WO2012139368A1 - 一种人工电磁材料 - Google Patents
一种人工电磁材料 Download PDFInfo
- Publication number
- WO2012139368A1 WO2012139368A1 PCT/CN2011/081389 CN2011081389W WO2012139368A1 WO 2012139368 A1 WO2012139368 A1 WO 2012139368A1 CN 2011081389 W CN2011081389 W CN 2011081389W WO 2012139368 A1 WO2012139368 A1 WO 2012139368A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- artificial
- substrate
- material according
- artificial electromagnetic
- electromagnetic material
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/002—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
- H01Q15/0013—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
- H01Q15/0026—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective said selective devices having a stacked geometry or having multiple layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
- H01Q15/006—Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/02—Refracting or diffracting devices, e.g. lens, prism
- H01Q15/08—Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/008—Surface plasmon devices
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/30—Metamaterials
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/36—Micro- or nanomaterials
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/40—Materials having a particular birefringence, retardation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24802—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
Definitions
- the present invention relates to a material, and more particularly to an artificial electromagnetic material. Background technique
- Metamaterials or artificial electromagnetic materials, are a new type of synthetic material that responds to electromagnetics and consist of a substrate and an artificial microstructure attached to the substrate. Since the artificial microstructure is usually a structure with a certain geometrical arrangement of metal wires, it is possible to respond to electromagnetic waves, so that the supermaterial as a whole exhibits electromagnetic characteristics different from those of the substrate, and such electromagnetic properties can not be realized by existing materials.
- the special functions realized, such as the convergence and divergence of electromagnetic waves, can be used in the field of electromagnetic communication such as antennas and radars.
- metamaterials can be applied to a variety of electromagnetic waves, but existing applications are usually only in the field of electromagnetic communication such as microwaves, but not for visible light, which is defined by the selection of substrates and artificial microstructures.
- the application range of metamaterials can be extended to the visible light range. Summary of the invention
- the present invention provides an artificial electromagnetic material comprising at least one sheet of material, each sheet of material comprising a sheet substrate and an artificial microstructure attached to the substrate, the substrate being made of a transparent material.
- the substrate is a transparent polymer material.
- the substrate is polymethyl methacrylate.
- the substrate is a transparent polyurethane, polyethylene, polyethylene terephthalate or polyvinyl chloride.
- the artificial electromagnetic material has a transmittance of more than 85%.
- the artificial microstructure is made of indium tin oxide, which is a mixed material of In 2 0 3 and Sn0 2 .
- the mass percentage of the In 2 0 3 is 90%
- the indium tin oxide is in the form of a film having a thickness of between 50 and 1000 nm.
- the artificial microstructure is a carbon nanotube film having a geometric pattern.
- the carbon nanotube film has a transparency of 80% or more.
- the carbon nanotube film has a thickness of between 50 and 1000 nm.
- the carbon nanotube film includes an ion conductive polymer binder and carbon nanotubes dispersed in the conductive polymer binder.
- the artificial microstructure is an aluminum-doped zinc oxide film having a geometric pattern.
- the aluminum-doped zinc oxide film has a light transmittance of more than 80%.
- the aluminum-doped zinc oxide film has a thickness of between 50 and 1000 nm.
- the refractive index of the sheet of material is a concentric circular distribution.
- Each substrate is virtually divided into a plurality of arrayed substrate units, each of which is attached with a personal microstructure, and the substrate unit and the artificial microstructure attached thereto constitute a material unit.
- the refractive index of the material sheet is centered on a central material unit, and the refractive index of each material unit on a circumference equal to the center of the circle is equal, and the larger the radius, the smaller the refractive index of the material unit on the circumference. And the difference in refractive index on the adjacent circumference gradually increases from the center of the circle.
- Each of the layers of material comprises a plurality of artificial microstructures attached to said substrate in an array, said plurality of artificial microstructures being progressively reduced in size in one direction of the array.
- the artificial electromagnetic material of the present invention has the following beneficial effects: Since the substrate is made of a transparent material, it can respond to visible light, thereby causing visible light to converge, diverge, deflect, and the like. DRAWINGS
- FIG. 1 is a schematic view of an artificial electromagnetic material according to a first embodiment of the present invention
- Figure 2 is a schematic view of a material unit of the artificial electromagnetic material of Figure 1;
- FIG. 3 is a refractive index profile of each material layer of the artificial electromagnetic material of FIG. 1;
- Figure 4 is a schematic view showing the electromagnetic wave concentrated by the artificial electromagnetic material shown in Figure 3;
- Figure 5 is a schematic view of an artificial electromagnetic material according to a second embodiment of the present invention.
- Figure 6 is a schematic view of an artificial electromagnetic material according to a third embodiment of the present invention.
- Figure 7 is a schematic view showing the deflection of the electromagnetic wave of the artificial electromagnetic material shown in Figure 6. detailed description
- the present invention relates to an artificial electromagnetic material 100 comprising at least one material layer 1 which, when there are a plurality of material sheets 1, is perpendicular to the surface The X direction is superimposed into one.
- the material sheet 1 includes a sheet substrate 3 of uniform thickness and a plurality of artificial microstructures 4 attached to the sheet substrate 3.
- the sheet substrate 3 is virtually divided into a plurality of identical cuboid meshes, each of which is a substrate unit 30, and an artificial microstructure 4 is attached to each of the substrate units 30, and each substrate unit 30 and the artificial microstructures 4 attached thereto constitute a material unit 2, and the entire material sheet 1 can be regarded as a first array composed of a plurality of material units 2 in the z-th direction and in the y-direction.
- the rectangular parallelepiped mesh may have any freely divided size.
- the lengths in the y and z directions are one tenth of the wavelength of the electromagnetic wave to be concentrated, the length in the X direction, and the length of the sheet substrate 3.
- the thickness in the X direction is equal.
- the material unit of the present invention may have a length in the x, y, and z directions of between one-fifth and one-half of the wavelength of the electromagnetic wave.
- the material unit 2 includes a substrate unit 30 and an artificial microstructure 4 attached to the surface of the substrate unit 30.
- the artificial microstructure 4 of this embodiment is a planar "work" shaped wire comprising a first wire of a straight type and two second wires respectively connected perpendicularly at both ends of the first wire.
- the artificial microstructure 4 may also be other shapes, such as a planar two-dimensional snowflake type, comprising two first wires that intersect perpendicularly to each other in a "ten" shape and four wires that are vertically connected at each end of each of the first wires. Second wire.
- the artificial microstructure 4 may also be a three-dimensional three-dimensional snowflake type comprising three first and second wires that are perpendicular to each other and intersect to one point, and six second wires that are vertically connected at both ends of each of the first wires.
- the artificial microstructure 4 of the body is attached to the inside of the substrate 3 by a certain processing technique.
- the artificial microstructure 4 of the present invention has various implementations as long as the structure consists of a wire or a metal wire having a certain geometry and capable of responding to an electromagnetic field, that is, changing the characteristics of the electromagnetic field.
- the artificial microstructure 4 of the present invention can be attached to the surface of the substrate 3 or embedded inside the substrate 3 to form the material unit 2 of the present invention.
- Each of the substrate units 30 and the artificial microstructures 4 thereon determine the dielectric constant and magnetic permeability of the material unit 2 they constitute.
- the dielectric constant and magnetic permeability are known, that is, The refractive index n can be obtained, and the refractive index size indicates the degree of influence on the propagation direction of the electromagnetic wave. Therefore, by designing the shape, size, and the like of each artificial microstructure 4, the dielectric constant and magnetic permeability of each material unit 2 are changed, thereby obtaining With a specific refractive index distribution, deflection, convergence, and divergence of electromagnetic waves can be achieved.
- the artificial microstructure 4 is generally selected from silver, copper and other materials of non-ferrous metals, because silver, copper and other metals are good conductors, surface plasmon effect on the surface of the metal structure, good conductors can be as much as possible Exciting and enhancing this effect makes the response to electromagnetic waves more sensitive and effective.
- the substrate 3 needs to select materials that do not respond to electromagnetic waves, do not affect electromagnetic waves, or have as little influence as possible. That is, the dielectric constant and magnetic permeability must be as close as possible to 1.
- the existing artificial electromagnetic materials usually use ceramic as the substrate material.
- the artificial electromagnetic material exhibits characteristics that the general natural material does not have in terms of electromagnetic characteristics, such as negative refractive index, beam convergence, beam deflection, beam parallelism and the like. And by these physical characteristics, many new applications have been extended, such as communication, optics, device miniaturization, and detection.
- both the artificial microstructure 4 and the substrate 3 are opaque materials, the existing artificial electromagnetic materials are mainly applied to the microwave band and have no effect on visible light.
- Transparency as used herein means that the transmittance is above 85%.
- the substrate 3 of the present invention is made of transparent plexiglass, that is, polymethyl methacrylate, which is abbreviated as PMMA.
- Other transparent organic polymer materials usable as the substrate 3 may also be transparent polyurethane, polyethylene (PE), low density polyethylene (LDPE), polypropylene (PP), polyethylene terephthalate (PET). , polyvinyl chloride (PVC) and so on.
- the dielectric constants of these materials are not high, and are selected between 1 and 3, and the magnetic permeability is basically 1 , which is in accordance with the premise of the substrate 3. At the same time, these materials can be transparent or translucent through prior art manufacturing processes, allowing visible light to pass through.
- the second innovation of the present invention is that, further, the artificial structure 4 is also selected to be transparent or translucent. Materials, indium tin oxide is preferred in the present invention.
- Indium tin oxide is a mixture of indium (Group III) oxide In 2 0 3 and tin (Group IV) oxide Sn0 2 , usually in mass percentage of In 2 0 3 Between 80% and 95%, the preferred mass ratio of the present invention is 90% of In 2 0 3 and 10% of Sn0 2 .
- Indium tin oxide is transparent and colorless when it is in the form of a film, that is, between 50 and 1000 nm, and can be used as a conductive film instead of silver or copper wire, and has good light transmittance.
- Indium tin oxide has good electrical conductivity, so it can realize the functions that good conductors such as silver and copper can achieve. Therefore, it can replace silver and copper as raw materials for artificial microstructures in artificial electromagnetic materials.
- a transparent polymer material such as transparent plexiglass is used as the substrate 3, and then deposited on the surface of the substrate 3 by electron beam evaporation, physical vapor deposition, or some sputter deposition techniques to form each An artificial microstructure 4, that is, a material sheet 1 is produced, and finally a plurality of material sheets 1 are packaged into a complete artificial electromagnetic material. Since the substrate 3 and the artificial microstructure 4 are both transparent materials, such an artificial electromagnetic material can be used in the visible light field, which greatly expands the application field and scope of the artificial electromagnetic material, and has important scientific research value and economic value.
- a material sheet 1 is designed, the refractive index of which is a circular distribution, as shown in Fig. 3, the center points of the material units 2 having the same refractive index are connected into a curve, and the denser the curve, the larger the refractive index.
- the refractive index of the material layer 1 of the first embodiment of the present invention is centered on a central material unit, and the refractive index of each material unit 2 on a circumference equal to the center of the circle is equal.
- a plurality of material sheets 1 shown in FIG. 3 are superposed to form an artificial electromagnetic material 100, and a bundle of parallel visible light can pass through the transparent substrate 3 and the artificial microstructure 4, and its refractive index distribution will make The visible light converges to a point to achieve a function similar to a convex lens.
- the artificial electromagnetic material 200 provided by the second embodiment of the present invention is different from the artificial electromagnetic material of the first embodiment in that the artificial microstructure 204 of the artificial electromagnetic material 200 is a carbon nanotube film.
- carbon nanotubes As a new material, carbon nanotubes have the characteristics of light weight and high strength. More importantly, carbon nanotubes have excellent electrical conductivity. When the diameter is less than 6 nm, they can be regarded as good. Conductive one-dimensional quantum wire.
- the carbon nanotube film of the present invention is a film containing carbon nanotubes, comprising an ion conductive polymer binder and carbon nanotubes dispersed in a binder, and the binder is a fluoropolyethylene having a sulfonyl group introduced therein. Or a thermoplastic polymer having a carboxyl group, a sulfonyl group, a phosphoryl group or an isocyanur group.
- the carbon nanotube film When the thickness of the carbon nanotube film is between 50 and 1000 nm, it is transparent and colorless. Because of its good electrical conductivity, it can be used as a conductive film instead of silver or copper to make an artificial microstructure to respond to electromagnetic waves. It also has good light transmission, thereby widening the application of artificial electromagnetic materials from the microwave field to visible light.
- the carbon nanotubes are first dispersed in an aqueous solvent, the ion conductive polymer binder is dissolved in an ethanol solution, and then the aqueous solution of the carbon nanotubes and the ion conductive polymer binder are The ethanol solution was mixed, and the mixed solution was thoroughly stirred with a stirrer. Then, the obtained solution is applied onto a substrate 203 made of a polymer material such as transparent organic glass, and water and ethanol are volatilized to form a carbon nanotube film bonded to the substrate to constitute an artificial microstructure 204.
- each of the artificial microstructures 204 is coated in a certain design, that is, a material sheet 201 is formed, and finally a plurality of material sheets 201 are packaged into a complete artificial electromagnetic material.
- the carbon nanotube film of the present invention may also be attached to the substrate 203 by other means, and the carbon nanotube film does not necessarily adhere the carbon nanotube to the surface of the substrate through the ion conductive polymer adhesive.
- the carbon nanotube film may be attached to the substrate to form a film by other materials or methods.
- the carbon nanotube film of the present invention may be formed by forming a film of carbon nanotubes having a certain thickness.
- the artificial electromagnetic material 300 provided by the third embodiment of the present invention is different from the artificial electromagnetic material of the first embodiment in that the artificial microstructure 304 of the artificial electromagnetic material 300 is selected from aluminum. Zinc oxide film.
- the aluminum-doped zinc oxide (abbreviated as ZAO) film is obtained by doping the element A1 in the ZnO system.
- the ZnO thin film has a plurality of crystal grains preferentially grown on the C-axis, and each of the crystal grains has a well-growth hexagonal lead-zinc structure.
- ZnO crystals are formed by the reverse packing of hexagonal close-packed oxygen and hexagonal dense packing of zinc.
- the film of this structure has transparent conductivity but high resistance. After doping A1 in ZnO, a ZAO film can be formed, the resistivity is greatly reduced, and thus the conductivity is good, and the stability of the film is greatly improved.
- the aluminum-doped zinc oxide film is usually between 50 and 1000 nm in thickness, transparent and colorless, and has a light transmittance of 90%. Because of its good electrical conductivity, it can be used as a conductive film instead of silver or copper.
- the artificial microstructure is designed to respond to electromagnetic waves, and at the same time, good light transmission can broaden the application of artificial electromagnetic materials from the microwave field to visible light.
- a substrate made of a polymer material such as transparent organic glass is prepared.
- a protective film is attached on the substrate 303, and a pupil having the same shape as the artificial microstructure is formed on the protective film, and ZAO is deposited on the protective film by vapor deposition, and the ZAO of the pupil portion is directly attached.
- the protective film is then removed, and the artificial microstructured substrate to which the ZAO film is attached is obtained, that is, a material sheet layer 301 is obtained, and finally the plurality of material sheets 301 are packaged into a complete artificial electromagnetic layer.
- Material 300 is
- the aluminum-doped zinc oxide film of the present invention may also be attached to the substrate 303 by other means to form an artificial microstructure 304.
- the prior art methods for preparing an aluminum-doped zinc oxide film may be used in the present invention for preparation. Artificial microstructure of aluminum-doped zinc oxide.
- Each column of artificial microstructures in the X direction and the y direction is the same, and each column of artificial microstructures along the z direction has a geometrically similar shape, and the size is gradually reduced, so that the refractive index is constant along the x and y directions, and along the z The refractive index of the direction gradually decreases.
- Electromagnetic wave deflection can be achieved by the material sheet layer 1 which satisfies such a refractive index distribution, and as shown in FIG. 7, electromagnetic waves incident on the transparent synthetic material from a place having a small refractive index are deflected toward a place having a large refractive index. .
- the present invention is a revolutionary advancement in that electromagnetic waves are broadened from the microwave band to the visible light band by using a transparent substrate and an artificial microstructure, which is advantageous for replacing conventional optical elements such as convex lenses, concave mirrors, etc., and the material sheets of the present invention.
- the layers are all flat plates, which do not need to specially design complex surfaces such as convex or concave surfaces, which greatly simplifies the design and processing process, and can effectively reduce the design and manufacturing costs.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Biophysics (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Inorganic Chemistry (AREA)
- Laminated Bodies (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
本发明提供了一种人工电磁材料,包括至少一个材料片层,每个材料片层包括片状基板和附着在所述基板上的人造微结构,所述基板由透明材料制成。采用本发明的人工电磁材料,由于基板选用透明材料,因此能够对可见光产生响应,从而引起可见光汇聚、发散、偏折等。
Description
一种人工电磁材料
本申请要求于 2011年 4月 12日提交中国专利局、申请号为 201110091287.X, 发明名称为 "一种透明超材料" 的中国专利申请的优先权, 2011年 5月 10日提 交中国专利局、 申请号为 201110120011.X, 发明名称为 "一种透明超材料" 的 中国专利申请的优先权, 2011 年 5 月 10 日提交中国专利局、 申请号为 201110120041.0, 发明名称为 "一种透明人工电磁材料" 的中国专利申请的优先 权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及一种材料, 特别是涉及一种人工电磁材料。 背景技术
超材料, 即人工电磁材料, 是一种能够对电磁产生响应的新型人工合成材 料, 由基板和附着在基板上的人造微结构组成。 由于人造微结构通常为金属线 排布成的具有一定几何图形的结构, 因此能够对电磁产生响应, 从而使超材料 整体体现出不同于基板的电磁特性, 这样的电磁特性能实现现有材料不能实现 的特殊功能, 例如实现电磁波的汇聚、 发散等, 可用在天线、 雷达等电磁通讯 领域。
理论上超材料能够应用在各种电磁波上, 但是现有的应用领域通常只在微 波等电磁通讯领域, 而对可见光是不起作用的, 这是由基板和人造微结构的选 材所限定的。 解决利用超材料来汇聚、 发散可见光的问题, 可以将超材料的应 用范围扩展到可见光频段。 发明内容
本发明提供一种人工电磁材料, 包括至少一个材料片层, 每个材料片层包 括片状基板和附着在所述基板上的人造微结构, 所述基板由透明材料制成。
所述基板为透明高分子材料。
所述基板为聚甲基丙烯酸甲酯。
所述基板为透明聚氨酯、 聚乙烯、 聚对苯二曱酸乙二醇酯或聚氯乙烯。 所述人工电磁材料的透光度达到 85%以上。
述人造微结构由铟锡氧化物制成, 所述铟锡氧化物为 In203和 Sn02的混合 材料。
所述铟锡氧化物中 In203的质量百分比在 80%~95%之间。
所述的 In203的质量百分比为 90%
所述铟锡氧化物成薄膜状, 厚度在 50~1000nm之间。
所述人造微结构为具有几何图案的碳纳米管薄膜。
所述碳纳米管薄膜具有 80%或更高的透明度。
所述碳纳米管薄膜的厚度在 50~1000nm之间。
所述碳纳米管薄膜包括离子导电聚合物粘接剂和分散在所述导电聚合物粘 接剂中的碳纳米管。
所述人造微结构为具有几何图案的掺铝氧化锌薄膜。
所述掺铝氧化锌薄膜的透光率大于 80%。
所述掺铝氧化锌薄膜的厚度在 50~1000nm之间。
所述材料片层的折射率为同心圓环形分布。
每个基板虚拟地划分为多个阵列排布的基板单元, 每个基板单元上附着一 个人造微结构, 所述基板单元及其上附着的人造微结构组成一个材料单元。
所述材料片层的折射率以一中心的材料单元为圓心, 距离该圓心相等的一 圓周上的各个材料单元其折射率相等, 半径越大则该圓周上的材料单元的折射 率越小, 且相邻圆周上的折射率的差值自圆心向外逐渐增大。
每个材料片层包括多个人造微结构, 所述多个人造微结构以阵列形式附着 在所述基板上, 所述多个人造微结构以阵列的一个方向逐渐减小尺寸。
实施本发明的人工电磁材料, 具有以下有益效果: 由于基板选用透明材料, 因此能够对可见光产生响应, 从而引起可见光汇聚、 发散、 偏折等。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明第一实施例的人工电磁材料的示意图;
图 2为图 1的人工电磁材料的材料单元的示意图;
图 3为图 1的人工电磁材料的每个材料片层的折射率分布图;
图 4为图 3所示人工电磁材料汇聚电磁波的示意图;
图 5为本发明第二实施例的人工电磁材料的示意图;
图 6为本发明第三实施例的人工电磁材料的示意图;
图 7为图 6所示人工电磁材料偏折电磁波的示意图。 具体实施方式
请一并参阅图 1及图 2, 本发明涉及一种人工电磁材料 100, 所述人工电磁 材料 100包括至少一个材料片层 1 , 当材料片层 1有多个时, 其沿垂直于表面的 X方向叠加成一体。 材料片层 1包括均匀等厚的片状基板 3和附着在片状基板 3 上的多个人造微结构 4。将片状基板 3虚拟地划分为多个完全相同的长方体形网 格, 每个网格为一个基板单元 30, 并使得每个基板单元 30上附着有一个人造微 结构 4, 则每个基板单元 30及其上附着的人造微结构 4共同构成一个材料单元 2, 整个材料片层 1可以看作是由多个材料单元 2以第 z方向为行、 以 y方向为 列组成的第一阵列。 这里的长方体形网格, 可以具有任意自由划分的尺寸, 本 发明中优选为 y、 z方向的长度均为将要汇聚的电磁波的波长的十分之一、 X方 向的长度与片状基板 3的 X方向的厚度相等。 当然, 本发明的材料单元其 x、 y、 z方向的长度在电磁波波长的五十分之一至二分之一之间均可。
材料单元 2包括一个基板单元 30和附着在该基板单元 30表面上的人造微 结构 4。 本实施例的人造微结构 4为平面的 "工" 字形金属丝, 包括直线型的第 一金属丝和分别垂直连接在第一金属丝两端的两根第二金属丝。
人造微结构 4也可以为其他形状, 如平面的二维雪花型, 其包括两个相互 垂直相交成 "十" 字形的第一金属丝和分别垂直连接在每个第一金属丝两端的 四根第二金属丝。
人造微结构 4也可以为立体的三维雪花型, 包括三个两两垂直且相交到一 点的第一金属丝和分别垂直连接在每个第一金属丝两端的六根第二金属丝。 立 体的人造微结构 4是通过一定的加工工艺附着到基板 3内部的。
当然, 本发明的人造微结构 4还有多种实现方式, 只要由金属丝或金属线 构成的具有一定几何图形且能够对电磁场产生响应即改变电磁场特性的结构,
均可作为本发明的人造微结构 4附着在基板 3表面上或者嵌入基板 3内部从而 形成本发明的材料单元 2。
每个基板单元 30及其上的人造微结构 4共同决定了它们所构成的材料单元 2的介电常数和磁导率, 根据公式" = ^可知, 已知介电常数和磁导率, 即可得 到折射率 n, 而折射率大小表示对电磁波传播方向的影响程度。 因此, 通过设计 各个人造微结构 4的形状、 大小等, 改变各个材料单元 2的介电常数和磁导率, 进而得到特定的折射率分布, 即可实现电磁波的偏折、 汇聚、 发散等。
现有的人工电磁材料, 其人造微结构 4通常选用银、 铜等材质的有色金属 , 因为银、 铜等金属为良好导体, 在其金属结构表面形成表面等离子体效应, 良 好导体能够尽可能的激发和增强这种效应, 从而对电磁波的响应更灵敏、 效果 更强。
基板 3 则需要选那些对电磁波没有响应、 不影响电磁波或者影响尽量小的 材料, 即介电常数和磁导率必须尽量接近于 1 , 现有的人工电磁材料通常选用陶 瓷作为基板材料。
在人造微结构 4和基板单元 30的共同作用下, 人工电磁材料在电磁特性方 面体现出了一般自然界材料没有的特性, 如负折射率、 波束汇聚、 波束偏转、 波束平行等特性。 并且由这些物理特性, 延展出很多新的应用, 如通信, 光学, 器件小型化, 探测等领域。
但是, 由于人造微结构 4和基板 3均为不透明材料, 因此现有人工电磁材 料主要应用于微波波段, 对可见光不能产生作用。 本文所述的透明, 是指透光 度达到 85%以上。
本发明的创新点之一在于, 选用透明材料作为基板 3 , 例如透明有机高分子 材料等。 优选实施例中, 本发明的基板 3 选用透明有机玻璃, 即聚曱基丙烯酸 甲酯, 英文简称 PMMA。 可用作基板 3的其他透明有机高分子材料还可以是透 明聚氨酯、 聚乙烯 (PE )、 低密度聚乙烯(LDPE )、 聚丙烯(PP )、 聚对苯二甲 酸乙二醇酯 (PET )、 聚氯乙烯(PVC ) 等等。
这些材料的介电常数均不高, 选在 1~3之间, 而磁导率基本上都为 1 , 符合 作为基板 3 的前提要求。 同时, 这些材料通过现有技术的制造工艺, 都可实现 透明或半透明, 使得可见光透过。
本发明的创新点之二在于, 进一步地, 人造 结构 4也选用透明或半透明
材料, 本发明优选铟锡氧化物。
铟锡氧化物 ( ITO, 又称掺锡氧化铟)是一种铟 ( III族)氧化物 In203和锡 ( IV族)氧化物 Sn02的混合物, 通常 In203的质量百分比在 80%~95%之间,本 发明优选质量比为 90% 的 In203, 10% 的 Sn02。 铟锡氧化物在薄膜状即厚度在 50~1000nm之间时, 为透明无色, 可以作为导电薄膜来替代银、 铜金属丝的同 时还具有很好的透光性。
铟锡氧化物具有良好的电学传导性, 因此能够实现银、 铜等良好导体所能 实现的功能, 因此可替代银、 铜作为人工电磁材料中人造微结构 4的原材料。
在制造人工电磁材料的过程中, 将透明有机玻璃等透明高分子材料作为基 板 3, 然后采用电子束蒸发、 物理气相沉积、 或者一些溅射沉积技术的方法沉积 到这些基板 3的表面, 形成各种人造微结构 4, 即制得一个材料片层 1 , 最后将 多个材料片层 1封装成为一块完整的人工电磁材料。由于基板 3和人造微结构 4 均为透明材料, 因此这样的人工电磁材料可用于可见光领域, 极大的拓展了人 工电磁材料的应用领域和范围, 有着重要的科研价值和经济价值。
例如, 设计一个材料片层 1 , 其折射率为环形分布, 如图 3所示, 将折射率 相同的材料单元 2 的中心点连成一条曲线, 且曲线越密表示折射率越大。 由图 可知, 本发明第一实施例的材料片层 1 的折射率以一中心的材料单元为圓心, 距离该圓心相等的一圆周上的各个材料单元 2其折射率相等, 半径越大则该圓 周上的材料单元的折射率越小, 即该人工电磁材料圓心处折射率最大, 沿径向 向外折射率逐渐减小, 且相邻圆周上的折射率的差值自圓心向外逐渐增大。 满 足这样的折射率分布的材料片层 1 即可实现电磁波的汇聚。 对于形状相似的人 造微结构 4, 人造微结构 4越小, 相应的材料单元的折射率越小。
如图 4所示, 多个图 3所示的材料片层 1叠加形成一个人工电磁材料 100, 一束平行的可见光可以穿过透明的基板 3和人造微结构 4,且其折射率分布将使 得可见光向一点汇聚, 实现类似凸透镜的功能。
请参阅图 5 ,本发明第二实施例的提供的人工电磁材料 200与第一实施例的 人工电磁材料的区别在于, 所述人工电磁材料 200的人造微结构 204选用碳纳 米管薄膜。
碳纳米管作为一种新材料, 具有质量轻、 强度大的特点, 更为重要的是, 碳纳米管具有优良的导电性能, 当其管径小于 6nm时, 可以被看成是具有良好
导电性的一维量子导线。
本发明的碳纳米管薄膜, 是含有碳纳米管的薄膜, 包括离子导电聚合物粘 接剂和分散在粘接剂中的碳纳米管, 粘接剂为具有引入磺酰基的氟代聚乙烯, 或者为具有引入羧基、 磺酰基、 磷酰基或亚氨碌酰基的热塑性聚合物。
碳纳米管薄膜在厚度为 50~1000nm之间时, 为透明无色, 由于具有良好的 电学传导性, 因此可以作为导电薄膜来替代银、 铜来制造人造微结构以便对电 磁波产生响应, 同时, 还具有很好的透光性, 从而将人工电磁材料的应用由微 波领域拓宽至可见光。
在制造人工电磁材料的过程中, 先将碳纳米管分散在水溶剂中, 将离子导 电聚合物粘接剂溶解于乙醇溶液中, 然后将碳纳米管的水溶液和离子导电聚合 物粘接剂的乙醇溶液混合, 用搅拌器充分搅拌混合后的溶液。 然后, 将制得的 溶液涂到透明有机玻璃等高分子材料制成的基板 203 上, 水和乙醇挥发, 形成 粘接到基板上的碳纳米管薄膜, 构成人造微结构 204。 各个人造微结构 204均按 一定设计涂布完成, 即制得一个材料片层 201 , 最后将多个材料片层 201封装成 为一块完整的人工电磁材料。 当然, 本发明的碳纳米管薄膜也可以是通过其他 方式附着到基材 203 上, 且碳纳米管薄膜并不必然通过离子导电聚合物粘接剂 将碳纳米管粘接到基材表面上, 也可通过其它材料或方式实现将碳纳米管附着 到基材上形成薄膜, 本发明的碳纳米管薄膜只要是具有一定厚度的碳纳米管而 形成薄膜即可。
请一并参阅图 6及图 7,本发明第三实施例的提供的人工电磁材料 300与第 一实施例的人工电磁材料的区别在于,所述人工电磁材料 300的人造微结构 304 选用掺铝氧化锌薄膜。
掺铝氧化锌 (缩写为 ZAO ) 薄膜, 是 ZnO体系中掺杂元素 A1而得来的。 ZnO薄膜具有 C轴择优生长的众多晶粒, 每个晶粒都是呈生长良好的六角形铅 锌矿结构。 ZnO 晶体是氧的六角密堆积和锌的六角密堆积反向嵌套而成的。 这 种结构的薄膜具有透明导电性, 但电阻值高。 在 ZnO中掺杂 A1之后, 可以形成 ZAO薄膜, 电阻率大大降低, 因而具有 4艮好的导电性能, 同时薄膜的稳定性也 大大提 。
掺铝氧化锌薄膜在厚度通常在 50~1000nm之间, 为透明无色, 透光率可达 90%。 由于具有良好的电学传导性, 因此可以作为导电薄膜来替代银、 铜来制造
人造微结构以便对电磁波产生响应, 同时, 良好的透光性可将人工电磁材料的 应用由微波领域拓宽至可见光。
在制造人工电磁材料时, 先制得由透明有机玻璃等高分子材料制成的基板
303 , 在基板 303上附上一层保护膜, 且保护膜上开有形状与人造微结构相同的 镂孔, 用蒸镀法将 ZAO沉积到保护膜上, 且镂孔部分的 ZAO将直接附着在基 板 3上, 然后揭去保护膜, 即可得到附着有 ZAO薄膜的人造微结构的基板, 也 即制得一个材料片层 301 ,最后将多个材料片层 301封装成为一块完整的人工电 磁材料 300。
当然, 本发明的掺铝氧化锌薄膜也可以是通过其他方式附着到基材 303 上 形成人造微结构 304 , 现有技术的制备掺铝氧化锌薄膜的方法均可用在本发明 中, 用以制备掺铝氧化锌的人造微结构。
沿 X方向和 y方向的每一列人造微结构均相同, 而沿 z方向的每一列人造 微结构其形状几何相似, 而尺寸逐渐减小, 使得折射率沿 x、 y方向不变, 而沿 z方向的折射率逐渐减小。满足这样的折射率分布的材料片层 1即可实现电磁波 的偏折, 如图 7所示, 从折射率小的地方入射到透明人工合成材料中的电磁波, 将向折射率大的地方偏折。
当然, 通过设计各个材料单元的人造微结构, 可实现各种折射率分布, 进 而实现普通人工电磁材料所能实现的电磁波偏折、 发散等其他功能。 但本发明 由于采用透明的基板和人造微结构, 将电磁波由微波波段拓宽到可见光频段, 是一次革命性的进步, 有利于替代传统的光学元件如凸透镜、 凹面镜等, 而本 发明的材料片层均为平面板, 无需特别设计凸面或凹面等复杂曲面, 大大简化 了设计和加工过程, 能够有效降低设计、 制造成本。
以上所揭露的仅为本发明一种较佳实施例而已, 当然不能以此来限定本发 明之权利范围, 因此依本发明权利要求所作的等同变化, 仍属本发明所涵盖的 范围。
Claims
1. 一种人工电磁材料, 包括至少一个材料片层, 每个材料片层包括片状基 板和附着在所述基板上的人造微结构, 其特征在于, 所述基板由透明材料制成。
2. 如权利要求 1所述的人工电磁材料, 其特征在于, 所述基板为透明高分 子材料。
3. 如权利要求 2所述的人工电磁材料, 其特征在于, 所述基板为聚甲基丙 烯酸曱酯。
4. 如权利要求 2所述的人工电磁材料, 其特征在于, 所述基板为透明聚氨 酯、 聚乙烯、 聚对苯二甲酸乙二醇酯或聚氯乙烯。
5. 如权利要求 2所述的人工电磁材料, 其特征在于, 所述人工电磁材料的 透光度达到 85%以上。
6. 如权利要求 1所述的人工电磁材料, 其特征在于, 述人造微结构由铟锡 氧化物制成, 所述铟锡氧化物为 In203和 Sn02的混合材料。
7. 如权利要求 6所述的人工电磁材料,其特征在于,所述铟锡氧化物中 In203 的质量百分比在 80%~95%之间。
8. 如权利要求 7所述的人工电磁材料, 其特征在于, 所述的 In203的质量百 分比为 90%
9. 如权利要求 6所述的人工电磁材料, 其特征在于, 所述铟锡氧化物成薄 膜状, 厚度在 50~1000nm之间。
10. 如权利要求 1所述的人工电磁材料, 其特征在于, 所述人造微结构为具 有几何图案的碳纳米管薄膜。
11. 如权利要求 10所述的人工电磁材料, 其特征在于, 所述碳纳米管薄膜 具有 80%或更高的透明度。
12. 如权利要求 10所述的人工电磁材料, 其特征在于, 所述碳纳米管薄膜 的厚度在 50~1000nm之间。
13. 如权利要求 10所述的人工电磁材料, 其特征在于, 所述碳纳米管薄膜 包括离子导电聚合物粘接剂和分散在所述导电聚合物粘接剂中的碳纳米管。
14. 如权利要求 1所述的人工电磁材料, 其特征在于, 所述人造微结构为具 有几何图案的掺铝氧化辞薄膜。
15. 如权利要求 14所述的人工电磁材料, 其特征在于, 所述掺铝氧化锌薄 膜的透光率大于 80%。
16. 如权利要求 14所述的人工电磁材料, 其特征在于, 所述掺铝氧化锌薄 膜的厚度在 50~1000nm之间。
17. 如权利要求 1所述的人工电磁材料, 其特征在于, 所述材料片层的折射 率为同心圓环形分布。
18. 如权利要求 17所述的人工电磁材料, 其特征在于, 每个基板虛拟地划 分为多个阵列排布的基板单元, 每个基板单元上附着一个人造微结构, 所述基 板单元及其上附着的人造微结构组成一个材料单元。
19. 如权利要求 18所述的人工电磁材料, 其特征在于, 所述材料片层的折 射率以一中心的材料单元为圓心, 距离该圓心相等的一圆周上的各个材料单元 其折射率相等, 半径越大则该圆周上的材料单元的折射率越小, 且相邻圓周上 的折射率的差值自圓心向外逐渐增大。
20. 如权利要求 1所述的人工电磁材料, 其特征在于, 每个材料片层包括多 个人造微结构, 所述多个人造微结构以阵列形式附着在所述基板上, 所述多个 人造微结构以阵列的一个方向逐渐减小尺寸。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11860700.1A EP2544029B1 (en) | 2011-04-12 | 2011-10-27 | Artificial dielectric material |
US13/635,863 US9268062B2 (en) | 2011-04-12 | 2011-10-27 | Artificial electromagnetic material |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110091287 CN102480006B (zh) | 2011-04-12 | 2011-04-12 | 一种透明超材料 |
CN201110120011.XA CN102778705B (zh) | 2011-05-10 | 2011-05-10 | 一种透明超材料 |
CN201110120041.0A CN102890992B (zh) | 2011-05-10 | 2011-05-10 | 一种透明人工电磁材料 |
CN201110120011.X | 2011-10-05 | ||
CN201110120041.0 | 2011-10-05 | ||
CN201110091287.X | 2011-12-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012139368A1 true WO2012139368A1 (zh) | 2012-10-18 |
Family
ID=47008814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/081389 WO2012139368A1 (zh) | 2011-04-12 | 2011-10-27 | 一种人工电磁材料 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9268062B2 (zh) |
EP (1) | EP2544029B1 (zh) |
WO (1) | WO2012139368A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014145982A (ja) * | 2013-01-30 | 2014-08-14 | Toshiba Corp | 光学装置、固体撮像装置及び光学装置の製造方法 |
CN113328261A (zh) * | 2021-05-11 | 2021-08-31 | 中国科学院上海光学精密机械研究所 | 基于齿状弯折环和方形环的双谐振宽带透明超材料吸波器 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106405972B (zh) * | 2016-10-28 | 2019-02-01 | 同济大学 | 一种磁控可调频远红外光开关及其实现方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101493531A (zh) * | 2008-01-25 | 2009-07-29 | 致和光电股份有限公司 | 具有无规则凹凸弧形曲面的光学膜 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001071774A2 (en) * | 2000-03-17 | 2001-09-27 | The Regents Of The University Of California | Left handed composite media |
AU2003213609A1 (en) * | 2002-02-28 | 2003-09-16 | University Of Delaware | Left handed materials using magnetic composites |
TWI263063B (en) * | 2004-12-31 | 2006-10-01 | Ind Tech Res Inst | A super-resolution optical component and a left-handed material thereof |
US7406222B2 (en) * | 2006-02-16 | 2008-07-29 | Pavel Kornilovich | Composite evanescent waveguides and associated methods |
KR101091196B1 (ko) * | 2008-08-14 | 2011-12-09 | 한국전기연구원 | 탄소나노튜브가 코팅된 폴리카보네이트 투명전도성 필름 및이를 이용한 터치패널 |
US9030286B2 (en) | 2009-04-08 | 2015-05-12 | New Jersey Institute Of Technology | Metamaterials with terahertz response and methods of making same |
CN201450116U (zh) * | 2009-07-01 | 2010-05-05 | 东南大学 | 频带宽增益高和定向性好的透镜天线 |
CN101597810B (zh) | 2009-07-03 | 2011-11-09 | 东华大学 | 一种聚丙烯/掺杂氧化物复合功能纤维的制备方法 |
CN101694558B (zh) | 2009-10-21 | 2012-04-25 | 电子科技大学 | 一种用于太赫兹波调制的超材料结构 |
-
2011
- 2011-10-27 EP EP11860700.1A patent/EP2544029B1/en active Active
- 2011-10-27 US US13/635,863 patent/US9268062B2/en active Active
- 2011-10-27 WO PCT/CN2011/081389 patent/WO2012139368A1/zh active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101493531A (zh) * | 2008-01-25 | 2009-07-29 | 致和光电股份有限公司 | 具有无规则凹凸弧形曲面的光学膜 |
Non-Patent Citations (3)
Title |
---|
LI, ZHE ET AL.: "Preparation and Application Progress on Zinc Oxide Film Doped with Aluminum", YUNNAN CHEMICAL TECHNOLOGY, vol. 35, no. 2, April 2008 (2008-04-01), pages 41 - 44 AND 50, XP008168755 * |
WNG, JINKU ET AL.: "Research Progress of Transparent Conductive Polyaniline Composite Films", MATERIALS SCIENCE AND ENGINEERING, vol. 19, no. 1, March 2011 (2011-03-01), pages 121 - 123, XP008168705 * |
YANG, ZHENGLONG ET AL.: "Preparation and Performance Study of P3HT MWCNTs Photosensitive Hybrid Films", JOURNAL OF TONGJI UNIVERSITY (NATURAL SCIENCE), vol. 38, no. 7, July 2010 (2010-07-01), pages 1047 - 1051, XP008168708 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014145982A (ja) * | 2013-01-30 | 2014-08-14 | Toshiba Corp | 光学装置、固体撮像装置及び光学装置の製造方法 |
CN113328261A (zh) * | 2021-05-11 | 2021-08-31 | 中国科学院上海光学精密机械研究所 | 基于齿状弯折环和方形环的双谐振宽带透明超材料吸波器 |
Also Published As
Publication number | Publication date |
---|---|
EP2544029A4 (en) | 2015-04-01 |
EP2544029B1 (en) | 2019-12-25 |
US9268062B2 (en) | 2016-02-23 |
EP2544029A1 (en) | 2013-01-09 |
US20130089715A1 (en) | 2013-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102480006B (zh) | 一种透明超材料 | |
US6938325B2 (en) | Methods of fabricating electromagnetic meta-materials | |
CN113328261B (zh) | 基于齿状弯折环和方形环的双谐振宽带透明超材料吸波器 | |
CN110581365B (zh) | 一种错位型立体式超材料透明吸波体 | |
WO2012139391A1 (zh) | 一种偏折电磁波的超材料 | |
CN105122190A (zh) | 带静电容量式触摸面板的显示装置 | |
US20110157038A1 (en) | Touch panel and fabrication method thereof | |
US10932364B2 (en) | Transparent conductive film | |
WO2012139378A1 (zh) | 汇聚电磁波的超材料 | |
Le et al. | Transformation from 2D meta-pixel to 3D meta-pixel using auxetic kirigami for programmable multifunctional electromagnetic response | |
CN207380686U (zh) | 触控面板及应用其的显示装置 | |
US10234605B2 (en) | Liquid lens | |
WO2012139368A1 (zh) | 一种人工电磁材料 | |
CN102778705B (zh) | 一种透明超材料 | |
US20140216803A1 (en) | Conductive component and preparation method thereof | |
CN114122738B (zh) | 一种基于ito电阻膜的透明宽带电磁吸波器 | |
JP5701450B2 (ja) | 導電性構成要素およびその準備方法 | |
CN112817073B (zh) | 一种基于无反射滤波器原理的红外吸波器 | |
CN102480005B (zh) | 偏折电磁波的超材料 | |
WO2012155475A1 (zh) | 电磁波分束器 | |
CN102890992B (zh) | 一种透明人工电磁材料 | |
CN102480059B (zh) | 基于超材料的天线 | |
WO2019200908A1 (zh) | 导电结构及其制备方法、触摸屏和触摸显示装置 | |
CN204904291U (zh) | 触控装置 | |
KR20180065962A (ko) | 고투과성 나노와이어 그리드 편광자 및 그의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2011860700 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13635863 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11860700 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |