 方向上使用所述至少两个无线接入技术传输用户设备数据流的方式;
上行信息确定单元 21在确定上行方向上数据流的传输方式时,可以根据下 行方向上使用至少两个无线接入技术承载的数据流量比例,或按照预置计算关 系来确定上行方向上用户设备数据流的传输方式。 比如: 用下行方向上使用至 少两个无线接入技术承载的数据流量比例作为上行方向上使用至少两个无线 接入技术承载的数据流量比例;或用下行方向无线接入技术的数据流量比例乘 以某个比例因子得到上行方向上使用至少两个无线接入技术承载的数据流量 比例, 其中比例因子可以是固定配置在用户设备内,也可以由网络侧通过信令 动态配置的。
数据接入单元 22,用于根据所述上行信息确定单元 21确定的方式将所述用 户设备的上行数据流从对应的无线网络传输到分组核心网中。
可见, 本发明实施例的用户设备中, 由上行信息确定单元 21根据下行检测 单元 20检测到的下行方向上使用至少两个无线接入技术传输数据流的方式,确 定上行方向上用户设备使用至少两个无线接入技术传输数据流的方式,并由数 据接入单元 22将数据流从对应的无线网络传输到分组核心网中。由于下行方向 上该用户设备的数据流的信息是根据网络实际的负载状况动态确定的,使得汇 聚网络中各个无线网络的资源得到有效地利用。
在一个具体的实施例中, 用户设备还包括承载建立单元 23 , 用于通过所述 PDN网关建立至少两种无线接入技术的承载。
承载建立单元 23在建立与 PDN网关之间的承载时,可以使用下面任一种或 多种方式来建立承载:通过 PDN网关建立的一个 PDN连接釆用多种无线接入技 术的承载; 和多个 PDN之间分别建立不同的无线接入技术的承载, 即承载建立 单元 23通过 PDN网关建立的一部分 PDN连接用于一种无线接入技术的承载,而 承载建立单元 23通过 PDN网关建立的另一部分 PDN连接用于另一种无线接入 技术的承载。
本实施例中承载建立单元 23通过 PDN网关且使用同一个 PDN地址即 IP地 址, 建立同一 PDN连接的多种无线接入技术的承载, 这样避免了地址资源的浪 费; 承载建立单元 23通过 PDN网关且使用不同 IP地址, 分别建立不同 PDN连接 对应的不同无线接入技术的承载,而 PDN网关通过用户设备的标识信息就可以 知道一个用户设备建立了哪些无线接入技术的承载。 本发明实施例还提供一种无线网络汇聚传输系统,该系统中多种无线网络 具有统一的分组核心网, 包括用户设备和 PDN网关设备, 其中用户设备如图 12 所示的用户设备;
而 PDN网关设备,用于根据用户设备所在至少两个无线网络当前位置中的 网络负载信息确定下行方向上使用至少两个无线接入技术传输用户设备数据 流的方式。
本发明实施例中的用户设备和网关设备中各个单元之间可以按照实施例 一和二中所述的方法进行网络汇聚传输, 在此不进行赞述。
综上所述, 本发明实施例提供无线网络汇聚方法、 系统和设备, 具体地由 PDN 网关先根据用户设备在至少两个无线网络中的位置信息, 相应地得到该 用户设备所在各个无线网络当前位置中的网络负载信息,并根据网络负载信息 及预置的策略确定使用该至少两个无线接入技术传输用户设备的数据流的方 式, 最后按照确定的方式传输用户设备的数据流。 这样根据网络实际的负载状 况,合理分配汇聚网络中使用各个无线接入技术传输的数据量,使得汇聚网络 中各个无线网络的资源得到有效地利用。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步 骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读 存储介质中, 存储介质可以包括: ROM、 RAM, 磁盘或光盘等。
以上对本发明实施例所提供的业务处理方法、 系统及设备, 进行了详细介 例的说明只是用于帮助理解本发明的方法及其核心思想; 同时,对于本领域的 一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变 之处, 综上所述, 本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求
1、 一种无线网络汇聚传输方法, 其特征在于, 包括:
获取用户设备在至少两个无线网络中的位置信息;
根据所述位置信息相应地获取所述用户设备所在各个无线网络当前位置 中的网络负载信息;
根据所述网络负载信息及预置的策略,确定使用所述至少两个无线接入技 术传输所述用户设备数据流的方式;
按照所述确定的方式传输所述用户设备的数据流。
2、 如权利要求 1所述的方法, 其特征在于, 在所述获取用户设备在至少两 个无线网络中的位置信息之前还包括:
与所述用户设备之间建立至少两种无线接入技术的承载,并对应地储存所 述用户设备的标识信息与所述至少两种无线接入技术的承载的标识信息。
3、 如权利要求 2所述的方法, 其特征在于, 所述与所述用户设备之间建立 至少两种无线接入技术的承载, 包括:
接收到所述用户设备在第二无线网络的附着请求,或检测到所述第二无线 网络的网络负载在预置的范围内,则与所述用户设备之间建立第二无线接入技 术的承载;
所述第二无线网络是所述用户设备当前所在第一无线网络之外的无线网 络。
4、 如权利要求 3所述的方法, 其特征在于, 所述至少两个无线网络包括通 用移动通信系统 UMTS和长期演进 LTE网络, 则与所述用户设备之间建立第二 无线接入技术的承载, 包括:
分组数据网络 PDN网关发送建立承载请求给服务网关 S-GW, 所述建立承 载请求中包含所述第二无线接入技术的标识信息;
所述 S-GW根据所述第二无线接入技术的标识信息, 通过移动管理实体
MME或分组无线服务技术的服务支持节点 SGSN通知所述用户设备,以便所述 用户设备发起在所述第二无线网络的附着和承载建立过程。
5、 如权利要求 1所述的方法, 其特征在于, 还包括:
接收到所述用户设备在任一无线网络的去附着请求,或检测到所述用户设 备所在任一无线网络区域的网络负载超过预置的范围,则退出所述用户设备在 所述任一无线网络中的承载。
6、 如权利要求 5所述的方法, 其特征在于, 所述至少两个无线网络包括通 用移动通信系统 UMTS和长期演进 LTE网络, 则退出所述用户设备在所述任一 无线网络中的承载, 包括:
分组数据网络 PDN网关发送删除承载请求给 S-GW, 所述删除承载请求中 包含所述任一无线接入技术的标识信息;
所述 S-GW根据所述任一无线接入技术的标识信息, 通过移动管理实体 MME或分组无线服务技术的服务支持节点 SGSN通知所述用户设备,以便所述 用户设备发起在所述任一无线网络的去附着。
7、 如权利要求 1至 6任一项所述的方法, 其特征在于,
所述根据所述网络负载信息及预置的策略,确定使用所述至少两个无线接 入技术传输所述用户设备数据流的方式, 包括: 确定上行方向和 /或下行方向 传输所述用户设备的数据流对应承载的业务流模板 TFT和对应承载的无线接 入技术; 或,
根据所述网络负载信息、 所述用户设备的业务层数据流信息及预置的策 略, 确定在上行方向和 /或下行方向上传输所述用户设备的数据流对应承载的 业务流模板 TFT和对应承载的无线接入技术。
8、 如权利要求 1至 6任一项所述的方法, 其特征在于,
根据所述网络负载信息及预置的策略,确定使用所述至少两个无线接入技 术传输所述用户设备数据流的方式, 包括: 确定下行方向使用所述至少两个无 线接入技术传输用户设备数据流的数据量或数据流比例;
则所述按照所述确定的流量控制信息传输所述用户设备的数据流, 包括: 按照所述确定的数据量或数据量比例选择下行方向上传输所述用户设备 数据流的无线接入技术;
用所述选择的无线接入技术的承载传输下行方向上所述用户设备的数据 流。
9、 一种网络汇聚传输方法, 其特征在于, 包括:
检测下行方向上使用至少两个无线接入技术传输用户设备数据流的方式; 所述下行方向上使用至少两个无线接入技术传输用户设备数据流的方式是分 组数据网络 PDN网关根据用户设备所在至少两个无线网络当前位置中的网络 负载信息确定的; 输用户设备的数据流的方式;
根据所述确定的方式将所述用户设备的上行数据流从对应的无线网络传 输到分组核心网中。
10、 如权利要求 9所述的方法, 其特征在于, 所述检测下行方向上至少两 个无线接入技术传输用户设备的数据流的方式, 之前还包括:
通过所述 PDN网关建立至少两种无线接入技术的承载。
11、 一种网关设备, 其特征在于, 包括:
位置获取单元, 用于获取用户设备在至少两个无线网络中的位置信息; 负载获取单元,用于根据所述位置获取单元获取的位置信息相应地获取所 述用户设备所在各个无线网络当前位置中的网络负载信息;
确定单元, 用于根据所述负载获取单元获取的网络负载信息及预置的策 略, 确定使用所述至少两个无线接入技术传输所述用户设备数据流的方式; 据流。
12、 如权利要求 11所述的网关设备, 其特征在于, 还包括:
多种承载建立单元,用于与所述用户设备之间建立至少两种无线接入技术 的承载,并对应地储存所述用户设备的标识信息与所述至少两种无线接入技术 的承载的标识信息。
13、 如权利要求 12所述的网关设备, 其特征在于, 所述多种承载建立单元 具体包括:
单一承载建立单元, 用于接收到所述用户设备在第二无线网络的附着请 求, 或检测到所述第二无线网络的网络负载在预置的范围内, 则与所述用户设 备之间建立第二无线接入技术的承载;所述第二无线网络是所述用户设备当前 所在第一无线网络之外的无线网络。
14、 如权利要求 11所述的网关设备, 其特征在于, 还包括: 退出承载单元, 用于接收到所述用户设备在任一无线网络的去附着请求, 或检测到所述用户设备所在任一无线网络的网络负载超过预置的范围,则退出 所述用户设备在所述任一无线网络中的承载。
15、 如权利要求 11至 14任一项所述的网关设备, 其特征在于, 所述确定单 元包括:
第一确定单元, 用于确定上行方向和 /或下行方向传输所述用户设备的数 据流对应承载的业务流模板 TFT和对应承载的无线接入技术;
第二确定单元, 用于根据所述网络负载信息、所述用户设备业务层的数据 流信息及预置的策略, 确定在上行方向和 /或下行方向上所述用户设备传输数 据流对应承载的业务流模板 TFT和对应承载的无线接入技术。
16、 如权利要求 11至 14任一项所述的网关设备, 其特征在于, 所述确定单 元包括: 第三确定单元, 用于确定下行方向使用所述至少两个无线接入技术传 输用户设备数据流的数据量或数据量比例;
所述数据传输单元包括:
无线选择单元,用于按照所述第三确定单元确定的数据量或数据量比例选 择下行方向上传输所述用户设备的数据流的无线接入技术;
无线路由单元,用于用所述无线选择单元选择的无线接入技术的承载传输 下行方向上所述用户设备的数据流。
17、 一种用户设备, 其特征在于, 包括:
下行检测单元,用于检测下行方向上使用至少两个无线接入技术传输用户 设备数据流的方式;所述下行方向上使用至少两个无线接入技术传输用户设备 数据流的方式是分组数据网络 PDN网关根据用户设备所在所述至少两个无线 网络当前位置中的网络负载信息确定的; 上使用所述至少两个无线接入技术传输用户设备数据流的方式;
数据接入单元,用于根据所述上行信息确定单元确定的方式将所述用户设 备的上行数据流从对应的无线网络传输到分组核心网中。
18、 如权利要求 17所述的用户设备, 其特征在于, 还包括:
承载建立单元, 用于通过所述 PDN网关建立至少两种无线接入技术的承 载。
19、一种网络汇聚传输系统,其特征在于, 包括用户设备和 PDN网关设备, 所述用户设备如权利要求 17所述的用户设备;
所述 PDN网关设备, 用于根据所述用户设备所在至少两个无线网络当前 位置中的网络负载信息确定下行方向上使用至少两个无线接入技术传输用户 设备数据流的方式。
PCT/CN2011/081681 2011-04-13 2011-11-02 无线网络汇聚传输方法、系统及设备 WO2012139373A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2013105756/07A RU2532416C2 (ru) 2011-04-13 2011-11-02 Способ, система, и устройство для агрегации радиосети
BR112013002305-8A BR112013002305B1 (pt) 2011-04-13 2011-11-02 Método para transmissão de agregação de rede de rádio, dispositivo de porta de comunicação, e sistema para transmissão de agregação de rede
EP11863458.3A EP2574096B1 (en) 2011-04-13 2011-11-02 Method, system and device for wireless network convergence transmission
US13/731,132 US8693456B2 (en) 2011-04-13 2012-12-31 Method, system, and device for radio network aggregation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110092172.2 2011-04-13
CN201110092172.2A CN102740361B (zh) 2011-04-13 2011-04-13 无线网络汇聚传输方法、系统及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/731,132 Continuation US8693456B2 (en) 2011-04-13 2012-12-31 Method, system, and device for radio network aggregation

Publications (1)

Publication Number Publication Date
WO2012139373A1 true WO2012139373A1 (zh) 2012-10-18

Family

ID=46994945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081681 WO2012139373A1 (zh) 2011-04-13 2011-11-02 无线网络汇聚传输方法、系统及设备

Country Status (6)

Country Link
US (1) US8693456B2 (zh)
EP (1) EP2574096B1 (zh)
CN (1) CN102740361B (zh)
BR (1) BR112013002305B1 (zh)
RU (1) RU2532416C2 (zh)
WO (1) WO2012139373A1 (zh)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013132289A1 (en) * 2012-03-06 2013-09-12 Nokia Corporation Re-selection optimization for packet and circuit switched connections
US9094839B2 (en) 2012-03-13 2015-07-28 Verizon Patent And Licensing Inc. Evolved packet core (EPC) network error mapping
US9059862B2 (en) * 2012-03-13 2015-06-16 Verizon Patent And Licensing Inc. Evolved packet core (EPC) network failure prevention
US8879416B2 (en) 2012-09-25 2014-11-04 Parallel Wireless, Inc. Heterogeneous mesh network and a multi-RAT node used therein
US20150131535A1 (en) * 2012-12-14 2015-05-14 Telefonaktiebolaget L M Ericsson (pulb) Node and Method for Establishing Auxiliary Bearers
CN103889003B (zh) * 2012-12-21 2018-07-10 中国电信股份有限公司 长期演进网络的接入方法、接入网络与汇聚网关
US10230534B2 (en) * 2013-05-31 2019-03-12 Telefonaktiebolaget Lm Ericsson (Publ) Service layer control aware control signalling in a communication network
CN103338487B (zh) * 2013-06-03 2016-06-01 大唐移动通信设备有限公司 一种异系统间重选或切换处理方法和设备
US20140355536A1 (en) * 2013-06-04 2014-12-04 Alcatel Lucent System and method providing fixed mobile convergence via bonded services
US9900232B2 (en) * 2013-06-25 2018-02-20 Qualcomm Incorporated Apparatus and method for dynamic user equipment capability reporting based on data activity
CN103561454B (zh) * 2013-10-22 2016-09-28 华为技术有限公司 一种网络接入处理方法及装置
KR20150084307A (ko) * 2014-01-13 2015-07-22 삼성전자주식회사 네트워크에서 웹 로딩 시간 제어 방법 및 장치
US20150223107A1 (en) * 2014-01-31 2015-08-06 Intel IP Corporation User equipment and method for application specific packet filter
US9867104B2 (en) 2014-03-04 2018-01-09 Telefonaktiebolaget Lm Ericsson (Publ) Centralized network management for different types of RAT
CN104936228B (zh) * 2014-03-21 2019-04-09 上海诺基亚贝尔股份有限公司 用于在双连接系统中流量控制的方法和装置
US9900801B2 (en) 2014-08-08 2018-02-20 Parallel Wireless, Inc. Congestion and overload reduction
WO2016034245A1 (en) * 2014-09-05 2016-03-10 Telefonaktiebolaget L M Ericsson (Publ) Multipath control of data streams
WO2016075149A1 (en) 2014-11-10 2016-05-19 Telefonaktiebolaget Lm Ericsson (Publ) A node and method for managing a data flow between networks of different access types
US10154440B2 (en) 2014-11-14 2018-12-11 Parallel Wireless, Inc. Seamless mobile handover
CN107787590B (zh) 2015-06-22 2023-03-24 瑞典爱立信有限公司 数据传送的空间分辨质量
KR102357669B1 (ko) * 2015-06-22 2022-02-03 삼성전자주식회사 이동 통신 네트워크에서 트래픽 특성을 기반으로 신호를 송/수신하는 장치 및 방법
MY178128A (en) * 2016-01-07 2020-10-05 Nokia Technologies Oy Method of indication of available radio resources
CN105611642A (zh) * 2016-01-08 2016-05-25 宇龙计算机通信科技(深圳)有限公司 一种数据传输的配置方法、基站和用户设备
CN105682149B (zh) * 2016-01-08 2019-12-10 宇龙计算机通信科技(深圳)有限公司 一种数据传输方法和设备
US10440556B2 (en) * 2016-02-11 2019-10-08 Lg Electronics Inc. Method for updating location of terminal in wireless communication system and apparatus for supporting same
US10956423B2 (en) * 2016-04-25 2021-03-23 Convida Wireless, Llc Data stream analytics at service layer
EP3462773B1 (en) 2016-06-30 2023-10-11 Beijing Xiaomi Mobile Software Co., Ltd. Data transmission method and device, user equipment, and base station
CN106211238A (zh) * 2016-07-11 2016-12-07 青岛海信移动通信技术股份有限公司 数据传输方法及装置、终端
CN107666723B (zh) * 2016-07-22 2021-04-09 华为技术有限公司 一种信息传输方法、融合网关及系统
CN106954180B (zh) * 2017-01-13 2020-06-05 京信通信系统(中国)有限公司 数据汇聚分发方法及装置
KR102371810B1 (ko) 2017-10-20 2022-03-10 삼성전자주식회사 다중 무선 접속 기술(Multi-Radio Access Technology)을 지원하는 무선 접속 시스템에서 단말이 데이터를 송수신하기 위한 방법 및 장치.
CN111567109A (zh) * 2017-12-22 2020-08-21 瑞典爱立信有限公司 混合通信网络中的QoS

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101616167A (zh) * 2008-06-27 2009-12-30 中国移动通信集团公司 确定多网协同传输方案的方法及数据传送方法
CN101616398A (zh) * 2008-06-26 2009-12-30 华为技术有限公司 用户设备的网络接入管理方法、相关设备及通信系统
CN101626596A (zh) * 2008-07-09 2010-01-13 中国移动通信集团公司 一种生成业务分流策略的方法、装置及系统
WO2010045302A1 (en) * 2008-10-14 2010-04-22 Starent Networks, Corp Flow balancing in communications networks
WO2010088967A1 (en) * 2009-02-09 2010-08-12 Telefonaktiebolaget L M Ericsson (Publ) A multiple access system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8077681B2 (en) * 2002-10-08 2011-12-13 Nokia Corporation Method and system for establishing a connection via an access network
JP2006506880A (ja) * 2002-11-20 2006-02-23 インターナショナル・ビジネス・マシーンズ・コーポレーション 無線通信用のネットワーク資源を管理する方法
US20040203736A1 (en) * 2002-11-20 2004-10-14 Pedro Serna Method, network node and system for selecting network nodes
IL160921A (en) * 2004-03-18 2009-09-01 Veraz Networks Ltd Method and device for quality management in communication networks
US7317921B2 (en) * 2005-04-19 2008-01-08 Lucent Technologies Inc. Responding to changes in measurement of system load in spread spectrum communication systems
EP2196037A4 (en) * 2007-08-23 2012-01-25 Ericsson Telefon Ab L M METHOD FOR CONTROLLED ACCESS SELECTION TO A NETWORK
US8660065B2 (en) * 2008-12-19 2014-02-25 Nec Europe Ltd. Radio network and a method for operating a radio network
US8331938B2 (en) * 2009-11-23 2012-12-11 Telefonaktiebolaget L M Ericsson (Publ) Moving user equipment without service interruption
US8477730B2 (en) * 2011-01-04 2013-07-02 Cisco Technology, Inc. Distributed load management on network devices
KR101582015B1 (ko) * 2011-01-21 2015-12-31 블랙베리 리미티드 (로컬) 오프로딩에 이용되는 접속에 대한 접속 컨텍스트를 결정하기 위한 네트워크 장치 및 프로세스

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101616398A (zh) * 2008-06-26 2009-12-30 华为技术有限公司 用户设备的网络接入管理方法、相关设备及通信系统
CN101616167A (zh) * 2008-06-27 2009-12-30 中国移动通信集团公司 确定多网协同传输方案的方法及数据传送方法
CN101626596A (zh) * 2008-07-09 2010-01-13 中国移动通信集团公司 一种生成业务分流策略的方法、装置及系统
WO2010045302A1 (en) * 2008-10-14 2010-04-22 Starent Networks, Corp Flow balancing in communications networks
WO2010088967A1 (en) * 2009-02-09 2010-08-12 Telefonaktiebolaget L M Ericsson (Publ) A multiple access system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2574096A4 *

Also Published As

Publication number Publication date
BR112013002305B1 (pt) 2022-02-08
RU2532416C2 (ru) 2014-11-10
US8693456B2 (en) 2014-04-08
US20130121282A1 (en) 2013-05-16
BR112013002305A2 (pt) 2016-05-24
CN102740361B (zh) 2016-01-13
CN102740361A (zh) 2012-10-17
EP2574096B1 (en) 2019-02-27
EP2574096A1 (en) 2013-03-27
EP2574096A4 (en) 2013-09-11
RU2013105756A (ru) 2014-08-20

Similar Documents

Publication Publication Date Title
WO2012139373A1 (zh) 无线网络汇聚传输方法、系统及设备
JP7040556B2 (ja) 方法、セッション管理機能ノード、ユーザプレーン機能ノード、ならびにセッション管理パラメータメンテナンス用ユーザ機器およびそのコンピュータ可読記録媒体
JP7416368B2 (ja) 時間依存ネットワーキングのための制御プレーンに基づく設定
US9560514B2 (en) Method for establishing connection by HNB
CN106664732B (zh) 用于具有lte连接的多径tcp的装置和方法
US8824365B2 (en) Method for establishing connection by HNB
EP2869626B1 (en) Congestion state reporting method and access network device
US10588045B2 (en) Method and apparatus for handling data flow in wireless communication networks
AU2013364674A2 (en) Method and apparatus for configuring aggregate maximum bit rate
WO2012130045A1 (zh) 多网接入系统和多模无线终端
WO2014005536A1 (zh) 临近终端的通信方法及装置、系统
WO2010015189A1 (zh) 移动网络高速接入公网的节点、方法及系统
WO2013000434A1 (zh) 用于数据传输的方法、分流点设备、用户终端及其系统
JP2008536372A (ja) パケット無線通信システム、通信方法及び通信装置
WO2011026392A1 (zh) 一种路由策略的获取方法及系统
EP3214805B1 (en) Method and device for transmitting control signalling
WO2016107404A1 (zh) 业务流传输路径优化方法、装置及mme
JP2003333644A (ja) Iu−FlexベースのMBMSを実行するための方法
EP3178220B1 (en) Ipv6 interface id filter using a single pdn connection
JP2015002431A (ja) 複数の無線ベアラにアクセスする方法及び装置
WO2012152130A1 (zh) 承载处理方法及装置
WO2015018324A1 (zh) 一种多接入系统中实现ip流移动性的方法和装置
WO2016107405A1 (zh) 业务流传输路径优化方法、装置及mme
JP6315894B2 (ja) 複数の無線ベアラにアクセスする方法及び装置
WO2014183276A1 (zh) 一种无线网络的分流方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863458

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3996/KOLNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011863458

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013105756

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013002305

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013002305

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130130